Skip To Content

Compute Tie Points

Summary

Computes the tie points between overlapped mosaic dataset items. The tie points can then be used to compute the adjustments for the mosaic dataset.

Usage

  • The tie points can be combined with control points using the Append Control Points tool.

  • The tie points and the optional control points are then used as the inputs for the Compute Block Adjustment tool.

  • If you have a mosaic dataset with many items, avoid using the Output Image Features parameter, since your result will take a long time to process.

Syntax

ComputeTiePoints_management (in_mosaic_dataset, out_control_points, {similarity}, {in_mask_dataset}, {out_image_features}, density, distribution, location_accuracy)
ParameterExplanationData Type
in_mosaic_dataset

The input mosaic dataset that will be used to create tie points.

Mosaic Layer; Mosaic Dataset
out_control_points

The output control point table. This table will contain the tie points created by this tool.

Feature Class
similarity
(Optional)

Choose the tolerance level for your matching tie points.

  • LOWThe similarity tolerance for the matching pairs will be low. This option will produce the most matching pairs, but some of the matches may have a higher level of error.
  • MEDIUMThe similarity tolerance for the matching pairs will be medium. This is the default.
  • HIGHThe similarity tolerance for the matching pairs will be high. This option will produce the least number of matching pairs, but each matching pair will have a lower level of error.
String
in_mask_dataset
(Optional)

A polygon feature class used to exclude areas you do not want in the computation of control points.

A field with a name of mask can control the inclusion or exclusion of areas. A value of 1 indicates that the areas defined by the polygons (inside) will be excluded from the computation. A value of 2 indicates the defined polygons (inside) will be included in the computation while areas outside of the polygons will be excluded.

Feature Layer
out_image_features
(Optional)

The output image feature points table. This will be saved as a polygon feature class. This output can be quite large.

Feature Class
density

The number of tie points to be created.

  • LOWThis produces the fewest number of points.
  • MEDIUMThis produces an intermediate number of points. This is the default.
  • HIGHThis produces the most points.
String
distribution

Determines whether the output points will have a regular or random distribution.

  • RANDOMPoints are generated randomly. Randomly generated points are better for overlapping areas with irregular shapes.
  • REGULARGenerates points based on a fixed pattern.
String
location_accuracy

Choose the keyword that best describes the accuracy of your imagery.

  • LOWImages have a large shift and a large rotation (> 5 degrees).The SIFT algorithm will be used in the point matching computation.
  • MEDIUMImages have a medium shift and a small rotation (<5 degrees).The Harris algorithm will be used in the point matching computation.
  • HIGHImages have a small shift and a small rotation.The Harris algorithm will be used in the point matching computation.
String

Code sample

ComputeTiePoints example 1 (Python window)

This is a Python sample for the ComputeTiePoints tool.

import arcpy
arcpy.ComputeTiePoints_management("c:/workspace/BD.gdb/redQB", 
     "c:/workspace/BD.gdb/redQB_tiePoints", "MEDIUM")
ComputeTiePoints example 2 (stand-alone script)

This is a stand-alone script sample for the ComputeTiePoints tool.

#compute tie points

import arcpy
arcpy.env.workspace = "c:/workspace"

#Compute tie points for a mosaic dataset
mdName = "BD.gdb/redlandsQB"
out_tiePoint = "BD.gdb/redlandsQB_tiePoints"

arcpy.ComputeTiePoints_management(mdName, out_tiePoint, "MEDIUM")

Licensing information

  • ArcGIS Desktop Basic: No
  • ArcGIS Desktop Standard: Yes
  • ArcGIS Desktop Advanced: Yes