FME® Readers and Writers

(formats supported by the Esri® ArcGIS® Data Interoperability
extension)

About Quick Facts Tables

Each format’s chapter overview includes high-level information about the format’s characteristics:

Format Type Identifier

Every format supported by FME is uniquely identified by an uppercase alphanumeric string. This row lists the unique
identifier for this format. For example, the identifier for IGDS Design is IGDS. The format type identifier is used in
mapping files on READER_TYPE and WRITER_TYPE lines to define the reader and writer to be used for trans-
lation. In FME Objects, when a reader or writer is created, the format type identifier is used to specify its type.

Reader/Writer

FME typically allows reading from and writing to a supported data format. However, some formats support either read-
ing or writing, but not both. This row specifies whether reading only, writing only, or reading and writing is available
for this format.

Licensing Level

Some FME-supported formats require specific licensing. For example, certain formats are not supported in FME Base
Edition. This row lists the minimum licensing level required to read from or write to the format.

Dependencies

Some formats require the installation of the application associated with the format, or may require an extra-cost plug-
in.

Dataset Type

FME reads features from datasets and writes features to datasets. The definition of a dataset varies between different
readers and writers, depending nature of the format. This row specifies the type of dataset used by this format.

File Dataset: The most basic type of dataset is the file dataset: a single file whose extension is included in the list of
supported file extensions. A file dataset reader opens the specified file and reads its features. A file dataset writer
creates the specified file if it doesn't exist and writes features into it. In general, file dataset writers overwrite existing
files, but some can append to existing files.

Directory Dataset: A directory dataset consists of a directory specification. A directory dataset reader examines the
name of all the files in the specified directory and reads those files whose extensions are included in the list of sup-
ported file extensions. The order in which files are read is not documented. Many directory dataset readers provide
an option to explicitly name a subset of the directory's files that are to be read. A directory dataset writer creates the
specified directory if it does not exist. In general, if the directory does exist, any files in the directory that match the
name of output files will be overwritten; however, some directory dataset writers can append to existing files.

Database Dataset: A database dataset consists of a set of information needed to connect to a database schema. A
database dataset reader reads all the tables in the specified database schema. The order in which tables are read is
not documented. Many database dataset readers provide an option to explicitly name a subset of the schema's tables
that are to be read. Any tables in the specified database that match the name of output tables will be overwritten.

URL Dataset: A URL dataset consists of a uniform resource locator. A URL dataset reader connects over a network to
a remote server and retrieves the data provided by that resource.

Typical File Extensions

Most file dataset readers will read data from any legally-named file, independent of extension.

Most formats are associated with one or more file extensions. This row lists the file extensions typically associated
with this format. When a format uses several files with the same basename but different extensions, the primary
extension is listed first and the ancillary ones are listed in parentheses.

Automated Translation Support

The FME typically allows automated translation to and from a supported data format. However, some formats support
either automated reading or automated writing, but not both. This row specifies whether this format supports auto-
mated reading, writing, or both. When automated translation is not available, a custom mapping file must be used.

Feature Type

Every format supported by FME identifies the features in its datasets according to a well-defined data classification
scheme. This primary classification is known as the feature's type, which serves as the main handle to a feature. This
row describes the format’s classification scheme. For example, a simple classification scheme is to identify features
according to the file or table they reside in (the feature's type is the file base name or table name, respectively). For
level-based formats, features are typically grouped by level (the feature's type is the level in which it resides).
Another common classification is to group features according to the thematic layer to which they belong - for exam-
ple, roads, railways, and rivers. Although these are the most common classification schemes, the list of possible
schemes is quite broad because the classification chosen is individual to the format.

User-Defined Attributes

An FME feature consists of geometry and attributes. While many of a feature's attributes are predefined by FME and
the feature's format (such attributes are constant from one dataset to another), some formats allow users to define
custom attributes. These user-defined attributes give the format flexibility to store arbitrary amounts of domain-spe-
cific information in addition to geometry. This row specifies whether this format supports user-defined attributes.

Coordinate System Support

This row indicates whether datasets of this format can store coordinate system information, and if so, whether the
reader extracts this information.

Generic Color Support

The fme_color and fme_fiT11_coTlor feature attributes represent the red, green, and blue intensities of a fea-
ture. Intensities can each vary between 0.0 and 1.0, and are calculated by taking the color intensity and dividing it by
the total intensity range. This row indicates whether or not the format supports the generic fme_color and fme_
fil1_coTlor attributes.

If a format has generic color support, the reader will add both the generic FME color attributes and the format-spe-
cific color attributes to features. Writers that support generic color will give precedence to the format-specific color
attributes if they are present in addition to the generic attributes.

Since both generic FME attributes and format-specific attributes exist on workspace features, it is important to note
that the co-existence of the two types of attributes can sometimes cause a conflict, and the format-specific attrib-
ute will be deleted. For more information, see Format-Specific Attributes and Generic FME Attributes in Workbench.

Spatial Index

This row applies only to readers: it indicates whether or not the native reader supports spatial indexing. The possible
values are:

Never: This reader never provides a spatial index.

Optional: This reader may or may not provide a spatial index, depending on whether or not one is available for the
specific dataset being read.

Always: This reader always provides a spatial index.

Schema Required

This row applies only to writers. For mapping files, it indicates whether or not DEF lines are required. For FME
Objects applications, it indicates whether or not schema features need to be provided to the writer before data fea-
tures can be written to a dataset.

Encoding Support

This row indicates whether a format supports character encoding schemes for attribute values. Users who need to
translate their international data will benefit from this enhanced support as they will no longer need to set their
default system language (on Windows, this is set through the "Regional and Language Options" dialog) to match the
encoding of the data. Depending on the format, the character encoding may need to be specified by the user.

Transaction Support

This row applies only to readers: it indicates whether or not the native reader supports transaction processing. For
mapping files, it indicates whether or not the starting transaction number and the transaction interval can be spec-
ified. For FME Objects applications, it indicates whether or not the universal writer object honors the start-
Transaction, commitTransaction, and rol1lbackTransaction methods.

Enhanced Geometry

Indicates whether the reader/writer supports the enhanced geometry model. The addition of enhanced geometry
model support allows lines and polygons containing arcs to be maintained, rather than stroked or the geometry split
up into multiple segments. It also provides the ability to truly hold measures.

Go to http://www.fmepedia.com/index.php/Geometry_Model for more information.

For more information on the global directive that sets the usage of enhanced geometry in readers and writers (as well
as functions, factories and transformers), see the FME Fundamentals on-line help, in FME Configuration > Geometry
Handling. (The FME Fundamentals help is available as a link from any help menu.)

Geometry Type Attribute

The name of the feature attribute that contains the feature's format-specific geometry type.

Supported Geometry

This table indicates which geometry types the format supports.

Geometry Support

Geometry Supported? Geometry Supported?
aggregate yes/no point yes/no
circles yes/no polygon yes/no
circular arc yes/no raster yes/no
donut polygon yes/no solid yes/no
elliptical arc yes/no surface yes/no
ellipses yes/no text yes/no
line yes/no z values yes/no

none yes/no

Raster-Specific Information

In any raster format, this table provides additional raster-specific information.See About FME Rasters for more infor-
mation on each entry.

Band Interpretations Red8, Green8, Blue8
Palette Key Interpretations not applicable
Palette Value Interpretations not applicable
Nodata Value 0,0,0

Cell Origin (X, y) 0.5, 0.5

Rotation Support No

GCP Support No

World File Support No

TAB File Support Yes

About Feature Attributes

Feature attributes are categorized into one of the following three groups:

1. format-specific attributes
2. user attributes

3. generic FME attributes

A feature may have one or more associated format attributes. A format attribute represents an attribute that is spe-
cific to a format. Some examples are: autocad_bTlock_name and sde30_justification.

A feature is also associated with one or more associated user attributes, which represent custom attributes that hold
domain information about a feature, such as: parcel_identifier, owner_name, date_surveyed, etc.

Generic FME attribute names are prefixed by fme_. The benefit of using generic attributes over format-specific attrib-
utes is that they have the same meaning in all the readers and writers that support them. For example, the fme_
colorand fme_fi1T_color feature attributes represent the red, green, and blue intensities of a feature. If a for-
mat has generic color support, the reader will add both the generic FME color attributes and the format-specific color
attributes to features. Writers that support generic color will give precedence to the format-specific color attributes if
they are present in addition to the generic attributes.

The most important generic attributes are fme_type and fme_geometry. Both of these relate to the geometry of
a feature. The Geometry class represents a feature’s positional information. Feature geometry may consist of points,

lines, or areas. Features that contain multiple geometric parts are said to have an aggregate geometry. Features with
no geometry are also supported.

The distinction between fme_type and fme_geometry is an important one: fme_geometry indicates the
geometry type of the actual coordinates, whereas fme_type specifies how that geometry is to be interpreted. For
example, a point geometry type can be interpreted as one of the following FME types: point, arc, ellipse, or text. The
valid combinations of fme_type and fme_geometry are shown in the table below:

fme_ fme_ | fme_ | fme_ fme_ | fme_ :‘n;e_
geometry | point | line | polygon | donut | aggregate ge;m

fme_type

fme_point X X

fme_arc X

fme_ellipse X

fme_text X

fme_line X

fme_area X X

fme_undefined X

Format-Specific Attributes and Generic FME Attributes in Workbench

Since both generic FME attributes and format-specific attributes exist on workspace features, it is important to note
that the co-existence of the two types of attributes can sometimes cause a conflict. If this happens between a reader
and a writer, the generic fme attribute will take precedence.

For example, if a feature contains a format-specific color specification, and the optional fme_color attribute is
changed between the reader and the writer, fme_color will take precedence and the format-specific color spec-

ification will be deleted from the workspace. (However, if a feature within a writer contains a format-specific color
specification, then that will supersede fme_color. See the section on fme_color in the FME Fundamentals manual.)

This possible conflict also applies if you alter a feature’s geometry in a workspace that has the same source and des-
tination format. If you alter the geometry from the reader to the writer, then the generic fme_type will be used, and

the format-specific geometry type will be deleted.

See the List of Format-Specific Attributes and Corresponding FME Generic Attributes.

List of Format-Specific Attributes and Corresponding FME Generic Attributes

The applicable format attributes and corresponding FME attributes are listed below. Any change (including deletion)

to the fme_* attribute between a reader and writer will cause the format-specific attribute to be deleted.

Corresponding Generic

igds_color.red
igds_color.green
igds_color.blue

Format Format-Specific Attribute FME Attribute
AutoCAD fme_color
CGDEF cgdef_color.red fme_color
cgdef_color.green
cgdef_color.blue
Design (v7 and v8) igds_color fme_color

igds_fill_color

fme_fill_color

igds_fill_color.red
igds_fill_color.green
igds_fill_color.blue

igds_fill_color

PenMetrics GRD

grd_pen_color
grd_layers_pen_color
grd_blocks_pen_color

fme_color

grd_brush_color
grd_layers_brush_color
grd_blocks_brush_color

fme_fill _color

IDEX

idex_database_color

fme_color

idex_database_hatch_color

fme_fill _color

MapInfo Native format
(MAPINFO and MITAB)

mapinfo_brush_foreground

fme_fill _color

mapinfo_pen_color
mapinfo_symbol_color

fme_color

mapinfo_text_fontfgcolor

Corresponding Generic

Format Format-Specific Attribute FME Attribute

MIF/MID (MapInfo Data mapinfo_brush_foreground fme_fill_color
Interchange Format)

mapinfo_pen_color fme_color
mapinfo_symbol_color

mapinfo_text_fontfgcolor

StruMap strumap_red fme_color
strumap_green
strumap_blue
strumap_color

Simple Geometries

Simple geometries are geometries that are not composed of other geometries, and do not have associated generic
FME attributes that affect their positional representation. More concretely, features with simple geometries are those
with the following combinations of fme_geometry and fme_type: {fme_line, fme_line}, {fme_
point, fme_point}, {fme_polygon, fme_area}.

Arc and Ellipsoid Geometries

Features with ellipsoid geometry are those with fTme_geometry equal to fme_point and fme_type equal to
fme_eTT1ipse.

Donut Geometries

Donut Geometries are used to represent area features with holes, such a lakes with islands. A proper Donut Geometry
contains only polygons that do not overlap each other or share common edges; all of the inner polygons are disjoint
and fully contained within the outer polygon. However, FME does not guarantee that all features with donut geometry
follow these rules. For example, when data is read from a data source that supports donut geometries but do not
enforce non-intersecting and non-overlapping donuts, FME will respect the original geometry. The figure below
shows an example donut geometry.

Features with donut geometry are those with an fme_geometry equal to fme_donut and an fme_type value
equal to fme_area.

Aggregate Geometries

A feature with aggregate geometry has an fme_geometry value equal to fme_aggregate and an fme_type
value equal to either fTme_point, fme_Tine, or fme_area. FME uses aggregates to represent features with
multi-part geometries: geometries that are composed of several disjoint pieces. In most situations, the components
of an aggregate are homogeneous. That is, if fme_type is fme_point, then the aggregate contains point geom-
etries; if fme_typeis fme_T1ne then the aggregate contains line geometries; and so on. However, your appli-
cation should be designed to handle non-homogeneous aggregates gracefully since it is possible that some data
sources may contain such features. Non-homogeneous aggregates have no value for fme_type.

OpenGIS Geometries

The OpenGIS Consortium defines a Well-Known Text (WKT) representation for feature geometries. The FME -
OFeature object allows your application to import a geometry from WKT and export a geometry to WKT using the
i mportGeometryFromOGCWKT and exportGeometryFromOGCWKT methods respectively.

About FME Rasters

Overview

Raster data in FME is represented by features with raster geometry. Raster data differs in several key ways from vec-
tor data, and is handled uniquely in FME. A raster can be considered as a grid of values organized into rows and col-
umns, with the relative size of its cells determining its resolution, or level of detail. Each row and column intersection
in raster grid is called a cell or pixel. Vector point geometries can often be thought of as analogous to cells, while lin-
ear geometries like roads are represented as contiguous cells. Vector features tend to be more meaningful when
taken together as a group, while a single raster feature can convey the same spatial information in a non- modular
fashion.

Often a raster serves as a backdrop for overlaying specific vector information. For example, you can place vector lines
and polygons that represent streets and buildings on a raster image that is an aerial photograph of a city. Conversely
raster may be used as a backdrop for creating vector maps. For example, one might use satellite or aerial imagery to
map particular features of an urban environment for city planning or geologic structures for locating natural
resources.

Rasters can be represented as either image or numeric data. Images are commonly derived from satellite data or pho-
tography, while numeric data often represents elevations, temperatures, and other quantitative information.

Raster data is stored in one or more bands whose properties may or may not be homogeneous. Imagery data often
contains several bands of data. This data may come from either Optical or SAR (Synthetic Aperture RADAR) type sen-
sors and may contain any nhumber of image bands of data relating to a wide range of spectral bands or polarizations .
Though a band may have its own specific band properties, all bands on a raster must share a common set of raster
properties such as the number of rows and columns, the cell size and the ground extents.

A band may optionally have one or more palettes, also called colormaps or Look-Up Tables (LUTs), associated with it.
A palette is essentially a lookup table of discrete keys to color or string values. These rasters are often referred to as
classified because of the discrete data ranges. Classified rasters often serve the purpose of providing a visual rep-
resentation or providing additional descriptive information for specific areas of a raster.

About FME Rasters

Overview

Raster data in FME is represented by features with raster geometry. Raster data differs in several key ways from vec-
tor data, and is handled uniquely in FME. A raster can be considered as a grid of values organized into rows and col-
umns, with the relative size of its cells determining its resolution, or level of detail. Each row and column intersection
in raster grid is called a cell or pixel. Vector point geometries can often be thought of as analogous to cells, while lin-
ear geometries like roads are represented as contiguous cells. Vector features tend to be more meaningful when
taken together as a group, while a single raster feature can convey the same spatial information in a non- modular
fashion.

Often a raster serves as a backdrop for overlaying specific vector information. For example, you can place vector lines
and polygons that represent streets and buildings on a raster image that is an aerial photograph of a city. Conversely
raster may be used as a backdrop for creating vector maps. For example, one might use satellite or aerial imagery to
map particular features of an urban environment for city planning or geologic structures for locating natural
resources.

Rasters can be represented as either image or numeric data. Images are commonly derived from satellite data or pho-
tography, while numeric data often represents elevations, temperatures, and other quantitative information.

Raster data is stored in one or more bands whose properties may or may not be homogeneous. Imagery data often
contains several bands of data. This data may come from either Optical or SAR (Synthetic Aperture RADAR) type sen-
sors and may contain any nhumber of image bands of data relating to a wide range of spectral bands or polarizations .
Though a band may have its own specific band properties, all bands on a raster must share a common set of raster
properties such as the number of rows and columns, the cell size and the ground extents.

A band may optionally have one or more palettes, also called colormaps or Look-Up Tables (LUTs), associated with it.
A palette is essentially a lookup table of discrete keys to color or string values. These rasters are often referred to as
classified because of the discrete data ranges. Classified rasters often serve the purpose of providing a visual rep-
resentation or providing additional descriptive information for specific areas of a raster.

Raster Properties
Rasters contain a set of metadata that defines the properties for the raster as a whole. These properties include

e number of bands (channels or layers)

e number of rows and columns (lines and pixels)

e cell size (spacing)

e cell origin

e extents

e rotation

e Ground Control Point (GCPs)

A cell is the rectangular area created in the x and y dimensions by the spacing of pixels from the raster origin.

Spacing or cell size is the fixed distance in the x and y dimensions between each pixel in the raster. Some formats
store only one spacing value, meaning that it must be the same for both the x and y dimensions - this is often
referred to as square cells.

The raster origin is the lower left x and y of the raster at which the coverage of the data sample begins. It contains the
minimal x and minimal y values for the raster. In FME, the raster origin is the lower left corner of the lowest and left-
most cell in the raster.

Cell origin is the point within each cell of a raster from which the pixel for that cell is derived. The lower left corner of
the cell in the x or y dimension is 0.0, while the upper right corner is 1.0. A cell origin of 0.5 in xand 0.5 in y would
put the data point for each cell in the center of the cell, which is the default representation in FME.

Extents or bounds for a raster are represented by the lower left ground coordinate and the upper right coordinate cov-
ered by the raster data. This is sometimes referred to as cell bounded. The minimum x and maximum y values that
comprise the upper left corner of the raster extents are equivalent to the raster origin.

Rotation is a measure of the angle in radians of the CCW rotation of the raster from the positive x axis. The rotation
point is the top left corner of the top left cell of the image. Note that currently the rotation is not applied during factory
or function related processing but is merely being stored at this point. Rotation does not affect the extent values and
is considered a separate property.

Ground Control Points, or GCPs, may also be present in the geometry of a raster. If present, these refer to a set of
points used to georeference image or elevation data, with each point 'tying' a row and column location in the raster to
an x,y location on the earth. A coordinate system will also be present in the properties of a raster containing GCPs, as
opposed to being stored on the feature itself. GCPs can either be applied to the raster resulting in the image being geo-
referenced and tagged with the GCP coordinate system, or the GCPs can be extracted and stored on the resulting data
file for those formats supporting unreferenced data and GCP storage.

Band Properties

Rasters contain a set of metadata that defines the properties for each band. These properties include the band name,
number of palettes, interpretation, bit depth, 'nodata' value, and properties relating to the preferred method of data
access.

The interpretation of a band describes the type of data stored at each cell in the raster and number of bits used for
that type. An interpretation also implies an underlying fundamental data type used to store the data. For example, an
interpretation 'Gray8' implies that the actual data type is FME_UInt8 and that the size of each cell is 8 bits. Possible
interpretation values are Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Real32, Real64, Gray8, Gray16,
Red8, Red16, Green8, Green16, Blue8, Bluel6, Alpha8, Alphalé6.

Many raster formats store a single data value called 'nodata’, transparent or background value that represents
unknown or invalid data. Often the value is at one of the extremes of the data type range. Some formats may specify a
particular nodata value that is unique to that format, while others are capable of handling any single value designated
as nodata.

A second option for nodata specification is a whole band or bitmask of data that acts as a flag for each cell indicating
whether the cell is valid data or not. Several formats do not support nodata values at all.

Bands may also have multiple palettes associated with each instance. The number of palettes on a band can be deter-
mined as part of the band properties.

Palette Properties

Rasters contain a set of metadata that defines the properties for each palette. These properties include the palette
name, key and value interpretation, key and value bitdepth, 'nodata' key and value.

Interpretation on palettes works in much the same way as it does on bands. The interpretation of a palette key must
match the interpretation of the related band. Valid palette key interpretations are UInt8, UInt16, and UInt32. The pal-
ette value interpretation may be a color model such as RGB or RGBA or string data. Valid palette value interpretations
are RGB24, RGBA32, RGB48, RGBA64, Gray8, Grayl16, and String.

A palette does not directly store 'nodata’ values however since the palette keys are intended to match the band values,
which can store ‘nodata’, a single palette key can be interpreted as ‘nodata’ if it matched the band ‘nodata’ value. This
nodata key also looks up to a palette value which is then considered the 'nodata’ value. A nodata value may not exist
without a nodata key.

Raster Concepts

FME Features with raster geometry have some particular features and details not always present in vector features.
Some of these features include storage and formatting concerns such as compression, pyramiding, interleaving,
interpretation, tiling, mosaicking, band merging and splitting, palette creation or resolution and selection.

Compression

Compression is used to reduce the size of a raster on disk, often traded for lessened performance since the format
must often be uncompressed to read and compressed to write. The types of compression available depend on specific
format support.

Pyramiding

Pyramids or overviews create lower resolution views of an original dataset. Often several pyramids are created at var-
ious lower resolutions to be used in the place of the original raster when only a snapshot or overview of the data is
required. An example of when a pyramid is typically employed, is when a raster viewer zooms out leaving a smaller
raster with less detail. Often the smaller raster is rendered using a cached pyramid instead of resampling the image
to a lower resolution at the time of the zoom out request.

Interleaving

Interleaving refers to the storage of multicomponent interpretations and the order in which the individual cell values
are stored together. Bands in FME use Band Sequential (BSQ) interleaving indicating that they are all stored uniquely.
Palettes in FME are Band Interleaved by Pixel (BIP) as each palette value is stored together with each key in the pal-
ette.

Interpretation and Data Type

Interpretation and data type are two related concepts associated with both bands and palettes on a raster. Data type
refers to the fundamental type of the data stored at each cell and is expressed as an enumeration of various floating
point or signed or unsigned integer numbers. Interpretation refers to what the data type is representing. For exam-
ple, a group of three UInt8 data types in each cell may correspond to an interpretation of RGB24 on a palette, such
that each of the three UInt8 values corresponds to red, green and blue values respectively. The data type of a band or
palette can be determined from interpretation but the converse is not true.

Palette Resolution

Rasters containing bands with palettes can be resolved to band without palettes through a process called palette res-
olution. During this process each band value is looked up in the palette and the resultant value is placed in the band.
Once complete, the palette is removed and the band interpretation and data type are adjusted. The resultant raster
has the same appearance and values as the original, except the palette is not present. Alternatively palettes can be
directly removed without the palette resolution step.

Tiling and Mosaicking

Tiling and mosaicking raster refers to dividing or combining spatially related rasters. A single raster can be tiled into
smaller adjacent rasters. A resultant set of tiled rasters can then be mosaicked into a single raster again. The focus is
on the spatial relationship of the tiles which should fit together like pieces in a puzzle.

Band Combining and Separating

Not to be confused with mosaicking, band combining is a raster structural operation that allows for the combination
of bands to form multiple rasters into one raster. The values of each band remain unchanged and the spatial rela-
tionship required is equivalent resolution and extents between all input rasters. This is useful in situations such as
when one wants to combine three individual one band rasters combined into a single three band raster. Conversely,
separating a raster with multiple bands and palettes is also supported and can be employed to write multi-band or
multi-palette rasters to destination formats that support only single-band or single-palette output.

Band and Palette Selection

Rasters that contain multiple bands and/or palettes need not be split to be operated on individually. FME allows for
individual band and palette selection for operational purposes. For example, an RGB raster that has three bands can
have only the red band selected such that subsequent processing occurs only on the red band, and does not affect
the remaining green and blue bands. Bands and palettes are selected based on their numeric location in the raster.
The numerical relationship is zero based such that the first band is at index 0, the second band atindex 1 and so on.

Raster Processing

A secondary set of features specific to processing rasters also exists and is expressed through the variety of raster
functions and factories inside FME. Please see the various transformers in the Raster category or search for raster in
the transformer search box.

Raster versus Vector Features

FME Features with raster geometry cannot be processed in all the ways that vector features can. If an operation that
is not yet supported for a raster is attempted, a vector FME polygon feature is used instead. This substitute feature
represents the original raster bounding box, and contains the original attributes.

Raster-to-vector data translation and vector-to-raster data translation is not an automatic process. There are fac-
tories through which vector data can be transformed into raster data, and raster data into vector points. There cur-
rently do not exist any means of stroking or transforming raster data into non-trivial vector output through FME.

FME features with raster geometry each typically represent one raster data file. Raster writers typically accept a direc-
tory as a destination dataset. When writing multiple raster files for one dataset directory the feature type name is
used to determine the filename. If multiple features are written to the same dataset the name will be suffixed to be
unique. Some writers use feature type fanout by default on the fme_basename attribute on each feature, thus pro-
viding a name with respect to the source data and having some degree of uniqueness.

Raster File Naming

Many file-based raster writers use the feature type as the output filename. For example, if you passed a feature to the
feature type “image” on the TIFF writer, the output would be “image.tif”.

When used in Workbench, most file-based raster format writers fanout on fme_basename. When this is the case, the
feature type will effectively be the value of the fme_basename attribute, which is set by all raster format readers to be
the filename without the path or extension. For example, if you read two files, imagel.tif and image?2.tif, two features

would be produced, one with an fme_basename value of “imagel”, and one with a value of “image2”. Then, if these
two features were written to a writer when fanning out on fme_basename, two new files would be produced, e.g.
imagel.png and image2.png.

Raster format writers that store their data in files require a mechanism to avoid overwriting existing files and dif-
ferentiate output file from one another when multiple rasters are written to a writer (particularly if the writer outputs
one file per raster feature). Raster file based writers implement a simple renaming mechanism to deal with name col-
lisions. Renaming the output files only occurs within a single instance of the writer within a given translation.

The first output file is written using the name requested in the workspace. If additional files are produced from the
same feature type, the subsequent files are automatically distinguished by appending sequential numbers to the fil-
enames. For example, if four rasters are written to the same feature type, named "image", the result is a set of output
files with the names image.tif, image_1.tif, image_2.tif, and image_3.tif.

Multiple translations of the same workspace that incorporates a file based raster writer will overwrite previous file out-
put if name collisions occur. Similarly, using multiple writer instances targeted at the same directory is considered
unsafe if the same feature types are used in both translations since data overwriting may occur.

World Files

World files are used to store georeferencing information for rasters. More specifically, they describe the origin, spac-
ing, and rotation of a raster.

Several raster format readers will read world files present alongside a dataset, and many raster writers have the
option to generate a world file to accompany the output dataset. Consult individual format documentation for more
information on their world file support.

Raster format readers will give world file georeferencing more precedence than georeferencing in the raster dataset.
That is, if the world file stores georeferencing information that is different than that from the source dataset, it is the
world file georeferencing that will be applied to the raster. If this is not desired, a simple workaround is simply to
move or rename the world file so it will not be read by the format reader. Additionally, note that readers that read both
world and TAB files will give more precedence to the world file.

Also note that most raster format writers will not write a world file if the output raster contains only default geo-
referencing information: an origin of (0, 0), spacing of 1.0, and rotation of 0.0.

MapInfo TAB Files

Raster TAB files are used to store control points, a coordinate system, and user attributes.

Most raster format readers will read TAB files present alongside a dataset, and most raster format writers have an
option to generate a TAB file to accompany the output dataset. Consult individual format documentation for more infor-
mation on their TAB file support.

The control points represent georeferencing information for the raster. When reading this information, FME will
attempt to determine if these control points represent the extents of the raster (i.e. they occur at the corners of the
raster) or if they are Ground Control Points, and apply this information accordingly. Note that georeferencing infor-
mation will be discarded for datasets that contain multiple subdatasets, as there is no way to ascertain which sub-
dataset the information corresponds to.

Attributes are not natively a part of raster TAB files. However, FME will read and write attributes to raster TAB files in
the same manner as is done for vector TAB files. This enables the storage of user attributes for many formats that
don't otherwise support attribution.

Information in TAB files will be given more precedence than information in the raster dataset. For example, if the TAB
file stores georeferencing information that is different than that from the source dataset, it is the TAB file geo-
referencing that will be applied to the raster. If this is not desired, a simple workaround is simply to move or rename
the TAB file so it will not be read by the format reader. Additionally, note that readers that read both world and TAB
files will give more precedence to the world file.

Database Writer Mode

Overview

Most database writers share a WRITER_MODE specification, which indicates the default operations that will be per-
formed by the writer.

Note: Some writers implement only portions of these specifications (for example, the ArcSDE writer and Geo-
database writers do not implement the Table Level mode).

Database Writer Mode

Overview

Most database writers share a WRITER_MODE specification, which indicates the default operations that will be per-
formed by the writer.

Note: Some writers implement only portions of these specifications (for example, the ArcSDE writer and Geo-
database writers do not implement the Table Level mode).

Generic Database Writer Mode

The writer mode can be specified at three unique levels:
e Writer

e Table

e Feature

Writer Level

At the writer level, the WRITER keyword is <Wr1iter>_MODE, prefixed by the writer keyword (for example,
SDE30). Possible values are:

e INSERT (default) - Implies insert only; can be overridden only by table-level modes, not feature-level modes.
e UPDATE - can be overridden by table and feature level modes.

e DELETE - can be overridden by table and feature level modes.
Table Level

At the table level, there is a database-specific feature type DEF parameter called _mode prefixed by the writer key-
word (for example, SDE30_MODE or postgis_mode). Possible values for this attribute are:

0. INHERIT_FROM_WRITER - default
1. INSERT
2. UPDATE
3. DELETE

Feature Level

At the feature level, there is an FME generic attribute called fme_db_operation. Possible values for this attribute
are:

0. <no attribute> - defaults to table level mode
1. INSERT
2. UPDATE
3. DELETE

The FME generic attribute overwrites the value given to the writer keyword <WRITER>_MODE for that feature only
regardless of the value of the table mode, except for when the table level mode is INSERT.

Used in conjunction with the Tme_where and the fme_db_transaction attributes for updates.
Feature Level Generic Examples
Insert example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE, INSERT or DELETE
feature type roads
num_lanes 5

surface_type gravel

age 106

location canada

condition poor

name Highway 1

road_id 1234

fme_geometry fme_no_geom
fme_db_operation INSERT

This will insert a row into a table named "roads". This will append to an existing table. Columns not specified will
receive their default values, if there are default values.

Update example:

WRITER LEVEL: UPDATE

TABLE LEVEL: UPDATE or DELETE
feature type roads

condition good

fme_db_operation UPDATE
fme_where road_id = 1234

This will update the row in the table "roads" where the road_id = 1234. The column "condition" will have its value
changed from "poor" to "good".

Delete example:

WRITER LEVEL: UPDATE

TABLE LEVEL: UPDATE or DELETE
feature type roads
fme_db_operation DELETE
fme_whereroad_id = 1234

This will delete the row in the table "roads" where the road_id = 1234.
Feature Level Specific Format Examples (PostGIS)
Insert example:

WRITER LEVEL: UPDATE

TABLE LEVEL: UPDATE, INSERT or DELETE
feature type roads

num_lanes 5

surface_type gravel

age 106

location canada

condition poor

name Highway 1

road_id 789

fme_geometry fme_point (45, 67)
fme_db_operation INSERT

This will insert a row into a table named "roads". This will append to an existing table. Columns not specified will
receive their default values, if there are default values.

Update example:

WRITER LEVEL: UPDATE

TABLE LEVEL: UPDATE or DELETE

feature type roads

fme_geometry fme_point (100234, 2349)
fme_db_operation UPDATE

fme_where road_id = 789

This will update the row in the table "roads" where the road_id = 789. The geometry column will have its value
changed from (45, 67) to (100234, 2349).

Notes:

e Table level mode specification overrides writer level mode specification.

e Feature level mode specification overrides table level mode specification when the table level mode is NOT
"INSERT".

e Table level mode specification defaults to INHERIT_FROM_WRITER.

e Updates performed on rows that DO NOT EXIST are NOT turned into inserts. The user is warned and the feature is
skipped.

e Inserts performed on rows that EXIST are NOT turned into updates. FME will still attempt to perform the insert: if
it is not prevented by a unique index, it will insert a duplicate row; if it is prevented by a unique index, the trans-
lation with halt with an error.

e Update features are formed in one of two common ways:
e Using a stripped down source feature to update one row per update feature

e Using a new feature and adding the Tme_db_operation and fme_where and any attributes that you
want to update.

e Updates are not limited to one row per feature, but can update the entire table if desired. It is mandatory to use the
fme_where attribute to specify which rows to update (or delete).

e Geometry can also be updated using update mode. The geometry on the update feature will replace the geometry
in all of the matched rows. However, an update feature with no geometry will not change the geometry column in
any way.

e Some formats that allow UPDATE and DELETE mode using the fme_where attribute require that the attribute to
be specified to identify which rows to operate on, and will fail if the fme_where attribute is not present (for exam-
ple, PostGIS, MySQL).

Feature Selection

Once you have determined how to specify whether an insert, update, or delete should be performed, you will need to
select the features in the database to be updated or deleted.

Note: This section is irrelevant for features being inserted.

Terminology
e edit: an insert or update

e query feature: the FME feature passed to the writer, which will be used to determine which features from the data-
base are edited

Methods
Currently, there are two ways in which to determine which features to edit:

1. fme_where - This is found on the query feature, and can be any valid WHERE clause (it does not contain the
word WHERE). The value for this keyword is not meant to be parsed and split up by the writer, but passed

directly to the database. The features returned from using this attribute are the same features that would be
returned from executing the SQL query:

SELECT * FROM <feature type of query feature> WHERE <fme_where>;

2. <format_name>_update_key_columns - This specifies which columns to use in creating a WHERE
clause. It is found on the DEF line to which it applies. The values for those columns are then taken from the
query features. For example, the DEF for the table roads would look like:

GEODATABASE_MDB_DEF roads \
GEODATABASE_UPDATE_KEY_COLUMNS name, location,age

The query feature might look like:

feature type roads
num_lanes 5
surface_type gravel
age 106

Tocation canada
condition poor
name Highway 1
road_id 1234

The WHERE clause that the writer assembles would then be:
name = 'Highway 1' AND location = 'Canada' AND age = 106

(notice the use of single quotes around the text columns).

Some writers (for example, ArcSDE and Geodatabase) use the object ID column as the default key column if the user
did not specify any of their own. (However, since we don't know what the object ID column is when the work-
space/mapping file is generated, a blank value is assigned to the parameter and the writer interprets this as "use the
object ID column".)

It should not be mandatory that the columns/attributes specified for this parameter exist on the DEF line, because if
the table exists, attributes are optional on the DEF line.

Limitations

Although a single query feature may cause more than one feature to be edited, the update/delete feature is restricted
to changing only those features of the same feature type as it. This means that we cannot have an update feature with
a feature type of "provinces" updating features of feature type "cities". In general a feature type in a database format
corresponds to a table; however, it may correspond to a view.

Date and Text Fields

It will probably be necessary to place single quotes (') around date and text fields when creating your own WHERE
clause using the columns in

<format_name>_update_key_columns

Or, if you don't need to put single quotes around date fields, you may have to convert the date from the FME format
into the database-specific format. Either way, it will be necessary to know the column data types.

Attribute Selection

In update mode, only the attributes on the feature will be used to update the existing columns. If an attribute is miss-
ing on the feature, the associated column is not updated in the database. Similarly, if the feature has no geometry,
any geometry associated with the row in the database will remain unchanged.

1Spatial Internal Feature Format (IFF) Reader/Writer

Format Notes: This format is not available in FME Base Edition.

The 1Spatial (previously known as Laser-Scan) Internal Feature Format (IFF) Reader/Writer module enables FME to
read and write IFF files. The IFF is an internal ASCII format originally created by Laser-Scan Ltd. This chapter
assumes that you are familiar with the Internal Feature Format.

Overview

IFF files store both geometry and attribution for features. An IFF file has the following file name extension:

File Name Extension Contents

Aff Vector geometric data

The extension is added to the basename of the IFF file.

The Internal Feature reader supports the types of symbol, line, polygon, and text geometric data in . 1T files. The
IFF format also stores features with no geometry. Features that have no geometry are referred to as having a geome-
try of none. IFF files support both two- and three-dimensional geometry.

IFF Quick Facts

Format Type Identifier IFF
Reader/Writer Both

Licensing Level Professional
Dependencies None

Dataset Type Directory or File
Feature Type File base name
Typical File Extensions (iff

Automated Translation Support Yes
User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No
Transaction Support No

Geometry Type Attribute iff_type
Encoding Support No

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point yes
circles no polygon no
circular arc no raster no
donut polygon no solid no
elliptical arc no surface no
ellipses no text yes
line yes z values no
none yes

Reader Overview
The IFF reader produces FME features for all feature data held in IFF files that are in the specified directory.

The reader first scans the given directory specified by the DATASET keyword. For each IFF file found, it checks to
see if that file is requested in the translation by comparison with the list specified by the ID’s keyword. Then the
reader extracts features from an IFF file one at a time, and passes them on to the rest of the FME for further proc-
essing. When the file is exhausted, the IFF reader moves onto the next file in the directory.

Optionally a single IFF file can be specified. In this case, only that IFF file is read.
Reader Directives

The directives processed by the IFF reader are listed below. The suffixes shown are prefixed by the current <Read-
erkKeywords> in a mapping file. By default, the <ReaderKeyword> for the IFF reader is TFF.

DATASET
Required/Optional: Required

The value for this directive contains the directory where the IFF files will be read, or the file path to the single IFF file.
A typical mapping file fragment specifying an input IFF dataset looks like:

IFF_DATASET /usr/data/iff/iffrile.iff
Workbench Parameter: Source 1Spatial Internal Feature Format (IFF) File(s)
DEF
Required/Optional: Required

Each IFF file may optionally be defined before it is read. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of an IFF DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The file names of the physical IFF files are constructed by using the directory specified by the DATASET keyword,
the basename specified on the IFF DEF lines, and the . 1 ' extension.

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The width

Field Type Description

parameter controls the maximum number of char-
acters that can be stored by the field. No padding is
required for strings shorter than this width.

date Date fields store dates as character strings with the
format YYYYMMDD.
number(<width>, Number fields store single and double precision float-

<decimals>) ing point values. The width parameter is the total

number of characters allocated to the field, including
the decimal point. The decimals parameter controls the
precision of the data and is the number of digits to the
right of the decimal.

smallint Small integer fields store 16-bit signed integers and
therefore have a range of -32767 to +32767.

integer Integer fields store 32-bit signed integers.

logical Logical fields store TRUE/FALSE data. Data read or
written from and to such fields must always have a
value of either true or false.

float Float fields store 4-byte floating point values. There is
no ability to specify the precision and width of the
field.

double Double fields store 8-byte floating point values.

The following mapping file fragment defines a IFF file. Notice that the definition specifies the geometric type of the
entities it will contain since IFF files may contain any of the valid geometry types.

IFF_DEF Tandcover \

area number(12,3) \
TandcoverType char(11) \
perimeter float

IDs
Required/Optional: Optional

Contains a list of IFF files to process. If more IFF files were in the directory, they are ignored. If this is not specified,
then all defined IFF files in the directory are read.

This specification is used to limit the available and defined IFF files read. If no IDs are specified, then all defined and
available IFF files are read. The syntax of the IDS keyword is:

<ReaderKeyword>_1IDs <baseNamel> \
<baseName2> .. \
<baseNameN>
The file IDS must match those used in DEF lines.
The example below selects only the 1 ff_data IFF file for input during a translation:

IFF_IDs iff_data

APPLY_ORIGIN_OFFSET
Required/Optional: Optional

This directive specifies whether or not to apply the origin offset found in Type 2 Map Descriptor record, to all the fea-
tures.

Values: yes | no
Default: no

Workbench Parameter: Apply Origin Offset

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxyY >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

#% Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

*X Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<Readerkeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

% Workbench Parameter
Additional Attributes to Expose

Writer Overview

The IFF Writer creates and writes feature data to IFF files in the directory specified by the directive DATASET. Any
existing IFF files are overwritten with a new IFF file. As features are routed from the FME to the IFF writer, the writer
determines which file the features are to be written to and outputs them accordingly. More than one IFF file can be
written in one translation.

Writer Directives

The IFF writer processes the DATASET and DEF directives as described in the IFF Reader Overview's Reader Direc-
tives subsection. It does not use the IDS directive.

DATASET

Required/Optional: Required

Workbench Parameter: Destination 1Spatial Internal Feautre Format (IFF) Directory
DEF

Required/Optional: Required

Feature Representation

IFF features consist of geometry and attributes of feature. The attribute names are defined in the DEF line and there
is a value for each attribute in each IFF feature. In addition, each IFF feature contains several special attributes to hold
the type of the geometric entity and its display parameters. All IFF features contain the 1 ff_type attribute, which
identifies the geometric type.

Depending on the geometric type, the feature contains additional attributes (in addition to the generic FME feature
attributes that FME Workbench adds to all features [see About Feature Attributes]) specific to the geometric
type. These are described in subsequent sections.

The general attributes of all IFF geometric features are described in the table below.

Attribute Name

Contents

iff_type

The IFF geometric type of this entity.
Range:

iff_symbol |

iff_line|

iff_polygon|

iff_text|

iff_none

Default: No default

iff_history

The history of the IFF file.
Range: Maximum of 256 characters
Default: Blank

iff_map_area

The map area.
Range: Maximum of 256 characters
Default: No default

iff_map_grid

The map grid representation
Range: Maximum of 256 characters
Default: No default

iff_map_scale

The map scale.
Range: Maximum of 256 characters
Default: No default

iff_map_origin_offset

The map’s origin offset or local origin. (Read-only)
Range: Maximum of 256 characters
Default: No default

iff_map_projection

The map’s projection as a number. (Read-only)
Range: Integer
Default: No default

iff_map_spheroid

The map’s spheroid as number. (Read-only)
Range: Integer
Default: No default

iff_map_units

The map’s unit. (Read-only)
Range: Integer
Default: No default

Attribute Name

Contents

iff_map_proj_stat

The map projection status.
Range: Maximum of 256 characters
Default: No default

iff_map_aux_grid

The map auxiliary grid.
Range: Maximum of 256 characters
Default: No default

iff_cubic_coef{#}

The matrix for coordinate transformation. Each list
attribute of this type contains 2 numbers that are
part of the transformation matrix for the feature.
Range: Maximum of 256 characters.

Default: No default

iff_ctrl_pt_nw

The Northwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_sw

The Southwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_se

The Southwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_ne

The Northeast control points.
Range: Maximum of 256 characters
Default: No default

iff_sec_descr

The section description.
Range: Maximum of 256 characters
Default: Blank

iff_layer_num

The layer number of the feature. (0 is a reserved
layer number that is often ignored)

Range: 0...32767

Default: 1

iff_layer_stat

The layer status flag (currently not used).
Range: Integer
Default: 0

iff_layer_ptr

The layer’s pointer to location of matching end of
layer marker.

Range: Maximum of 256 characters

Default: Blank

iff_serial_num

The feature serial number. This number is often the

Attribute Name

Contents

same as the iff_seq_num.
Range: 0...65535
Default: No default

iff_seq_num

The feature internal sequence number. This number
is unique and corresponds with creation order.
Range: 0...65535

Default: 1 and increment for each new feature

iff_feat_code

The feature code number.
Range: 0...32767
Default: 0

iff_feat_stat

The feature status.
Range: 0...32767
Default: 0

iff_proc_code

The feature type or process code. The last two bits
specify the feature type (0 = line, circle, area or
symbol string feature, 1 = symbol feature, 2 = text
feature, and 3 = value reserved).

Range: 0...32767

Default: 0

iff_user_word

The user defined word, this is a reserved field for
use by users.

Range: Smallint

Default: No default

iff_anc_code{#}.type

The ancillary code type.
Range: 0...32767
Default: No default

iff_anc_code{#}.value

The ancillary code value.
Range: Maximum of 256 characters
Default: No default

iff_anc_code{#}.text

The ancillary code text.
Range: Maximum of 255 characters
Default: No default

iff_anc_code

The comma-separated ancillary code list.
Range: Maximum of 256 characters
Default: No default

iff_pen_stat

The pen status.
Range: 0 - pen up, 1 - pen down
Default: 0

Attribute Name

Contents

iff_junc_blk{#}.sec_num

The junction block section number.
Range: integer
Default: No default

iff_junc_blk{#7}.next_jb

The junction block pointer to the next junction block.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.offset

The junction block offset number.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.arms_num

The junction block number of arms.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.x_coord

The junction block x-coordinate.
Range: Double
Default: No default

iff_junc_blk{#}.y_coord

The junction block y-coordinate.
Range: Double
Default: No default

iff_junc_blk{#}.pnt_no

The junction block string vertex number.
Range: Integer
Default: No default

iff_junc_blk{#}.addr

The junction block address location of the arm coor-
dinates.

Range: Maximum of 256 characters

Default: No default

iff_junc_blk

The comma separated junction block list. (Nested
junction block lines are separated by *\'s).
Range: Maximum of 256 characters

Default: No default

iff_junc_ptr{#}.offset

The junction pointer junction block offset.
Range: Maximum of 256 characters
Default: No default

iff_junc_ptr{#}.addr

The junction pointer junction block address.
Range: Maximum of 256 characters
Default: No default

iff_junc_ptr

The comma separated junction pointer list.
Range: Maximum of 256 characters
Default: No default

Attribute Name Contents

iff_void_size The size of the void.
Range: Integer
Default: No default

Symbol
iff_type: iff_symbol

IFF symbol features are point features that specify a single x and y coordinate in addition to any associated user-
defined attributes.

There are no special FME attribute names used to control the IFF symbol settings.
Lines

iff_type: iff_line

IFF line features specify linear features defined by a sequence of x and y coordinates.

The following table lists the special FME attribute names used to control the IFF line settings.

Attribute Name Contents

iff_size The line thickness.
Range: Integer
Default: No default

Text
iff_type: iff_text

IFF text features are used to specify annotation information. Although IFF files can have features that have more than
one set of annotation information, only simple text features can be written. The IFF reader is able to read features with
more than one set of annotation information by splitting them into separate features. But the IFF writer will not merge
these separated features when writing, only features with only a set of annotation information are written.

The following table lists the special FME attribute names used to control the IFF text settings.

Attribute Name Contents

iff_rot The text label’s rotation.
Range: 0.00...360.00
Default: 0

iff_text_string The text label.
Range: Maximum of 256 characters
Default: Blank

iff_size The text size.
Range: Integer
Default: No default

iff_text_code The text code value.
Range: Integer
Default: No default

Attribute Name

Contents

iff_text_cmpnt

The text component.
Range: Integer
Default: No default

iff_text_res1

Reserved space for future use.
Range: Maximum of 256 characters
Default: No default

iff_text_res2

Reserved space for future use.
Range: Maximum of 256 characters
Default: No default

Adobe 3D PDF Writer

Format Notes:
This format is not available in FME Base Edition.

The 3D PDF Writer enables FME to write Adobe® Portable Document Format (PDF) files embedded with interactive 3D
annotations.

Overview

The Adobe Reader software version 7.0 and above has included support for interactive 3D annotations in PDF files.
These annotations allow users to visualize 3D models. For example, users can view the models from different angles
and select sub-elements of the model by picking them with the mouse.

The writer represents the 3D models in the ECMA-363 Universal 3D File Format, which become embedded in a PDF
document. The 3D model can be viewed by PDF viewer applications that support PDF’s interactive 3D annotations.

PDF Quick Facts

Format Type Identifier PDF
Reader/Writer Writer
Licensing Level Professional
Dependencies None
Dataset Type File
Feature Type U3D Node
Typical File Extensions PDF
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support No
Generic Color Support No
Spatial Index Never
Schema Required Yes
Transaction Support Never
Enhanced Geometry Yes
Geometry Type Attribute pdf_type
Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point yes
circles no polygon yes
circular arc no raster no

Geometry Support
Geometry Supported? Geometry Supported?
donut polygon yes solid yes
elliptical arc no surface yes
ellipses no text no
line yes z values yes
none yes

Writer Overview
The writer outputs PDF version 1.7 files. The document will have one page which contains the 3D annotation.

The 3D model has a hierarchal structure of Nodes, which are elements of the model. Feature types become Nodes
with no geometry. Features become Nodes that may have geometries and attributes. Feature Nodes are children of
their corresponding Feature Type Node.

Writer Directives

The directives that are processed by the PDF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_in a mapping file. By default, the <wWriterkKeyword> for the PDF writer is PDF.

DATASET
Required/Optional: Required

The value for this directive is the path to the output file. If the output file does not exist, then the writer will create a
new file. If the output file exists, then the writer will overwrite it. If other applications have the output file opened,
then the writer will be unable to continue and the translation will fail.

Workbench Parameter: Destination PDF File
DEF
Required/Optional: Required

The PDF writer uses PDF_DEF lines to define feature types. A typical mapping file fragment specifying a feature type
looks like:

PDF_DEF <featureName> \
[<attributeName> <attributeType>]*

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

featureName This declares the name of the feature type.

attributeName This declares the name of an attribute. The maximum length

of attribute names is 200 characters.

attributeType This declares the type of the attribute. The only valid attrib-

ute type is string.

CENTER_COORDINATES

Required/Optional: Optional

This directive specifies whether the coordinates of all features should be normalized to the numerical range [-0.5,
0.5]. The PDF format stores coordinates in single precision format. Translating datasets that stores coordinates in
double precision to PDF without normalizing the coordinates may result in severe visual artifacts.

Values: YES | NO

Default Value When Keyword Not Specified: YES
Default for New Workspaces/Mapping Files: YES
Workbench Parameter: Center coordinates at the origin
BACKGROUND_COLOR

Required/Optional: Optional

This directive specifies the background color of the 3D annotation when the output file is viewed with Adobe Acrobat.
The format of the value is a comma delimited list of red, green, and blue components of the desired background color.
Each rgb (red green blue) value should be a real number between 0.0 and 1.0, inclusive. The default value for this
directiveis 0.2,0.2,0.2, which is a dark grey color.

Values: <0.0... 1.0>,<0.0... 1.0>,<0.0 ... 1.0>

Default Value When Keyword Not Specified: 0.2,0.2,0.2
Default for New Workspaces/Mapping Files: 0.2,0.2,0.2
Workbench Parameter: Background color

PAGE_SIZE

Required/Optional: Optional

This directive specifies the size of the output page of the PDF document. The 3D annotation will fill the entire page
leaving a slight margin on all sides. The default value for this directive is 600 600, which specifies a page size of 600
by 600 pixels.

Values: <0.0...> <0.0...>

Default Value When Keyword Not Specified: 600 600
Default for New Workspaces/Mapping Files: 600 600
Workbench Parameter: Page size
NODE_CREATION_LIST

Required/Optional: Optional

This directive can be used to quickly and conveniently create empty group nodes in the scene graph. The nodes
created by this directive can be used as the targets of the pdf parent uid format-specific feature attributes. The for-
mat of the value is a comma delimited lists of node specifiers. Node specifiers are a period delimited list of a node’s
ancestry, starting with the root UID and ending with the leaf UID. For example, the directive value

‘Nodel .Node?2.Node3, Nodel .Node4’ creates 4 nodes altogether with the following node hierarchy:

Nodel <--- Node2 <--- Node3

~—-— Node4

Values: <name>[.<name>]*[,<name>[.<name>]*]*

Default Value When Keyword Not Specified: <empty string >
Default for New Workspaces/Mapping Files: <empty string >
Workbench Parameter: Node creation list

DISPLAY_NAV_UI

Required/Optional: Optional

This directive controls whether the the Adobe Acrobat software will display the left-hand side Node navigation UI by
default when opening the ouput PDF file.

Values: YES | NO

Default Value When Keyword Not Specified: NO
Default for New Workspaces/Mapping Files: NO
Workbench Parameter: Display Navigation UI
2D_FEATURE_HANDLING

Required/Optional: Optional

This directive controls whether features with no Z coordinates will have their normals adjusted such that the feature
is visible immediately after opening the PDF file. If the value is YES, all 2D features will be visible from the default cam-
era position after opening the PDF file in Adobe Acrobat software. If the value is NO, the geometries will not be
adjusted and will be written as-is.

Values: REORIENT | AS_IS
Default Value When Keyword Not Specified: AS_IS
Default for New Workspaces/Mapping Files: REORIENT

Workbench Parameter: Reorient 2D features for visibility

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

PDF features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each PDF feature. In addition, each PDF feature contains several special attributes to hold the
type of the geometric entity and its display parameters. All PDF features contain an pdf_type attribute, which iden-
tifies the geometric type. Depending on the geometric type, the feature contains additional attributes specific to the
geometric type. These are described in subsequent sections.

Geometries with no Z coordinates (2D geometries) will be assigned zero as their z values.

The following format specific attributes are applicable to all geometry types, and these attributes do not appear as
user attributes in the output data:

Attribute Name Contents

pdf_uid This is an optional format attribute that can be used to
specify the unique Node name of the feature. If this attrib-
ute is not set, then an unique name is autoatically gen-
erated and assigned. If this attribute is set and each
feature is not given an unique value, then undefined behav-
iour will result.

pdf_parent_uid This is an optional format attribute that can be used to
specify the parent feature Node for this feature Node. The
value for this attribute should correspond to a value given
to the pdf_uid attribute in a different feature.

pdf_child_uid This is an optional format attribute that can be used to
specify the child feature Node for this feature Node. The
value for this attribute should correspond to a value given

Attribute Name Contents

to the pdf_uid attribute in a different feature.

pdf_merge_tolerance This is an optional format attribute that can be used to set
the numerical tolerance used to merge spatially close ver-
tices. If the value is 0.0 or if the attribute is unset, then no
merging will be done. Otherwise, if a positive real number
less than 1.0 is specified, then vertices that lie within the
maximum extent of the scene divided by the number spec-
ified will be merged together. For example, if this attrib-
ute is set to 0.01, and the maximum extent of the scene is
[0,2500] then vertices that are within a distance of 25
units of each other will be merged together.

pdf_ambient_color This is an optional format attribute that can be used to
specify the ambient component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green ambient color for the feature.

pdf_diffuse_color This is an optional format attribute that can be used to
specify the diffuse component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green diffuse color for the feature.

pdf_specular_color This is an optional format attribute that can be used to
specify the specular component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green specular color for the feature.

Points
pdf__type: pdf_point

PDF point features specify Nodes that is a collection of points. The points are rasterized according to the rendering
mode of the viewer application.

Lines
pdf_type: pdf_line
PDF line features specify Nodes that is a collection of linear line segments. The line segments may be disjoint.

Circular and elliptical arc segments will be stroked into linear line segments. Lines have no area or volume, and will
appear as rasterized according to the rendering mode of the viewer application.

Mesh

pdf_type: pdf_mesh

PDF mesh features specify Nodes with 3D meshes. Meshes are composed of triangular faces. If the input mesh con-
tains faces with more than three distinct vertices, then the face will be converted into multiple triangular faces. The
triangular faces of a mesh need not be connected.

Faces are one-sided: they are only visible from one view direction. A face is visible when its normal points toward the
observer. If the vertices of the outer boundary of the face are observed to be in anti-clockwise order, then the normal
of the face points toward the observer, implying that the face is visible.

Polygons and donuts are treated as meshes. They will be converted into triangular faces that represents the inner
area of the polygon or donut.

Textures are supported. The texture coordinates can be specified through the fme_texture_coordinate_u,
fme_texture_coordinate_v, fme_texture_coordinate_w, and fme_texture_coordinate_q
point measures.

Collection
pdf_type: pdf_collection

PDF collection features specify a parent Node with no geometry but with the feature’s attribute values, and child
Nodes for each element of the collection. The child Nodes do not have the feature’s attribute values. Child nodes can
be of any geometry type.

Adobe Geospatial PDF Writer

Format Notes:

This format is not available in FME Base Edition.

The PDF2D Writer enables FME to write Adobe® Portable Document Format (PDF) with vector drawings and geospatial

information.

Overview

PDF is a document exchange format created by Adobe Systems.

The PDF2D writer will write features with 2D geometry as vector drawings on a page of a PDF document. The output

PDF file can be viewed with Adobe Acrobat Reader or any other PDF viewer application.

Features will be belong to a layer according to its feature type. Feature attribute can be queried using the analysis
tools of the Adobe Acrobat Reader software. If features have a coordinate system defined, then geospatial coordinates

of the cursor location can also be displayed.

PDF Quick Facts

Format Type Identifier PDF2D
Reader/Writer Writer
Licensing Level Professional
Dependencies None
Dataset Type File
Feature Type Layer
Typical File Extensions PDF
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support Yes
Generic Color Support Yes
Spatial Index Never
Schema Required Yes
Transaction Support Never
Enhanced Geometry Yes
Geometry Type Attribute pdf_type
Encoding Support Yes

Geometry

Supported?

Geometry Support
Geometry

Supported?

aggregate yes

point

yes

Geometry Support
Geometry Supported? Geometry Supported?
circles yes polygon yes
circular arc yes raster no
donut polygon yes solid no
elliptical arc yes surface no
ellipses yes text yes
line yes zvalues no
none yes

Writer Overview

The writer outputs PDF version 1.7 files. The document will have one page and features will be drawn in a rectangular
region of the page called the viewport. Measurements on the page use the unit of a typographical point. Also known
as a PostScript point, it is defined as 1/72 of an inch on the output page.

If attribution is written, then each feature and feature type will be represented by a logical structure element. In
Adobe Acrobat Reader, features can be visually picked using the Object Data tool.

Features with unsupported geometry types will not be drawn, but their attribution data will still be written.

Features will be grouped into layers according to their feature types. In Adobe Acrobat Reader, the visibility of layers
can be toggled.

PDF files can be opened through a command or an URL that specifies what and how the contents are displayed.

For more details about this feature, see this external documentation: http://www.adobe.co-
m/devnet/acrobat/pdfs/pdf_open_parameters.pdf

Writer Directives

The directives that are processed by the PDF2D writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterkKeyword>_in a mapping file. By default, the <WriterkKeyword> for the PDF2D writer is PDF2D.

DATASET
Required/Optional: Required

The value for this directive is the path to the output file. If the output file does not exist, then the writer will create a
new file. If the output file exists, then the writer will overwrite it. If other applications have the output file opened,
then the writer will be unable to continue and the translation will fail.

Workbench Parameter: Destination PDF File
DEF
Required/Optional: Required

The PDF2D writer uses PDF2D_DEF lines to define feature types. A typical mapping file fragment specifying a fea-
ture type looks like:

PDF2D_DEF <featureName> \
[pdf_layer_order <layerorder>]? \
[pdf_in_page_coordinates <pageCoordinates>]? \
[pdf_default_opacity <opacity>]? \
[pdf_layer_visibility <visibility>]? \
[<attributeName> <attributeType>]*

http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf

The configuration parameters present on the definition line are described in the following table:

Parameter

Contents

featureName

This declares the name of the feature type.

attributeName

This declares the name of an attribute. The maximum length
of attribute names is 200 characters.

attributeType

This declares the type of the attribute. The only valid attrib-
ute type is string.

layerOrder

This declares the layer order of the feature type. Valid values
are all integers. Feature types with lower layer orders will be
drawn first. Therefore, features in feature types with higher
layer orders will appear on top of features in feature types
with lower layer orders. If a value is not specified, then the
feature type will have an effective layer order value of *0’. If
two features have identical layer order values, then the two
will be ordered arbitrarily.

pageCoordinates

The value specifies whether the coordinates of geometries
will be interpreted in page coordinates. If this attribute is set
to YES, then the coordinates of the geometry are treated as
page coordinate values, and the feature can be drawn any-
where on the page. The default value is NO.

opacity

This determines the opacity level of features of this feature
type when their pdf_opacity feature attribute is unset. If this
parameter is set, the value overrides the writer parameter
DEFAULT_OPACITY. A value of 1.0 is fully opaque, and 0.0 is
completely transparent.

visibility

If the value is VISIBLE, then the layer will be visible by
default after opening the output file in Adobe Acrobat Reader.
If set to HIDDEN, then the layer will not be initially visible.
The visibility of layers can be toggled in Adobe Acrobat
Reader after opening the file.

PAGE_SIZE

This directive specifies the size of the output page of the PDF document. The default page size is Letter.

Preset page sizes for common paper sizes can be selected, or the page size can be specified in typographical points

in the format <width> <height>.

Required/Optional

Optional

Values

A3 | A4 | A5 | B5 | Ledger | Legal | Legal-half | Letter (Default) | Letter-half | <0 ...> <0...>

%% Workbench Parameter
Page size
PAGE_VIEWPORT (Location of Map on Page)
This directive determines where to place the map on the page, and how large the map should be on the page.

The format for this directive is four integers separated by spaces describing the lower left corner and the upper right
corner of the viewport/rectangle, specified in typographical points. The lower left corner of the page contains coor-
dinate (0,0) and the top right corner contains coordinate (<width>,<height>), where these two values are the page

size specified by PAGE_SIZE.

If the aspect ratios of the page viewport and the world viewport (WORLD_VIEWPORT) differ, then the lesser scal-
ing factor will be chosen: data inside the world viewport will not be clipped and data outside the world viewport might
become visible.

If a value for the directive is not specified, then the page viewport rectangle will be a centered rectangle with a width
and length that is 90% of the page width and length. The page viewport coordinates must be between (0,0) and
(page width,page height).

Original —1

map extents O
Q \ (Desired)

Map extents (map units)

MAP ON PAGE

«——— Location of map on
page (page units)

Page height
(page units)
——— Mon-map geometry and text
. (page units). To write features in page units,
set the page units aption to YES in
the Feature Type Praperties dialog in Workbench
\d —
€ Page width (page units) —————»
Mote: Page units are in typographic points (1/72 of an inch)
Required/Optional
Optional
Values

<minimum x> <minimum y> <maximum x> <maximum y>

The values can also be specified as a percentage of the page width and page height. The values must be an integer
ending with a percentage sign. The values can also be negative values, and they are interpreted as being relative to
the top and right edges instead of the left and bottom edges. For example, for a page size of 1000 by 1000 points, the
rectangle 50 50 -50 -50" is identical to the rectangle “50 50 950 950" for this page size.

¥ Workbench Parameter
Page viewport dimensions
WORLD_VIEWPORT (Map Extents)

This directive specifies the extents of the map to write within the page viewport, by defining the lower left and upper
right corners of the page viewport in map units.

Geometry outside these extents will be clipped when drawn on the page. The format for the directive is four floating
point numbers separated by spaces describing the lower left corner and the upper right corner of the rectangle.

If a value for the directive is not specified, then the world viewport rectangle will be the bounding box of the entire
dataset.

Required/Optional
Optional

Values

<minimum x> <minimum y> <maximum x> <maximum y>

%X Workbench Parameter
World viewport dimensions

DEFAULT_OPACITY

This directive specifies the opacity value of the fill color of area geometries. The boundaries of area geometries are not
affected by this setting.

Required/Optional
Optional

Values

<0.0...1.0>

A value of 0 corresponds to complete transparency and a value of 1 is complete opaqueness.

Default Value: 0.4

¥% Workbench Parameter

Default fill opacity value
DEFAULT_POINT_SIZE

This directive specifies the default radius in typographical points for point geometry.

Required/Optional
Optional

Values

<0.0...>
Default Value: 1.0

%X Workbench Parameter
Default point size value

DEFAULT_LINE_WIDTH

This directive specifies the default width in typographical points for line geometry and boundaries of area geometry.

Required/Optional
Optional

Values
<0.0...>

Default Value: 1.0

¥ Workbench Parameter
Default line width value

PANEL_VISIBILITY

This directive determines the panel that is visible immediately after opening the output PDF file in Adobe Acrobat soft-
ware.

Required/Optional
Optional

Values
None (default): No panel will be initially displayed
Layers: Layer panel will be visible after opening the file

Pages: Page Thumbnails panel will be visible

¥ Workbench Parameter
Navigation Panel to Display

RANDOMIZE_FEATURE_TYPE_COLOR

This directive specifies whether features without the fme_color attribute set will be assigned a random color based on
its feature type.

Required/Optional
Optional
Values

YES (default)

NO (features without the fme_color attribute set will be assigned the color black)

¥ Workbench Parameter

Randomize Feature Type Color
RICH_TEXT
Required/Optional: Optional

This directive specifies whether the text string of text features is in the rich text format. If this directive is set to NO,
then the text string is written as-is to the page. If this directive is set to YES, then the text string will be processed for
style directives. For more details, see the "Text” section under Feature Representation.

Values: YES|NO

Default Value: NO

Workbench Parameter: Text in rich text format
FONT_DIRECTORIES

Required/Optional: Optional

This directive specifies the directories that the writer will search in to find the TrueType fonts used in the workspace.
The workspace directory of the translation is always searched.

Values: <multiple directories >

Default Value:

Workbench Parameter: TrueType font directories
WRITE_ATTRIBUTES

Required/Optional: Optional

This directive specifies whether attribution data will be written. Not writing attribution data will decrease the file size
of the output file and may improve viewing performance.

Values: YES|NO

Default Value: YES

Workbench Parameter: Write attributes
COMPRESS_STREAMS
Required/Optional: Optional

This directive specifies whether streams in PDF files will be compressed.
Values: YES|NO

Default Value: YES

Workbench Parameter: Compress streams
PDF14_COMPATIBLE
Required/Optional: Optional

This directive specifies whether the output file will be PDF1.4 compatible. If the directive is set to NO, then the output
file can only be opened by applications that are compatible with PDF1.5 and above.

Values: YES|NO
Default Value: NO

Workbench Parameter: PDF 1.4 compatible

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

pdf_type The value specifies PDF geometric type of this entity.

Range:
pdf_area
pdf_collection
pdf_line
pdf_point
pdf_text

Default: No default

pdf_name If attribution data is written, then the value of this attrib-
ute determines the name of the structure element asso-
ciated with the feature. If this attribute is not set, then the
structure element will be numbered sequentially. The
names need not be unique.

Range:
<string>

Default: <auto-generated integer>

pdf_line_width The value specifies the line width in typographical points
of line geometries and boundaries of area geometries.
Points within half the line width perpendicular distance
from the line path will be painted.

Range:
<float>

Default: 1.0

pdf_line_cap_style The value specifies the cap style for the ends of lines.

Range: <0,1,2>

0 - Butt cap: Lines are squared off at the end and do not
project past the end of the line.

1 - Round cap: Semicircles with diameter equal to the line
width cap the ends of lines.

2 - Projecting square cap: Lines project past the end by a

Attribute Name

Contents

distance equal to half the line width and are squared off.

Default: 0

pdf_line_join_style

The value specifies the shape of corners between seg-
ments of paths.

Range: <0,1,2>

0 - Miter join: Outer edges of segments are extended until
they meet.

1 - Round join: Arcs with diameter equal to the line width
are drawn around corners.

2 - Bevel join: Two adjacent segments are finished with
butt caps, and the notch beyond the ends is filled with a tri-
angle.

Default: 0

pdf_line_miter_limit

For miter joins, the miter limit imposes a maximum on
the ratio of the miter length to the line width. For exam-
ple, a miter limit of 1.414 will bevel the ends of two seg-
ments meeting at an angle less than 90 degrees (the far
corner will be at a distance sqrt(1°2+172)=sqrt(2) from
the line).

Range:
<0.0...>

Default: 0.0

pdf_line_dash_pattern{}

The values in this list attribute specify the dash pattern for
line geometries and the boundaries of area geometries.
This attribute works together with pdf_Tine_dash_pat-
tern_phase to establish a simple dashed line style. Ele-
ments of the list specify the alternating lengths of dashes
and gaps. The pattern starts with a dash.

Range:
For each elementin the list: <1,2,...>

Default: Empty list

pdf_line_dash_pattern_
phase

The value specifies the starting phase of the dash pattern.
This attribute works together with pdf_Tine_dash_pat-
tern to establish a simple dashed line style. The following
is an example dash pattern specification:

Attribute Name

Contents

pdf_line_dash_pattern{0} = 2
pdf_line_dash_pattern{1} =3
pdf_line_dash_pattern_phase = 1

A dash of length 1 will be drawn, then gaps of length 3 and
dashes of length 2 will cyclically follow thereafter.

Range: <0,1,2,...>

Default: 0

pdf_url

If this attribute is set, then the feature will become an
interactive annotation. When a user clicks on the feature
in a PDF viewer application that supports URI actions, the
value will be treated as a URI and it will be resolved. In
the common case that the value is a URL, Adobe Acrobat
Reader will open a web browser to resolve the address
specified.

Note: See the “"Annotations” section under Feature Rep-
resentation for behavioral notes.

pdf_tooltip

If this attribute is set, then the feature will become an
interactive annotation. The value specifies the tooltip
string that will be displayed when an user hovers over the
feature with the mouse cursor in the PDF viewer appli-
cation.

Note: See the “"Annotations” section under Feature Rep-
resentation for behavioral notes.

pdf_fill_opacity

The value specifies the opacity of the fill color of the fea-
ture. A value of 1.0 is fully opaque, and 0.0 is completely
transparent. If this value is not set, then the opacity of the
feature is determined by the pdf_default_opacity feature
type parameter. If the feature type parameter is not set
either, then the writer directive DEFAULT_OPACITY deter-
mines the opacity.

pdf_pen_opacity

The value specifies the opacity of the stroking color of the
feature. A value of 1.0 is fully opaque, and 0.0 is com-
pletely transparent. If this value is not set, then the strok-
ing opacity is set to fully opaque.

Annotations
pdf_type: any

Features with the pdf_url or the pdf_tooltip attribute set become annotation objects. There are
several behavioral differences between annotation objects and non-annotation objects:

e Annotation objects will always appear above non-annotation objects, regardless of layer ordering.

e Theinteractive area of an annotation object is the rectangular bound of the feature instead of its precise outline.

e Annotation objects are no longer selectable through the Object Data tool or the Model Tree interface.

e Even when the annotation object’s layer is hidden, the annotation will still provide tooltips and be interactive. The
annotation object’s parent layer does not affect the visibility of the annotation; only the object’s layer itself will
affect its visibility.

Points
pdf__type: pdf_point
A PDF point feature is drawn as a point with a radius of 1 typographical point.

The following attribute is applicable to point features:

pdf_point_width The value specifies the point width in typographical
points of point geometries. Range: <float>

Default: 1.0

Lines

pdf_type: pdf_line

A PDF line feature is drawn as a stroked line.
Area

pdf_type: pdf_area

A PDF area feature is written as a filled area with a stroked boundary. The fill opacity is controlled by the DEFAULT_
OPACITY directive.

Collection
pdf_type: pdf_collection

Each component of a PDF collection feature is drawn according to their geometry type.
Text
pdf_type: pdf_text

A PDF text feature is drawn as a text annotation according to its fme_text_string, fme_text_size, and fme_rotation
attributes.

The encoding of the text string is determined as follows: if the font is one of the PDF Core 14 fonts, then the string is
decoded using Windows ANSI code page 1252. If the font is a TrueType font, then the string is decoded using the
Macintosh Roman code page. If the TrueType font has a Microsoft Symbol character map table, then the font is
treated as a symbolic font, and the text string can specify characters in the FFOO-FFFF range of the character map by
encoding only the low-byte of the code point. Desired characters in symbolic fonts can either be specified using XML
numeric character references (NCR) in rich text format (see below) or if the code point coincides with ASCII char-
acters, the ASCII characters themselves.

The following attributes are applicable to text features:

Attribute Name Contents

pdf_text_font The value specifies the default font family of the text rep-
resentation. If left blank, Helvetica will be used.
Default: Helvetica

pdf_text_underline If the value is 'Y’, the text will be underlined.
Default: N

pdf_text_strikethrough If the value is 'Y’, the text will have a strikethrough.
Default: N

pdf_text_bold If the value is 'Y’, the text will have a bold style.
Default: N

pdf_text_italic If the value is 'Y’, the text will have an italic or oblique
style.
Default: N

The text string can be specified in a rich text format. The format is a subset of XHTML. For more information on
XHTML, visit http://www.w3.0org/TR/xhtml1/. The following are the supported XML elements:

<body>...</body>, ..., <p>...</p> - Can be used to specify a style for its enclosed text
through its “style” attribute.

... - Bolds the enclosed text.

<i>...</i> - Italicizes the enclosed text.

<u>...</u> - Underlines the enclosed text.
... - Adds a strikethrough to the enclosed text.

 - Adds aline break.

The “style” XML attribute has the following format:

“property:value;...;property:value”

The following properties are supported:

font-family - Specifies the font family of the text.
font-size - Specifies the point size of the font.

color - Specifies the color of the text. The color can be specified through the format “#RRGGBB"” where each color
component is specified as a hexadecimal value, or through the 16 HTML color names

(http://www.w3.0rg/TR/REC-htmI40/types.html#h-6.5).

text-decoration - Valid values are “underline” and “line-through”.

The following is an example rich text fme_text_string value:

<body>Hello
world!</body>

In the PDF document, the text “Hello” will use the styling specified through the format attributes. The text *“World!”
appears on the next line and will have a font size of 30 but will inherit all other style attributes.

http://www.w3.org/TR/REC-html40/types.html#h-6.5
http://www.w3.org/TR/REC-html40/types.html#h-6.5
http://www.w3.org/TR/REC-html40/types.html#h-6.5

Adobe Illustrator (IEPS) Writer

The Adobe Illustrator Encapsulated PostScript® (IEPS) Writer module enables FME to write Encapsulated PostScript
export files specifically formatted to work with Adobe Illustrator. Illustrator IEPS is a different flavour of EPS and
makes use of some of the functionality of Adobe Illustrator. The most significant additions are the use of layers and
object attributes. In this format, many of the PostScript keywords have been shortened into special Adobe Illustrator
single letter functions. The implication is that EPS files produced by this writer cannot be used outside of Adobe Illus-
trator. The standard EPS writer should be used if the EPS is to be used in other applications.

IEPS is most often used for high-quality plots in desktop publishing software.

Note: This writer may write files that are quite large since it does create an output coordinate for every source coor-
dinate. If you find your .eps files getting too large, it is recommended that you first generalize your source data to
make it less dense using the FME’s @Generalize function (or the FME Workbench Generalizer transformer).

IEPS Quick Facts

Format Type Identifier IEPS
Reader/Writer Writer
Licensing Level Base
Dependencies None
Dataset Type File

Feature Type Layer name
Typical File Extensions .eps
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support No

Generic Color Support Yes

Spatial Index Not applicable
Schema Required Yes
Transaction Support No
Geometry Type Attribute ieps_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

Geometry Support
Geometry Supported? Geometry Supported?
ellipses no text no
line yes z values no
none no no
Overview

IEPS is a two-dimensional (2D) format with the ability to store user-defined attributes for the geometric data.

All IEPS information is contained in a single page beginning with a version header as well as a bounding box def-
inition. IEPS is based upon the PostScript format which provides methods for graphical drawing, simple pro-
gramming control structures and the ability to create user-defined variables and functions.

All IEPS data is contained in a single file with an . 1eps extension.

File Name Extension Contents

.ieps All vector geometric data.

The IEPS writer supports export of points, lines, polygons, and text geometric data.

Some geometric entities may have display properties such as pen width, line type, and color. Color may be specified
in red/green/blue (RGB) as well as cyan/magenta/yellow/black (CMYK).

Writer Overview

The IEPS writer creates and writes feature data to an IEPS file specified by the DATASET keyword. The writer
searches the mapping file for the <wWriterkKeyword>_DATASET keyword in the mapping file. This keyword is
required to be in the mapping file. An old IEPS file in the directory with the same file name is overwritten with the new
feature data. A typical mapping file fragment specifying the output IEPS file looks like:

IEPS_DATASET /usr/data/ieps/myfile.ieps
Writer Directives

The directives processed by the IEPS writer are listed below. The suffixes shown are prefixed by the current <Writ-
erkeywords> in a mapping file. By default, the <WriterkKeyword> for the IEPS writer is TEPS.

DATASET
Required/Optional: Required

The IEPS writer processes the DATASET keyword as described in Writer Overview. Additional keywords can be

used to set default parameters that are applied to all applicable features in the file. However, the values set by the key-
words can be overwritten if the feature itself has a value defined for that parameter. For example, although the
LINE_WIDTH keyword may be used to specify a default width of 5 for all lines in the file, if an ieps_polyTline
feature has its ieps_Tine_width settoavalue of 2, then the line width of 2 will be used over the default value of
5.

Workbench Parameter: Destination Adobe Illustrator EPS File
DEF
Required/Optional: Required

This is a required keyword that defines the layers within the file. DEF lines also list the attributes that will be saved as
object tags on features of that layer, and may also include the attribute TEPS_LAYER_COLOR . This should be fol-

lowed by an RGB combination ranging in intensities from 0 to 255, separated by commas. This defines the layer color
seen in Adobe Illustrator.

Attribute Contents Required/Optional

TEPS_LAYER_COLOR This is an attribute that can be used on | Optional
a DEF line. It defines the layer color
seen in Illustrator.

Range: 0..255, 0..255, 0..255
Default: No Default

RESOLUTION _X and RESOLUTION _Y
Required/Optional: Optional

These directives define the bounding box of the IEPS output file. The bounding box extends from the lower left corner
of the page (defined as 0,0) and extends out to the values entered. By default, the X value is setto 612 and the Y
value is set to 792. These values map onto an 8.5 x 11-inch piece of paper.

Range: Integer > 0

Default:
RESOLUTION_X: 612
RESOLUTION_Y: 792

Workbench Parameter: Width (points), Height (points)
MAINTAIN_ASPECT
Required/Optional: Optional

This directive is followed by a value of YES or NO. By default, the value is set to YES. A YES indicates that the orig-
inal map aspect will be maintained to fit within the destination-defined bounding box. This means that the entire des-
tination bounding box defined may not used. Alternatively, the value NO causes the original map to be stretched onto
the defined destination bounding box.

Range: YES | NO

Default: YES

Workbench Parameter: Maintain Map Aspect Ratio
LINE_WIDTH

Required/Optional: Optional

This directive is followed by the value in pixels of the line width you wish to use by default. The default value is set to
0, which is the thinnest printable line width.

Range: float >= 0

Default: 0.0 (1 pixel wide: the thinnest line that can be rendered at device resolution)
Workbench Parameter: Line Width (pixels)

TEXT_WIDTH

Required/Optional: Optional

This directive has an attribute just like LINE_WIDTH except that this width is applied to text features. The default
valueis setto O, which is the thinnest printable line width.

Range: float >= 0

Default: 0.0 (1 pixel wide: the thinnest line that can be rendered at device resolution)

Workbench Parameter: Text Width (pixels)
TEXT_FONT
Required/Optional: Optional

This directive specifies the default font applied to all text features. The font must be a PostScript name. The fonts sup-
ported depend on the destination of the IEPS file. Some typical fonts are NewBaskerville, Times, Helvetica and Cou-
rier. The default is NewBaskerville since it is the most commonly installed with Adobe Illustrator.

Range: String

Default: NewBaskerVille
Workbench Parameter: Text Font
TEXT_STYLE
Required/Optional: Optional

This directive specifies the default style to be applied to the text font all text features. This attribute must be matched
to the current font since it is the combination of text font and text style that is recognized by Adobe Illustrator. Some
typical font and style combinations are NewBaskerville-(None, Bold), Times-(None, Roman, Italic, Bold, BoldItalic),
Helvetica-(None, Oblique, Bold, BoldOblique), and Courier-(None, Oblique, Bold, BoldItalic). Note that the keyword
NONE can be used to specify that no style should be applied to the font.

Range: String

Default: Bold

Workbench Parameter: Text Style
LINE_JOIN_TYPE
Required/Optional: Optional

This directive is followed by the values 0, 1, or 2. These values specify the default shape to be put at corners of
paths painted: O specifies a sharp corner, 1 specifies a rounded corner, and 2 specifies a butt-end corner.

Range: 0, 1, 2

Default: 0

Workbench Paramter: Line join Type
LINE_CAP_TYPE

Required/Optional: Optional

This directive is followed by the values O, 1, or 2. These values specify the default cap that will be used on line
segments. O specifies butt-end caps, 1 specifies rounded-end caps and 2 specifies square-end caps.

Range: 0, 1, 2

Default: 0

Workbench Parameter: Line Cap Type
FORCE_CMYK

Required/Optional: Optional

By setting the value following this keyword to YES, then all color usage output to the IEPS file is in CMYK. By default,
this value is NO, meaning that a mix of RGB and CMYK color schemes may be in the output IEPS file. However, despite
forcing CMYK color output, some IEPS viewers may not support the setcmykcolor call in their library. In these
cases, the actual output of colors is done using a function we define in PostScript which interfaces exactly like the
setcmykcolor call, butuses setrgbcolor underneath. This will depend on the IEPS viewer you are using.

Range: YES | NO

Default: NO

Workbench Parameter: Force CMYK
LOCK_FEATURES
Required/Optional: Optional

If set to YES, by default all features will be locked and cannot be selected or edited in Adobe Illustrator. Note: Even if
LOCK_FEATURES is set to YES, individual features can be unlocked if its eps_Tlock_feature is set to 0 (mean-
ing NOT locked). Hence, an individual eps_Tock_feature value overrides this LOCK_FEATURES default value.

Range: YES | NO

Default: NO

Workbench Parameter: Lock Features
RENDER_TYPE

Required/Optional: Optional

This directive determines how the text is output. This value will be used as the default render type for all text in the
file but it will be overridden if the text feature has its own user-defined render type value.

This directive is followed by the values 0, 1, or 2. These values specify the default rendering that will be applied to
text features: 0 = fill, 1 = stroke, 2 = stroke and fill. The default value is 2.

Range: 0, 1, 2
Default: 2

Workbench Parameter: Render Type

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

IEPS features consist of geometry but no user-defined attributes, although there are special attributes to hold the
type of the geometric entity and its display parameters. The feature type of a feature written to IEPS is used to specify
its layer in the output Adobe Illustrator file.

All IEPS features contain a ieps_type attribute, which identifies the geometric type. Each element type also has a
color associated with it. Depending on the geometric type, the feature contains additional attributes specific to the
geometric type. These are described in subsequent sections.

Attribute Name Contents

ieps_type The IEPS geometric type of this entity.
Range:
ieps_polyline|
ieps_areal|

ieps_text| ieps_point
Default: No default

ieps_cmyk_color This is a string that represents the color intensities
of the element. It is formatted as cyan (C),
magenta (M), yellow (Y) and black (K), This color
attribute has highest priority. If present, it will be
used in preference over ieps_color and fme_

Attribute Name

Contents

color attributes.
Range: String. (0..1, 0..1, 0..1, 0...1)
Default: String (0,0,0, 1)

ieps_cmyk_fill_color

This is a string that represents the fill color inten-
sities of the element. It is formatted as cyan (C),

magenta (M), yellow (Y) and black (K), This color
attribute has highest priority. If present, it will be
used in preference over ieps_fill_color and fme_

fill_color attributes.

Range: String. (0..1, 0..1, 0..1, 0...1)

Default: String (0,0,0,1)

ieps_color

This is a string that represents the color intensities
of the element. It is formatted as red, green, blue
intensities which range between 0..1 Note that if
this attribute is not found, then fme_color will be
used.

Range: String. (0..1, 0..1, 0..1)

Default: String (0,0,0)

ieps_fill_color

This is a string that represents the color intensities
of the element. It is formatted as red, green, blue
intensities which range between 0..1. If this attrib-
ute is not found, then the writer will refer to fme
fill_color.

Range: String. (0..1, 0..1, 0..1)

Default: None

ieps_url

Allows you to attach a URL to a feature. The URL
should be formatted as http://www.safe.com.
Range: String

Default: No Default

ieps_dash_on

The number of pixels to be used as the on part of
the dashed line used to draw the feature. If ieps_
pen_Tlinewidth is specified, then this value is mul-
tiplied by the size of the pen to determine the
number of pixels. If both ieps_dash_on and ieps_
dash_off are 0, then a solid line is used.

Range: Integer > 0

Default: 0

ieps_dash_off

The number of pixels to be used as the off part of
the dashed line used to draw the feature. If ieps_

pen_Tlinewidth is specified, then this value is mul-
tiplied by the size of the pen to determine the

Attribute Name

Contents

number of pixels. If both ieps_dash_on and ieps_
dash_off are 0, then a solid line is used.

Range: Integer > 0

Default: 0

ieps_line_join_type

Specify the type of corner that should be drawn
onto this path.

0 = sharp corners, 1 = rounded corners, 2 = butt-
end corners

Range: 0, 1,2

Default: 0

Optional: Yes

ieps_line_cap_type

Specify the type of caps on line ends. 0 = butt end
caps, 1 = rounded end caps, 2 = square end caps
Range: 0, 1, 2

Default: 0

Optional: Yes

ieps_locked_flag

This determines whether or not the feature can be
selected for editing when the document is opened
in Adobe Illustrator. If set to 0, the feature can be
selected for editing. If set to 1, the feature is
locked and cannot be selected.

Range: 0, 1

Default: 0

Optional: Yes

Areas

ieps_type: ieps_area

IEPS polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. Each area has a pen style associated with it to control the color,
line weight, line type, and brush pattern used when it's drawn. If the area contains holes then when the fill pattern is
applied, the holes enclosed by the area will not be filled. If no pen style is defined for a polygon entity, the previous

style is used.

The following table lists the special FME attribute names used to control the IEPS polygon settings.

Attribute Name

Contents

ieps_line_width

Defines the line width used to draw the polyline. By
default, the line is drawn one pixel wide.

Range: Float >= 0

Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

Polylines

ieps_type: ieps_polyline

IEPS polyline features specify linear features defined by a sequence of x and y coordinates. Polylines encapsulate the
concept of aline since alineis just a sequence of two points. Each polyline has a pen style associated with it that spec-
ifies the color, line weight, and line type used when the line is drawn. If no pen type is defined for a polyline entity, if
line attributes aren’t found, then default parameters are used.

The table below lists the special FME attribute names used to control the IEPS polyline settings.

Attribute Name Contents

ieps_line_width Defines the line width used to draw the polyline. By
default, the line is drawn one pixel wide.

Range: Float >= 0

Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

Text
ieps_type: ieps_text

IEPS text is used for text annotation in IEPS. The coordinates specify the lower left coordinates of the text when it is
placed. In addition, the size and angle in which the text is output can be specified.

The table below lists the special FME attribute names used to control the IEPS text:

Attribute Name Contents

ieps_size The size of the text specified in ground units
Range: float > 0
Default: 0

ieps_illustrator_size The size of the point text specified in points. If this
is set, it will override the ieps_size value.

Range: float > 0

Default: 12pt

ieps_rotation The text rotation is given in degrees and measured
counterclockwise up from the horizontal.

Range: -360..360

Default: 0

ieps_font The PostScript name of the font. The fonts sup-
ported depend on the destination of the IEPS file.
Some typical fonts are Times, Helvetica and Cou-
rier.

Range: String

Default: NewBaskerville

ieps_style The style of the font. This attribute must be
matched with the current font since it’s the com-
bination of font and style that IEPS recognizes.
Some typical fonts and styles are Times-(None,
Roman, Italic, Bold, BoldItalic), Helvetica-(None,
Oblique, Bold, BoldOblique) and Courier-(None,
Oblique, Bold, BoldOblique). Note the keyword

Attribute Name Contents

*NONE’ can be specified to indicate no style on the
font.

Range: String

Default: Bold

ieps_text_string The text to be displayed.
Range: String
Default: No default

ieps_text_width Defines the line width used to stroke the text. By
default, the stroked line is drawn one pixel wide.
Range: Float >= 0

Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

ieps_render_type This determines how the text is output.

0 = filled, 1 = stroked, 2 = stroked and filled
Range: 0,1,2

Default: 2

Point
ieps_type: ieps_point

IEPS point is used for point annotation in IEPS. Points will be represented as text. By default, a symbol will be rep-
resented by a period.

Attribute Name Contents

ieps_size The size of the point text specified in ground units
Range: float > 0
Default: 0

ieps_illustrator_size The size of the point text specified in points. If this
is set, it will override the ieps_size value.
Range: float > 0

Default: 12pt

ieps_rotation The text rotation is given in degrees and measured
counterclockwise up from the horizontal.

Range: -360..360

Default: 0

ieps_font The PostScript name of the font. The fonts sup-
ported depend on the destination of the IEPS file.
Some typical fonts are Times, Helvetica and Cou-
rier.

Range: String

Default: NewBaskerville

Attribute Name Contents

ieps_style The style of the font. This attribute must be
matched with the current font since it’s the com-
bination of font and style that IEPS recognizes.
Some typical fonts and styles are Times-(None,
Roman, Italic, Bold, BoldItalic), Helvetica-
(None,Oblique, Bold, BoldOblique) and Courier-
(None,Oblique, Bold, BoldOblique). Note the key-
word *‘NONE’ can be specified to indicate no style
on the font.

Range: String

Default: Bold

ieps_symbol_string The text to be displayed.
Range: String
Default: “.”

ieps_symbol_width Defines the line width used to stroke the text. By
default, the stroked line is drawn one pixel wide.
Range: Float >= 0

Default: 0.0 (the thinnest line that can be rendered
at device resolution, i.e. 1 pixel wide)

ieps_render_type This determines how the text is output.

0 = filled, 1 = stroked, 2 = stroked and filled
Range: 0,1,2

Default: 2

Aeronautical Information Exchange Model (AIXM) Read-
er/Writer

The AIXM Reader/Writer enables FME to read Aeronautical Information Exchange Model format files.

This chapter assumes familiarity with the AIXM format.

Overview

The Aeronautical Information Exchange Model (AIXM) format was developed by EUROCONTROL, the European
Organisation for the Safety of Air Navigation, to allow aeronautical data standardization and exchange. The role of

AIXM is to enable systems to exchange aeronautical information in the form of XML-encoded data.

AIXM Quick Facts

Format Type Identifier AIXM
Reader/Writer Both
Dataset Type File
Licensing Level Professional
Dependencies None
Feature Type AIXM entity name
Typical File Extensions .xm1
Automated Translation Support No
User-Defined Attributes No
Coordinate System Support Yes
Generic Color Support No
Spatial Index Never
Schema Required No
Transaction Support No
Geometry Type Attribute xml_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point yes
circles yes polygon yes
circular arc yes raster no
donut polygon no solid no
elliptical arc no surface no
ellipses no text no

Geometry Support
Geometry Supported? Geometry Supported?
line yes z values no
none yes

Reader Overview

The AIXM reader presents features by normalizing the XML data into the entities of the AIXM Entity-Relational model.
Thus, the feature representation is not equivalent to the AIXM XML format representation of the AIXM E-R model
entity.

Reader Directives

The suffixes shown below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the AIXM reader is AIXM.

DATASET
Required/Optional: Required

The value for this directive is the path of the AIXM file to be read. A typical mapping file fragment specifying an input
AIXM dataset looks like:

AIXM_DATASET /usr/data/aixm.xml
Workbench Parameter: Source Aeronautical Information Exchange Model (AIXM) File(s)
INTERPOLATE
Required/Optional: Optional

The value for this directive determines whether non-linear interpolation will be performed between two vertices of an
area or line geometry. This keyword will also determine the representation of geometry data. Further information on
this topic can be found under the Feature Representation heading. An example mapping file fragment specifying that
interpolation should be performed looks like:

INTERPOLATE Yes

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxy >
If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

*X Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional
Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

#% Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

Writer Overview

The AIXM writer has a fixed output schema that closely resembles the AIXM Entity-Relational model.

The reader can be connected directly to the writer and the output file will be nearly identical to the original source file.
Writer Directives

The following table lists the directives processed by the AIXM writer. The suffixes shown will be prefixed by the cur-
rent <Writerkeywords> in a mapping file. By default, the <Wr1iterkKeyword> for the AIXM writer is AIXM.

DATASET
Required/Optional: Required

The value for this keyword is the path of the output AIXM file. A typical mapping file fragment specifying an output
AIXM file looks like:

AIXM_DATASET /usr/data/aixm.xm]l

Workbench Parameter: Destination Aeronautical Information Exchange Model (AIXM) File

WRITE_MODE
Required/Optional: Optional

The value for this keyword determines the type of AIXM file, either an AIXM Snapshot or AIXM Update, produced by
the writer. Valid values are UPDATE and SNAPSHOT. The default value is UPDATE:

AIXM_WRITE_MODE UPDATE

Workbench Parameter: AIXM writer mode

ORIGIN

Required/Optional: Optional

The value for this keyword is a string that determines the originator of the AIXM message:

ATIXM_ORIGIN ABC

Workbench Parameter: Origin
CREATED
Required/Optional: Optional

The value for this keyword determines the date and time that the AIXM message was created. The string should be a
valid XML dateTime string:

ATIXM_CREATED 2002-10-10

Workbench Parameter: Created
EFFECTIVE
Required/Optional: Optional

The value for this keyword determines the date and time that the AIXM message becomes effective. The string should
be a valid XML dateTime string:

ATIXM_CREATED 2002-10-10

Workbench Parameter: Effective
USE_CHG
Required/Optional: Optional

The value for this keyword determines whether the ‘chg’ XML attributes will be added to each XML element written by
the writer. Valid values are YES and NO. If the value is YES, then XML elements whose names appear in the aixm_
update_changed format specific attribute will have an XML attribute named ‘chg’ with a value of ‘1" inserted.

The default value for this keyword is YES:
AIXM_USE_CHG YES

Workbench Parameter: Add ‘chg’ attributes

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature

Attributes), special FME feature attributes are used by the AIXM reader to store the characteristics of the features it
reads.

The AIXM Reader module utilizes the XML Reader module in processing the AIXM XML file. Thus, the feature rep-
resentation is similar to the feature representation of the XML Reader module. The format attribute, xm1_type,

which may identify the geometry type of the feature, is identical in intent to the same attribute set by the XML Reader.
Details of this attribute can be found in the XML Reader/Writer documentation.

Attribute Name Contents

aixm_update_ID When an AIXM Update message changes the natural key
that identifies an object, then this attribute will hold the
old natural key of the object to be updated.

aixm_update_group_no This attribute determines the order of the AIXM Group ele-
ments within the output file. The values of this attribute
are integers, and identifies the feature with a specific
group. When all features are received by the AIXM writer,
features are grouped according to the values of their aixm_
update_group_no attribute, and the groups are written in
ascending order of through group numbers. If this attrib-
ute is not specified, then the feature will be grouped with
group number zero.

aixm_update_name The value of this attribute specifies the ‘name’ attribute of
the AIXM Group element that holds the feature.

aixm_update_subname The value of this attribute specifies the ‘sub-name’ attrib-
ute of the AIXM Group element that holds the feature.

aixm_update_reason The value of this attribute specifies the ‘reason’ attribute
of the AIXM Group element that holds the feature.

aixm_update_type The value of this attribute determines the type of the AIXM
Update message for that particular feature: New, Update,
or Withdrawn.

aixm_noseq The AIXM reader normalizes the XML schema. After this
transformation, child elements that composed a parent ele-
ment may become independent features. If the child ele-
ments were ordered within the parent element, then this
attribute will hold the sequence number that determines
the child element’s placement within a parent element.

aixm_update_changed This is a list attribute that holds the names of attributes
that are flagged as changed in an AIXM Update message.

ASPRS LIDAR Data Exchange Format (LAS) Reader/Writer

Note: This format is not available in FME Base Edition.

The American Society Photogrammetry and Remote Sensing (ASPRS) LIDAR (LAS) Reader allows FME to read LIDAR
(data exchange format standard) LAS specifications.

Overview

The LAS file is intended to contain LIDAR point records. The data will generally be put into this format from software
(provided by LIDAR hardware vendors) which combines GPS, IMU, and laser pulse range data to produce X, Y, and Z
point data. The intention of the data format is to provide an open format that allows different LIDAR hardware and soft-
ware tools to output data in a common format. FME supports LAS versions 1.0, 1.1, and 1.2.

The format contains binary data consisting of a header block, Variable Length Records (VLRs), and point data.

Note: Reading and writing of arbitrary VLRs is not currently supported; only defined georeferencing information
VLRs are supported.

About Point Clouds

A point cloud is a type of geometry that is useful for storing large amounts of data, typically gathered from LIDAR
applications. The use of LIDAR allows for fast and accurate collection of data, such as for forestry canopy meas-
urements, or landscape modeling. Point cloud geometry allows for quick and efficient processing of a large collection
of vertices in 3D space that represent the external surfaces of objects. Together, these vertices form a model which
can be transformed, and visualized. Some operations of the point cloud geometry involve thinning, splitting, and com-
bining to produce a more useable set of vertices.

Associated with each vertex are a number of properties called components, which contains a value describing the
point. These component values can be used to classify different sections of the collection of points contained in the
point cloud geometry. The specific set of components stored by the point cloud is referred to as the interpretation.

Interpretation Allowed Values Description

Intensity 1.7E +/- 308 (15 digits) The magnitude of the intensity of the pulse return.
Color 0to 65,535 The color of the object at the point, in RGB color.
Classification 0 to 65,535 The classification value categorizes the points into

fields, such as ground, building, water, etc.

Returns 1-5 The return value is the return number from a pulse.

Number of returns 1-5 The total number of detected returns from a single
pulse.

Angle -90to 90 The angle of the pulse that the point was scanned at.

Flight line 0to4,294,967,295 The flight line number the point was detected in.

Scan Direction Oand 1

Point ID 1to 65,535

POSIX time 1.7E +/- 308 (15 digits)

User data 0 to 65,535

GPS time and GPS Week: 1.7E +/- 308 (15
digits)

GPS week

GPS Time: 0 to 65,535

1 for points on the edge, 0
otherwise.

Flight line Edge

LIDAR Quick Facts

The direction in which a scanning mirror was directed
when the point was detected.

This point ID is indicative of the point origin.

Used to express the time, as the number of seconds
elapsed since UTC January 15t, 1970.

The user data value is for the user to use.

Together, these two values express the time since Jan-
uary 6th, 1980. The GPS Week represents a week

number, and the GPS time represents the number of
seconds into a week.

The flight line edge value is a flag for points that lie on
the edge of the scan, along the flight line.

Format Type Identifier LIDAR
Reader/Writer Reader
Licensing Level Professional
Dependencies None

Dataset Type File base name
Feature Type Feature Name
Typical File Extensions las
Automated Translation Support Yes
User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required

Not Applicable

Transaction Support No
Geometry Type Attribute lidar_type
Encoding Support No

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point no
circles no point cloud yes
circular arc no polygon no
donut polygon no raster no
elliptical arc no solid no
ellipses no surface no
line no text no
none no zvalues no
Point Cloud Component Data Type Notes

fmepc_angle REAL64 Range: -90 to 90
fmepc_classification UINTS8

fmepc_color_r UINT16 Only supported in version 1.1+
fmepc_color_g UINT16 Only supported in version 1.1+
fmepc_color_b UINT16 Only supported in version 1.1+
fmepc_flight_line_edge UINT8 Range: Oto 1

fmepc_flight_line

not supported

While not directly supported,
flight line will be written as
point source ID if point source
ID does not exist on the point
cloud.

fmepc_gps_time REAL64

fmepc_gps_week not supported

fmepc_intensity UINT16

fmepc_number_of_returns UINTS8 Range: 1to5
fmepc_point_source_id UINT16 Only supported in version 1.1+
fmepc_posix_time not supported

fmepc_return UINT8 Range: 1to5
fmepc_scan_direction UINTS8 Range: 0to1l

fmepc_user_data

UINTS8 (version 1.1+) or UINT16
(version 1.0)

Reader Overview

FME considers a single LAS file to be a dataset. Each dataset contains a single FME point cloud feature.

Reader Directives

The directives listed below are processed by the LIDAR/LAS reader. The suffixes shown are prefixed by the current

<ReaderKeywords> in a mapping file. By default, the <ReaderkKeyword> for the LIDAR reader is LIDAR.

DATASET

The value for this directive is the LIDAR/LAS file to be read.

Required/Optional

Required

Mapping File Syntax

LIDAR_DATASET /usr/data/test.las

%% Workbench Parameter

Source ASPRS LAS File(s)
GROUP_BY_DATASET
The value for this directive can be either Yes or No.

When the value is set to No, the only feature type this reader will use is the reader type name, which in this case is
LIDAR. When the value is set to Yes, the feature type of each dataset is the filename (without the path or the exten-
sion) of the dataset. The default value for this directive is No.

Required/Optional
Required

Mapping File Syntax

LIDAR_DATASET /usr/data/test.las

¥ Workbench Parameter
Source ASPRS LAS File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxyY >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

R Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

#% Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

% Workbench Parameter
Additional Attributes to Expose

Writer Overview

FME considers a dataset to be a directory name. The feature type of each dataset is the filename. The LIDAR writer dis-
tinguishes duplicate output files by appending numbers to the filenames.

Writer Directives

The directives listed below are processed by the LIDAR/LAS writer. The suffixes shown are prefixed by the current
<WriterKeywords> in a mapping file. By default, the <Writerkeywords> for the LIDAR writer is LTDAR.

DATASET

The value for this directive is the path of the output directory where the data will be written..

Required/Optional
Required

Mapping File Syntax

LIDAR_DATASET /usr/data/

¥ Workbench Parameter
Destination ASPRS LAS Directory

VERSION

The version of the LAS file to be written.

Required/Optional
Optional

Values

1.0]1.1] 1.2 (default)

Mapping File Syntax

LIDAR_DATASET VERSION 1.1

*X Workbench Parameter
ASPRS LAS Version

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name

Contents

lidar_type

This will always be lidar_point_cloud.

lidar_file_creation_date

The date on which this file was created (LAS 1.1 and 1.2),
or the date on which the data was collected (LAS 1.0).

lidar_file_source_id

The file source ID. A value of zero is interpreted to mean
that an ID has not been assigned.

lidar_generating_software

Description of the generating software.

lidar_project_id

A complete Globally Unique Identifier to serve as a project
ID. By assigning a Project ID and using a File Source ID
(defined above) every file within a project and every point
within a file can be uniquely identified, globally.

lidar_system_identifier

A string identifying the hardware system or operation that
generated the data.

lidar_version

The version of the LAS file.

lidar_vertical_coordsys_code

The GeoTIFF code identifying the vertical coordinate sys-
tem.

lidar_vertical_datum_code

The GeoTIFF code identifying the vertical datum.

lidar_vertical_units_code

The GeoTIFF code identifying the units of the vertical coor-
dinate system.

Australian Asset Design & As Constructed (ADAC) XML
Reader

Format Notes: This format is not supported by FME Base Edition.

The ADAC XML format is developed by the Asset Desigh & As Constructed (ADAC) consortium. This reader supports
the ADAC XML version 3.0.1 and 4.0.0.

Further information on ADAC can be found at http://www.adac.com.au.

Overview

An ADAC XML document consists of a root ADAC element containing various data structures from civil engineering
assets.

ADAC v3 defines the following asset themes:
m Sewerage

= Roads

m Water

m Stormwater

m Cadastre

For backwards compatibility, the interpretation/mapping of the ADAC v3 assets remains unchanged.
ADAC v4 defines the following asset themes:
m Sewerage

m Transport

m WaterSupply

m StormWater

m OpenSpace

m Cadastre

= Surface

» Enhancements

m Supplementary

http://www.adac.com.au/

ADAC Quick Facts

Format Type Identifier ADAC
Reader/Writer Reader
Licensing Level Professional
Dependencies None
Dataset Type File

Feature Type The ADAC asset structures
Typical File Extensions xml
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support Yes

Generic Color Support No

Spatial Index Never
Schema Required No
Transaction Support No
Geometry Type xml_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point yes
circles yes polygon yes
circular arc yes raster no
donut polygon yes solid no
elliptical arc yes surface no
ellipses yes text yes
line yes zvalues yes
none yes

Reader Overview

The ADAC reader creates FME features from the various ADAC asset structures.

The reader now supports ADAC v4. The asset structures in v4 are mapped differently from the ADAC v3.
See the Feature Representation section for details.

Coordinate Systems

FME ADAC features are tagged with a coordinate system when the reader finds a mapping between the name spec-
ified in the ADAC <HorizontalCoordinateSystem> element and an FME coordinate system name. The ADAC <Hori-

zontalCoordinateSystem> is a child of the <CoordinateSystem> element which is a child of the ADAC <Project> ele-
ment.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the ADAC reader is ADAC.

DATASET

The location of the ADAC file to be read.

Mapping File Syntax

ADAC_DATASET c:\data\adac_sample.xml

Required/Optional

Required

¥ Workbench Parameter
Source Australian ADAC XML File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxyY >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

R Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional
Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

¥ Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

#% Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, itis even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

¥ Workbench Parameter
Additional Attributes to Expose

Feature Representation

ADAC v3

The ADAC XML reader recognizes the following ADAC v 3.0.1 asset structures:

e Sewerage asset: Manhole, PipeNonPressure, PipePressure, Valve, Fitting, House_Connection.

¢ Roads asset: Pavement, Parking, RoadEdge, RoadIsland, RoadPathway, PramRamp, RoadSubsoilDrain.
e Water asset: Pipe, Valve, Hydrant, Meter, Fittings, Maintenance_Hole.

e Stormwater asset: ManholePit, EndStructure, Pipe, SurfaceDrainage.

e Cadastre asset: LandParcel.

e OtherData asset: Object.

The feature type names for ADAC FME features closely resemble the naming for the ADAC v3 XML document. Feature
type names are whitespace separated combinations of theme and asset structure names. For example, “Sewerage
Valve”, “Water Valve”, “Stormwater Pipe”, and “Cadastre LandParcel”.

Attribute names also closely resemble their XML counterpart. The non-geometrical, non-repeating, and non-nested
child elements, i.e., the simple type elements whose maxOccurs is 1, of an asset structure are mapped with their
names unchanged. For example, the simple type child element <OutletType> of the <ManholePit> element is mapped
as the “"OutletType” attribute of the “Stormwater ManholePit” feature.

Non-geometrical nested child elements, i.e., the complex type elements, of an asset are mapped as whitespace sep-
arated combinations of child and descendant elements. For example, the <ChamberSize> complex type child element
of the <ManholePit> element creates the following FME attributes in a “Stormwater ManholePit” feature: “Cham-
berSize Blankend”, “ChamberSize PS”, "ChamberSize Rectangular” and “ChamberSize Circular”.

Most non-geometrical child elements in an asset structure are non-repeating, these are mapped as simple, atomic
FME attribute values. Repeating non-geometrical child elements, i.e., those with maxOccurs greater than 1 or
unbounded, such as the <ComponentInfo> element, are mapped as CSV values.

The geometry for a feature is mapped from the various ADAC geometry elements. Some ADAC asset structures, such
as the "RoadSubsoilDrain”, may have more than one geometry, these are mapped as aggregates. Two special FME
geometry traits are assigned to the geometries to help identify their original ADAC role. The “adac_geometry” trait
identifies the original ADAC XML geometry element, while the “adac_geometry_parent” trait identifies the geometry’s
parent.

Data not explicitly defined in the ADAC schema is supported in the ADAC XML via the “OtherData” asset model. This
<OtherData> asset model element can contain one or more <Layer> child elements, and each <Layer> can contain
one or more <Object> elements. The FME ADAC reader maps these <Object>s into a single “"Object” feature type.

All FME ADAC "Object” features carry a “LayerName” attribute which identifies its original <Layer> container in the
XML document. An “Object” feature can be a point, line, area, text geometry, or an aggregate of these geometries.

An <Object> element may have zero or more <ComponentInfo> child elements. The information for the first <Com-
ponentInfo> element, as with the other predefined ADAC structures which can have at most one <ComponentInfo>,
is represented in the FME ADAC feature by the following attributes:

“ComponentInfo InfrastructureCode”,
“ComponentInfo Status”,
“ComponentInfo Notes”, and
“ComponentInfo Supporting_Info”".

All of the above except for the "ComponentInfo Status” attribute have CSV values. Multiple <ComponentInfo> ele-
ments in a single layer are represented in the FME ADAC feature as a structure list attribute, except for the list index-
ing the representation is similar to the above:

“ComponentInfo{0}.InfrastructureCode”,
“ComponentInfo{0}.Status”,
“ComponentInfo{0}.Notes”, and
“ComponentInfo{0}.Supporting_Info".

“ComponentInfo{1}.InfrastructureCode”,
“ComponentInfo{1}.Status”,
“ComponentInfo{1}.Notes”, and
“ComponentInfo{1}.Supporting_Info”".

Note that the ComponentInfo list attribute with index 0 is identical to the non-indexed set of ComponentInfo attrib-
utes.

ADAC v4

The ADAC XML reader parses the ADAC v4.0.0 schema to determine the asset structures available to be read.

In ADAC v4 the FME feature type names also closely resemble, as in V3, the ADAC v4 XML element asset names. ADAC
FME feature type names are whitespace separated combinations of theme and asset names. For example, the <Pit>
asset in the <Stormwater> theme is mapped as the FME “Stormwater Pit” feature type. Note that the <Pits> element,

the element representing the feature class of stormwater pits, i.e., the parent element enclosing the <Pit> elements,
is not part of the FME feature type.

Most non-geometrical child elements in an asset structure are non-repeating, these are mapped as simple, atomic
FME attribute values. These elements are mapped as FME attributes with their name unchanged. For example, the
simple type child element <PitNumber> of the <Pit> element is mapped as the “PitNumber” attribute of the “Storm-
water Pit” feature.

Repeating non-geometrical child elements, i.e., those with maxOccurs greater than 1 or unbounded, such as the
<SupportingFile> element, is mapped as a list attribute. The <SupportingFile> element is part of the <Com-
ponentInfo> element, which is an element defined as a complex type, hence <SupportingFile> is mapped in FME as a
nested list attribute, “*ComponentInfo.SupportingFiles.SupportingFile{}".

Non-geometric nested child elements, i.e., the complex type elements, of an asset structure are mapped differently
from v3, in ADAC v4 these complex property elements are mapped as FME nested list attributes. For example, the
<ChamberSize> complex type child element of the <Pit> element creates the following FME nested list attributes in a
“Stormwater Pit” feature:

“ChamberSize.Rectangular.Length_mm”
“ChamberSize.Rectangular.Width_mm”
“ChamberSize.Circular.Diameter_mm”
“ChamberSize.Extended.Radius_mm”
“ChamberSize.Extended.Extension_mm”

The geometry for a feature is mapped from the various ADAC <Geometry> elements. Unlike ADAC v3, the assets data
structure for ADAC v4 do not have multiple geometries.

Geometry
Note: ADAC v4 assets have exactly one geometry. The following applies only to ADAC v3.

ADAC v3 asset structures with multiple geometry elements are mapped into FME geometry aggregates. FME geometry
traits are used to help identify the original ADAC role. Two special geometry traits are assigned, the “adac_geometry”
trait identifies the original ADAC XML geometry element, while the “adac_geometry_parent” trait identifies the geome-
try’s parent. The values for these two traits are their respective ADAC XML element names. The following example
logs a “Stormwater ManholePit” feature:

B o T S T e
Feature Type: Stormwater ManholePit'

Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:
Attribute(encoded:

(

(

Attribute(string)
Attribute(string)
Attribute(string)

utf-16): ChamberConstruction' has value Precast'
utf-16): ChamberSize Circular Diameter' has value 1050'
utf-16): Construction Date' has value 2007-04-14'
utf-16): Drawing Number' has value B02166-C66'
utf-16): FireRetardant' has value false'

utf-16): InletStructure Depth_m'has value 1.35'

utf-16): InletStructure InvertLevel_m'has value 6.030'
utf-16): InletStructure LidType' has value CIRC CAST IRON'
utf-16): InletStructure PitNumber' has value 13/8'

utf-16): InletStructure SurfaceLevel_m'has value 7.380'
utf-16): OutletType' has value Dry'

utf-16): Owner' has value Council'

utf-16): Project Name' has value'

utf-16): Use' has value Manhole'

:fme_geometry' has value fme_aggregate'

: fme_type' has value fme_point'

:xml_type' has value xml_aggregate'

Coordinate System: '
Geometry Type: IFMEAggregate
Number of Geometries: 2

Geometry Number: 0
Geometry Type: IFMEPoint
Number of Geometry Traits: 2

GeometryTrait(encoded: utf-16): adac_geometry' has value Location’
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value InletStructure’

Coordinate Dimension: 3
(529958.46299999999,6942011.182,0)

Geometry Number: 1
Geometry Type: IFMEPoint
Number of Geometry Traits: 2

GeometryTrait(encoded: utf-16): adac_geometry' has value Location'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value ManholePit'
Coordinate Dimension: 3
(529958.46299999999,6942011.182,0)

The ADAC v3 <ManholePit> element has two descendant <Location> elements, one is an immediate child element,
while the other grandchild element. In the above example, the “adac_geometry_parent” trait on the point geometries
can be used to identify the geometry’s original role in the ADAC XML document, the first location refers to the <Inlet-
Structure> element, while the second refers to the <ManholePit> element.

Mapped rotated point geometries include an additional “Rotation” trait, illustrated by the log of the following “"Water
Valve” feature:

B a2 0 e B a
Feature Type: Water Valve'

Attribute(encoded: utf-16): Construction Date' has value 2007-04-14"
Attribute(encoded: utf-16): Drawing Number' has value B02166-C66'
Attribute(encoded: utf-16): Owner' has value Council

Attribute(encoded: utf-16): Project Name' has value '

Attribute(encoded: utf-16): Size_mm' has value 150'

Attribute(encoded: utf-16): Type' has value Gate'

Attribute(encoded: utf-16): Use' has value Control'

Attribute(string) : fme_geometry' has value fme_point'

Attribute(string) : fme_type' has value fme_point'

Attribute(string) : xml_type' has value xml_point'

Coordinate System: '

Geometry Type: IFMEPoint

Number of Geometry Traits: 3

GeometryTrait(encoded: utf-16): Rotation' has value 83.496'
GeometryTrait(encoded: utf-16): adac_geometry' has value Location'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value Valve'
Coordinate Dimension: 3
(529952.79399999999,6942138.1310000001,0)

PO -9 9 9 9 9 94

The geometry for ADAC v3 and v4 features may be identified by the xml_type attribute. The valid values for this attrib-
ute are:

xml_type Description

xml_no_geom FME Feature with no geometry.
xml_point Point geometry.

xml_line Linear geometry.

xml_area Simple polygon geometry

xml_text Annotation geometry

xml_aggregate An aggregate of the above geometries.

No Geometry

xml_type: xml_no_geom

Features with their xml_type attribute set to xml_no_geom do not contain any geometry data.
Points

xml_type: xml_point

Features with their xml_type set to xml_point are single coordinate features or an aggregate of single points.
Lines

xml_type: xml_line

Features with their xml_type set to xml_line are polyline features or an aggregate of polylines.

Areas

xml_type: xml_polygon

Features with their xml_type set to xml_polygon are polygon features which may or may not have interior boundaries,
or an aggregate of such polygons.

Annotation
xml_type: xml_text

Features with their xml_type set to xml_text are feature with annotation geometry. The text geometry is mapped from
the ADAC “annotation_geometry” complex type. The “annotation_geometry” components: <Text>, <Location>,
including its <Rotation>, and <Height_m> are loaded into the FME text geometry’s “text string”, “point geometry”,
“text rotation”, and “text height”, respectively, other “annotation_geometry” child elements, such as “Justification”,

“FontName” and “Width_m", do not map cleanly into the FME text geometry and are thus mapped as geometry traits.

The following is an ADAC “"Object” feature with an annotation geometry, notice that all of the “annotation_geometry”
components, such as <Text>, <Rotation>, <FontName, etc,..., are also represented as geometry traits:

B a2 0 e B a
Feature Type: Object'

Attribute(encoded: utf-16) : Construction Date' has value'

Attribute(encoded: utf-16) : Drawing Number' has value'

Attribute(encoded: utf-16) : LayerName'has value CADASTRE_CANCELLED_LOTPLAN'
Attribute(encoded: utf-16) : Owner' has value Council'

Attribute(encoded: utf-16) : Project Name' has value Test.dwg'

Attribute(string) : fme_geometry' has value fme_point'

Attribute(indirect: 64 bitreal) :fme_rotation' has value 81'

o P s Py P, P o, s s P e

Attribute(indirect: 64 bitreal) :fme_text_size' hasvalue 1.5'

Attribute(indirect: encoded: utf-16): fme_text_string' has value My Annotated text.'
Attribute(string) :fme_type' has value fme_text'

Attribute(64 bit real) : xml_rotation' has value 81'

Attribute(64 bit real) :xml_text_size' has value 1.5'

Attribute(encoded: utf-16) 1 xml_text_string' has value My Annotated text.'
Attribute(string) : xml_type' has value xml_text'

Coordinate System: '
Geometry Type: IFMEText
Number of Geometry Traits: 8
GeometryTrait(encoded: utf-16): FontName' has value Consolas'
GeometryTrait(encoded: utf-16): Height_m' has value 1.5'
GeometryTrait(encoded: utf-16): Justification' has value Left-Bottom'
GeometryTrait(encoded: utf-16): Rotation' has value 81'
GeometryTrait(encoded: utf-16): Text' has value My Annotated text.'
GeometryTrait(encoded: utf-16): Width_m'has value 2.0’
GeometryTrait(encoded: utf-16): adac_geometry' has value Annotation’
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value Object'
Text String: My Annotated text.
Text Size: 1.5
Text Rotation (degrees CCW): 81

Geometry Type: IFMEPoint

Number of Geometry Traits: 2

GeometryTrait(encoded: utf-16): adac_geometry' has value InsertionPoint'

GeometryTrait(encoded: utf-16): adac_geometry_parent' has value Location'

Coordinate Dimension: 3

(511337.43646974798,7033866.8198164497,0)

Aggregates

xml_type: xml_aggregate

Features with their xml_type set to xml_aggregate are aggregate features whose members maybe point, line, area,
annotation or aggregate geometries.

Autodesk 3ds Writer

Format Notes: This format is not available in FME Base Edition.

Overview

The 3ds Writer allows FME to read and write Autodesk® 3ds Format (3ds) files.

The 3ds format was originally developed as the native format for Autodesk 3D Studio (Releases 1 to 4). It is now com-
monly used as an interchange format between different 3D modelling and rendering applications.

3ds Quick Facts

Format Type Identifier

3DS

Reader/Writer

Both

Licensing Level

Professional

Dependencies None
Dataset Type Reader: File
Writer: Directory

Feature Type 3DS_ELEMENT
Typical File Extensions .3ds
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support No
Generic Color Support No
Spatial Index Never
Schema Required Yes
Transaction Support Never
Enhanced Geometry Yes
Geometry Type Attribute 3ds_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point no
circles yes polygon yes
circular arc no raster no
donut polygon yes solid yes
elliptical arc no surface yes
ellipses yes text no

Geometry Support
Geometry Supported? Geometry Supported?
line no z values yes
none yes

Writer Overview
The 3D model has a hierarchical structure of Nodes, which are elements of the model.

For each node, there is a corresponding mesh, which contains the geometry of the object. Feature types become
Nodes. Features become Meshes that may have geometries and attributes.

The 3ds Writer does not support feature type fanout.

Note: The 3ds format is limited to 32-bit precision for its coordinates and, as a result, translations involving a
greater level of precision (i.e., using world coordinates instead of local coordinates) may produce 3ds data where
different coordinates are collapsed into a single coordinate. You can resolve this issue by offsetting the x,y,z coor-
dinates such that the model's origin is moved to (0,0,0) or another point close to this, which has the effect of mov-
ing the model into a local coordinate system.

Writer Directives
This section lists the directives that are processed by the 3ds Writer.

The suffixes shown are prefixed by the current <WriterKeyword>_ in a mapping file. By default, the <Writ-
erKeyword> for the 3ds writer is 3DS.

DATASET

Required/Optional
Required

Values

The value for this directive is the path to the output directory. If the output directory does not exist, then the writer
will create a new directory.

The output file will be created within the specified directory and associated texture files, if any, will be written to the
same directory.

For example, if the output directory is C:\3dsFiles\house\ then the output file will be C:\3dsFiles\house\house.3ds. If
the output file already exists, then the writer will overwrite it.

If any other applications have the output file opened, then the writer will be unable to continue and the translation will
fail.

Workbench Parameter

Destination Autodesk 3ds Directory

DEF

The 3ds Writer ignores this directive because the format itself does not have a notion of layers/feature types.

Workbench Parameter

Not applicable

Required/Optional
Optional
MOVE_TO_LOCAL_COORDSYS

If the value is PRI_ONLY, a companion.prj file containing the coordinate system and having the same name as the
.3ds file will be written in the same directory as the.3ds file.

If the value is Yes, in addition to writing the.prj file as in the PRI_ONLY option, a companion.fwt file with the same
name as the .3ds file will be written in the same directory as the .3ds file. The coordinates of all the points in the
written features will be normalized to the interval [-0.5, 0.5] on the largest side of their XYZ-bounding cube.

The other dimensions will be scaled proportionally. The transformation matrix required to scale the model back to
world coordinates is contained in the .fwt file. This can be used to improve precision of the written coordinates.
Required/Optional

Optional

Values

Yes | No (default)

%% Workbench Parameter

Parameter Name

Move to Local Coordinate System

Parameter Values

Yes | No (default) | PRJ Only

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

3ds features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each 3ds feature.

In addition, each 3ds feature contains several special attributes to hold the type of the geometric entity and its display
parameters. All 3ds features contain a 3ds_type attribute, which identifies the geometric type. Depending on the geo-
metric type, the feature contains additional attributes specific to the geometric type. These are described in sub-
sequent sections.

Geometries with no Z coordinates (2D geometries) will be assigned 0 as their z values.

The following format-specific attributes are applicable to all geometry types, and these attributes do not appear as
user attributes in the output data:

3ds_mesh_name This is an optional attribute that contains the name of the mesh read
from the 3ds file. The name must not contain more than 8 characters.

These attributes may be set on the feature or on the geometry of the feature at any level.

If some of the attributes are not set on a certain geometry, they will take the values set the geometry’s container. If
the values are not found, they will take the values set on the feature. If the values are not found at the feature level,
they will assume default values.

If a certain geometry and its container has different values for the same attribute, the value on the geometry, not its
container, will be used.

Mesh

3ds_type: 3ds_mesh

Meshes are composed of triangular faces. If the input mesh contains faces with more than three distinct vertices,
then the face will be converted into multiple triangular fac—es. The triangular faces of a mesh need not be connected.

Polygons and donuts are treated as meshes. They will be converted into triangular fac—-es that represents the inner
area of the polygon or donut.

The name of a mesh read by the reader will be stored in (3ds_mesh_name) as a string. The name of a mesh produced
by the writer is a unique number.

Material and Appearance

If the feature being read does not contain a valid 3ds material reference, the appearance on the individual face in the
mesh will be set to FME’s default appearance. Any raster referenced as a texture in the 3ds file will be read by FME, as
long as the source format is supported by FME.

If the feature being written does not contain a valid appearance reference, the default material will be assigned to the
corresponding faces. If the feature contains a valid appearance reference, it will be written as faces referenced to a
corresponding 3ds material.

A two-sided surface with matching appearance references will be written out as two-sided faces sharing one material
in 3ds. Due to a limitation within 3ds, a two-sided surface with different appearance references will be written out as
two one-sided faces with different materials.

If the incoming feature contains deprecated attributes such as material name (3ds_material), color (3ds_ambient_
color, 3ds_diffuse_color, or 3ds_specular_color), or texture image (3ds_texture_image) information, a material with
these properties will be created and assigned to the mesh corresponding to the feature.

The material name in 3ds is limited to 8 characters; the writer will truncate appearance names longer than 8 char-
acters.

Autodesk AutoCAD DWF Reader/Writer

The AutoCAD® Reader/Writer enables FME to read and write files used by Autodesk® AutoCAD and compatible sys-
tems. AutoCAD drawing files consist of drawing settings and configuration, as well as a series of entities, or graphic
elements, organized into layers.

FME provides broad support for many AutoCAD entity types and options and for reading and writing AutoCAD file ver-
sion up to and including 2007. When AutoCAD data is output, header information may be copied from a supplied tem-
plate, or prototype, file.

This chapter assumes familiarity with AutoCAD-compatible systems and the entities (features) that are manipulated
within these systems.

Note: Throughout this chapter, the AutoCAD file is referred to as a drawing file rather than a DWF file.

Overview

There are three supported formats used by AutoCAD:

e DXF (drawing exchange format) files, which are large ASCII files,

e DWG (drawing) files, which are binary and support the most entity types, and

e DWF (drawing web format) files, which are binary files of reduced size and functionality intended for display on
limited-bandwidth mediums such as the Internet.

Logically, both DWG and DXF files are identical and, therefore, FME treats both file types in the same manner.

DWG/DXF files are read by the AutoCAD DWG/DXF reader and writer (see Autodesk AutoCAD DWF/DXF Read-
er/Writer).

DWEF files are handled seamlessly but internally they undergo a different series of translation processes. These are
read separately by the AutoCAD DWF reader and writer. Currently the DWF reader and writer can only read and write
two-dimensional (2D) DWF files.

This document covers information specific to AutoCAD DWF files. For general AutoCAD DWG/DXF information and
AutoCAD feature types supported by FME, please refer to the documentation on the AutoCAD DWG/DXF Read-
er/Writer.

AutoCAD DWF Quick Facts

Format Type Identifier DWF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Layer name

Typical File Extensions .dwf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute autocad_entity
Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster yes

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values no

none no

Reader Overview

The AutoCAD DWF reader extracts entities, one at a time, from the entity section of the drawing file and passes them
on to the rest of the FME for processing. Complex entities such as polylines and inserts are exploded and broken into
several individual FME features. If the entity has attribution stored as extended entity data, then this is also read and

placed in the feature.

When the AutoCAD reader encounters an entity type it does not know how to process, it simply sets the entity type of
the feature and returns it. This feature is then logged by the FME correlation subsystem and the reader moves on to

the next entity.

Reader Directives

This section describes the directives that are recognized by the AutoCAD DWF reader. Each directive is prefixed by
the current <ReaderKeyword>_ when placed in a mapping file.

DATASET

Required/Optional: Required

The dataset into which feature data is to be read.

Workbench Parameter: Source Autodesk AutoCAD DWF File(s)
PASSWORD

Required/Optional: Optional

This statement specifies the password to open the DWF file for reading if it is password protected. The statement is of
the following form:

<WriterKeyword>_PASSWORD <autocad dwf password>

The statement below instructs the AutoCAD reader try to open the given dataset with the password “mypass”:

DWF_PASSWORD mypass

Value: <valid password>

Default value: no password
Workbench Parameter: Password

PAPER_WIDTH, PAPER_HEIGHT

Required/Optional: Optional

These statements specify the maxima of the width and height in millimeters for the sheets read from the input DWF
file.. The statements are of the following form:

<Writerkeyword>_PAPER_WIDTH <width in mm>
<WriterKeyword>_PAPER_HEIGHT <height in mm>

The statements below instruct the AutoCAD reader limit the extents of the sheets read from the input DWF file to
297mm by 210 mm:

DWF_PAPER_WIDTH 297
DWF_PAPER_HEIGHT 210

Paper_Width Value: <Valid positive numeric>
Paper_Width Default Value: 297
Paper_Height Value: <Valid positive numeric>
Paper_Height Default Value: 210

Workbench Parameter: Width (mm) and Height (mm)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxyY >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

¥ Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

¥ Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values
YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

% Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, itis even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

¥ Workbench Parameter
Additional Attributes to Expose

Writer Overview
The AutoCAD writer provides the following capabilities when writing AutoCAD files.

e Password security: Passwords can be created for DWF files written by FME.

e Multiple file formats: DWF files can be written as either compressed or uncompressed binary files, or as ASCII
files.

o Resolution: DWF file resolution can be determined at translation time in the form of the X Size and Y Size writer
keywords. These are specified in pixels.

e Color Map Optimization: Colors in the color map that are unused can be eliminated from the output file to
reduce space.

¢ Export Invisible Layers: Invisible Layers can be optionally exported if desired. (Not supported for Write 3D)

e Force View Extents: The initial viewport of the output file can be overwritten to include the entire extents of the
drawing instead of the default active viewport.

e Use Inked Area: The inked area of the DWF file can be calculated from the entities in the file to produce a tight
bounding rectangle around drawable graphic entities.

e Skip Layer Info: Additional layer information can be omitted from the output DWF file to reduce space.
e Skip Named Views: Named viewports can be omitted from the output DWF file in order to save space.

e Multi-version Support: The AutoCAD DWF writer supports files that are compatible with any current AutoCAD
release.

When creating AutoCAD DWF files, the AutoCAD writer first defines the linetypes and layers defined within the FME
mapping file. The writer then reads in a template file, if specified, and copies the linetypes, layer definitions, shape
file header information, and block information from the template file to the output dataset.

The AutoCAD writer then outputs each feature it is given to the output file in the appropriate entity type.
When writing an AutoCAD DWF file, the format of file output is determined as follows:

e If the file name contains .dwf or .DWF, then the output dataset is written in DWF format.

e Otherwise, if an error exists in the mapping file, the translation is halted.

Writer Directives

This section describes the directives processed by the AutoCAD DWF writer module. Each of the directives is prefixed
by the current <WriterKeyword>_ when they are placed in a mapping file. By default, the <WriterKeyword> for the
AutoCAD DWF writer is DWF.

DATASET

Required/Optional: Required
The dataset into which feature data is to be written.

Workbench Parameter: Destination Autodesk AutoCAD DWF File

DWF_VERSION

Required/Optional: Optional
The version of the AutoCAD DWF file to be produced.

The value corresponds with the release number of the AutoCAD DWF file that is produced. This statement specifies
the version of AutoCAD file to be output. The statement is of the following form:

<WriterKeyword>_DWF_VERSION <autocad dwf version>

The example statement below instructs the AutoCAD writer to produce a version 4.2 DWF file:

DWF_DWF_VERSION 4.2

Values: 4.2 | 5.5 6.0

Default value: 5.5
Workbench Parameter: Version

PASSWORD

Required/Optional: Optional

This statement specifies the password to open the DWF file for reading if it is password protected. The statement is of
the following form:

<WriterKeyword>_PASSWORD <autocad dwf password>

The statement below instructs the AutoCAD writer try to open the given dataset with the password “mypass”:

DWF_PASSWORD mypass

Value: <valid password>

Default value: no password
Workbench Parameter: Password

TEMPLATEFILE

Required/Optional: Optional

The name of an existing AutoCAD DWF file that contains the block definitions and linetype definitions to be used when
creating the output dataset.

Value: <valid password>

Default value: no password
Workbench Parameter: Template File

TEMPLATEFILE_PASSWORD

Required/Optional: Optional

DWEF files support an optional password for additional security. If specified, the given password is provided when the
file is opened.

Value: <valid password>

Default value: no password

Workbench Parameter: Template File Password

FORMAT

Required/Optional: Optional

The format of the AutoCAD DWF file to be produced.
Values: COMPRESSED BINARY | UNCOMPRESSED BINARY | ASCII

Default value: COMPRESSED BINARY
Workbench Parameter: Format

X_SIZE

Required/Optional: Optional

Specifies the horizontal width of the output DWF file in pixels.
Values: <valid positive numeric>

Default value: 36000
Workbench Parameter: X Size

Y_SIZE

Required/Optional: Optional

Specifies the vertical height of the output DWF file in pixels.
Values: <valid positive numeric>

Default value: 24000
Workbench Parameter: Y Size

OPTIMIZE_COLOR_MAP

Required/Optional: Optional

This directive, if set, prevents unused colors in the color map from being stored in the DWF file.
Value: YES | NO
Default value: NO

Workbench Parameter: Optimize Colormap
Example:

DWF_OPTIMIZE_COLOR_MAP YES

EXPORT_INVISIBLE_LAYERS

Required/Optional: Optional

This statement exports invisible layers in an AutoCAD file to be output to the DWF file.
Value: YES | NO

Default value: NO

Workbench Parameter: Export Invisible Layers
Example:

DWF_EXPORT_INVISIBLE_LAYERS YES

FORCE_VIEW_TO_EXTENTS

Required/Optional: Optional

This directive, if set, sets the initial viewport of the DWF file to the entire extents instead of the last actively seen view-
port.

Value: YES | NO

Default value: NO
Workbench Parameter: Force Initial View to Extents
Example:

DWF_FORCE_VIEW_TO_EXTENTS YES
USE_INKED_AREA

Required/Optional: Optional

This directive, if set, calculates a tight bounding area around the graphic elements of a drawing.
Value: YES | NO

Default value: NO
Workbench Parameter: Use Inked Area
Example:

DWF_USE_INKED_AREA YES
SKIP_LAYER_INFO

Required/Optional: Optional

This directive, if set, prevents additional layer information from being stored in the DWF file.
Value: YES | NO

Default value: NO
Workbench Parameter: Skip Layer Info
Example:

DWF_SKIP_LAYER_INFO YES

SKIP_NAMED_VIEWS

Required/Optional: Optional

This directive, if set, prevents named views from being stored in the DWF file.
Value: YES | NO

Default value: NO

Workbench Parameter: Skip Named Views
Example:

DWF_SKIP_NAMED_VIEWS YES

DEF

Required/Optional: Optional

The AutoCAD DWF writer requires that every feature written to the AutoCAD file be stored within a predefined Auto-
CAD layer. In AutoCAD, the layers are used to store collections of logically related attributes. Within the FME, the Auto-
CAD layer and the type of the feature are treated synonymously as there is a one-to-one correspondence between FME
feature type and AutoCAD Iayer.lThe order of properties in the layer statement is required as shown, though addi-
tional attribute name and type pairs may be in any order. The layer statement is of the following form:

<WriterKeyword>_DEF <layer name> \
autocad_color <default color> \
autocad_Tinetype <default Tinetype>\
[autocad_layer_type frozen] \
[<attribute name> <attribute type>]

where:

e <layer name> is the name of the layer being defined. This is the name that is used throughout the remainder of the
FME mapping files.

e <default color> is the color number used for all features stored within the layer unless explicitly overridden on the
correlation lines below. Valid values are between 1 and 255.

e <defaultlinetype> is the name of the linetype to use for the layer if no linetype is specified on the correlation line. The
linetype specified must either be:

e defined in the mapping file,
e copied from a specified template file, or
e the predefined linetype named CONTINUOUS.

e <autocad_layer_type> is the type of layer to create. Currently, only the value frozen is supported. If specified, then
the created layer is frozen; otherwise, the layer is not frozen.

e <attribute name> <attribute type> is the definition of an attribute to be stored within the extended entity data of fea-
tures for the layer. If no attributes are defined, then all feature attributes (except those that start with autocad_)
are stored. The storing of attributes can be turned off by specifying a value of external_attributes for the autocad_

attributes feature attribute on the correlation line. The values for <attribute type> are the same as those for ESRI
Shapefiles.

The example below defines a layer called boundary in which entities are drawn using color 13 (unless otherwise spec-
ified) and a linetype called dash-dot (unless otherwise specified). The feature also has several attributes specified
that will be written to the extended entity data of each feature within the layer.

DWF_DEF boundary \
autocad_color 13 \
autocad_Tlinetype dash-dot \

FEATCODE char(12)\
PPID char(10) \
DATECHNG date \
SURVEYDIST number(8,2)

1Layers can also be defined through the use of a TEMPLATEFILE.

Feature Representation

Special FME feature attributes are used to hold AutoCAD entity attributes. The AutoCAD writer uses these attribute
values as it fills in an entity structure during output. The AutoCAD reader sets these attributes in the FME feature it
creates for each entity it reads.

For more information on general AutoCAD entities and their representations inside FME, please see the documentation
on the AutoCAD DWG/DXF reader and writer.

Autodesk AutoCAD DWG/DXF Reader/Writer

Format Notes: This format contains Autodesk® RealDWG by Autodesk, Inc.!

This chapter contains information related to the AutoCAD DWG/DXF reader/writer and AutoCAD feature types sup-
ported by FME. For 2D AutoCAD DWF information, please refer to the Autodesk AutoCAD DWF Reader/Writer. For 3D
AutoCAD DWF information, please refer to the Autodesk AutoCAD 3D DWF Reader/Writer.

The AutoCAD® Reader/Writer allows FME to read and write files used by Autodesk® AutoCAD and compatible
systems. AutoCAD drawing files consist of drawing settings and configuration, as well as a series of entities, or
graphic elements, organized into layers.

Overview

FME provides broad support for many AutoCAD entity types and options and for reading and writing AutoCAD file
versions up to and including 2010.

When AutoCAD data is output, header information may be copied from a supplied template, or prototype, file.

RealDWG
Support for the AutoCAD files up to version 2010 has also been done with a new format type
'_’f::‘j"';':r identifier labelled REALDWG. This change means that there are some parts of this document
Feeal DA that apply to REALDWG specifically, and may be in duplication of pre-existing information about
the handling of AutoCAD files. One significance of the REALDWG reading and writing of
AutoCAD files is that it complies with AutoDesk AutoCAD TrustedDWG™ reading and writing.
This chapter assumes familiarity with AutoCAD-compatible systems and the entities (features)
that are manipulated within these systems.
Note: Throughout this chapter, the AutoCAD file is referred to as a drawing file rather than a
DWEF file.

What is TrustedDWG?

Users can specify whether they would like Autodesk AutoCAD 2007-2010 to notify them when the DWG file they are
opening was saved using an application that was not created by an Autodesk product or RealDWG licensee.

1Copyright © 1998-2006 Autodesk, Inc. All rights reserved.

AutoCAD DWG Quick Facts

Format Type Identifier ACAD
Reader/Writer Both
Dataset Type File
Licensing Level Base
Dependencies None
Feature Type Layer name
Typical File Extensions .dwg, .dxf
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support No

Generic Color Support Yes

Spatial Index Never
Schema Required Yes
Transaction Support No

Geometry Type Attribute autocad_entity
Enhanced Geometry Yes
Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes zvalues yes

none no

AutoCAD RealDWG Quick Facts

Format Type Identifier REALDWG
Reader/Writer Both
Dataset Type File
Licensing Level Base
Dependencies None
Feature Type Layer name
Typical File Extensions .dwg, .dxf
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support No

Generic Color Support Yes

Spatial Index Never
Schema Required Yes
Transaction Support No

Geometry Type Attribute autocad_entity
Enhanced Geometry Yes
Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes
circles yes polygon yes
circular arc yes raster no
donut polygon yes solid yes
elliptical arc yes surface yes
ellipses yes text yes
line yes z values yes
none no
Background

There are two formats used by AutoCAD: DXF (drawing exchange format) files, which are large; and ASCII rep-
resentations of the binary DWG (drawing) files. Logically, both files are identical and, therefore, the FME treats both
file types in the same manner. For AutoCAD DWF reading and writing support please see the chapter on AutoCAD

DWF.

AutoCAD DWG and DXF have been upgraded to take advantage of the FME enhanced geometry model. Advantages
include the storage of linear and bulge arc segments of polylines and hatch loops, the storage of more arcs and

ellipses in more cases without being stroked to lines or polygons, and the reading and writing of 3D geometries. Alto-

gether, the addition of the enhanced geometry model support increases accuracy of geometric representation in Auto-
CAD-to-AutoCAD translations, as well as the creation and interpretation of more accurate features when translating to
or from other FME formats.

AutoCAD files consist of sections, as follows:
1. HEADER: This contains settings of variables associated with the drawing.
2. CLASSES: This contains class definitions associated with the drawing.
3. TABLES: This contains a variety of tables, including:

e Layers: Each layer entry contains layer definition information such as layer color, layer name, and layer line-
type. The AutoCAD reader validates the layer names and may modify them to remove invalid characters.

e Linetypes: Each linetype entry contains the linetype definition information such as name and alignment.
The AutoCAD writer enables linetype definitions to be copied from an existing AutoCAD file, then referenced
by name during the data translation.

e Shape Files: Each shape file entry identifies a shape file referenced by the drawing. Shape files are used by
AutoCAD as a different method for defining symbols or fonts. Note: These are similar to the TextStyles in
AutoCAD.

Note: AutoCAD shape files are not the same thing as ESRI Shapefiles. AutoCAD shape files store symbol
and font definitions.

e Applications: Each application entry contains the name of an application referenced within the AutoCAD
file.

4. BLOCKS: These are used to define symbols and other drawing file objects used repeatedly throughout a draw-
ing. The AutoCAD writer enables copying of block definitions from an existing AutoCAD file, which is then ref-
erenced by name during a data translation operation.

5. ENTITIES: This is the main section of a drawing file and contains the actual feature entities. Each entity con-
tains standard information, such as its color, layer, thickness, linestyle, and geometry, as well as a number of
attributes specific to its entity type. For example, a text entity has fields for font, size, and the text string in
addition to the standard display attributes.

Note: FME supports both 2D and 3D AutoCAD entities. However, many applications only support 2D DWG
and DXF files. The @Force2D function can be used to ensure that only 2D data is written to an output DWG
or DXF file.

6. OBJECTS: This section stores dictionaries and other helper non-entity objects.

Each entity may also have associated attribution stored within an extended entity data section. Extended entity data is
fully supported by the FME.

All coordinates within a drawing file are stored as 64-bit floating point values in world coordinates. As such, there is
no need to scale or otherwise alter coordinates as they are being read from or written to a drawing file.

The AutoCAD reader and writer use symbolic names for the different entity types stored within a drawing file. This
simplifies feature type specification. The following table gives a brief description of each of the different AutoCAD
entity types currently supported by the reader and/or writer. The entities are described in detail in subsequent sec-
tions.

AutoCAD Entity Types and Descriptions

FME autocad_entity

Description

autocad_line

Linear features stored within drawing file as a
line or unclosed polyline.

autocad_point

Point features.

autocad_xline

Linear features of type xline.

autocad_ellipse

Features with an elliptical or circular rep-
resentation.

autocad_shape

Features whose representation is stored in an
AutoCAD shape file.

autocad_polygon

Features whose geometry is represented by a
closed polyline.

autocad_face

Features represented by a 3D face object. The
face object may have 3 or 4 coordinates.

autocad_arc

Features whose geometry represents a portion
of a circular arc.

autocad_trace

Features with a 4 coordinate trace geometry.

autocad_solid

Features with a 3 or 4 coordinate solid geome-
try.

autocad_ray

Features with a linear geometry which rep-
resents a ray.

autocad_text

Text features.

autocad_spline

Spline features.

autocad_multi_text

Text features that store multiple lines of text.
R14 and later only.

autocad_multi_line

A linear feature that is represented by more two
or more parallel lines.

Note: R14 and later only. This is supported only
by the Reader.

autocad_insert

Point features that represent the location of a
block reference entity.

autocad_leader

AutoCAD Leader entity representing leader lines
in drawings.

autocad_hatch

Features with 2D boundary loops which form
polygons and donuts, and which may be filled
with line patterns or color gradients.

FME autocad_entity Description

autocad_mpolygon Features with 2D polyline loops which form poly-
gons and donuts and which may be filled with
line patterns or color gradients.

autocad_surface Features with connected and unconnected, pla-
nar and non-planar 3D areas, that may rep-
resent meshes or the boundary representations
of 3D solids.

autocad_solid3d Features with connected and unconnected, 3D
geometries that may be 3D solids or their closed
boundary representations.

autocad_attr_def Features without geometry that contain infor-
mation about AutoCAD attribute definition. Main
information on features would be the Tag,
Prompt and Default value for that attribute def-
inition.

Reader Overview

The AutoCAD reader first reads the header and table information from the drawing file being processed, and caches
information on blocks, shape files, layers, linetypes, and applications. These cached values are referenced by entities
throughout the file and are needed when processing the entities.

The reader then extracts entities, one at a time, from the entity section of the drawing file and passes them on to the
rest of the FME for processing. Complex entities such as polylines and inserts are extracted as single FME features. If
the entity has attribution stored as extended entity data, then this is also read and placed in the feature.

When the AutoCAD reader encounters an entity type it does not know how to process, it simply sets the entity type of
the feature and returns it. This feature is then logged by the FME correlation subsystem and the reader moves on to
the next entity.

ESRI Product Coordinate System Information

To specify the FME coordinate system, the FME AutoCAD reader can recognize a coordinate system associated with
AutoCAD data by ESRI products.

The AutoCAD reader will first look for the following files in the source directory:

o <filename>.prj

e esri_cad.prj

If neither of these files is present, the AutoCAD reader will try to find an ESRI_PRJ entry embedded in the file.
(This is not applicable to the RealDWG reader.)

Reader Directives

This section describes the directives that are recognized by the AutoCAD reader. Each directive is prefixed by the cur-
rent <ReaderkKeyword>_ when placed in a mapping file.

DATASET
Required/Optional: Required

The dataset from which feature data is to be read.

Workbench Parameter: Source Autodesk AutoCAD DWG/DXF File(s)
STORE_BULGE_INFO (only applicable with classic geometry)
Required/Optional: Optional

When specified, the AutoCAD Reader doesn't vectorize the Polyline and LWP Line Bulges but rather just stores the
coefficients in the attribute autocad_buTge. In addition, when specified, this directive allows the creation of auto-
cad_start_width and autocad_end_width attributes to represent the width properties of Polyline and LWP entities.
This is generally set to YeS only when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>
SPLIT_BULGE_ARCS (only applicable with classic geometry)
Required/Optional: Optional

When specified, the AutoCAD Reader doesn't vectorize the polylines but rather returns one feature for each arc that
has abulgein itas an autocad_arc feature.

When features are read using enhanced geometry this directive will be ignored. To split enhanced geometry paths
use the PathSplitter transformer.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>
STORE_SPLINE_DEFS

Required/Optional: Optional

When specified, the AutoCAD Reader, in addition to vectorizing the splines, stores the spline coefficients as attrib-
utes. See the description of Spline below for the attribute names used to store the spline definition. This is generally
set to Yes when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Store Spline Definitions
RESOLVE_BLOCKS

Required/Optional: Optional

Specifies whether the reader will resolve (or explode) the block entities when processing inserts, or if it should just
treat inserts as a point feature. This is generally set to No when performing AutoCAD-to-AutoCAD translations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. The original insert is not output. This results in the full graphical representation of the block transferred
through FME. The exact insertion point of the block is lost unless the STORE_INSERT_POINT directive is also used.

Each block member feature is given the attribute autocad_block_number which is set to the same value for each
block so that the features comprising each block may be combined in subsequent processing. Arbitrarily deep block
nesting is permitted, however, the autocad_block_number attribute is only updated for each block at the outermost
level. The layer of the block members is determined by the USE_BLOCK_HEADER_LAYER directive.

If the block contains “Attribute” then each instance of “Attribute” in the block entity will be returned as “"Text” entity
along with a non-spatial feature containing information about that “Attribute” definition and its value for that block.

If the exact insertion point of the block is desired, then block resolution should be turned off and the insert entities for
each block should be translated into point features in the output system. Alternatively, the STORE_INSERT_POINT
directive may be specified to keep the insert point on the attributes of block member features.

Values: YES | NO

Default value: YES

Workbench Parameter: Expand Blocks into Entities
DO_NOT_RESOLVE_BLOCKS
Required/Optional: Optional

This directive is an exception list of the blocks that are not to be resolved, and is processed only when RESOLVE_
BLOCKS is specified. This is a space delimited list of the block names.

Values: space-delimited list of block names
Default value: empty list

Workbench Parameter: Not applicable
STORE_INSERT_POINT
Required/Optional: Optional

Specifies whether the reader should add the insert point location as attributes to the block component entities when
resolving (or exploding) inserts entities. This is generally set to No when performing AutoCAD-to-AutoCAD trans-
lations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. The original insert is not output, but this directive allows the insert location to still be represented.

This results in each block member feature having the following attributes: autocad_block_insert_[xyz].
Values: YES | NO

Default value: NO

Workbench Parameter: Expand Blocks into Entities

USE_BLOCK_HEADER_LAYER

Required/Optional: Optional

Specifies how the reader should set the layer of the block component entities when resolving (or exploding) inserts
entities.

This directive applies only if RESOLVE_BLOCKS is set to Yes. It is generally set to No when performing AutoCAD-to-
AutoCAD translations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. When set to Yes, this directive indicates that all block members will be on the same layer as that of the original
block. Otherwise, the block members will appear on their respective layers.

Values: YES | NO

Default value: YES

Workbench Parameter: Use Block Header Layer for Components
RESOLVE_DIMENSIONS

Required/Optional: Optional

Specifies whether or not to resolve (explode) dimensions into their individual pieces. If the value is yeS, then each
piece of the dimension will be output as a separate feature. If the value is N0, then an aggregate, containing all the
pieces of the original dimension, will be output. This is generally set to NO when performing AutoCAD-to-AutoCAD
translations.

Values: YES | NO
Default value: YES

Workbench Parameter: Resolve Dimensions
PRESERVE_INSERTS
Required/Optional: Optional

If the value for RESOLVE_BLOCKS is yes, and this directive is also yes, then block insert points are output as
point features.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>
CONVERT_ZERO_LENGTH_ARCS_TO_POINTS
Required/Optional: Optional

Specifies whether a zero length arc should be converted into a point feature (i.e., autocad_point). If the feature
becomes a point, it will still retain all the attributes it had while it was an arc. This is generally set to NO only when
performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Convert Zero Length Arcs to Points
OUTPUT_BLOCKS_AT_START

Required/Optional: Optional

Specifies that the reader will output all the block definitions at the beginning of the translation before any other fea-
tures are output. After the blocks are output, the rest of the translation is run without the blocks being resolved.
When specified, this value overrides the value specified by RESOLVE_BLOCKS.

When set, all features that are part of a block definition have the attribute autocad_block_definition, with the value of the
attribute being the name of the block which they are a component.

Values: YES | NO

Default value: NO

Workbench Parameter: Output Blocks at Start
IGNORE_FROZEN_LAYERS
Required/Optional: Optional

Specifies whether the reader will ignore all features on the frozen layers. If set to yes, then features located on the
frozen layers are not read from the input data set. If set to N0, then the features are read from the frozen layer.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>
IGNORE_LOCKED_LAYERS
Required/Optional: Optional

Specifies whether the reader will ignore all features on the locked layers. If set to yes, then features located on the
locked layers are not read from the input data set. If set to N0, then the features are read from the locked layer.

Values: YES | NO
Default value: NO

Workbench Parameter: <WorkbenchParameter>

IGNORE_HIDDEN_LAYERS
Required/Optional: Optional

Specifies whether the reader will ignore all features on the hidden layers. If set to yes, then features located on the
hidden layers are not read from the input dataset. If set to no, then the features are read from the hidden layer. If this
option is specified at the time of workspace or mapping file generation, and the schema mode is by layer, then no
schema information from hidden layers will be used to generate the workspace or mapping file. This is generally set
to No when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: <WorkbenchParameter>
VISIBLE_ ATTRIBUTES_AS_TEXT
Required/Optional: Optional

Specifies whether the reader should return visible attributes as separate text features or whether they should be
returned as attributes of an insert feature. When this is yesS, then each visible attribute is returned as a single text
feature. This is generally set to NO when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Read Visible Attributes as Text Entities
EXTENDED_ENTITY_FORMAT

Required/Optional: Optional

Instructs the FME to use the specified manner when decoding the extended entity data. This directive disables the
automatic parsing.

Values: ALTERNATE_NAME_VALUE | CSV(<SEPARATOR>)
where <SEPARATOR> specifies the character used to delimit the attribute name from the attribute value.

When ALTERNATE_NAME_VALUE is specified, then it is assumed that the values stored with each feature in the
extended entity portion of the feature alternate between specifying the attribute name and attribute value.

When CSV (<SEPARATOR>) is specified, then an attribute name value pair is specified in each extended entity
value. The values are separated by <SEPARATOR>.

Workbench Parameter: <WorkbenchParameter>
READ_PAPER_SPACE
Required/Optional: Optional

Instructs the FME to also read the entities from paper space. By default, the FME only reads the entities from model
space.

Values: YES | NO

Default value: NO

Workbench Parameter: Read Paper Space

READ_GROUPS

Required/Optional: Optional

Determines whether or not AutoCAD groups will be read. By default, FME will not read groups.
Values: YES | NO

Default value: NO

Workbench Parameter: Read Groups
IGNORE_UCS
Required/Optional: Optional

Instructs the FME to ignore the user defined coordinate system of the file being read. By default, the FME applies the
UCS when reading the coordinate data.This is generally set to Yes only when performing AutoCAD-to-AutoCAD trans-
lations.

Values: YES | NO

Default value: NO

Workbench Parameter: Ignore UCS
USE_DXF_HEADER
Required/Optional: Optional

When reading DXF files this instructs the FME Reader to use the specified dxf header file as the header for the file
being read. This option is used to handle the case where organizations produce headerless dxf files to save storage
space.

Values: <DXF_HEADER FILE>

where <DXF_HEADER_FILE> specifies the full pathname to the dxf header file. If this is specified when reading a
DWG file, then the translation is terminated with an error.

Workbench Parameter: Use DXF Header
SKIP_TO_SECTION
Required/Optional: Optional

When USE_DXF_HEADERS is specified above, this specifies how much of headerless file is to be skipped. In some
cases, the headerless file has a placeholder which has to be removed before concatenating the above header file to
the dataset. If not specified, then no lines are skipped.

Values: one of the AutoCAD SECTIONS as specified in AutoCAD files
PRESERVE_COMPLEX_HATCHES

Specifies whether or not to read hatches and mpolygons in a way that preserves their complex properties.

Required/Optional
Optional

Values:

YES | NO (default)

If the value is NO, then the loops of each hatch or mpolygon entity will be converted to areas and aggregated
together. If the value is YES, then the loops will be aggregated together as polygons, ordered such that any enclos-
ing loop will be aggregates before any enclosed loop.

This is generally set to YES when performing AutoCAD-to-AutoCAD translations.
Workbench Parameter

Preserve Complex Hatches and MPolygons

READ_AS_2_5D

Required/Optional: Optional

Determines whether polylines should have their elevation attribute treated as a Z coordinate; when this occurs the
autocad_elevation attribute will not be present. Applies to light-weight polylines and 2D polylines.

Note that this option should not be set when doing AutoCAD-to-AutoCAD translations as the elevations converted to Z
coordinates when read in will not be converted back to elevation attributes when written out.

Values: YES | NO

Default value: NO

Workbench Parameter: Read Polylines as 2.5D
RESOLVE_ENTITY_COLOR
Required/Optional: Optional

Specifies whether or not to resolve the color of the entity to the color of the layer for that entity or block of that entity.
This resolution only affects entity’s who already have a color that is set to COLOR_BYLAYER which is indicated by a

color of ByLayer (index 256), or COLOR_BYBLOCK which is indicated by a color of ByBlock (index 0).

If the value of this directive is yes, and the entity has a color of COLOR_BYLAYER, then the auto-

cad_original_color attribute is set to ByLayer, andthe autocad_color attributeis set to the color
index for the layer that the entity is on.

Similarly, If the value of this directive is yes, and the entity has a color of COLOR_BYBLOCK, then the
autocad_original_color attribute is set to ByBlock, and the autocad_color attribute is set to the color
index for the block that the entity is in.

If the value of this directiveis N0, then both the autocad_color attribute and the autocad_original
color attribute will remain unresolved as a value of ByLayer or ByBlock. This is generally set to NO when
performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Resolve Entity Color
APPLY_WORLD_FILE
Required/Optional: Optional

Use this directive when you have an ESRI World file (*.wld) that you want FME to use when determining the coor-
dinates for features in your dataset. When this directive has a value of YES FME will search the directory of the data-
set for a file with the same name as your dataset but with a .wld extension. If it cannot find a file with that name it will
then look for the file “esri_cad.wld” within the dataset directory. If either of those files exist then FME will use the
information in the files to translate the coordinates of the features in the dataset to their new geospatial coordinates.
If the files cannot be found then the translation will continue, using the coordinate information found in the dataset,
without performing any additional transformation.

Values: YES | NO

Default Value: NO

Default Workbench Value: YES
Workbench Parameter: Apply World File
EXPLODE_MTEXT

Required/Optional: Optional

Specifies whether the reader will explode the mtext entities into separate text entites. When exploding, the resulting
text features represent fragments of text with the same mtext properties such as style and location. When not explod-
ing, the mtext entity will be read as a single text feature. This is generally set to NO when performing AutoCAD-to-
AutoCAD translations.

Values: YES | NO
Default value: NO

Workbench Parameter: Explode MText
STORE_LAYER_INFO (This is not applicable to the RealDWG reader)
Required/Optional: Optional

When specified, the AutoCAD Reader will add additional attributes describing the layer properties for the layer of each
feature. These include autocad_Tlayer_Tlinetype, autocad_layer_color, and autocad_layer_
Tineweight.

Values: YES | NO
Default value: NO

Workbench Parameter: Store Layer Properties on Features

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxy >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

¥ Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

¥ Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

*X Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

%X Workbench Parameter
Additional Attributes to Expose

Tips for AutoCAD Reading

Tip: The AutoCAD reader automatically determines whether the file is DWG or DXF and proc-
esses it accordingly. Therefore, the same mapping file can be used to read either DXF or
DWG.

Note that the AutoCAD reader directives list defaults that will produce the best generic result to any non-AutoCAD des-
tination format, resulting in the best presentation at the cost of some of the original AutoCAD types being lost. For
example, blocks and dimensions will be resolved into their component parts. If an AutoCAD-to-AutoCAD translation is
desired, the following set of options should be used for best preservation of the original drawing.

STORE_BULGE_INFO = YES
STORE_SPLINE_DEFS = YES
RESOLVE_BLOCKS = NO
RESOLVE_DIMENSIONS = NO
VISIBLE_ATTRIBUTES_AS_TEXT = NO
IGNORE_UCS = YES
PRESERVE_COMPLEX_HATCHES = YES
IGNORE_HIDDEN_LAYERS = NO
RESOLVE_ENTIY_COLOR = NO

These are also noted on each individual directive description.

Writer Overview

The AutoCAD writer provides the following capabilities when writing AutoCAD files.

User-defined Linetypes: New linetypes can be defined on FME mapping file lines. These linetypes can then be
referenced by features being written to the AutoCAD file.

User-defined Layers: Users must define the layers into which features are stored. The layers can also define the
attributes to be stored within the feature.

Copy Block Definitions: Often users have existing AutoCAD drawing files that contain block definitions they
want the translated data to carry. Specifying the TEMPLATEFILE keyword in the mapping file results in block
definitions being copied from the existing file to the output DWG/DXF file. These blocks can then be referred to by
insert entities.

Copy Linetypes: Predefined linetypes within existing DWG/DXF files are copied making them available for use by
features being written to the destination file. Specifying the TEMPLATEFILE keyword in the mapping file results in
the predefined linetypes being copied from the template file to the output drawing file. Feature entities can then
refer to these linetype definitions.

Copy Layer Definitions: Layer definitions within an existing DWG/DXF file identified by TEMPLATEFILE ena-
ble layer definitions to be copied to the destination data set and then referenced.

Copy Shape Header Definitions: Shape header definitions are also copied from the file specified by the TEM-
PLATEFILE directive.

Automatic Block Creation: When a feature is passed to the writer that cannot be written as a single AutoCAD
entity, such as a donut polygon, the writer automatically defines an AutoCAD block and inserts entities necessary
to represent the feature. If a block is already defined with that name, either through previous block creation or
through existence in the template file, then the existing block definition will be used and the multi-part feature will
be added at an insert point calculated from the feature geometry. If the autocad_block_insert_[xyz] attributes are
specified, they will be used to specify an insert point for the new block reference.

Flexible Attribute Support: Attribute information is, by default, written to extended entity data for each feature
written to the data set. This can be overridden, however, through the use of the autocad_ attributes attribute being
set as shown in the following table.

Multi-version Support: Currently the AutoCAD DWG/DXF writer supports files that are compatible with any cur-
rent AutoCAD release.

autocad_attributes value Description

extended_entity_data This results in the attribution being
written to the extended entity for the fea-
ture.

insert_attributes This results in the writer creating an

insert entity for each feature and storing
all attributes with the insert entity. The
insert entity refers to a block that con-
tains the geometry of the output feature.

external_attributes This is the default value. There are no

attributes written to the AutoCAD file.
This is useful if the attributes are being
stored in an external database or if attrib-
ute information is not wanted.

When creating AutoCAD files, the AutoCAD writer first defines the linetypes and layers defined within the FME map-
ping file. The writer then reads in a template file, if specified, and copies the linetypes, layer definitions, shape file
header information, and block information from the template file to the output dataset.

The AutoCAD writer then outputs each feature it is given to the output file in the appropriate entity type.
When writing an AutoCAD file, the format of file output is determined as follows:

e If the file name contains .dwg or .DWG, then the output data set is written in the ACAD format.

e Otherwise, if the file name contains .dxf or .DXF, then the output data set is written in DXF format.
e Otherwise, if an error exists in the mapping file, the translation is halted.

The AutoCAD writer uses the above rules to enable the same FME mapping file to be used to create both DXF and DWG
output files. Users are able to specify their choice simply by changing the suffix of the output file being produced.

Writer Directives

This section describes the directives the AutoCAD writer module recognizes. Each of the directives is prefixed by the
current <WriterkKeyword>_ when they are placed in a mapping file. By default, the <WriterKeywords> for the
AutoCAD writer is the same as the <WriterType>.The following directives are used by all AutoCAD.

DATASET

Required/Optional: Required

The dataset into which feature data is to be written.

Workbench Parameter: Destination Autodesk AutoCAD DWG/DXF File
VERSION

Required/Optional: Required

The version of AutoCAD file to be produced. The value corresponds with the release number of the AutoCAD file that is
produced.

Values:

e same_as_template (not applicable to RealDWG) This option takes the version from the template file.
e Release9 and Releasel0 (Support for these versions has been deprecated)
e Releasel2 (not applicable to RealDWG)

e Releasel3 (not applicable to RealDWG)

e Releasel4

e Release2000

e Release2004

e Release2007

e Release2010

Default value: Release2007

Workbench Parameter: AutoCAD Version

Example:

The example statement below instructs the AutoCAD writer to produce a release 12 AutoCAD file:
ACAD_VERSION Releasel2

TEMPLATEFILE

Required/Optional: Optional

This statement specifies the name of the existing AutoCAD DXF or DWG file that contains linetype, layer, shape
header, block definitions and a codepage to be copied to the destination AutoCAD file. Some AutoCAD users also refer
to this as a prototype file. This is an optional parameter. If the parameter is not defined, then the output file uses the
linetype defined in the mapping file along with the predefined type of CONTINUQOUS which is always present in an
AutoCAD drawing.

Tip:

- LINETYPE definitions found in the mapping file override any linetype definitions found in the
template file.

- The template file can also be used to set the codepage of the resulting AutoCAD file.

The example below specifies that the file called C:\tmp\test.dwg contains the block, layer, shape header definitions,
and linetype definitions for the output data set.

ACAD_TEMPLATEFILE c:/tmp/test.dwg
Tip: Many AutoCAD users refer to the template files as prototype files.
Workbench Parameter: Template File
AUTO_CREATE_LAYERS
Required/Optional: Optional

This statement tells the writer to create layers as needed. Normally, all layers must either be defined by DEF lines
or by the template file before they can be used. If AUTO_CREATE_LAYERS is specified as YES, then when a fea-
ture is sent to the writer with a feature type that has not previously been defined as a layer, a new layer will be
created with the properties of the last _DEF line found in the mapping file.

This example sets the writer into a mode where it creates layers as needed. Each created layer has a color of 10 and a
linetype of CONTINUOUS.

ACAD_AUTO_CREATE_LAYERS yes

ACAD_DEF DEFAULT

autocad_color 10 \
autocad_Tlinetype CONTINUOUS

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>
OUTPUT_DEFINED_ATTRS_ONLY
Required/Optional: Optional

When this directive is set to YesS, then only those attributes defined as part of the layer definition will be stored (see
the DEF directive for more details).

Values: YES | NO

Default value: YES

Workbench Parameter: Output Defined Attributes Only
USE_ATTRDEFS_FOR_INSERTS

Specifies whether the writer should use the attribute definitions that are found within blocks when placing inserts. If
Nno, then all the attributes on a feature that is passed to the writer are written as insert attributes. If yes, then only
the attributes defined within the block being placed are stored as insert attributes.

Values: YES | NO
Default value: YES

Workbench Parameter: <WorkbenchParameter>
STRIP_HEADER_TO_SECTION
Required/Optional: Optional

This directive is only valid when going out to DXF and tells the FME to remove the header up to the start of the spec-
ified SECTION. The name of the SECTION can be any valid autocad section. If not specified then the file is output as
before.

NEW_HEADER_CONTENT_FILE
Required/Optional: Optional
DEPRECATED. Please use the TEMPLATEFILE directive instead.

This directive is only valid with the STRIP_HEADER_TO_SECTION directive above and is the name of the file that
contains the new header information. The contents of this file are placed at the start of the output file replacing the
contents removed by STRIP_HEADER_TO_SECTION.

DEFAULT_ATTR_STORAGE
Required/Optional: Optional

This directive specifies the default manner in which attribute data will be stored. If not specified, then the default
value is extended_entity_data. This directive changes the default value for the autocad_attributes
feature based directive. If all attributes are to be stored in a single manner, then this directive is the easiest manner
in which to do this.

Values:

e extended_entity_data instructs the writer to store all attribution in extended entity data as the default
e insert_attributes instructs the writer to store all attribution using inserts

e external_attributes instructs the writer to not store any attribution in the AutoCAD file
Workbench Parameter: Attribute Output

SUPPRESS_FONT_WARNINGS

Required/Optional: Optional

Specifies whether to suppress warnings about unknown font metrics being encountered.
Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

FONT_DIRECTORY

Required/Optional: Optional

Specifies the directory in which all specified fonts are located. When specified, FME can calculate the font metrics,
enabling it to place fonts more accurately. If not specified, then FME assumes that the full path is specified on the cor-
relation lines via the attribute autocad_shape_fiTename. If this attribute is not set or it is not the full path of
the font file, then FME will use the default font file called default.shx.

Values:

Workbench Parameter: <WorkbenchParameter>
SHAPE_DIRECTORY

Required/Optional: Optional

Specifies the directory in which to look for shapes files(*.shp) from which information about SHAPE entities will be
extracted for writing.

Values: <shape file directory path>

Workbench Parameter: AutoCAD Shape File Directory
DEFAULT_APPLICATION

Required/Optional: Optional

The application name that is used when writing extended entity data.
Default values: ACAD

Workbench Parameter: Default Application Name

LINETYPE

Required/Optional: Optional

The AutoCAD writer enables linetypes to be defined within the FME mapping file. This enables the user to control how
output lines are to look in the destination data set. The linetype definition is of the following form:

<WriterKeyword>_LINETYPE <linetype name> \
autocad_textpict <picture>

[autocad_patternLength <pattern Length> \
<segment values>+ \

]

where:

e <linetype name> is the name used throughout the mapping file to refer to the linetype being defined by this
statement.

e <picture> is the text or name displayed in AutoCAD when linetypes are displayed.
e <pattern Length> is thelength of a single instance of the line.

e <segment values> are the length of each of the segments within the linetype segment. The segment values
obey the following rules:

e negative value - pen up length (used to create spaces of varying lengths)
e positive value - pen down length (used to make dashes of varying lengths)
e Zero - used to create a dot

The following example creates a linetype called dash-dot that appears as
" __ . "and soon when displayed on the screen.

ACAD_LINETYPE dash-dot \
autocad_textpict DASHDOT
autocad_patternLength 1.0
0.5 -0.25 0 -0.25

=

CREATED_BLOCK_NAME_PREFIX
Required/Optional: Optional

The names of blocks created by the writer during automatic block creation will use the value of this keyword as a pre-
fix if specified. If not specified the syntax will be:

<filename>_<writerkeyword>_FME_BLOCK_<blocknumber>
Workbench Parameter: Created Block Name Prefix

DEF

Required/Optional: Optional

The AutoCAD writer requires that every feature written to the AutoCAD file be stored within a predefined AutoCAD
layer. In AutoCAD, the layers are used to store collections of logically related attributes. Within the FME, the AutoCAD
layer and the type of the feature are treated synonymously as there is a one-to-one correspondence between FME fea-
ture type and AutoCAD Iayer.lThe order of properties in the layer statement is required as shown, though additional
attribute name and type pairs may be in any order. The layer statement is of the following form:

<WriterKeyword>_DEF <layer name>
autocad_color <default color> \
autocad_Tlinetype <default Tinetype> \
[autocad_layer_type frozen] \
[<attribute name> <attribute type>]

where:

e <layer name> is the name of the layer being defined. This is the name which is used throughout the remainder of
the FME mapping files. Layer name cannot be empty. If no layer name is specified, then FME will provide a fixed
name “_FME_NO_LAYER_NAME_" for such layers.

e <default color> is the color number used for all features stored within the layer unless explicitly overridden on the
correlation lines below. Valid values are between 1 and 255.

e <default linetype> is the name of the linetype to use for the layer if no linetype is specified on the correlation line.
The linetype specified must either be:
e defined in the mapping file,
e copied from a specified template file, or

e the predefined linetype named CONTINUOUS.

e <autocad_layer_type> is the type of layer to create. Currently, only the value Trozen is supported. If specified,
then the created layer is frozen; otherwise, the layer is not frozen.

o <attribute name> <attribute type> is the definition of an attribute to be stored within the extended entity data of
features for the layer. If no attributes are defined, then all feature attributes (except those that start with auto-
cad) are stored. The storing of attributes can be turned off by specifying a value of external_attributes for the

autocad_attributes feature attribute on the correlation line. The values for <attribute type> are the same as those
for ESRI Shapefiles.

The example below defines a layer called boundary in which entities are drawn using color 13 (unless otherwise spec-
ified) and a linetype called dash-dot (unless otherwise specified). The feature also has several attributes specified
that will be written to the extended entity data of each feature within the layer.

ACAD_DEF boundary \
autocad_color 13 \
autocad_Tlinetype dash-dot \
FEATCODE char(12) \
PPID char(10) \
DATECHNG date \
SURVEYDIST number(8,2)

AUDIT_AND_FIX (not supported in RealDWG writer)
Required/Optional: Optional

This directive can be used to turn on/off internal auditing before the final drawing file is written out. By default it is
set to YES, so auditing will be performed and any errors found will be fixed. It is recommended that you leave the
auditing set to YES. If you set it to NO, it is possible that the output file may not be as per the AutoCAD file spec-
ification. As an example of how auditing fixes errors is that if there is a layer name with a space or any other invalid
characters, then that layer name will be changed to something like $DDT_AUDIT_GENERATED_(3B). If auditing

1Layers can also be defined through the use of a TEMPLATEFILE.

is turned off, then the layer name will not be changed and when it is audited in AutoCAD, it will return errors such as
invalid layer names.

Values: YES | NO

Default value: YES

Workbench Parameter: Audit and Fix Errors
COORDINATE_SYSTEM_STORAGE (not applicable to RealDWG writer)

Required/Optional: Optional

This directive controls whether the writer will optionally store the coordinate system of its features. The coordinate
system can be stored inside the output AutoCAD file as an ESRI Well Known Text (in an ESRI_PRJ entry in an internal
dictionary in the file), according to ESRI specifications. It can also be stored externally in a companion ESRI .prj file
that shares the output AutoCAD file's base name, but has a .prj extension.

Values: NONE | EXTERNAL_PRJ | EXTERNAL_AND_INTERNAL | INTERNAL_WKT
Default: NONE, which means projection information is not stored anywhere.

AutoCAD data files written this way with projection information will be recognized by FME and the free ArcGIS for Auto-
CAD application, which installs on top of the AutoCAD application.

Workbench Parameter: Coordinate System Storage
Example:

ACAD_COORDINATE_SYSTEM_STORAGE EXTERNAL_PRJ

APPEND_TO_TEMPLATEFILE
Required/Optional: Optional

This directive can be used to allow the file specified by the DATASET directive to be written as the concatenation of
the full contents of the file specified by the TEMPLATEFILE directive with all written data. By default it is set to NO, so
only header information but no data is used from the template file if one is specified. If this directive is set to YES
then the full header and data information is used from the template file.

Values: YES | NO

Default value: NO

Workbench Parameter: Append Data to Template File
USE_BLOCK_NAME_FOR_CREATION
Required/Optional: Optional

The names of blocks created by the writer during automatic block creation will use the value of the autocad_block_
name attribute if the attribute is present and this directive is specified.

If a template file is used during writing, the block name will be used to try to match an existing block definition in the
template file. This is similar to the behavior for insert entity writing. This directive does not affect the use of the block
name for insert entity writing.

If the intention is that only insert entities should be used to try to match block names with block definitions, set this
directive to NO.

If not specified, the syntax may be the following, but may also be modified by the usage of the CREATED_BLOCK _
NAME_PREFIX directive:

<filename>_<writerkeyword>_FME_BLOCK_<bTlocknumber>

Values: YES | NO

Default Value: NO

Workbench Parameter: Use the block name to create blocks

Feature Representation

Special FME feature attributes are used to hold AutoCAD entity attributes. The AutoCAD writer uses these attribute
values as it fills in an entity structure during output. The AutoCAD reader sets these attributes in the FME feature it
creates for each entity it reads.

The FME considers the AutoCAD Iayer1 to be the FME feature type of an AutoCAD feature. Each AutoCAD entity, regard-
less of its entity type, shares a number of other attributes, as described in the following table. Subsequent sections
describe attributes specific to each of the supported entity types.

Attribute Name Content

autocad_layer The name of the feature’s layer. This is the same
value as the feature’s type and is stored when read-
ing for reasons of convenience. This value is
ignored when entities are being written to a draw-
ing file.

Value: char(33)

Default: No default

autocad_layer_color This is the color value for the layer of the entity.

(not used in RealDWG) See autocad_color for more information. This is
only set when the STORE_LAYER_INFO reader direc-
tive is set to yes.

Range: 0...256

Default: 256

autocad_layer_linetype This is the linetype value for the layer of the entity.
(not used in RealDWG) See autocad_linetype for more information. This is
only set when the STORE_LAYER_INFO reader direc-
tive is set to yes.

Range: char[33]

Default: BYLAYER

autocad_layer_lineweight This is the lineweight value for the layer of the
(not used in RealDWG) entity. See autocad_Tineweight for more infor-
mation. This is only set when the STORE_LAYER_
INFO reader directive is set to yes.

Range: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50,
53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200,
211, -1 (by layer), -2 (by block), -3 (default)
Default: -3 (Default)

autocad_layer_type This is used by the Reader only and indicates
(not used in RealDWG) whether or not the feature comes from a frozen

IThe feature layer name corresponds to be the feature type and autocad_layer when reading. This enables the layer
name to be extracted without the need to use the @FeatureType function.

Attribute Name

Content

layer.
Range: frozen | not_frozen

autocad_layer_frozen

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a frozen
layer.

Range: yes | no

Default: no

autocad_layer_locked

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a locked
layer.

Range: yes | no

Default: no

autocad_layer_hidden

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a hidden
layer.

Range: yes | no

Default: yes

autocad_color

The color number of the entity. If the value is 0,
then the color of the entity is that of the enclosing
block; if the value is 256, then the color of the
entity is that specified by the entity’s layer; other-
wise, the number specified determines the color of
the entity. If autocad_color is not specified, then the
value will be set from fme_color. If fme_color is also
not specified, then it will be set to COLOR_BYLAYER.
Range: 0...256

Default: 256

autocad_original_color

The color of the entity before it may be resolved to
a specific color index. If the value is COLOR_
BYBLOCK (index Q) or COLOR_BYLAYER (index
256), then the value of this attribute is ByBlock or
ByLayer respectively. Otherwise, the number spec-
ified determines the color of the entity, like the
value of autocad_color. See autocad_color for more infor-
mation.

Range: 0...256

Default: 256

autocad_true_color

The true color Red Green Blue (RGB) values of the entity. This
attribute is conditionally set on read in addition to the autocad_
color attribute. This attribute is used in preference to the auto-
cad_color attribute on write to set the color of an entity. If not
present, see the autocad_color attribute.

Attribute Name

Content

Range: 0...255,0...255,0...255
Default: No default

autocad_entity_
handle

The hexadecimal unique identifier for the entity.
This value is unique within each AutoCAD file.
Range: Hexadecimal identifier.

Default: No default

autocad_entity_visibility

This is used by the Reader only and indicates
whether or not the feature is visible.
Range: visible | invisible.

autocad_linetype

The name of the feature’s linetype. This can be a
specific linetype value or it may be set to BYLAYER,
indicating that the linetype will be set to the line-
type value of the layer. See autocad_resolved_
Tinetype for more information.

Range: char[33]

Default: BYLAYER

autocad_linetype_scale

The amount to scale the feature’s linetype by for
viewing in AutoCAD. Failure to set appropriate
values for linetype may result in viewing errors
such as dashed lines appearing solid.

Range: 64 bit Real

Default: 1.0

autocad_lineweight

The lineweight of the AutoCAD entity in 100ths of a
millimeter. To set a lineweight of 0.05 mm in Auto-
CAD, set the attribute value to 5.

Range: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50,
53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200,
211, -1 (by layer), -2 (by block), -3 (default)
Default: -3 (Default)

autocad_resolved_
linetype

This is used to store actual linetype value used for
a feature. It will be the specific linetype value of
the feature, or if the autocad_Tinetype has the
value of BYLAYER, then this value will be the line-
type of the layer.

Range: char[33]

autocad_thickness

The thickness of the entity’s lines.
Range: 64 bit Real
Default: 0

autocad_entity

The FME name for the type of entity this feature rep-
resents.

Attribute Name

Content

Range: See AutoCAD Entity Types and Descriptions
Default: No default

autocad_original_entity

This attribute indicates that the entity is part of a
block reference entity that has been resolved into
its components. In general, if this attribute exists,
its value will be insert.

Range: See AutoCAD Entity Types and Descriptions
Default: insert

autocad_original_entity_type

The FME name for the original type of entity this
feature represents. For example, if the autocad_
entity attribute is autocad_line, this attribute will
indicate what type of line, i.e. line, 2dpolyline, lwpo-
lyline or 3dpolyline.

Range: See AutoCAD Entity Types and Descriptions
Default: The value of the autocad_entity attribute

autocad_original_position_x

This indicates the original location in the x dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real
Default: No default

autocad_original_position_y

This indicates the original location in the y dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real

Default: No default

autocad_original_position_z

This indicates the original location in the z dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real

Default: No default

autocad_space

This is used by the Reader only and indicates if the
entity being read came from paper space or model
space.

Range: model_space | paper_space

Default: No default

autocad_attributes

Used by the writer module only. This directs the

Attribute Name Content

writer on how the attributes for the feature are to
be stored. If this attribute is not specified or is spec-
ified as extended_ entity_data then the attribution
associated with the feature is written to the
extended entity portion. If the value is insert_attrib-
utes, insert entities are created for the attributes.

If the value is external_attributes then the attri-
bution is not written to extended entity data.
Range: extended_entity_data | insert_attributes |
external_attributes

Default: external_attributes

Extended Entity Data

Each entity in an AutoCAD file may have associated extended entity data. This data is typically used by applications to
store attribute information. The AutoCAD reader attempts to make extended entity data as simple to use as possible
by storing it in three different formats within the FME feature object. The first two formats merely store the data as
found in the drawing file in the feature, while the third format attempts to present the attribute information in a more
useful manner. It is important to remember that when extended entity data is read from an AutoCAD file, all three for-
mats are stored within a single FME feature. The format that is actually used (if any) is dependent on the con-
figuration of the remainder of the FME mapping file.

The AutoCAD writer understands both the list format, and the interpreted format, creating extended entity data from
attribute data in the list format form, if they are present. In the absence data in the list format form, the writer will
create extended entity data from attribute data in the interpreted format, when autocad_attributes is set to extended_
entity_data. The size of extended entity data that can be stored on an single entity is limited to 16K bytes. The Auto-
CAD writer is limited to creating 8K bytes per entity. (Note that this is not applicable to ReadDWG.)

The interpreted format setting is described in Interpreted Format, for extended entity data. When writing
extended entity data, the FME features being output must structure their attributes in this way. That is, the attribute
data is stored with each attribute being a single extended entity string in the form <attribute name> = <attribute
value>. Storing the data in this manner enables the data to be easily viewed by AutoCAD and read by the FME reader
module.

List Format

In this format, the data is simply stored in a list as found in the AutoCAD file. The data is stored in a single list named
extended_data_list{}. Each value in the list is of the form <attribute tag>: <attribute value>. The <attribute tag>s
supported by the FME are restricted to those given in the following table. The <attribute tag>s define the domain for
the associated <attribute value>. Note that the AutoCAD codes associated with each kind of extended entity data are
not stored in the FME feature.

Attribute Name Content

application_name The name of the application which the following entity data is
associated. This application_name remains in effect until
another application_name entry is specified.

AutoCAD Code: 1001

Example: application_name:ACAD

Attribute Name

Content

autocad_layer

The name of the layer the extended data is associated.
AutoCAD Code: 1003
Example: autocad_layer:Water

string A character string value from 0 to 255 characters in length.
AutoCAD Code: 1000
Example: string:Thompson

Binary data A hexadecimal string from 0 to 254 characters in length.
AutoCAD Code: 1004
Example: binary:E3B4

three_reals

Three 64-bit real numbers separated by commas.
AutoCAD Code: 1010,1020,1030
Example: three_reals:2.3,4.5,3.4

world_position

Three real numbers which represent a world position. Each of
the numbers is separated by a comma.

AutoCAD Code: 1011, 1021, 1031

Example: world _position:23.4, -123.5, 0

world_displacement

Three real values which represent a world displacement
value. Each of the values is separated by a comma.
AutoCAD Code: 1012, 1022, 1032

Example: world_displacement:1.5, 2.3, 0

world_direction

Three real values which represent a world direction vector.
Each of the values is separated by a comma.

AutoCAD Code: 1013,1023,1033

Example: world_direction: 30.0, -12.4, 10

real

A 64-bit real number.
AutoCAD Code: 1040
Example: real:3.1415926

distance A 64-bit real number which represents a distance.
AutoCAD Code: 1041
Example: distance:4.56

scale

A 64-bit real number which represents a scaling factor.
AutoCAD Code: 1042
Example: scale:34.5

16Bit_integer

A 16-bit integer value.
AutoCAD Code: 1070
Example: 16Bit_integer:245

32Bit_integer

A 32-bit integer value.
AutoCAD Code: 1071

Attribute Name Content

Example: 32Bit_integer:12983

For example, if the following data was stored in extended entity data:

1001 C_NODE
1000 CONNOBJ_1=43F4
1000 COUNT=3
1000 CONNOBJ_2=43F3
1000 CONNOBJ_3=43F2
1005 163
1010 45.4
1020 -123.5
1030 0
1001 DPRINT
1000 postscript

then the FME AutoCAD reader would store this information as a list within the FME feature:

Attribute Name

Attribute Value

extended_data_list{0}

application_name:C_NODE

extended_data_list{1}

string: CONNOBJ_1=43F4

extended_data_list{2}

string: COUNT=3

extended_data_list{3}

string: CONNOBJ_2=43F3

extended_data_list{4}

string: CONNOBJ_3=43F2

extended_data_list{5}

handle:163

extended_data_list{6}

three_reals:45.4,-123.5,0

extended_data_list{7}

application_name:DPRINT

extended_data_list{8}

string: postscript

Notice how the AutoCAD codes are converted to attribute tags when stored in the FME features.

Structure Format

In this representation of extended entity data, the fields are stored with the tags forming part of the attribute names
for each of the extended entity entries. The data is stored in a single structure in the FME feature named extended
data. As the extended entity data within AutoCAD is grouped into sections, with each section beginning with an appli-
cation group code, the extended_data structure itself is also divided into different sections with each section begin-
ning with extended_data{#}. The remainder of the attribute name consists of one of the parameters:

Extended Entity Parameter

Contents

application_name

The name of the application which the entity data is
associated.
AutoCAD Code: 1001

Extended Entity Parameter

Contents

autocad_layer{#}

The name of the layer the extended data is asso-
ciated.
AutoCAD Code: 1003

string{#73}

A character string value from 0 to 255 characters in
length.
AutoCAD Code: 1000

three_reals{#}.reall
three_reals{#}.real2

three_reals{#}.real3

Three real numbers.
AutoCAD Code: 1010,1020,1030

world_position{#}.x
world_position{#}.y

world_position{#3}.z

Three values represent the x, y, and z components of
a world_position value.
AutoCAD Code: 1011, 1021, 1031

world_displacement{#}.x
world_displacement{#}.y

world_displacement{#}.z

Three values which represent a world displacement
value.
AutoCAD Code: 1012, 1022, 1032

world_direction{#}.x
world_direction{#}.y

world_direction{#7}.z

Three real values which represent a world direction
vector.
AutoCAD Code: 1013,1023,1033

real{#} A 64 bit real number.
AutoCAD Code: 1040
handle{#} AutoCAD handle value.

AutoCAD Code: 1005

distance{#)}

A 64 bit real number which represents a distance.
AutoCAD Code: 1041

scale{#}

A 64 bit real number which represents a scaling fac-
tor.
AutoCAD Code: 1042

16Bit_integer{#}

A 16 bit integer value.
AutoCAD Code: 1070

32Bit_integer{#}

A 32 bit integer value.
AutoCAD Code: 1071

For example, given the following extended entity data:

1001 C_NODE
1000 CONNOBJ_1=43F4
1000 COUNT=3
1000 CONNOBIJ_2=43F3
1000 CONNOBJ_3=43F2
1005 163
1010 45.4

1020 -123.5
1030 0
1001 DPRINT
1000 postscript

The information will be stored in the FME feature using structure notation as follows:

Attribute Name

Attribute Value

extended_data{0}.application_name

C_NODE

extended_data{0}.string{0}

CONNOBJ_1=43F4

extended_data{0}.string{1}

COUNT=3

extended_data{0}.string{2}

CONNOBJ_2=43F3

extended_data{0}.string(3}

CONNOBJ_3=43F2

extended_data{0}.three_reals{0}.reall 45.4
extended_data{0}.three_reals{0}.real2 -123.5
extended_data{0}.three_reals{0}.real3 0
extended_data{0}.handle{0} 163
extended_data{1}.application_name DPRINT
extended_data{1}.string{0} postscript

Notice how, in this case, the AutoCAD codes are used to form extensions for the attribute names. Also notice how the
extended data items are grouped in the FME feature as they are within the drawing file.

Interpreted Format

Finally, the FME AutoCAD reader module also attempts to interpret any string held in the extended entity data. If it is
successful in interpreting any data, then it stores it as attributes within the feature. As it is reading each extended
entity string entry, it attempts to determine if the value is composed of an attribute name or value pair and, if it does,
it stores the information as such. For example, if the extended entity data from the previous example were read, the
following interpreted values would be stored within the FME feature.

Attribute Name Attribute Value
CONNOBJ_1 43F4

COUNT 3

CONNOBJ_2 43F3

CONNOBJ_3 43F2

The reader is able to do this by recognizing the = divider within each of the string attributes as the separator
between an encoded attribute name and attribute value. The reader also recognizes a space character as a separator.

The remaining sections discuss the representation of each supported AutoCAD entity type.
Proxy Data

Some proxy data is also supported within the AutoCAD reader and writer. Proxy data is yet another manner in which
data is stored within AutoCAD files. This data is normally associated with ARX extensions. To the rest of the FME, the

proxy objects are made to look as close as possible to regular AutoCAD data. For example, linear entity types are
called autocad_T1ine. Proxy features have a number of associated attributes that are not present in other entities.
Note: Only MPolygon proxy data is supported in AutoCAD R12 and older.

Proxy Data Attribute Contents

autocad_proxy_number A unique number that is assigned to all the components
of a single object. Since a single proxy object can have
a number of geometric primitives associated with it, all
proxy objects are output with the same number so that,
if necessary, they can be identified as belonging
together by the rest of the FME processing.

autocad_class_number The number given to the class of which this proxy object
is an instance.
autocad_class_dxfname The dxf class name of the proxy class.
autocad_class_cppname The C++ class name of the proxy class.
autocad_class_appname The application class name of the proxy class.
autocad_class_version The class version of the proxy class.
Lines

autocad_entity: autocad_line

Features with autocad_entity set to autocad_line are stored in and read from drawing files in one of two ways,
depending on the number of coordinates they have, and whether they store bulge arcs. Bulge arcs are limited to cir-
cular, non-closed arcs within the segments of the line. Any attempts to store elliptical or closed arcs will resultin the
arc being stroked into a line segment.

Number of AutoCAD Entity

Coordinates | Type Description

2 line If the feature contained exactly two points, then
an AutoCAD line entity is used to store the data.

Greater polyline If the number of coordinates is greater than 2,
than 2 then the AutoCAD polyline entity is used to store
the coordinates. The polyline closed flag is set to
indicate that the polyline entity is not closed.

Attribute Name Content

autocad_bulge Comma-separated value list of the vertex bulges. This is only
useful when performing AutoCAD-to-AutoCAD translations, and

. . is @ measurement of the curvature at each vertex.
Applicable only with

classic geometry.

autocad_elevation The elevation value stored with the line entity. This is often

Attribute Name Content

used to set the elevation for contour lines, as the single
elevation value is applied to all the vertices.

autocad_linetype_ Whether the generation of the autocad linetype will restart at
generation every vertex, or be generated continuously around the entire
polyline. Not applicable for 3d polyline features. The possible
values are:

0 = Restart generation at each vertex.

1 = Generate continuously around entire polyline.

autocad_width The width of the line.

autocad_polyflag A bit-coded flag. This attribute is only present or used on auto-
cad_11ine features that contain more than two vertices. Values
can be combined by using addition. The values are:

Deprecated
1 = Thelineis closed (or the line is a polygon mesh closed in the M direction).
Please note that if this bit is set when reading, then the feature will be inter-
preted as an autocad_polygon.
128 = The linetype pattern is generated continuously around the vertices of
the line.
XLines

autocad_entity: autocad_xline

Features with autocad_entity set to autocad_xline are stored in and read from drawing files as an FME feature with

two coordinates representing a line. The reader and writer modules automatically convert the xline to and from its
unit vector representation into a line.

There are no attributes specific to this type of entity.
Points
autocad_entity: autocad_point

Features with autocad_entity set to autocad_point are stored in and read from drawing files as a single coordinate
feature.

Attribute Name Content
autocad_ucs_xangle The rotation angle around the z axis.
Ellipses

autocad_entity: autocad_ellipse

Ellipse features are point features used to represent both AutoCAD circle and AutoCAD ellipse entities. The point
serves as the centre of the ellipse. Ellipse entities with an autocad_primary_axis equal to the autocad_secondary_

axis are stored within the drawing file as a circle entity. Additional attributes specify the rotation, major axis, and
minor axis of the ellipse.

Tip: The function @Arc() can be used to convert an ellipse to a polygon. This is useful for rep-
resenting ellipses in systems that do not support them directly.

Attribute Name Content

autocad_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

autocad_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

autocad_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0

Default: 0

Polygons
autocad_entity: autocad_polygon

Features with autocad_entity set to autocad_polygon are stored in and read from drawing files as closed polyline
entities.

Attribute Name Content
autocad_width The width of the line.
Splines

autocad_entity: autocad_splines

Spline features are linear or area features — depending on whether or not they are closed - and are used to represent
features that have smooth curves. Each spline has a number of attributes that completely make up the spline. When
STORE_SPLINE_DEFS is settoyes, thereader sets the coordinates to be either the fit points or the control
points (depending on what is used to define the spline). Splines are always 3D - there is no way in AutoCAD to indi-
cate if the feature was intended to be only 2D. If STORE_SPLINE_DEFS is not specified or setto No, then the
coordinates of the spline returned by the reader are interpolated values based on the spline definition.

Tip: When you are performing an AutoCAD-to-AutoCAD translation, then you should always
set STORE_SPLINE_DEFS to yes to get the best results.

AutoCAD splines have several attributes, which are returned when reading and must be specified when writing.

Attribute Name Content

autocad_degree The degree of the polynomial used to form the
spline.

autocad_knot_tolerance The tolerance of the spline knots.

autocad_degree The degree of the spline.

autocad_cntl_pt_tolerance The tolerance of the control points.

autocad_fit_tolerance The tolerance of fit points.

autocad_knot_tolerance The tolerance of knots.

Attribute Name

Content

autocad_num_cntl_pts

The number of control points.

autocad_num_fit_pts

The number of fit points.

autocad_knots

The number of knots.

autocad_flag

The flag that indicates the type of spline. It is a bit
vector normally only used when going from AutoCAD
to AutoCAD.

1. CLOSED

2. PERIODIC

4. RATIONAL

8. PLANAR

16. LINEAR

autocad_start_tangent_x
autocad_start_tangent_y

autocad_start_tangent_z

The start tangent for the spline.

autocad_end_tangent_x
autocad_end_tangent_y

autocad_end_tangent_z

The end tangent for the spline.

autocad_control_x
autocad_control_y

autocad_control_z

A comma separated list. The control point coor-
dinates in comma separated values. If STORE_
SPLINE_DEFS is specified, then the control points are
also stored as the coordinates.

autocad_control_weights

The control point weights. A comma-separated list of
the weight values for each control vertex.

When writing to splines, the spline must be specified exactly as it is returned from the reader with STORE_SPLINE_

DEFS set to yes:

1. If the splineis defined by fit points then autocad_num_cntl_pts must be zero and autocad_num_fit_pts must
be the same as the number of coordinates in the feature. The coordinates of the feature are taken to be the fit

points.

2. Ifthesplineis defined by control points then the autocad_num_fit_pts must be zero and autocad_num_cntl_pts
must be the same as the number of coordinates in the feature. The coordinates of the feature are taken to be

the control points.

Shapes

autocad_entity: autocad_shape

Features with autocad_entity set to autocad_shape are point features that identify where to place an AutoCAD
shape object. The reader and writer modules process all attributes needed to fully specify the shape object ref-
erence. Depending on the output file (.dxT or . dwg), different information will be required to write shape entity. If
a template file is specified using the TEMPLATEFILE keyword, then information about shape entity is extracted
from the template file, which requires access to the shape file.

When writing to a DXF file, a shape name and a shape file name is all that is required. The presence of a shape file dur-
ing translation is not required since there is no information lookup.

When writing to a DWG file and a shape name is given, then a lookup is performed to determine the shape index or
shape number from the shape file, which is what DWG stores. For the lookup to be successful, the writer needs
access to the shape file, and the specified shape name should be in the shape file. Similarly when writing to DWG, a
shape number and shape file is all that is required. If there is no shape index or shape number, then the writer has to
perform a lookup from the shape name to the shape index, and for this, access to the shape file is required.

When specifying a shape file, either the full path or just the filename can be specified. If only the shape filename is
given, the writer will first look for that shape file in the directory specified by SHAPE_DIRECTORY keyword, and if
not found then it will look in the directory where the output dataset is being written.

Tip: When an AutoCAD file is output, any shape files it references must be shipped together
with the file.

Attribute Name Contents

autocad_scale The scale of the shape object for this point.
Range: Any real number.
Default: 1

autocad_shape_index This identifies the index of the particular shape within
the shape file. A single shape file may contain many dif-
ferent shapes.

Range: Any real number > 0

Default: No default

autocad_rotation The rotation of the shape for this entity.
Range: -360.0..360.0
Default: 0

autocad_width_factor The width factor for the shape.
Range: Any real number > 0
Default: 0

autocad_oblique The oblique angle of the shape.
Range: -85.0..85.0
Default: 0

autocad_big_fontname The name of the file which contains fonts for large char-
acter sets.

Range: char[65]

Default: NULL

autocad_shape_name The name of the shape which is being read or written.
Range: char[33]
Default: No default

autocad_shape_filename The name of the file in which the shape is defined.
Range: char[65];
Default: No default

autocad_shape_rotation The rotation of the shape definition relative to the shape
file specification.
Range: Any real number

Attribute Name Contents

Default: 0

autocad_shape_height The height of the shape.
Range: Any real number
Default: 0

autocad_shape_width The width of the shape.
Range: Any real number
Default: 1

Leaders
autocad_entity: autocad_leader

Features with autocad_entity set to autocad_leader are linear features that identify where to place an AutoCAD

leader entity. The reader modules returns the following leader-specific attributes. This is currently not supported by
the writer.

Attribute Name Contents

autocad_path_type The type of path the leader follows. The path for a
leader is one of autocad_straight_leader in which
case the leader is a straight line, or autocad_
spline_Tleader in which case the leader is a spline.

autocad_arrow_head_on This specifies if the leader line has an arrowhead on
it.

Range: True | False

Default: True

autocad_hook_line_on_xdir This is True if the hook line is in the same direction as
the x direction and False if it is not.

Range: True | False

Default: True

autocad_has_hook_line This is True if the leader has a hook line, and False if
it does not.

Range: True | False

Default: True

autocad_anno_type The type of annotation of the leader.

Range:

autocad_anno_text — annotation is mtext entity,
autocad_anno_tolerance - annotation is a tolerance
entity,

autocad_anno_bTlock — annotation is a block entity,
and

autocad_anno_none - no annotation with leader.
Default: autocad_anno_none

Attribute Name

Contents

autocad_anno_height

The height of the associated mtext entity.
Range: Real64

autocad_anno_width

The width of the associated mtext entity.
Range: Real64

autocad_txt_offset_x

The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_txt_offset_y

The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_txt_offset_z

The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_x_dir_x

The x component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_x_dir_y

The y component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_x_dir_z

The z component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_offset_blkinspt_x

The x component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

autocad_offset_blkinspt_y

The y component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

autocad_offset_blkinspt_z

The z component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

Faces

autocad_entity: autocad_face

Features with autocad_entity set to autocad_face are stored as AutoCAD face entities. Additional attributes are
used to define the visibility of the edges of the Face entity. Within the FME, if the reader is not using enhanced geome-
try, faces are stored as four-sided (five vertex) polygons. If the reader is using enhanced geometry, faces wil be rep-
resented as surfaces with with autocad_entity set to autocad_surface. See surfaces below for details.

Face surfaces are one-sided: they are only visible from one view direction. A face is visible when its normal points
toward the observer. If the vertices of the outer boundary of the face are observed to be in anti-clockwise order, then
the normal of the face points toward the observer, implying that the face is visible.

Attribute Name Contents

autocad_edge_1 The visibility of the first edge of the Face.
Range: visible|invisible
Default: visible

autocad_edge_2 The visibility of the second edge of the Face.
Range: visible]|invisible
Default: visible

autocad_edge_3 The visibility of the third edge of the Face.
Range: visible|invisible
Default: visible

autocad_edge_4 The visibility of the final edge of the Face.
Range: visible|invisible
Default: visible

Arcs
autocad_entity: autocad_arc

This geometry type is stored in an AutoCAD arc entity. Arc features are like ellipse features, except two additional
angles control the portion of the ellipse boundary which is drawn. There are several properties of an FME arc geome-
try that may result in it being written as an AutoCAD entity other than an arc. If this arc geometry is circular and has a
sweep angle of 360 degrees it will be stored in an AutoCAD circle entity instead of an arc entity. If this arc geometry is
not circular, it will be stored in an AutoCAD ellipse entity.

Tip: The Function @Arc() can be used to convert an arc to a line. This is useful for rep-
resenting arcs in systems that do not support them directly.

FEotation

iy o
‘Becondary
hxis

= 0

f_'- i rotation

Erimary
AX1sS

Attribute Name

Contents

autocad_primary_axis

The length of the semi-major axis in ground units.
Currently the value of the primary axis is always
equal to the value of the secondary axis as AutoCAD
arcs must be circular. When writing to an AutoCAD
file, only the primary axis value is used.

Range: Any real number > 0

Default: No default

autocad_secondary_axis

The length of the semi-minor axis in ground units.
Currently the value of the primary axis is always
equal to the value of the secondary axis as AutoCAD
arcs must be circular. When writing to an AutoCAD
file, only the primary axis value is used.

Range: Any real number > 0

Default: No default

autocad_start_angle

Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

Attribute Name Contents

autocad_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

autocad_rotation The rotation of the ellipse that defines the arc. The
rotation angle specifies the angle in degrees from the
horizontal axis to the primary axis in a counter-
clockwise direction. This value is fixed at 0 as Auto-
CAD doesn’t support rotation of arcs at this time.
Range: 0

Default: 0

Traces
autocad_entity: autocad_trace

Features with autocad_entity set to autocad_trace are stored in and read from drawing files as a 4-coordinate Auto-
CAD trace entity.

There are no attributes specific to this type of entity.
Solids
autocad_entity: autocad_solid

Features with autocad_entity set to autocad_solid are stored in and read from drawing files as a 3- or 4-coordinate
AutoCAD solid entity. These represent 2D solids in comparison to 3D solids which are represetned by autocad__
solid3d.

There are no attributes specific to this type of entity.
Rays
autocad_entity: autocad_ray

Features with autocad_entity set to autocad_ray are stored in and read from drawing files as a two coordinate line.
The reader and writer modules automatically convert the ray to and from its unit vector representation into a line.

There are no attributes specific to this type of entity.
Text Entities
autocad_entity: autocad_text

Features with autocad_entity set to autocad_text are stored in and read from drawing files as text entities. A text
entity is represented by a single coordinate and the following attributes.

Attribute Name Contents

autocad_text_string The text string.
Range: char[1024]

Attribute Name

Contents

Default: No default

autocad_rotation

The rotation of the text for this entity.
Range: -360.0..360.0
Default: 0

autocad_true_type_font

The name of the TrueType font used to display the text
string. This attribute is only used by the AutoCAD
Writer, since single-line text entities do not have sup-
port for TrueType fonts. If this attribute is specified on
an autocad_text feature, a multiline text entity will be
created and written instead of a single-line text entity.
Default: No default

autocad_text_size

The text height.
Range: Any real number > 0
Default: 10

autocad_width_factor

The scaling applied in the x direction which makes the
text wider or narrower. However, this doesn’t affect
the weight (i.e., boldness) of the text string.

Range: Any real number > 0 and <= 10000

Default: 1

autocad_oblique

The oblique angle of the text.
Range: -85.0..85.0
Default: 0

autocad_alignment_x
autocad_alignment_y

autocad_alignment_z

The alignment coordinate of the text. This location is
used in conjunction with the justification and the fea-
ture location to place the text correctly. This is pri-
marily of use when performing an AutoCAD-to-AutoCAD
translation. In order to override the justification of
source AutoCAD dataset, you need to remove these
alignment attributes from the feature and then set the
autocad_justfication attribute. This is because when
performing an AutoCAD-to-AutoCAD translation, these
alignment attributes override the autocad_jus-
tification attribute.

Range: any 64-bit floating point value

Default: x, y, and z value of text alignment point

autocad_big_fontname

The name of the file which contains fonts for large char-
acter sets.

Attribute Name Contents

Range: char[65]
Default: NULL

autocad_shape_name The name of the shape which contains the text font def-
inition.

Range: char[33]

Default: STANDARD

autocad_shape_filename The name of the file which contains the text font® def-
inition.

Range: char[65];

Default: txt

autocad_shape_rotation The angle for the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_height The height of the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_width The width of the text as defined in shape file.
Range: Any real number
Default: 1

autocad_generation The generation of the text entry.

Range:
autocad_normal | autocad_upside_down | auto-
cad_backwards | autocad_upsidedown_backwards

Default: autocad_normal

autocad_justification The justification of the text relative to its insert point.
Range:

autocad_top_Tleft |

autocad_top_center |

autocad_top_right |

autocad_top_middle |

autocad_top_aligned |

autocad_top_fit |

autocad_middle_left |
autocad_middle_center |
autocad_middle_right |

3AutoCAD shape files should not be confused with ESRI Shapefiles. AutoCAD shape files hold font and symbol def-
initions; ESRI Shapefiles hold spatial features.

Attribute Name Contents

autocad_middle_middle |
autocad_middle_aligned |
autocad_middle_fit |
autocad_bottom_Tleft |
autocad_bottom_center |
autocad_bottom_right |
autocad_bottom_middle |
autocad_bottom_aligned |
autocad_bottom_fit |
autocad_baseline_left |
autocad_baseline_center |
autocad_baseline_right |
autocad_baseline_middle |
autocad_baseline_aligned |
autocad_baseline_fit

Default: autocad_baseline_left

autocad_tracking_ The tracking percent. Only used by the Reader. This
percent attribute will only exist if reading a graphical text
entity.

Default: N/A since this is a Reader-only attribute.

autocad_backwards Indicates whether the text is backwards. Only used by
the Reader. This attribute will only exist if reading a
graphical text entity.

Default: N/A since this is a Reader-only attribute.

autocad_upside_down Indicates if the text is upside down. Used only by the
Reader. This attribute will only exist if reading a graph-
ical text entity.

Default: N/A since this is a Reader-only attribute.

autocad_vertical Indicates if the text is vertical. Used only by the
Reader. This attribute will only exist if reading a graph-
ical text entity.

Default: N/A since this is a Reader-only attribute.

autocad_underlined Indicates if the text is underlined. Used only be the
Reader. This attribute will only exist if reading a graph-
ical text entity.

Default: N/A since this is a Reader-only attribute.

autocad_overlined Indicates if the text is overlined. Used only be the
Reader. This attribute will only exist if reading a graph-
ical text entity.

Default: N/A since this is a Reader-only attribute.

Multi-Text Entities

autocad_entity: autocad_multi_text

Features with autocad_entity set to autocad_multi_text are stored in and read from drawing files as text entities. A
text entity is represented by a single coordinate and the following attributes.

Attribute Name Contents

autocad_text_string The text string.
Range: char[1024]
Default: No default

autocad_rotation The rotation of the text for this entity.
Range: -360.0..360.0
Default: 0

autocad_text_size The text height. When reading, this value is cal-
culated using the height of the bounding box of
the feature and the estimated number of lines.
Range: Any real number

Default: 10

autocad_mtext_string The original formatted mtext string. Writer will
use this attribute’s value to set the destination
mtext entity. When performing an AutoCAD-to-
AutoCAD translation, this attribute will ensure

that the exact formatting is carried over to the
destination.

Range: char[1024]

Default: None

autocad_mtext_text_height The starting text size of the multi-text feature.
This attribute is useful mainly for AutoCAD-to-
AutoCAD translations. If this attribute doesn’t
exist when writing, then a value is calculated for
it.

Range: Any real number

Default: None

autocad_true_type_font The name of the TrueType font used to display
the text string. If this attribute is not specified
when writing, the text will still be written, but not
using a TrueType font.

Default: No default

autocad_linespace_factor The percentage of default line spacing used.
Range: 0.25..4.0
Default: 1

Attribute Name Contents

autocad_mtext_ref_rect_width The width of the reference rectangle in which the
text is contained.
Range: Any real number > 0

autocad_attach_point The attach point for the multi-text. Use this attrib-
ute to set the justification of Multi-Text entities.
Note that there is no autocad_justification
attribute for this type of entity.

Range:

autocad_top_left |

autocad_top_center |
autocad_top_right|

autocad_middle_left |
autocad_middle_center |
autocad_middle_right|
autocad_bottom_left |
autocad_bottom_center |

autocad_bottom_right|

autocad_draw_direction The direction the text is drawn.
Range:

autocad_draw_Tleft_to_right
autocad_draw_right_to_Tleft |
autocad_draw_top_to_bottom|

autocad_draw_bottom_to_top

autocad_box_width The width of the box which the multi text is
located.
Range: Any real number > 0

autocad_box_height The height of the box which the multi text is
located.
Range: Any real number > 0

autocad_big_fontname The name of the file which contains fonts for
large character sets.

Range: char[65]

Default: NULL

autocad_shape_name The name of the shape which contains the text
font definition.

Range: char[33]

Default: STANDARD

autocad_shape_filename The name of the file which contains the text font@

3AutoCAD shape files should not be confused with ESRI Shapefiles. AutoCAD shape files hold font and symbol def-
initions; ESRI Shapefiles hold spatial features.

Attribute Name Contents

definition.
Range: char[65];
Default: txt

autocad_shape_rotation The angle for the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_height The height of the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_width The width of the text as defined in shape file.
Range: Any real number
Default: 1

autocad_generation The generation of the text entry.

Range:

autocad_normal |
autocad_upside_down |
autocad_backwards |
autocad_upsidedown_backwards

Default: autocad_normal

autocad_estimated_num_lines The estimated number of lines in the multi-text
(used by the reader only) feature. This is a calculated value that uses the
starting height of the multi-text feature, the
height of the bounding box of the feature, and the
linespacing factor.

Range: Any integer

Default: Not applicable since this is a reader-
only attribute

Multi-Line
autocad_entity: autocad_multi_line

Multi-line features are linear features that represent a set of parallel lines. They are not capable of representing an
arbitrary set of lines such as can be done with GIS systems. When reading a multi-line feature, the FME will output an
aggregate of lines thereby hiding all AutoCAD format peculiarities. This entity is only supported by the AutoCAD
Reader.

The following attributes are set when reading the multi-lines.

Attribute Name Content

autocad_scale The scale of the multi-line.
Range: Any real number > 0.t

autocad_justification The justification of the multi-line object is set to one of:
Range:

Attribute Name Content

autocad_top |

autocad_middle |
autocad_bottom

autocad_num_verts The number of vertices in one of the parallel multi-lines.
All of the multi-lines have this number of coordinates.
The feature thereby has autocad_num_verts * auto-
cad_num_T1ines:

Range: Number of vertices in one line.

autocad_num_lines The number of lines in the multi-line set.:
Range: Number of lines.

autocad_mline_type The type of multi-line object.
Range: autocad_open | autocad_closed

autocad_base_x The x coordinate of the base point of the multi-line
entity.
Range: Any real number.

autocad_base_y The y coordinate of the base point of the multi-line
entity.
Range: Any real number.

autocad_base_z The z coordinate of the base point of the multi-line
entity.
Range: Any real number.

Inserts
autocad_entity: autocad_insert

Inserts are point features used in AutoCAD to specify block locations and associated attribution. Inserts are another
way in which attribution is stored within an AutoCAD drawing file. The features returned from the AutoCAD reader
encapsulate all the information from the AutoCAD insert entity and all attribute entities that are associated with the
insert entity.

Insert features can be thought of as block references. They represent the location of an instance of a block definition.
When passing features to the AutoCAD writer, those features with the type autocad_insert can be used to match exist-
ing block definitions in the TEMPLATE file.

If an attribute passed to the writer is defined by an AutoCAD Attribute Definition in the TEMPLATE file, then the place-
ment of the attribute is taken from the TEMPLATE file unless it is overridden by the attributes shown in the table
below.

If the position of the attribute is not specified in a TEMPLATE file and is not specified in the attributes below, then the
attributes are placed at the insert location. Apart from the user-defined attributes specified within it, each insert
entity also has the following attributes.

Attribute Name

Contents

autocad_xscale

The scale factor for the inserted block in
the x direction.

Range: Any real number.

Default: 1

autocad_yscale

The scale factor for the inserted block in
the y direction.

Range: Any real humber

Default: 1

autocad_zscale

The scale factor for the inserted block in
the z direction.

Range: Any real number

Default: 1

autocad_size_x

The size of the inserted block in ground
units in the x direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_xscale
Range: Any positive real number.
Default: No default

autocad_size_y

The size of the inserted block in ground
units in the y direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_yscale.
Range: Any positive real number.
Default: No default

autocad_size_z

The size of the inserted block in ground
units in the z direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_zscale.
Range: Any positive real number.
Default: No default

autocad_rotation

The rotation of the inserted block,
counterclockwise from horizontal.
Range: -360.0..360.0

Default: 0

autocad_number_columns

The column count for the insert.
Range: 0..65536
Default: 1

Attribute Name

Contents

autocad_number_rows

The row count for the insert.
Range: 0..65536
Default: 1

autocad_column_distance

The column spacing for the insert.
Range: Any real number > 0
Default: 0

autocad_row_distance

The row spacing for the insert.
Range: Any real number > 0
Default: 0

autocad_block_name

The name of the block entity which is to
be inserted.

Range: char[33]

Default: FMEBLOCK<block_number>
where block_number is some unique
positive integer > 0.

autocad_block_insert_x
autocad_block_insert_y

autocad_block_insert_z

The insert point location of the block reference
entity.

When reading, these attributes are added to the
block reference component entities when the
reader directives RESOLVE_BLOCKS and
STORE_INSERT_POINT are both setto YES.

When writing, these attributes set the insert point
of blocks during automatic block creation.

Range: Any real number

Default: 0

autocad_attributes_follow

Used during writing to indicate if attrib-
utes are also to be stored with the insert
entity. This must be specified if feature
attributes are to be written to the Auto-
CAD outpuit file.

This attribute affects both the creation of block
attributes when the DEFAULT_ATTR_STORAGE
directive is set to INSERT_ATTRIBUTES and
the creation of blocks during automatic block cre-
ation.

Range: true | false
Default: true

autocad_attribute_display

Indicates if the attribute values are to
be visible or invisible. This will not over-
ride the visibility flag found in an exist-
ing template file attribute definition.

Attribute Name

Contents

Range: visible | invisible
Default: invisible

autocad_attr_def_tag

Indicates the tag used for “Attribute”
definition. (read-only)
Range: text string

autocad_attr_def_prompt

Specifies the prompt that is displayed
when you insert a block containing this
attribute definition. (read-only)
Range: text string

autocad_attr_def_default

Specifies the default attribute value.
(read-only)
Range: text string

fme_attrib_info{N?}.field_name

This list attribute hold the name of the
Nth attribute.
Range:text string

fme_attrib_info{N?}.field_size

This list attribute hold the size of the Nth
attribute.

Range integer

Default: 0

fme_attrib_info{N?}.field_value

This list attribute holds the value of the
Nth attribute.

Range: text string

autocad_<attr_name>_x
autocad_<attr_name>_y

autocad_<attr_name>_z
fme_attrib_info{N}.location_x
fme_attrib_info{N}.location_y

fme_attrib_info{N}.location_z

Used when attributes are associated
with the insert elements, enabling the
location of the attributes to be specified
for display purposes. This specifies the
exact location where the attributes are
to be placed. Note that the FME attrib-
utes may contain different values than
the AutoCAD attributes. This is because
the values of the FME attributes will be
modified if the justification is not base-
Tine_Teft in an attempt to be more use-
ful when translating into or out of other
formats that support these FME attrib-
utes.

Range: any 64-bit floating point value
Default: x, y, and z value of insert coor-
dinate (for the AutoCAD attributes)

0,0,0 (for the FME attributes)

Attribute Name

Contents

autocad_<attr_name>_
alignment_x
autocad_ <attr_name>_
alignment_y

autocad_<attr_name>_
alignment_z

fme_attrib_info{N}.align_x

fme_attrib_info{N}.align_y

Used when attributes are associated
with the insert elements, enabling the
location of the attributes to be specified
for display purposes. This specifies the
alignment location where the attributes
are to be placed. Note that the FME
attributes may contain different values
than the AutoCAD attributes. This is
because the values of the FME attributes
will be modified if the justification is not
baseline_left in an attempt to be
more useful when translating into or out
of other formats that support these FME
attributes.

Range: any 64-bit floating point value
Default: 0,0,0 (for the AutoCAD attrib-
utes)

the value of fme_attrib_info{N}-
.lTocation_[x]|y|z] (for the FME attrib-
utes)

autocad_<attr_name>_

justification

The justification of the attribute relative
to its insertion point (not its alignment
point).

Range:

autocad_top_Tleft |
autocad_top_center |
autocad_top_right |
autocad_top_middle |
autocad_top_aligned |
autocad_top_fit |

autocad_middle_left |
autocad_middle_center |
autocad_middTle_right |
autocad_middle_middle |
autocad_middle_aligned |
autocad_middle_fit |
autocad_bottom_left |
autocad_bottom_center |
autocad_bottom_right|
autocad_bottom_middle |
autocad_bottom_aligned |
autocad_bottom_fit |

autocad_baseline_Tleft |
autocad_baseline_center |
autocad_baseline_right |
autocad_baseline_middle |
autocad_baseline_aligned |

Attribute Name

Contents

autocad_baseline_fit
Default: No default

fme_attrib_info{N}.justification

The justification of the attribute relative
to its insertion point (not its alignment
point).

Range:

top_Teft |
top_center |
top_right|
top_middle |
top_aligned |
top_fit |
middle_left |
middle_center |
middle_right|
middle_middle |
middle_aligned |
middle_fit |
bottom_Teft |
bottom_center |
bottom_right|
bottom_middle |
bottom_aligned |
bottom_fit |
baseline_left |
baseline_center |
baseline_right|
baseline_middle |
baseline_aligned |
baseline_fit

Default: baseline_left

fme_attrib_info{N}.generation

The generation of the Nt attribute.
Range:

normal |

upside_down |

backwards |

upsidedown_backwards
Default:normal

autocad_<attr_name>_style

fme_attrib_info{N}.style

The name of the text style for the attrib-
ute. For this attribute to be used by the
Writer, a template file containing the
text style must be specified.

Default: No default

fme_attrib_info{N}.width_
factor

The scaling applied in the x direction,
which makes the text wider or nar-
rower. However, this doesn’t affect the

Attribute Name

Contents

weight (i.e., boldness) of the text
string.

Range: Any real number > 0 and <=
10000

Default: 1

autocad_ <attr_name>_color

The color of the attribute. When read-

ing, this value is always 256, meaning
COLOR_BYLAYER.

Default: The color of the layer on which
the insert is placed (not the same as
COLOR_BYLAYER).

fme_attrib_info{N}.color.red
fme_attrib_info{N}.color.green

fme_attrib_info{N}.color.blue

These list attributes hold the color of
the Nt attribute in RGB values, ranged
between 0.0 and 1.0.

Range: real number 0.0-1.0 (inclusive)
Default: No default

fme_attrib_info{N}.color.source

The source of the color. If the attrib-
ute’s color does not come from the
block or layer, then it is given the value
explicit.

Range: use_layer | use_block | explicit
Default: explicit

autocad_<attr_name>_
rotation

fme_attrib_info{N}.rotation

This specifies the rotation of the attrib-
ute, measured in degrees.

Range: degree of rotation measured
counter-clockwise from the horizontal.
Default: 0

fme_attrib_info{N}.oblique

This specifies the obliquing angle of the
attribute, which causes the text to lean
to the right or left.

Range: -85.0..85.0

Default: 0

autocad_ <attr_name>_
height

fme_attrib_info{N}.height

This specifies the height of the attribute
in ground units.

Range: any 64-bit floating point value.
Default: 1

autocad_<attr_name>_attribute_fTlag

fme_attrib_info{N}.attribute_fTag

A bit-coded value. Values can be com-
bined by using addition. Possible values
are:

1 = The attribute is invisible (does not

Attribute Name

Contents

appear).

2 = The attribute contains a constant
value.

4 = Verification is required on input of
this attribute.

8 = Attribute is preset (no prompt dur-
ing insertion).

If the fme_attrib_info{N}-
.attribute_fTag attribute is used, the
invisibility bit will get overwritten by the
fme_attrib_info{N}.isvisible attrib-
ute.

If the autocad_<attr_name>_attrib-
ute_fTlag attribute is used, the invis-
ibility bit will get overwritten by
autocad_attribute_display if the attributes

autocad_visible_attributes{} and
autocad_invisible_attributes{}

are specified.

Default: 0 if no attribute definitions
exist for the attribute (i.e., when
DEFAULT_ATTR_STORAGE keyword or
autocad_attributes attribute is set to
insert_attributes), or

value from the attribute definition if
attribute definitions are used.

autocad_ <attr_name>_layer

fme_attrib_info{N}.layer

The layer on which the attribute def-
inition, corresponding to this attribute,
was created.

Default: none

fme_attrib_info{N}.isVisible

These list attributes indicate whether or
not the Nt attribute should be dis-
played.

Range: TRUE | FALSE

Default: FALSE

autocad_visible_attributes{}

The list of attributes that are set to be
visible. This is a list attribute. This list
will override the visibility flag found in
an existing template file attribute def-
inition.

autocad_.invisible_attributes{}

The list of attributes that are set to be
invisible. This is a list attribute. This list

Attribute Name Contents

will override the visibility flag found in
an existing template file attribute def-

inition.
autocad_<attr_name>_x_off Used when attributes are associated
autocad_<attr_name>_y_off with the insert elements enabling the
autocad_<attr_name>_z_off location of the attributes to be specified

for display purposes. This specifies the
offset from the location of the insert.
Range: any 64-bit floating point value
Default: x, y and z value of insert coor-
dinate

Dimensions
autocad_entity: autocad_dimension

Dimensions are aggregate features used in AutoCAD to specify dimensions within an AutoCAD drawing. The dimen-
sion features have the attributes described below.

Rotated (linear) dimensions:

e Thefirst extension line is specified by defpt2.

e Thesecond extension line is specified by defpt3.

e Thedimension line is specified by dim1inedefpt.

Angular dimensions:

e defpt2 and defpt3 arethe endpoints of the first extension line.

e dimlinedefpt and defpt4 arethe endpoints of the second extension line.
e arcdefpt specifies the dimension line arc.

Angular 3-point dimensions:

e defpt4is the vertex of the angle.

e defpt2 is the endpoint of the first extension line.

e defpt3isthe endpoint of the second extension line.

e dimlinedefpt specifies the arc for the dimension line.

Diameter dimensions:

e defpt4is the point selected on the circle or arc being dimensioned.

e dimlinedefpt is the point on the circle exactly across from the selection point.
Ordinate dimensions:

e defpt3is the point which was selected.

e defpt4is the pointindicating the endpoint of the leader.

Attribute Name Contents

autocad_actual_measurement The scale factor for the inserted block in
the x direction.

Attribute Name

Contents

Range: Any real humber
Default: 1

autocad_arc_defpt.x
autocad_arc_defpt.y
autocad_arc_defpt.z

This defines the dimension arc for an angu-
lar dimension. This is equivalent to the
16,26,36 group in DXF.

Range: Any real number

Default: none

autocad_arc_defpt2.x
autocad_arc_defpt2.y
autocad_arc_defpt2.z

Definition Point. This is equivalent to the
13,23,33 group in DXF.

Range: Any real number

Default: none

autocad_arc_defpt3.x
autocad_arc_defpt3.y
autocad_arc_defpt3.z

Definition Point. This is equivalent to the
14,24,34 group in DXF.

Range: Any real number

Default: none

autocad_arc_defpt4.x
autocad_arc_defpt4.y
autocad_arc_defptd.z

Definition Point. This is equivalent to the
15,25,35 group in DXF.

Range: Any real number

Default: none

autocad_dimension_attach_point

This is the attachment point of dimension,
as defined

1 =Top Left

2 = Top Center
3 = Top Right
4 = Middle Left

5 = Middle Center
6 = Middle Right

7 = Bottom Left

8 = Bottom Center
9 = Bottom Right

autocad_dim_arrowhead_pt_<number>.x

autocad_dim_arrowhead_pt_<number>.y

These attributes, provided by the reader
but not used by the writer, describe the x,y
coordinates of the vertex, on each arrow-
head, that could be called the “tip of the
arrow.” <number> is some number
between 1 and the number of arrowheads
in the dimension. If there are no arrow-
heads, then this attribute will not be sup-
plied.

Attribute Name

Contents

autocad_dimension_flag

This is the raw value from the AutoCAD file
that indicates the type of dimension. See
autocad_dimension_type for the decoded
version of this.

autocad_dimension_style_name

The name of the dimension style used.
When using the AutoCAD writer, it is impor-
tant that the dimension style used is
defined in the template file; otherwise, no
style will be set and the dimension text will
not be displayed. Even if the standard
dimension style is used, the template file
must hold a definition for it.

autocad_dimension_type

This indicates the type of the autocad
dimension. Possible values are:
autocad_rotated

autocad_aligned

autocad_angular
autocad_diameter

autocad_radius
autocad_angular3pPt
autocad_ordinate
autocad_xordinate

autocad_leader_length

This is the length of the dimension leader
line.

autocad_linespace_style

This is the style of the line spacing. Itis
either 1 (at least) or 2 (exact).

autocad_linespace_factor

The percentage of default line spacing
used.

Range: 0.25..4.0

Default: 1

autocad_rotation_angle

The rotation angle of the dimension.

autocad_text_midpoint.x
autocad_text_midpoint.y
autocad_text_midpoint.z

The midpoint of the text.

autocad_text_rotation

The rotation of the dimension text.

autocad_text_size

The size of the text in ground units.

autocad_text_string

The dimension text value.

autocad_ucs_xangle

The angle of the ucs (user coordinate sys-
tem) when the dimension was created.

Group
autocad_entity: autocad_group

Group features are features with no geometry. This feature merely identifies the feature handles that are part of the
group. This entity is only supported by the AutoCAD Reader. The feature type is set to AUTOCAD_GROUP. The fol-
lowing attributes are set when reading groups.

Attribute Name Content

autocad_group_description The descriptive name of the group.
Range: Character string.

autocad_group_name Name of the group.
Range: Character string.

autocad_group_anonymous Whether or not group is anonymous
Range: yes/no.

autocad_group_accessible Whether or not group is accessible.
Range: yes/no.

autocad_group_num_entities Number of entities in the group.
Range: Numeric.

autocad_group_selectable Whether or not group is selectable.
Range: yes/no.

autocad_entity_handle{} The list attribute which contains the hexadecimal
values of the entities that make up the group.
Range: Hexadecimal value.

Hatches
autocad_entity: autocad_hatch

Hatch features represent AutoCAD hatch entities. They are composed of two dimensional boundary loops that define
areas which can be filled with line patterns or color gradients. The loops of each hatch are closed, simple, con-
tinuous, and are not self-intersecting except at their endpoints.

The AutoCAD Reader creates features with varied geometry depending on the geometry of the loops that compose
them. Features created may be of polygon, donut or aggregate geometry, where the aggregates may contain either
donuts and polygons or just ordered polygons depending on the usage of the PRESERVE_COMPLEX_HATCHES key-
word. The AutoCAD reader will also preserve polyline bulge information.

Note: The AutoCAD Reader has the following limitations when reading hatch features: associative hatches are not
preserved, one pattern is allowed per hatch, only one or two color gradients are supported, unclosed hatch bound-
ary loops are closed, and splines are not supported for hatch boundary loops. In addition, elliptical and circular
arcs in boundary loops are stroked unless the reader is using enhanced geometry.

The AutoCAD Writer has the following limitations when writing hatch features: hatch features must be closed area fea-
tures of polygon, donut, or aggregate geometry according to how the AutoCAD Reader created them. The AutoCAD
writer will try to reconstruct polyline bulge information from the feature, but closed and elliptical arcs will be stroked
into line segments.

The following attributes may be set when reading hatches.

Attribute Name Content

autocad_hatch_assoclative The flag indicating if the hatch is asso-
Used only for reading ciative.

Range: 0 for no | 1 for yes

Default: 0

autocad_hatch_complex_mode The flag that represents whether the
hatch feature was created to preserve
complex hatches. This indicates how
the structure of loops is created.
Range: 0 for no | 1 for yes

Default: 0

autocad_hatch_gradient_angle The angle of the gradient fill for the
hatch feature in degrees.

Range: any 64-bit floating point value.
Default: 0

autocad_hatch_gradient_colorl The first color used to interpolate a two
color gradient fill. It the single color
used in a one color gradient fill. Spec-
ified as a character string of comma-
separated red, green and blue values.
Range: 0..255,0..255,0..255.

Default: None.

autocad_hatch_gradient_color2 The second color used to interpolate a
two color gradient fill. Specified as a
character string of comma-separated
red, green and blue values.

Range: 0..255,0..255,0..255
Default: None.

autocad_hatch_gradient_name The name of the gradient. Must be a
predefined value for predefined gra-
dients. This is mandatory for hatches
with gradients.

Range: Curved | Cylinder| Hemi-
spherical | Linear | Spherical |
Invcurved | Invcylinder | Invhe-
mispherical | Invspherical

Default: None

autocad_hatch_gradient_one_ The flag indicating whether only one
color_mode color should be used in gradient cal-
culation. Gradients can be two color, or
one color with a luminance value set by
autocad_hatch_shade_tint_value.

Attribute Name

Content

Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_gradient_
shift

The interpolation value between the
default and shifted values of the gra-
dient's definition.

Range: 0..1

Default: None

autocad_hatch_gradient_type

The type of the gradient. Currently this
is set to 0 for predefined gradient. In
the future a value of 1 may be sup-
ported for user-defined gradients. This
is only used for hatches with gradients.
Range: O for pre-defined | 1 for user-
defined

Default: None

autocad_hatch_loop{}.autocad_hatch_bulge{}

Applicable only with classic geometry

The list of bulge values for polyline
bulge arcs in each of a list of hatch
boundary loops. The list of bulge
values parallel the vertices in each
loop. A bulge value represents the tan-
gent of 1/4 the included angle in the
arc measured counterclockwise. A
value of 0 represents a line, and a
value of 1 represents a semicircle.
Range: 0..1

Default: 0

autocad_hatch_loop{}.autocad_hatch_bulges_present

Applicable only with classic geometry

The flag indicating if polyline bulge
arcs exist in each of a list of hatch
boundary loops.

Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_loop{}.autocad_hatch_type

Applicable only with classic geometry

The type of the hatch loop. This is an
integer representing the addition of
applicable type flags.

Range: numeric value

Default: None

autocad_hatch_object_type

The general type of the hatch, spec-
ifying the usage of either patterns or
gradients.

Range: 0 for classic hatch | 1 for color
gradient

Attribute Name

Content

Default: 0

autocad_hatch_origin_point_x

The x-axis coordinate of the origin of
the hatch in world coordinates.
Range: any 64-bit floating point value
Default: 0

autocad_hatch_origin_point_y

The y-axis coordinate of the origin of
the hatch in world coordinates.
Range: any 64-bit floating point value
Default: 0.

autocad_hatch_pattern_angle

The angle of the pattern fill for the
hatch feature in degrees.

Range: any 64-bit floating point value
Default: 0

autocad_hatch_pattern_double

The flag indicating if the hatch pattern
is doubled by adding a second set of
lines at 90 degrees to the first. This is
only used for user-defined patterns.
Range: 0 for no | 1 for yes

Default: 0

autocad_hatch_pattern_name

The name of the pattern. May be a
predefined value for predefined pat-
terns, a predefined value for custom
patterns, or any string for user-defined
patterns.

Range: Pre-defined or custom pattern
name | any string

Default: SOLID

autocad_hatch_pattern_scale

This represents the scaled size of the
pattern for pre-defined and custom-
defined patterns.

Range: positive floating point value >
0

Default: 1

autocad_hatch_pattern_space

This represents the space between the
parallel lines of the hatch pattern. This
is only used for user-defined patterns.
Range: positive floating point value >
0

Default: 1

Attribute Name Content

autocad_hatch_pattern_type The type of the hatch pattern. Custom-
defined patterns are pre-created pat-
terns that must be present in the loca-
tion of the predefined patterns. This is
only used for hatches with patterns.
Range: 0 for user-defined | 1 for pre-
defined | 2 for custom-defined
Default: None

autocad_hatch_pixel_size The size of pixels for intersection and
ray casting when drawing the hatch.
Range: positive floating point value >
0

Default: 1

autocad_hatch_shade_tint_value The luminance value of the hatch. If
the hatch has a gradient and is using
one color mode, this value is applied to
the first color.

Range: 0.0..1.0

Default: 0

MPolygons
autocad_entity: autocad_mpolygon

MPolygon features represent AutoCAD mpolygon entities. They are composed of two-dimensional polyline loops defin-
ing areas that can be filled with line patterns or color gradients. The loops of each mpolygon are closed, simple, con-
tinuous, and are not self-intersecting except at their endpoints. This is very similar to the definition of hatch entities.

The AutoCAD Reader creates features with varied geometry depending on the geometry of the loops that compose
each mpolygon. Features created may be of polygon, donut or aggregate geometry, where the aggregates may con-
tain a combination of donuts and polygons.

Note: The AutoCAD Reader has the following limitations when reading mpolygon features: one pattern is allowed
per hatch, only one or two color gradients are supported, unclosed boundary loops are closed, and splines are not
supported for boundary loops.

The AutoCAD Writer has the following limitations when writing mpolygon features: the features must be closed area
features of polygon, donut, or aggregate geometry according to how they were created by the AutoCAD Reader.

The following attributes may be set when reading mpolygons.

Attribute Name Content
autocad_mpolygon_associative The flag indicating if the mpolygon is associative.
Used only for reading Range: 0 for no | 1 for yes

Default: 0

Attribute Name

Content

autocad_mpolygon_gradient_
angle

The angle of the gradient fill for the mpolygon fea-
ture in degrees.

Range: any 64-bit floating point value.

Default: 0

autocad_mpolygon_gradient_
colorl

The first color used to interpolate a two color gra-
dient fill. It the single color used in a one color gra-
dient fill. Specified as a character string of comma-
separated red, green and blue values.

Range: 0..255,0..255,0..255.

Default: None.

autocad_mpolygon_gradient_
color2

The second color used to interpolate a two color gra-
dient fill. Specified as a character string of comma-
separated red, green and blue values.

Range: 0..255,0..255,0..255

Default: None.

autocad_mpolygon_gradient_
name

The name of the gradient. Must be a predefined value
for predefined gradients. This is mandatory for mpo-
lygons with gradients.

Range: Curved | Cylinder| Hemispherical | Linear |
Spherical | Invcurved | Invcylinder | Invhe-
mispherical | Invspherical

Default: None

autocad_mpolygon_gradient_one_
color_mode

The flag indicating whether only one color should be
used in gradient calculation. Gradients can be two
color, or one color with a luminance value set by auto-
cad_mpolygon_shade_tint_value.

Range: 0 for no | 1 for yes

Default: 0

autocad_mpolygon_gradient_
shift

The interpolation value between the default and
shifted values of the gradient's definition.
Range: 0..1

Default: None

autocad_mpolygon_gradient_
type

The type of the gradient. Currently this is set to 0 for
predefined gradient. In the future a value of 1 may
be supported for user-defined gradients. This is man-
datory for mpolygones with gradients.

Range: 0O for pre-defined | 1 for user-defined
Default: None

autocad_mpolygon_object_type

The type of the mpolygon. This is mandatory for mpo-
lygones with gradients and patterns other than

Attribute Name

Content

SOLID.
Range: 0 for classic mpolygon | 1 for color gradient
Default: 0

autocad_mpolygon_origin_point_x

The x-axis coordinate of the origin of the mpolygon
in world coordinates.

Range: any 64-bit floating point value

Default: 0

autocad_mpolygon_origin_point_y

The y-axis coordinate of the origin of the mpolygon
in world coordinates.

Range: any 64-bit floating point value

Default: 0.

autocad_mpolygon_offset_x

Used only for reading

The offset along the x-axis coordinate of the center
point of the mpolygon extents in world coordinates.
Range: any 64-bit floating point value

Default: 0

autocad_mpolygon_offset_y

Used only for reading

The offset along the y-axis coordinate of the center
point of the mpolygon extents in world coordinates.
Range: any 64-bit floating point value

Default: 0.

autocad_mpolygon_pattern_
angle

The angle of the pattern fill for the mpolygon feature
in degrees.

Range: any 64-bit floating point value

Default: 0

autocad_mpolygon_pattern_
double

The flag indicating if the mpolygon pattern is doubled
by adding a second set of lines at 90 degrees to the
first. This is only used for user-defined patterns.
Range: 0 for no | 1 for yes

Default: 0

autocad_mpolygon_pattern_name

The name of the pattern. May be a predefined value
for predefined patterns, a predefined value for cus-
tom patterns, or any string for user-defined patterns.
Range: Pre-defined or custom pattern name | any
string

Default: SOLID

autocad_mpolygon_pattern_
scale

This represents the scaled size of the pattern for pre-
defined and custom-defined patterns.

Range: positive floating point value > 0

Default: 1

autocad_mpolygon_pattern_
space

This represents the space between the parallel lines

Attribute Name Content

of the mpolygon pattern. This is only used for user-
defined patterns.

Range: positive floating point value > 0

Default: 1

autocad_mpolygon_pattern_type The type of the mpolygon pattern. Custom-defined
patterns are pre-created patterns that must be
present in the location of the predefined patterns.
This is mandatory for mpolygones with patterns
other than SOLID.

Range: 0 for user-defined | 1 for pre-defined | 2 for
custom-defined

Default: 1

autocad_mpolygon_pixel_size The size of pixels for intersection and ray casting
when drawing the mpolygon.

Range: positive floating point value > 0
Default: 1

autocad_mpolygon_shade_tint_ The luminance value of the mpolygon. If the mpo-
value lygon has a gradient and is using one color mode,
this value is applied to the first color.

Range: 0.0..1.0

Default: 0

Surfaces
autocad_entity: autocad_surface

Features with this value are used to store several AutoCAD entities including face, region, polygon mesh, polyface
mesh, or surface entities. Extruded, planar, revolved, lofted, and swept surfaces are represented as autocad_sur-
face, which may contain multiple unconnected surfaces, each of which is composed of faces, which may or may not
be planar. This value is used by both the reader and the writer.

Surfaces support appearances, but only one appearance per surface. For two-sided surfaces, the writer will split the
surface into one surface per side. Furthermore, only subdivision mesh entities support textured appearances. Sub-
division meshes will preferentially be written from surfaces with textured appearances. (Textured appearances are
only supported by RealDWG.)

For writing, all 3D surface geometry types are supported. Any types of 3D geometry which are not directly supported
as entities are decomposed into triangulated mesh representation prior to writing.

Attribute Name Content

autocad_subdmesh_base_faces This is used by the Reader only and indicates the
number of faces in a subdivision mesh at the base
smoothness level of 0.

Range: A 32 bitinteger value. Default: None

autocad_subdmesh_base_vertices

This is used by the Reader only and indicates the
number of vertices in a subdivision mesh at the base
smoothness level of 0.

Range: A 32 bitinteger value. Default: None

autocad_subdmesh_smooth_Tevel

This is used by the Reader only and indicates the
smoothness level of a subdivision mesh. A value of 0
represents the base smoothness of the mesh geome-
try and higher values indicate greater subdivisions
which increase smoothness.

Range: 0-4. Default: 0

autocad_subdmesh_smoothed_faces

This is used by the Reader only and indicates the
number of faces in a subdivision mesh at the current
smoothness level.

Range: A 32 bitinteger value. Default: None

autocad_subdmesh_smoothed_vertices

This is used by the Reader only and indicates the
number of vertices in a subdivision mesh at the cur-
rent smoothness level.

Range: A 32 bitinteger value. Default: None

autocad_subdmesh_watertight

This is used by the Reader only and indicates whether
a subdivision mesh is watertight, based on adjacent
polygons sharing common vertices.

Range: Yes | No. Default: None

3D Solids

autocad_entity: autocad_solid3d

Features with this value are used to store both AutoCAD 3D solid and body entities. Cone, elliptical cone, cylinder,
elliptical cylinder, revolve, sphere, and torus 3D solids may be represented by an autocad_solid3d. This value is used

by both the reader and the writer.

Closed surface boundary representations of 3D geometric volumes which may contain representations of multiple
unconnected 3D solids may be stored as surfaces or multi-surfaces on read. Most 3D solids will be represented as
surface boundaries and will be handled as autocad_surface type features on write.

For writing, all 3D solid geometry types are supported. Any types of 3D geometry which are not directly supported as
entities are decomposed into triangulated mesh representation prior to writing.

Autodesk MapGuide SDL Reader/Writer

The Autodesk® MapGuide SDL Reader and Writer modules allow FME to read and write SDL files. The SDL file format

is an ASCII format used with AutoDesk’s MapGuide and other World Wide Web map authoring tools.

Overview

SDL data can be either two-dimensional (2D) or three-dimensional (3D).

SDL files store both geometry and attributions. A logical SDL dataset consists of one or more files in the same direc-

tory with the extension .sdl. This extension is added to the basename of the SDL files.

The SDL reader and writer support the storage of point, line, and polygon geometric datain . sd1 files. Output files
contain only one geometry type to conform with MapGuide. The SDL format can also store features with no geometry.

Features that have no geometry are referred to as having a geometry of none.

SDL Quick Facts

Format Type Identifier SDL

Reader/Writer Both
Licensing Level Base
Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .sdl

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute sdl_type

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes
circles no polygon yes
circular arc no raster no
donut polygon yes solid no
elliptical arc no surface no
ellipses no text no

Geometry Support
Geometry Supported? Geometry Supported?
line yes z values yes (reader only)
none yes

Reader Overview

The SDL reader first scans the directory it is given for SDL files that have been defined in the mapping file. The SDL
reader then extracts features from the files one at a time, and passes them on to the rest of the FME for further proc-
essing. Optionally a single SDL file can be given as the dataset. In this case, only that SDL file is read.

Reader Directives

The directives processed by the SDL reader are listed below. The suffixes shown are prefixed by the current <Read-
erkeywords> in a mapping file. By default, the <ReaderKeyword> for the SDL reader is SDL.

DATASET
Required/Optional: Required

The value for this keyword is the directory containing the SDL files to be read, or a single SDL file. A typical mapping
file fragment specifying an input SDL dataset looks like:

SDL_DATASET /usr/data/sd1/92i080
Workbench Parameter: Source Autodesk MapGuide SDL File(s)
IDs
Required/Optional: Optional
This specification is used to limit the available and defined SDL files read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseNamel> \
<baseName2> \
<baseNameN>

The basenames must match those used in DEF lines. The example below selects only the roads SDL file for input dur-
ing a translation:

SDL_IDs roads

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
themitab.d17 in the FME home directory tomapinfo.dlT.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:
MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional
Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

#% Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

¥ Workbench Parameter

Additional Attributes to Expose

Writer Overview

The SDL writer outputs each feature type into a separate file in order to comply with AutoDesk MapGuide. Each fea-
ture has the following associations: vertices, a name, an ID, and a Universal Resource Locator (URL).

Writer Directives

The directives that are processed by the SDL writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_in a mapping file. By default, the <WriterKeyword> for the SDL writer is SDL.

DATASET
Required/Optional: Required

The value for this keyword is the name of the created SDL directory. If a directory of this name exists, it is replaced by
the new SDL. A typical mapping file fragment specifying an output SDL dataset looks like:

SDL_DATASET /tmp

Workbench Parameter: Destination Autodesk MapGuide SDL Directory
DEF
Required/Optional: Required

The SDL writer uses SDL_DEF lines to define files to write features to. A typical mapping file fragment specifying an
output SDL file looks like:

SDL_DEF roads

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature

Attributes), special FME feature attributes direct the SDL writer as it renders the feature into the image. The most
important of these is the sdl_type attribute, which controls the overall interpretation of the feature. The correct
values for sd1_typearesdl1_Tl1ine, sd1_point, and sd1_polygon. The parameters specified for each of
these are described in the following subsections, and the attributes common to each are given in the following table:

Attribute Name Contents

sdl_url Specifies a URL for the line, polygon or point.
Required: No
Default: NULL

sdl_name Specifies an internal name for the line, polygon or point.
Required: No
Default: NULL

sdl_id Specifies an ID for the line, polygon or point.
Required: No
Default: NULL

Lines
sdl_type: sdl_line

The SDL writer outputs a line object containing the points as specified in the input file. Also, the SDL writer outputs a
URL, a name, and an ID number associated with the line object as attributes.

Points
sdl_type: sdl_point

The SDL writer will output a point object containing the points as specified in the input file. Also, the SDL writer will
output a URL, a name, and an ID number associated with the point object as attributes.

Polygons
sdl_type: sdl_polygon

The SDL writer outputs a polygon object containing the points as specified in the input file. Also, the SDL writer out-
puts a URL, a name, and an ID number associated with the polygon object as attributes.

BC MOEP Reader/Writer

The British Columbia (BC) Ministry of Environment and Parks (MOEP) format is a compact binary format used in the
province of B.C., Canada. MOEP features have few attributes, one of which is a feature code which encodes the fea-
ture’s properties. MOEP files can store only integer coordinates.

The MOEP Reader and Writer enables FME to read and write files in binary MOEP format, with either 16-bit or 32-bit
integer coordinates. Support for ASCII MOEP files is not provided.

Note: Throughout this section, a binary MOEP file will be referred to simply as an MOEP file; this reader/writer pro-
vides no support for ASCII MOEP files.

Overview

Each MOEP file starts with a small header, which is immediately followed by a sequence of geometric features. The
header contains information which is global to the MOEP file, including a file type, a name for the content of the file
such as, a mapsheet ID, and whether the coordinates are specified with 16-bit or 32-bit integers. Each feature has a
feature code, a single optional attribute, a geometric type, such as point, line, text, etc., and some type-specific infor-
mation, like coordinates, rotation, text size, etc.

The FME considers an MOEP data set to be a collection of MOEP files in a single directory.

MOEP files are referred to in the mapping file by IDs rather than by physical file names. The mapping between IDs
and physical names is defined by the MOEP file definition lines within the mapping file.

BC MOEP Quick Facts

Format Type Identifier MOEP
Reader/Writer Both

Licensing Level Base
Dependencies None

Dataset Type Directory or File
Feature Type File base name

Typical File Extensions

.arc, .bin

Automated Translation Support

Yes for Reader

No for Writer

User-Defined Attributes No
Coordinate System Support No

Generic Color Support No

Spatial Index Never
Schema Required Yes
Transaction Support No
Geometry Type Attribute moep_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes zvalues yes

none no

Reader Overview

The MOEP reader produces FME features for all the feature data held in MOEP files residing in a given directory. The
MOEP reader first scans the directory it is given for the MOEP files which have been defined in the mapping file. For
each MOEP file that it finds, it checks to see if it the ID corresponding to the file is requested by looking at the list of
IDs specified in the mapping file. If a match is found or if no IDs were specified in the mapping file, the MOEP file is
opened for read. The MOEP reader extracts features from the file one at a time, and passes them on to the rest of the
FME for further processing. When the file is exhausted, the MOEP reader starts on the next file in the directory.

Reader Directives

The suffixes shown below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MOEP reader is MOEP.

DATASET
Required/Optional: Required

The value for this directive is the directory name of the input MEOP files, or a single MOEP file to be read. A typical
mapping file fragment specifying an input MOEP data set looks like:

MOEP_DATASET /usr/data/moep/92i080

or
MOEP_DATASET /usr/data/moep/92i080/92i080a.bin

Workbench Parameter: Source B.C. MOEP File(s)
DEF
Required/Optional: Optional

The definition specifies the ID to use to refer to the file, along with the physical file name and its extension. In addition
to the file name, other global attributes from the table below can be specified in the definition. When additional attrib-
utes are specified for an MOEP file being read, the reader will generate warnings if the specified values do not match
those specified in the file’s header. The writer uses the global attributes to fill in the header of the MOEP file being
written.

The syntax of an MOEP DEF lineis:
<ReaderKeyword>_DEF <fileID> \
MOEP_FILENAME <physFiTleName> \
[<attrName> <attrval>]*

The following table shows the supported global attributes:

Attribute Name

Description

MOEP_FILENAME

Name of physical file within MOEP data set.

MOEP_RESOLUTION

The size of integer used to represent each X and Y
coordinate value within the MOEP file. This can be
either 16 or 32, indicating 16-bit or 32-bit integers,
respectively.

Z coordinates are always 16 bits, regardless of this
attribute’s value.

MOEP_FILE_TYPE

An integer in the range 0..9 denoting the type of
data this file contains.

MOEP_NAME

An ASCII string 0 to 11 characters in length, pro-
viding a logical name for the file. This is stored in
the file’s header; it typically contains a mapsheet
ID.

MOEP_FORCE_TYPES

This optional attribute must be set to either yes or
no. The default is no. If it is yes, a type 5 attribute
record is written with each feature, even if it is
empty.

MOEP_DATE

The date of submission of the MOEP file. The format
for this date is YYMMDD, where YY is the last two
digits of the year, MM is the month (01-12), and DD
is the day within the month (01-31).

MOEP_OFFSET_MINIMUM

The MOEP writer module uses this value to determine

the origin from which 16-bit (X,Y) coordinates are meas-
ured. As features are written to the MOEP file, their mini-
mum bounding rectangle is maintained; once the MBR is
larger than MOEP_OFFSET MINIMUM in both the X
and Y directions, its centre point is chosen as the origin
for all coordinates written to the file. This attribute has no
effect on 32-bit coordinates, which are always measured
from (0,0).

The following mapping file fragment defines two MOEP files, one containing DEM data with 16-bit coordinates, and
one containing contours, with 32-bit coordinates:

MOEP_DEF dem_data MOEP_FILENAME 92b053d.arc \

MOEP_FILE_TYPE 1 \
MOEP_RESOLUTION 16 \
MOEP_NAME 92b053d \
MOEP_DATE 960913\
MOEP_OFFSET_MINIMUM 1000

MOEP_DEF contour_data MOEP_FILENAME 92b053t \

MOEP_FILE_TYPE 2 \
MOEP_RESOLUTION 32 \
MOEP_NAME 92b053t \

MOEP_DATE 960913

IDs
Required/Optional: Optional

This optional specification is used to limit the available and defined MOEP files read. If no IDs are specified, then all
defined and available MOEP files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_1IDs <fileIDl> \

<fileiDl> .. \
<fileIDn>

The fileIDs must match those used in DEF lines.
The example below selects only the dem_data MOEP file for input during a translation:
MOEP_IDs dem_data

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
themitab.dTT in the FME home directory tomapinfo.dl1.

The syntax of the MAPINFO_SEARCH_ENVELOPE directiveis:
MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

¥ Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

*X Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

%X Workbench Parameter
Additional Attributes to Expose

Writer Overview

The MOEP writer creates and writes feature data to MOEP files in the directory specified by the DATASET keyword.

If the directory did not exist before the translation, the writer will create it. Any old MOEP files in the directory will be
overwritten with the new feature data. The FME determines which file features are to be written to as they are routed
to the MOEP writer. Many MOEP files can be written during a single FME session.

Writer Directives

The MOEP writer processes the DATASET and DEF directives as described in the Reader Directives section. Unlike
the reader, the MOEP writer requires DEF directives to be specified. It does not make use of the IDs directive.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.
Special FME attributes are used to hold the parameters specific to MOEP features. The MOEP writer uses these attrib-

utes to define aspects of the geometries of the features it writes out, and the MOEP reader will define these attributes
from the MOEP features it reads.

One of these attributes is an optional user attribute which can contain up to 66 characters of arbitrary data.

FME considers the ID of the MOEP file to be the FME feature type of an MOEP feature. The feature type of an MOEP fea-
ture must match the ID of an MOEP file defined by an MOEP DEF line.

Every MOEP feature, regardless of its geometry type, shares the parameters shown in the following table. Sub-
sequent subsections will describe parameters specific to each feature type.

Attribute Name Contents
moep_type The type of the geometry for the feature. This attribute
will contain one of:
moep_Tline

moep_contour_Tline
moep_point
moep_text
moep_arc

moep_code Character string with up to 10 characters designating
the feature code of the feature. If this is not specified
for a feature being written, the feature will have the
same feature code as the feature which was most
recently written to the MOEP file.

moep_attribute An optional attribute (MOEP type 05 feature) which can
contain up to 66 characters of arbitrary text. (See also
the moep_font, moep_weight, and moep_text_group
attributes defined on moep_text features.)

Line Features
moep_type: moep_line

MOEP line features have two or more coordinates. FME features with an moep_type of moep_line correspond to non-
contour MOEP features with a type of 02, 03, 12, or 13; the moep_display_type and moep_line_type differentiate
between the different types.

The following attributes are defined for moep_line features:

Attribute Name Contents

moep_display_type Determines whether the line is a primary line or a dupli-
cate. Legal values are primary and construction. The
default is primary.

moep_line_type Determines whether the MOEP feature is simple or com-
plex (curvilinear). Legal values are curve and line.
The defaultis Tine.

Contour Features
moep_type: moep_contour_line

MOEP contour line features have three or more coordinates. FME features with an moep_type of moep_contour cor-
respond to MOEP features with a type of 02, 03, 12, or 13 which are represent contour data; the moep_display_
type and moep_line_type differentiate between the different types.

Aside from the moep_line_type and moep_display_type attributes that contour lines inherit from moep_line features, the
following attribute is defined for moep_contour_line features:

Attribute Name Contents

moep_contour_elevation The elevation of the contour line.

Point Features
moep_type: moep_point
In addition to an (X,Y,Z) location, an MOEP point has some additional attributes which affect the display of its point

symbol. The symbol will always be centred around its location, but can be rotated and/or scaled, in both the Xand Y
directions.

Attribute Name Contents

moep_rotation Determines the rotation applied to the point symbol,
measured in degrees counterclockwise from horizontal.
The default is 0.0 degrees.

moep_scale_x Multiplier applied to scale the point symbol in the X
direction.(If this is not provided, it defaults to 1.0.

moep_scale_y Multiplier applied to scale the point symbol in the Y
direction. If this is not provided, it defaults to 1.0.

Arc Features
moep_type: moep_arc
MOEP arc features represent a directed circular segment between two points on an ellipse. The representation of an

arc is a set of three (X,Y,Z) coordinates—start of arc, end of arc, and origin of arc—along with a the direction of the
arc.

Attribute Name Contents

moep_sweep_direction The direction in which the arc is drawn. Legal values are
cTockwise and counterclockwise. The default is clock-
wise.

Text Features
moep_type: moep_text
MOEP text features represent textual annotation placed at specific world coordinates. The full specification of the

geometry includes an (X,Y,Z) position, the rotation of the text, the text string itself, the size of the text, and a spec-
ification of font, weight, and text group number.

Attribute Name Contents

moep_rotation Determines the rotation applied to the text, measured
in degrees counterclockwise from horizontal.

Attribute Name Contents

moep_text_string The characters which make up a line of the text feature.
The maximum length of a line of text is 66 characters.
Several text features can be grouped into a single fea-
ture using the moep_text_group attribute.

moep_text_size The size of the text feature, measured in ground
metres.
moep_font Specifies a font number for the text, an integer in the

range 0..99. See the discussion below this table regard-
ing the encoding of font, weight, and text group.

moep_weight Specifies the weight of the text, an integer in the range
0..99. See the discussion below this table regarding the
encoding of font, weight, and text group.

moep_text_group Specifies a group number; several text features can be
logically grouped together by giving them the same
group number. This number is a five digit, decimal
integer. See the discussion below this table regarding
the encoding of font, weight, and text group.

It is important to note the relationship between the font, weight, text group, and the optional attribute for the feature.
If font, weight, and text group attributes are specified, MOEP uses the optional attribute of a text feature to store their
values. When these are specified, the format of the attribute string is FFFWWWGGGGGG, where FFF is the font
number, WWW is the weight, and GGGGGG is the text group number. Each number is right-justified in its field,
padded to the left with spaces as necessary.

Similarly, when reading a text feature the optional attribute, if present, is broken down into a font, weight, and text
group.

BC MoF Electronic Submission Framework (ESF) - Read-
er/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

BC Ministry of Forests (MoF) Electronic Submission Framework (ESF) is a set of XML/GML formats that allow clients to
submit data electronically to BC Ministry of Forests and Range and Ministry of Agriculture and Lands. Four ESF for-
mats are supported:

e ESF_ABR: Electronic Submission Framework - As Built Roads
e ESF_FSP: Electronic Submission Framework - Forest Stewardship Plan

e ESF_FTA: Electronic Submission Framework - Forest Tenure Application: The BC Ministry of Forests
(MoF) Electronic Submission Framework (ESF) FTA is a GML format specifying Forest Tenures (FTA) submissions
for the British Columbia Ministry of Forests Electronic Submission Framework.

e ESF_RESULTS: Electronic Submission Framework - RESULTS: The BC Ministry of Forests (MoF) Electronic
Submission Framework (ESF) RESULTS is a GML format specifying silviculture (RESULTS) submissions for the Brit-
ish Columbia Ministry of Forests Electronic Submission Framework.

For more information, go to:
http://www.safe.com/support/resources/esf/index.php

http://www.for.gov.bc.ca/his/esf/index.htm

Reader Directives

The suffixes shown are prefixed by the current <ReaderkKeyword> in a mapping file. By default, the <Read-
erkeyword> for the ESF reader is ESF.

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, itis even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

% Workbench Parameter
Additional Attributes to Expose

http://www.safe.com/support/resources/esf/index.php
http://www.for.gov.bc.ca/his/esf/index.htm

Writer Directives

The suffixes shown are prefixed by the current <Writerkeyword> in a mapping file. By default, the <Writ-
erkeyword> for the ESF writer is ESF.

DESTINATION_DATASET
Required/Optional: Required
The file to which the should output the ESF text. If the file does not exist, it will be created.
Example:
DESTNATION_DATASET c:\fta_file.xml
Workbench Parameter: Destination BC MoF ESF File
SUBMISSION_FRAMEWORK
Required/Optional: Required

A submission framework must be selected in the settings box when adding a destination dataset. Once this selection
has been set, it will be displayed in the destination parameters in Workbench. Note, however, that it cannot be
changed after it has been set.

Example:
SUBMISSION_FRAMEWORK "ESF_ABR: Electronic Submission Framework - As Built Roads"

Workbench Parameter: Submission Framework

Bentley MicroStation Design Reader/Writer

The Bentley® MicroStation Design Reader/Writer allows FME to access files used by the MicroStation and Intergraph
Interactive Graphics Design System (IGDS).

Intergraph made public the specification for this file format, which they call the Intergraph Standard File Format
(ISFF)l. This chapter assumes familiarity with this format.

Overview

Design files consist of a header, followed by a series of elements. The header contains global information including
the transformation equation from design units to user coordinates, as well as the dimension of the elements in the
file. Each element contains standard display information, such as its color, level, class, and style, as well as a number
of attributes specific to its element type. For example, a text element has fields for font, size, and the text string in
addition to the standard display attributes.

Tip: The IGDS reader and writer modules support both two- and three-dimensional Design
files and cell libraries.

Individual design file elements must be less than a system-imposed maximum number of bytes. Complex elements
solve this problem by physically grouping individual elements together into an object that will be manipulated as a
whole. The FME transparently handles such complex elements as single FME features. This situation occurs when
text elements are grouped together into a single complex element headed up by a text node, and when linear or polyg-
onal features have more than 101 vertices (Microstation V7) or 5000 vertices (Microstation V8). Cells are complex ele-
ments used as symbols, and are treated as atomic entities by the FME.

Each IGDS file element may have one or more attribute linkages associated with it. The IGDS reader and writer sup-
port both user data and database linkages. (Note, however, that the DGN V8 reader and writer do not support the
interpretation of user linkages. Database linkages and MSLINKS are supported. FRAMME linkages are supported for
reading.) The linkage values may be used to join elements with attributes stored in relational tables through the use
of the @Relate FME Transformation Function. Linkages may also be used to specify fill information for fillable IGDS
area geometries such as Shape elements, and other application-specific data. (Note, however, that the igds_fill_color
attribute will override any solid fill color linkage specification if both are present.)

Because Design files support three interpretations of units, the IGDS reader and writer must be told how to interpret
the feature coordinate units and how they will be converted to and from Units of Resolution (UORs). The feature coor-
dinate units may be interpreted as Master Units, SubUnits, or as raw UORs, depending on the setting of IGDS_UNITS
in the mapping file. However, when writing to DGN V8 files, the writer ignores these settings from the mapping file
and adopts the settings as read from the seed file chosen. This means that if you want to do something special with
the working units, you have to do that in the V8 seed file.

The IGDS reader and writer use symbolic names for the IGDS element types rather than the IGDS numeric values.
This greatly simplifies element type specification. The following table maps the IGDS element type number to its cor-
responding FME feature igds_type attribute value that is used by the IGDS reader and writer. Subsequent subsections
describe the handling of each of these element types in detail.

IGDS Element Type FME igds_type
2 igds_cell

3 igds_point
3,4,12 igds_line

6,14 igds_shape

1Throughout this chapter, the terms IGDS file and Design file are used interchangeably to refer to the ISFF format.

7 igds_text_node
11,12 igds_curve

12 igds_complex_string
14 igds_complex_shape
15 igds_ellipse

16 igds_arc

17 igds_text

7,17 igds_multi_text
2,6,14 igds_solid

34,35 igds_shared_cell

19 igds_3d_solid

100 igds_ref

The Reader/Writer has been enhanced to support enhanced geometry. When features are read/written using
enhanced geometry then all the complex chains, complex shapes and solids (unnamed cells) will preserve arcs and

ellipses within them.

Design File Quick Facts

Format Type Identifier

IGDS

Reader/Writer

Version 7 Both
Version 8 Both

Licensing Level

Base

Dependencies None
Dataset Type File
Feature Type Level number
Typical File Extensions .dgn
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support No
Generic Color Support Yes
Spatial Index Never
Schema Required No
Transaction Support No
Enhanced Geometry Yes
Geometry Type Attribute igds_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point yes
circles yes polygon yes
circular arc yes raster no
donut polygon yes solid yes
elliptical arc yes surface no
ellipses yes text yes
line yes zvalues yes
none no

Reader Overview

The FME reader detects the version of the source dataset (version 7 or 8) internally and handles it accordingly. There
is no difference to users in terms of the reader keyword or attribute names of the elements.

The IGDS reader first reads the header information from the Design file being processed, and extracts the conversion
parameters required to translate coordinates from internal IGDS UORs to ground units. It also determines the dimen-
sion of the input file.

It then extracts each individual element, one at a time, and passes it on to the rest of the FME for processing. Complex
elements are extracted as single FME features. If a complex element contains an arc, then the reader automatically
converts it to a linestring enabling it to be processed by all other readers and writers within the FME. If the element
had any attribute linkages attached to it, these are read and added as attributes to the FME feature being created.

When the IGDS reader encounters an element type it does not know how to process, it simply ignores it and moves on
to read the next element.

DGN Version 8 also reads the models to which the features belong. All the models read retain their respective working
units and global origin values.

Reader Directives

The IGDS reader processes the <ReaderKeyword>_DATASET directive in the mapping file. The value for this directive
is the file name of the IGDS file to be read. By default, the <ReaderKeyword> for the IGDS reader is IGDS, so a typical
mapping file fragment specifying an input IGDS file looks like:

IGDS_DATASET /usr/data/dgn/92b034.dgn

The IGDS reader also processes the <ReaderKeyword>_UNITS directive in the mapping file. This directive controls the
conversion between UORs in the Design file and FME coordinates. There are three possibilities, outlined in the table
below. If no UNITS directive is specified, then IGDS_SUB_UNITS is assumed.

IGDS_UNITS Value Description

IGDS_MASTER_UNITS The UORs read from the Design file are converted into
master units, according to the conversion factor
read from the Design file header, before being stored
in an FME feature.

IGDS_SUB_UNITS The UORs read from the Design file are converted into
subunits, according to the conversion factor read
from the Design file header, before being stored in an

IGDS_UNITS Value Description

FME feature. This is the default.

IGDS_UORS The UORs read from the Design file are stored directly
in an FME feature with no conversion.

The IGDS reader processes several other directives in the mapping file, as shown below. These enable the FME to
override the Global Origin and Scaling information. The first four directives are normally used only when reading
Design files that have bad header information. If the FME detects a difference between these settings and those read
from the Design file, a warning is output to the log file and these settings prevail.

The IGDS reader can also be configured to output all the elements composing cells, or symbols. This is useful if the
graphical representation of the Design file is to be preserved. This is true when, for example, a Design file is trans-
lated to a GIF image.

UOR_SCALE

Required/Optional: Optional

The number of ground units per UOR.

Workbench Parameter: UOR to FME Feature Coordinate Units scale factor
UOR_GLOBAL_ORIGIN_X

Required/Optional: Optional

The global origin of x measured in UORs.

Workbench Parameter: UOR X Global Origin
UOR_GLOBAL_ORIGIN_Y

Required/Optional: Optional

The global origin of y measured in UORs.

Workbench Parameter: UOR Y Global Origin
UOR_GLOBAL_ORIGIN_Z

Required/Optional: Optional

The global origin of z measured in UORs.

Workbench Parameter: UOR Z Global Origin
SUBS_PER_MASTER

Required/Optional: Optional

The number of sub units per master unit. This is only used if UOR_SCALE is not present.
Workbench Parameter: SUBS PER MASTER UNIT
UORS_PER_SUB

Required/Optional: Optional

The number of UORs per sub unit. This is only used if UOR_SCALE is not present.

Workbench Parameter: UORS PER SUB UNIT

EXPAND_CELLS

Required/Optional: Optional

Controls whether or not all components of a cell will be output by the reader.

If the value is YES, then they are and the cell header itself is not output.

If itis NO, then only the cell header is output.
Values: YES | NO
Default Value: NO

Workbench Parameter: Expand Named Cells
EXPAND_UNNAMED_CELLS

Required/Optional: Optional

This directive should not be confused with EXPAND_CELL in terms of its usage. It is better understood in relation to
igds_solid. When it is set to YES, then no donuts are formed even if they existed and the cell members retain their col-
ors. When it is set to NO, then donuts will be formed if they existed, and the pieces may lose their original colors.

Values: YES | NO
Default Value: NO

Workbench Parameter: Expand Unnamed Cells

PRESERVE_CELL_INSERTS

When EXPAND_CELLS is set to YES, this directive controls whether or not the insert points of the cells are also out-
put.

Values
YES: The cell insert points are output as igds_ cell features in addition to the cell components

NO (default): Only the cell components are output.

Required/Optional
Optional

¥ Workbench Parameter
Preserve Named Cell Inserts

PRESERVE_UNNAMEDCELL_INSERTS

Required/Optional: Optional
If the value is YES, then the cell insert points are output in addition to the cell components.

If it is NO, then only the cell components are output.
Values: YES | NO

Default Value: NO

Workbench Parameter: Preserve Unnamed Cell Insert Points

PROPAGATE_CHAIN_ELEMENT_LINKAGES (applicable only with classic geometry)

Required/Optional: Optional
Controls how the linkages attached to complex chain element features are handled.

If the value is YES, then the linkages attached to the first component of the complex chain are returned on the FME fea-
ture, supplementing any existing linkages.

If it is NO, then any linkages on the component elements themselves will be lost and only those linkages attached to
the complex chain itself will be returned.

Values: YES | NO
Default Value: NO

Workbench Parameter: <WorkbenchParameter>

SPLIT_COMPLEX_CHAINS (applicable only with classic geometry)

Required/Optional: Optional

Controls whether or not complex chain elements are returned, merged as a single linear feature or as their com-
ponent parts.

If SPLIT_COMPLEX_CHAINS is YES, then FME adds the attribute igds_chain_number which is added to each element
of a chain split. If desired, this can later be used to aggregate chain elements.

If the value is YES, then each component of a complex chain will be returned as its own feature and no feature will be
returned for the complex chain as a whole. This is equivalent to dropping the complex chain in MicroStation. If the
header had any linkage attributes, these will be propagated to the component elements.

If the value is NO, then all elements of the complex chain will be merged into a single linear feature, any arcs in the
complex chain will be converted into linestrings and any linkages on the component elements themselves will be lost.

Values: YES | NO
Default Value: NO

Workbench Parameter: <WorkbenchParameter>
AGGREGATE_COMPLEX_CHAINS (applicable only with classic geometry)
Controls whether or not complex chain element features are returned as aggregates.

If the value is YES then the individual element properties are held in the igds_complex_elements{} list, and the igds
type s set to igds_complex_string or igds_complex_shape.

If specified, this setting takes precedence over SPLIT_COMPLEX_CHAINS. In other words, if the value of AGGRE-
GATE_COMPLEX_CHAINS is YES, any value specified for SPLIT_COMPLEX_CHAINS is ignored.

Required/Optional
Optional

Values

YES | NO (default)

TAGS_AS_TEXT

Controls whether or not visible tag data elements are output as separate text elements, in addition to having their data
attached to the primary graphic element they go with.

Required/Optional
Optional

Values

YES | NO (visible tag data elements are not output as text elements)

¥ Workbench Parameter
Output Tags as Text

PRESERVE_CURVES

Controls whether or not curve elements will be stroked into lines by adding vertices.

Required/Optional
Optional

Values

YES | NO (curves are not preserved and are stroked into lines)

#% Workbench Parameter
Preserve Curves

ELEVATION_SHIFT_FACTOR
If an elevation shift is desired to build "fake" 3D topology, this is the scaling factor used to generate the shift.

Specifically, the Z value is divided by this factor and the result is added to the X value.

Required/Optional

Optional

¥X Workbench Parameter
Elevation Shift Factor
CURVE_VERTICES

This directive is used only when PRESERVE_CURVES is set to NO. It controls the number of interpolated points
per segment when the curve is stroked into a line.

Required/Optional

Optional

Default Value

5

%X Workbench Parameter

Number of interpolated curve vertices
TRIM_DOWN_TAGS
Removes the tag attributes when set to YES.
Required/Optional
Optional

Values

YES | NO (default)

#% Workbench Parameter

Strip Off Tag Information
SPLIT_MULTITEXT

When set to YES, the reader splits the multi-text into text nodes and outputs the member text elements as individual
text elements.

When set to NO, the text elements are not split.

Required/Optional

Optional

Values

YES (default) | NO

*% Workbench Parameter

Split multi text
READ_BYTE_OFFSET

Required/Optional: Optional

Version: supported for version 7 only

If set to YES, adds the igds_element_byteoffset attribute (which contains the position of the element in the .dgn
file) to the feature. Note, however, that turning this option on might significantly slow down reading on some plat-
forms like UNIX.

Values: YES | NO

Default Value: NO

Workbench Parameter: <WorkbenchParameter>

EXPLODE_DIMENSION_ELEM

Required/Optional: Optional

If set to YES, explodes the dimension element into its pieces. If set to NO, then imports the dimension element as an
aggregate. When importing as an aggregate, the text members are not output as features but are stored as list attrib-
utes of the dimension, and the arc members are stroked.

Values: YES | NO
Default Value: YES

Workbench Parameter: <WorkbenchParameter>
READ_XREF_FILES

If set to YES, reads all the supported elements in the external reference files attached to the source dataset. If the ref-
erence file has nested references, they are also imported. Note that this directive does not affect the reading of ref-
erence file elements as features with an igds_type of igds_ xref.

Required/Optional
Optional

Values

YES | NO (default)

R Workbench Parameter

Read Reference Files

READ_XREF_UPTO_FIRST_LVL

If set to YES, reads all the supported elements in the external reference files attached to the source data set up to the
first level of nesting only. Note that this directive does not affect the reading of reference file elements as features
with an igds_type of igds_ xref.

This directive is valid only if READ_XREF_FILES is set to YES.
Required/Optional
Optional

Values

YES | NO (default)

¥% Workbench Parameter

Read Reference up to First Level
USE_XREF_PARENT_MODEL

If set to YES, uses the model of the parent file of the xref file. Note that this directive does not affect the reading of ref-
erence file elements as features with an igds_type of igds_ xref.

This directive is applicable to version 8 only, since models are supported in version 8 but not in version 7.

Required/Optional
Optional

Values

YES (default) | NO

3% Workbench Parameter

Use Reference's Parent Model (V8 only)

EXPLODE_MULTI_LINE

Required/Optional: Optional

If set to yes, then multilines are exploded into its pieces.
Values: YES | NO

Default Value: NO
READ_DELETED_ELEMENTS

Required/Optional: Optional
This directive is used to read deleted elements.

Note: This directive will not be made available in Workbench Format Parameters. To use this directive, it has to be
set to TRUE in the mapping file.

Values: TRUE | FALSE

Default Value: FALSE
APPLY_WORLD_FILE

Use this directive when you have an ESRI World file (*.wld) that you want FME to use when determining the coor-
dinates for features in your dataset.

When this directive has a value of YES, FME will search the directory of the dataset for a file with the same name as
your dataset but with a .wld extension. If it cannot find a file with that name, it will then look for the file “esri_
cad.wld” within the dataset directory.

If either of those files exist, FME will use the information in the files to translate the coordinates of the features in the
dataset to their new geospatial coordinates.

If the files cannot be found, then the translation will continue, using the coordinate information found in the dataset,
without performing any additional transformation.

Required/Optional
Optional
Values

m YES (Workbench default)
m NO (mapping file default)

*X Workbench Parameter
Apply World File (.wld)

REMOVE_DUPLICATES (applies to classic geometry only)

Set this directive to Yes when it is intended to remove the duplicate points (same x and y coordinates) from the geome-
try of the feature.

Required/Optional
Optional
Values

m YES (mapping file default)
m NO (Workbench default)

Workbench Parameter
Remove Duplicate Points
Reader Directives for FME Objects

SCHEMA_INCLUDE_MSLINKS

Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for MSLINKS are added to the feature.
Values: YES | NO

Default Value: NO

Reader Directives for FME Objects
SCHEMA_INCLUDE_MSLINKS
Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for MSLINKS are added to the feature.
Values: YES | NO

Default Value: NO
SCHEMA_INCLUDE_FRAMME

Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for FRAMME linkages are added to the fea-
ture.

Values: YES | NO

Default Value: NO

Writer Overview

To create a new Design file, header information is obtained from an existing Design file, called a seed file. The IGDS
writer first copies the seed file’s header information to the destination file, and then extracts the conversion param-
eters required to translate coordinates from feature coordinate units to internal IGDS UORs!. This header information

1Since coordinates in Design files are ultimately stored as integer UORs, it is possible for precision to be lost or over-
flow to occur when they are output. Care must be taken to ensure that the conversion parameters in the seed file pre-
serve the data precision and range.

includes type 68 FRAMME elements for V7 only, and type 100 external file reference elements. The IGDS writer uses
the seed file to determine whether the destination file will be two-dimensional or three-dimensional.

Because seed files with a sufficient ground range and resolution may be difficult to obtain, the IGDS V7 writer allows
seed parameters to be overridden in the mapping file. When a seed file with insufficient range available is used, the
IGDS V7 writer will report that features were outside of the bounds of the seed file, and suggest values for the global
origin and UOR/subunit/master unit ratios to use. The FME can also automatically adjust the V7 Design file by setting
the COMPUTE_SEED_FILE_PARAMS flag to yes. Note that this facility has been taken away from the V8 writer — it is no
longer necessary since V8 has a much larger design plane than V7.

Note: When translating from DGN version 8 to DGN version 7 or vice versa in FME Workbench, by default a v8 seed
file is chosen from the set of seed files as provided by FME. This has to be changed to an appropriate version 7 or
version 8 seed file in order to achieve a successful conversion. The seed file is used to determine which version the
user intends to write. Also note that if the user picked a v7 seed file at the time of generating the workspace, the
same workspace can be used to write to v7 or v8 by changing the seed file accordingly. But if a workspace was ini-
tially generated to write to v8, then it cannot be used to write to v7.

A cell library file may optionally be used by both V7 and V8 writer. Cell libraries contain named symbol definitions
which can be used to depict point features. If a cell library is specified, the IGDS writer reads in all the cell definitions
for later when cell features are output. The IGDS writer can use either 2- or 3-dimensional cell libraries, and will auto-
matically convert the cell definitions to be of the correct dimension for output.

The IGDS writer then outputs each FME feature it is given. Most often, a single FME feature corresponds to a single
IGDS element. If any linkages are specified for the element, they are also output. However, some of the IGDS element
types cause several elements to be output as a complex unit, with the complex bit turned on. This occurs when a
multi-line text object, a cell, or a closed shape or linear feature with more than 101 coordinates (5000 coordinates in
V8) is output. The IGDS writer hides all of the details of complex element output.

The IGDS writer can be configured to do one of two things with linear features that have exactly two points. By
default, a type 4 linestring will be created for such features. However, if IGDS_CREATE_LINE_ELEMENTS is set to yes
in the mapping file, then a type 3 line element will be created for the two-point linear feature.

Note: Design files (V7) can be a maximum of 32 MB in size. Files larger than this will not be completely read by
Microstation. The IGDS writer will automatically split any design file it is writing into pieces to avoid overrunning
this maximum size. When this happens, features that would have caused the size limit to be exceeded are written
to additional design files as necessary. The additional files are named <basename>_#.dgn, where # starts at 1 and
increases.

Writer Directives

By default, the <WriterKeyword> for the IGDS writer is IGDS, so a typical mapping file fragment configuring the IGDS
writer would be:

IGDS_DATASET /usr/data/dgn/92b034.dgn

IGDS_SEED_FILE /usr/data/dgn/2dseed.dgn
IGDS_CELL_LIBRARY /usr/data/dgn/cartog.cel

DATASET
The file name of the output IGDS file.

Required/Optional

Required

% Workbench Parameter
Destination Bentley MicroStation Design File

SEED_FILE

The file name of the Design file which will be used to seed the output file’s header information. The default seed file
(v8)is:

$ (FME_HOME) /design/seed3d_m_v8.dgn

To write to V7, you will have to select a valid V7 seed file.

It is important to note that the seed file determines which destination version to write.

Required/Optional

Required

#% Workbench Parameter
V7/V8 Seed File

ALLOW_FILL

Controls whether or not fill linkages will be written out for ellipses, shapes, and solids. This setting does not affect the
usable

Required/Optional
Optional

Values

YES (default) | NO

R Workbench Parameter
Allow Area Color Fills

CELL_LIBRARY

The file name of an IGDS cell library that contains the definitions of cells which may later be output.

Required/Optional
Optional

#% Workbench Parameter
Cell Library File

DEFAULT_CELL_NAME

The default cell used in place of any cells requested but not found in the cell library.

Required/Optional
Optional
Version

This directive is not currently supported by the V8 writer.

¥ Workbench Parameter

Default Cell Name
UNITS

Specifies how FME feature coordinates will be interpreted and converted into UORs.

See the Reader Overview for details.

Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

#% Workbench Parameter
Output Units
CREATE_LINE_ELEMENTS

Controls whether or not type 3 line elements will be created for two point linear features.

Values
YES | NO (default)

If set to NO, then type 4 elements will be created.

Required/Optional
Optional

¥ Workbench Parameter
Type 3 Elements

COMPUTE_SEED_FILE_PARMS

Automatically adjusts the origin and scaling of the seed file to provide an optimum set of parameters for the input
data.

Version

This directive is not currently supported by the V8 writer. It is ignored if chosen with a V8 seed file.

Required/Optional
Optional

*% Workbench Parameter

Compute Optimal Seed File Parameters
UOR_GLOBAL_ORIGIN_X
The global origin of x, measured in UORs. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.
Required/Optional

Optional

¥ Workbench Parameter
UOR X Global Origin

UOR_GLOBAL_ORIGIN_Y
The global origin of y, measured in UORs. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

% Workbench Parameter
UORY Global Origin
UOR_GLOBAL_ORIGIN_2Z
The global origin of z, measured in UORs. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

R Workbench Parameter

UOR Z Global Origin
MASTER_UNIT_NAME
The two-character master unit name to use. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

% Workbench Parameter
Master Unit Name
SUB_UNIT_NAME
The two-character sub unit name to use. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.
Required/Optional

Optional

R Workbench Parameter
Sub Unit Name

SUBS_PER_MASTER
The number of sub units per master unit. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

% Workbench Parameter
Subs per Master
UORS_PER_SUB
The number of UORs per sub unit. Overrides that read from the seed file.
Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

R Workbench Parameter

UOR per Sub
MANGLE_DBCS_TEXT
Controls whether or not double-byte-character-set text is mangled when text strings are written.

MicroStation uses special header bytes to single DBCS text. Note that the IGDS reader automatically de-mangles DBCS
text.

Values
YES | NO (default)

If this directive is set to Yes in the mapping file, then these special bytes will be output when a DBCS text string is
encountered. The default value is No.

Version

This directive is not currently supported by the V8 writer.

Required/Optional
Optional

%% Workbench Parameter
Mangle DBCS Text
SPLIT_BIG_DGN7_FILES
Allows user to split Version 7 DGN files bigger than 32 MB.

Note that this directive can be manually set to No in the mapping file.

Values

YES (default) | NO
Version

This directive applies to the V7 writer only.

Required/Optional
Optional

¥ Workbench Parameter
Split Files (V7 Only)
SPLIT_SIZE_DGN7_FILES

This directive allows you to set the size of the output file, in MB. It is applicable only if SPLIT_BIG_DGN7_FILES
is set to YES.

Values
Default value: 32 MB
Version

This directive applies to the V7 writer only.

Required/Optional
Optional

¥ Workbench Parameter
Split Size in MB (V7 Only)

WRITE_TAGS

Controls whether or not tags should be written for the elements which have necessary tag information attached to
them as attributes.

Values
YES | NO (default)
Version

This directive currently applies only to the V8 writer.

Required/Optional
Optional

¥ Workbench Parameter
Write Tags

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature Attrib-
utes), this format adds the format-specific attributes described in this section.

Special FME feature attributes are used to hold IGDS element parameters. The IGDS writer will use these attribute
values as it fills in an element structure during output. The IGDS reader will set these attributes in the FME feature it
creates for each element it reads.

The FME considers the IGDS level to be the FME feature type of an IGDS feature. Each IGDS element, regardless of its
geometry type, shares a number of other parameters, as described in the following table. Subsequent subsections
describe parameters specific to each of the supported element types.

When writing elements, igds_type has precedence over the igds_element_type, unless there is more than one ele-
ment type for a given type. For example, for igds_line the igds_element_type can be used to force the element to be a

type 4 line element, even if there are only 2 vertices on the line (that is, by rights it should be a type 3 element).

Attribute Name

Contents

igds_basename

The base filename (without extension) of the design file the elements
were read from. This attribute is ignored by the writer.

Range: ASCII filename

igds_color

The element’s color setting. This is the element’s color index into the
color table stored in the design file. This attribute will be overridden by
the igds_symbology value.

Range: 0..255
Default: 0

igds_color.red

Reader only

The element’s red color intensity, as determined by look-
ing up the element’s color index in the color table.

Range: 0..255

igds_color.green

Reader only

The element’s green color intensity, as determined by looking up the ele-
ment’s color index in the color table.

Range: 0..255

igds_color.blue

Reader only

The element’s blue color intensity, as determined by look-
ing up the element’s color index in the color table.

Range: 0..255

igds_class

The element’s class.
Range: 0..15
Default: 0

igds_element_type

The numeric Design file element type code of the element. When writing
to a Design file, the igds_type field overrides this attribute. This attrib-
ute will be overridden by the igds_type value.

Range: See the Overview subsection.
Default: No default

igds_graphic_group

The element’s graphic group number.
Range: 0..65535
Default: 0

Tip: By using a common value for graphic group value, several other-
wise separate elements may be tied together into a /ogical super-ele-
ment for later processing by application programs.

Attribute Name

Contents

igds_hole If present, it sets the “hole” bit on the element it is creating.
Writer only Range: string
Default: No default
igds_level The IGDS level of the feature. The value of this attribute is the same as

the feature type. The Writer will use the value of this attribute if the fea-
ture's type cannot be converted into a valid IGDS level.

Range: 0..64
(Thereis no upper limit on levels for Version 8 DGN files.)

Default: No default

igds_level_comment

Reader only

The comment associated with the level from which the element orig-
inated.

Range: String
Default: No default

igds_level_group_id

Reader only

The group identification of the level from which the element originated.
(Does not exist for Version 8 DGN files.)

Range: String

Default: No default

igds_level_name

During reading this represents the name of the level from which the ele-
ment originated.

Note: For writing to Version 8 DGN files only, this may be used instead
of the feature_type to set the level name.

Range: String
Default: No default

igds_color_set_bylevel

Set to yes if the element’s color is set by level; otherwise it is set to no. If
itis set to yes, the writer sets the element’s property to pick the color
from the level it is on. (Note: Applies to Version 8 DGN files only.)

Range: yes/no

Default: No default

igds_style_set_bylevel

Set to yes if the element’s style is set by level; otherwise
itis set to no. If it is set to yes, the writer sets the ele-
ment’s property to pick the style from the level it is on.
(Note: Applies to Version 8 DGN files only.)

Range: yes/no

Default: No default

igds_weight_set_bylevel

Note: Applies to Version 8 DGN files

(Reader only)

Set to yes if the element’s weight is set by level; otherwise it is set to no.
If it is set to yes, the writer sets the element’s property to pick the
weight from the level it is on.

Range: yes/no

Default: No default

Attribute Name

Contents

igds_snappable

The element’s snappability.
Range: yes or no

Default: yes

igds_style

The element’s line style. This attribute will be overridden by the igds_
symbology value.

Range: 0..7
Default: 0

igds_style_name

Note: Applies to Version 8 DGN files
(Reader only)

The name of the element's line style. This attribute is used by the reader
to provide the name of the style used in the igds_style attribute.

Range: String

Default: No default

igds_symbology

A single integer encoding the element’s style, weight, and color accord-
ing to this formula:

symbology = style + 8*weight + 256 * color

This attribute will override the individual settings for style, weight, and
type if it is specified.

Range: 0..65536

Default: None

igds_type

The FME name for the type of element this feature represents.
Range: See the table in the Overview subsection.

Default: No default

igds_weight

The element’s line weight. This attribute will be overridden by the igds_
symbology value.

Range: 0..31
Default: 0

igds_xlow

The element's minimum X value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_xhigh

The element's maximum X value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_ylow

The element's minimum Y value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_yhigh

The element's maximum Y value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_zlow

The element's minimum Z (elevation) value in ground units. The value of
this attribute is ignored when writing 3D files to V7, and is ignored

Attribute Name

Contents

when writing to V8.
Range: Any Number

Default: No default

igds_zlow_uor

The element's minimum Z (elevation) value in UORs. The value of this
attribute takes precedence over igds_zlow when the feature is written.
The value of this attribute is ignored when writing 3D files to V7, and is
ignored when writing to V8.

Range: Any Number

Default: No default

igds_zhigh

The element's maximum Z (elevation) value in ground units. The value
of this attribute is ignored when writing 3D files to V7, and is ignored
when writing to V8.

Range: Any Number
Default: No default

igds_zhigh_uor

The element's maximum Z (elevation) value in UORs. The value of this
attribute takes precedence over igds_zhigh when the feature is written.
The value of this attribute is ignored when writing 3D files to V7, and is
ignored when writing to V8.

Range: Any Number
Default: No default

igds_custom_linestyle

If an element has a custom line style, then this attribute will contain the
name of the custom line style. It does not appear as part of the attrib-
utes of the element in case it does not have any custom line styles
defined for it.

Range: String
Default: No default

igds_custom_
linestyle_rbit

This is used to write the custom line styles. This value sets the rbit of
the user linkage.

Range: Oor 1

Default: 0

igds_custom_
linestyle_mbit

This is used to write the custom line styles. This value sets the mbit of
the user linkage.

Range: Oor 1
Default: 0

igds_custom_
linestyle_ibit

This is used to write the custom line styles. This value sets the ibit of the
user linkage.

Range: Oor1

Default: 0

igds_custom_
linestyle_class

This is used to write the custom line styles. This value sets the class of
the user linkage.

Range: Oor 1

Attribute Name

Contents

Default: 0

igds_element_
byteoffset

This is used to tell the position of the element.
Range: Any Number

Default: No default

igds_model_name

Note: Applies to Version 8 DGN files.

The name of the model to which the feature belongs.
Range: String
Default: No default

igds_model_id

Note: Applies to Version 8 DGN files.

The ID of the model to which the feature belongs.
Range: Any positive integer

Default: No default

igds_element_new

The NEW property of the element.
Range: YES or NO

Default: No default

igds_element_modified

The MODIFIED property of the element.
Range: YES or NO
Default: No default

igds_date_last_modified

Note: Applies to Version 8 DGN files
(Reader only)

Stores the date the element of last modified in the format YYYYMMDD
hh:mm:ssAM/PM.

Default: No default

igds_element_locked

The LOCKED property of the element.
Range: YES or NO
Default: No default

igds_element_id

The unique ID of each element in a DGN file.
Note: Applies to Version 8 DGN files.
Range: Any positive integer

Default: No default

mslink_x

Value of mslink key of the corresponding linkage, where x is the linkage
number starting with 0.

Default: No default

entity_num_x

Value of entity_number of the corresponding linkage where x is the link-
age number starting with 0.

Default: No default

link_type_x

Value of link type of the corresponding linkage, where x is the linkage
number starting with 0.

Default: No default

igds_element_association_id

The tags store this ID as the element ID it is attached to.

Attribute Name Contents

igds_z_value This attribute is for the writer only and should be used only when 3D is
intended to be forced.

Default: 0

igds_chain_number If SPLIT_COMPLEX_CHAINS is YES, then FME adds the attribute igds_
chain_number which is added to each element of a chain split.

Default: No default

igds_deleted This attribute is set to yes only when the element read was a deleted ele-
ment.

Default: No default

igds_element_visibility This attribute has the value yes if the level the element is on has its dis-

. . . play property set to “on”; otherwise, the value is no.
Note: Applies to Version 8 DGN files.

Default: No default

igds_element_view_independent This attribute has the value yes if the element is view-independent;

. . . otherwise, the value is no.
Note: Applies to Version 8 DGN files.

Default: yes

igds_is_graphic_cell_relative Note: This attribute is for graphic cells only. It is ignored for point cells
and shared cells.

If this attribute is set to Yes, then the graphic cell is written as relative
graphic cell. This means that the cell member with the lowest level
number will be put on the current (feature's) level. All the subsequent
ones are offset accordingly.

For example, if a cell had members on level 4, 6 and 7 respectively and
we are writing this cell feature on level 2, then the member with level 4
gets written on level 2. The members with level 6 and 7 are written on

level 4 and 5, respectively.

This also applies to members of nested cells. Note that all the offset lev-
els should be provided in the seed file, otherwise the cell would be
skipped.

Note: When writing to Version 8 DGN files only, if the igds_level is not
supplied, the level name will be used to look up the level number in the
seed file.

Default: No

Attribute Linkages

Each element in an IGDS file may have one or more attribute linkages attached to it. The IGDS reader and writer sup-
port both user data and database attribute linkages.

Note, however, that the DGN V8 reader and writer do not support the interpretation of user linkages. Database link-
ages and MSLINKS are supported. FRAMME linkages are supported for reading.

Because an element may have more than one linkage, linkages are stored in an FME feature attribute list named igds_
linkage{#}. As with other feature attribute lists, # starts at zero and increments for each successive linkage.

Currently, only database and DMRS linkages are supported for reading and writing of Version 8 DGN files. How-
ever, FRAMME linkages are supported when reading Version 8 DGN files.

Attribute Lists - all linkages

The following attribute list item names are used by all linkages. Note that the class and various bit fields are not used
when the linkage type is dmrs.

Linkage Parameter | Contents

type The type of linkage.

Range:

user|dbasejodbc]|

oraclelinformix|ris|

dmrsi|framme

Default: No default

Note: User and FRAMME linkages are not currently sup-
ported for Version 8 DGN files.

class Linkage Class.
Range: 0..15
Default: 0

ibit Linkage ibit value. This bit represents whether the linkage
is informational or non-informational.

Range: 0|1

Default: 0

mbit Linkage mbit value. Indicates linkage has been modified.
Range: 0|1
Default: 0

rbit Linkage rbit value. The bit is set for remote linkages.
Range: 0|1
Default: 0

ubit Linkage ubit value.

Range: 0|1

If set to 1 then linkage is user data linkage; if set to O,
then the linkage type is always dmrs.

Default: 1

Attribute Lists - user linkage

If the linkage is of type user (Version 8 DGN files support user linkages having a userld of 2570, 22244, 32000,
32001, or 39030 only), then these attribute list item names are used to specify the values for the user linkage:

Linkage Parameter Contents

userld The user ID of the linkage. This is application-specific.
Range: 0..65535
Default: No default

long{#7} The user data associated with a user linkage may be spec-
ified as a list of 32-bit long integers or as a list of 16-bit

Linkage Parameter

Contents

words. If 32-bit long integers are used to fill out the attrib-
ute linkage, they have this suffix and are numbered
sequentially starting from 0.

Range: 32-bit integer

Default: 0

word{#}

If 16-bit words are used to fill out the attribute linkage,
they have this suffix and are numbered sequentially start-
ing from 0.

Range: 0..65535

Default: 0

User linkages with a userld of 2570, 22234, 32000, 32001, or 39030 (Extended entity data linkage)

In V7 these linkages are supported like any other user linkages, but in V8 FME stores them as a blob and that gets car-

ried over to V8 as a blob.

Note that in order to get Extended Entity Data linkages to carry over correctly, the original file containing these link-
ages should be picked as the seed file. The support for these linkages would work for V8 to V8 only. Any attempt to
transfer them from V7 to V8 (or vice versa) will not work. In V8, they store linkage attributes as follows:

Linkage Parameter

Contents

userld

The user -ID of the linkage. This value would be any of
2570, 22244, 32000, 32001, or 39030.
Default: No default

blob

This stores the linkage as binary data.
Default: No default

blobsize

Stores the size of the blob.
Range: 0..256
Default: No default

flags

Flags for the user linkage.
Range: 0..256
Default: No default

type

Type of linkage.
Default: user

Attribute Lists - dbase, odbc, oracle, ris, dmrs, informix linkages

If the linkage is of type dbase, odbc, oracle, ris, dmrs, or informix, then these attribute list item names are used to
specify the values for the database linkage.

Linkage Parameter Contents

entity_number The entity number of the linkage.
Range: 0..65535
Default: 1

key The key value of the database linkage. This value cor-
responds to the value in a field in the attribute row asso-
ciated with the element in the database.

Range: 32-bit integer for 8 word linkage formats (i.e.,
Oracle, ODBC) and 24-bit integer for 4 word linkage formats
(i.e., DMRS)

Default: No default

readonly This applies to the dmrs linkages and indicates whether or
not the linkage is readonly. MGE systems also use this to dif-
ferentiate between feature (which are readonly) and attribute
(which are not) linkages.

Range: yes|no

Default: yes

trailing_flags The trailing flags of the database linkage. This can be used
to set the "daskey".

(Not supported for Version 8 DGN files.)

Range: signed 32-bit integer

Default: 0

firstword This is the actual value of the first word of the dmrs linkage.
It is stored for dmrs linkages only.

Range: Unsigned 16-bit integer

Default: 0

Itype This attribute is used internally by the V8 writer and is not
intended for users.

key2 This attribute is used internally by the V8 writer and is not
intended for users.

suspectlinkage This attribute is stored only if the reader detected that a cer-
tain linkage had an odd number of words, rather than an
even number.

Attribute Lists - framme linkage

If the linkage is a framme type, the following attribute list item names are used to specify the values for the Facilities
Rulebase Application Model Management Environment (FRAMME) linkage.

Familiarity with the FRAMME system is necessary to fully understand the meaning of these attributes. Note that
FRAMME linkages are only supported when reading Version 8 DGN files.

Linkage Parameter Contents

ufid The unique feature ID of the linkage. This is part of the data-
base key used by FRAMME.

Range: unsigned 32-bit integer

Default: 0

ufid_low The high low order bytes of the unique feature ID of the linkage. This is part
of the database key used by FRAMME.

Range: unsigned 16-bit integer
Default: 0

ufid_high The low order bytes of the unique feature ID of the linkage. This is part of
the database key used by FRAMME.

Range: unsigned 16-bit integer

Default: 0

design_file The base name of the design file holding the linkage. This
makes up the second part of the database key used by
FRAMME.

Range: character string
Default: No default - not used when writing

state_num The state number of the FRAMME feature
Range: unsigned 16-bit integer
Default: 0
rule_base_id The FRAMME rule base identifier which is fixed at 0x20.

Range: 0x20 (32 decimal)
Default: 0x20

component_num The component number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

component_count The component count, or occurrence, of the FRAMME fea-
ture.

Range: unsigned 16-bit integer

Default: 0

feature_num The feature number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

long{#7} A list of 16-bit words that associated with "long" FRAMME
linkages.

Range: unsigned 16-bit integer

Default: 0

For convenience, some of the list item names above are provided as non-list attributes which represent only the first
framme linkage found per element. These attributes are listed below.

Linkage Parameter Contents

ufid The unique feature ID of the linkage. This is part of the data-
base key used by FRAMME.

Range: unsigned 32-bit integer

Default: 0

ufid_low The high low order bytes of the unique feature ID of the link-
age. This is part of the database key used by FRAMME.
Range: unsigned 16-bit integer

Default: 0

ufid_high The low order bytes of the unique feature ID of the linkage.
This is part of the database key used by FRAMME.
Range: unsigned 16-bit integer

Default: 0

dgnfile The base name of the design file holding the linkage. This
makes up the second part of the database key used by
FRAMME.

Range: character string
Default: No default — not used when writing

state_num The state number of the FRAMME feature
Range: unsigned 16-bit integer
Default: 0

comp_num The component number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

comp_count The component count, or occurrence, of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

feat_num The feature number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: O

Attribute Lists - incosada linkage

If the linkage is an incosada type, then the following attribute names are added by the reader to hold the values for
the British Columbia Forestry File (INCOSADA) linkage. Note that INCOSADA linkages are not supported in Version 8
DGN files, nor are they supported by the Design file writer.

Linkage Parameter Contents

incosada_fid The unique feature ID of the linkage.

Range: Character string of size 32 consisting of hex digits

Linkage Parameter Contents

incosada_sequence_ Sequence number of the linkage.
num .
Range: integer

incosada_feature_ The feature code of the INCOSADA feature

code . o
Range: unsigned 32-bit integer

Example

For example, the FME feature specified by the partial transfer specification below would have two linkages. The first
linkage is a user linkage which specifies that the shape is to be filled with color 12, and the second linkage is a dBASE
linkage which links the element to the record with the key value of 1001. Note that if the same feature were to have an
igds_fill_color attribute, its value would override override the color specified in any solid fill.

MACRO filluserId 65

MACRO fillMagic 67586

IGDS 32 igds_type igds_shape \
igds_color 8 igds_weight 1 \
igds_linkage{0}.type user \
igds_linkage{0}.userid $(filluserid) \
igds_1linkage{0}.long{0} $(fillmMagic) \
igds_linkage{0}.long{1} 12 \
igds_Tlinkage{1}.type dbase \
igds_Tlinkage{1}.key 1001

Custom Line Styles

The custom line styles are stored as linkages of the element.

In V7, each custom line style name has an ID, which is a negative integer, and is stored as igds_Tink-
age{n}.Tong{0}. In V8, each custom line style name has an ID, which is a negative integer, and is stored as
igds_styTe. (Note that there are some limitations to V8 custom line style support.)

It is fairly simple to write custom line styles while translating from dgn to dgn. However, it is the user’s respon-
sibility to provide the correct seed file containing the definitions of the custom line styles and to copy the . 'SC file
into the directory containing other Microstation resource files. Here are the steps to configure Microstation for Custom
Line Styles:

Open the seed file or destination file.

Select Workspace > Configuration > Symbology.
Click Select.

Select the . r'Sc file that you want to use.

Click Add to add the . r'sc file to the list.

Click OK and then Done.

N v & w N

Close the file and then reopen it. It is important close the file; otherwise, the changes in the configuration just
made are not reflected.

8. From the Active Line Style pull-down menu, select Custom. Then select the name of line style that you want to
use, and double click to activate it.

9. Select File > SaveSettings.

Itis also possible to write a new custom line style when writing to a dgn file in cases where it was not originally pro-
vided in the source dataset. The user has to provide the value of igds_custom_Tinestyle whereas itis
optional to provide the values for igds_custom_Tlinestyle_rbit, igds_custom_Tinestyle_mbit,
igds_custom_Tinestyle_ibitand igds_custom_Tinestyle_class. If they are not provided, the
writer uses the default values.

Note: When translating from DGN to DGN where a complex chain in the source data set has custom line styles, then
you have to set the keyword PROPAGATE_CHAIN_ELEMENT_LINKAGES to true to translate the custom line
styles properly to the destination format.

If a complex chain has different line styles, then in order to retain those line styles, set "Drop Complex Chain” to
yes.

Arcs
igds_type: igds_arc

This geometry type is stored in an IGDS type 16 element. Arc features are just like ellipse features, except that two
additional angles control the portion of the ellipse boundary that is drawn. Arcs with 3D rotations will be stroked into
lines and returned as igds_line elements.

Tip: The function @Arc() can be used to convert an arc to a linestring. This is useful for storing
arcs in systems which do not support them directly.

Attribute Name Contents

igds_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

igds_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

igds_start_angle Refer to the @Arc (function) in the FME Functions and Factories man-
ual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: No default

igds_sweep_angle Refer to the @Arc (function) in the FME Functions and Factories man-
ual for a detailed definition of sweep_angle.

Range: Any real number > 0
Default: No default

igds_rotation The rotation of the major axis. The rotation is measured in
degrees counterclockwise up from horizontal.

Range: -360.0..360.0

Default: 0

igds_arc_orientation The orientation of the arc. As the sweep angle is always
returned as positive, this field can be used to determine the
original orientation of the arc. This attribute is only used dur-
ing reading.

Range: clockwise | counterclockwise

Default: none

igds_quat_p Values of quaternion for 3D arcs
igds_quat_q Default: none

igds_quat_r

Attribute Name Contents

igds_quat_s

Cells
igds_type: igds_cell

Cells correspond to IGDS element type 2. The FME feature used to hold a cell element does not contain the complete
set of elements which make up the cell’s definition. Instead, FME features representing IGDS cells contain only the cel-
I’s name, as well as rotation and scaling parameters. The IGDS reader skips all elements that define the cell (extract-
ing only the text strings from any text elements in the cell), and the IGDS writer extracts the cell description from the
supplied cell library to be output. Cell features are point features and have only a single coordinate. Writing of named
cells is not currently supported by the V8 writer. However, the V8 writer can successfully handle unnamed cells

(groups).

The IGDS reader may be set to expand cells. If the mapping file contains a yes setting for IGDS_EXPAND_CELLS, then
each member element of the cell is read and output. However, the cell insertion point itself is not output. In addition,
the cell members are assigned a unique cell sequence number in the igds_cell_sequence_number. This number can be
used to later regroup the cell components if that is required.

If the setting for IGDS_EXPAND_CELLS is no, then only the cell insertion point is output.

Both graphic and point cells are supported. Graphic cells use the level, color, and style information from the cell
library, and must always have a feature type of 0. Point cells use the level, color, and style information provided in the
mapping file. Note that for point cells, when cell header is assigned igds_color then this color is assigned as fill_color
to all of its members capable of having fill_color i.e. shapes etc. If the cell header had igds_fill_color then it gets
ignored.

Both V7 and V8 can write cells. V8 can also preserve the cell structure. For example, if the cell had any nested cells,
complex chains or complex shapes, then the whole nesting is preserved.

The IGDS reader also supports orphan or unnamed cells and is controlled by the keyword IGDS_EXPAND_UNNAMED_
CELLS. A named/unnamed cell can have further nested named/unnamed cells. The way the IGDS Reader treats them,
depending on their respective keywords, is explained in these sections:

e Case-I: Named cell (root) nested named cell

e Case-II: Named cells (root) nested unnamed cells

e Case-III: Unnamed cells (root) nested unnamed cells
e Case-IV: Unnamed cells (root) nested named cells

Case-I: Named cell (root) nested named cell:

IGDS_EXPAND_CELLS (YES): The cell insertion point is not stored. Members of root and nested cells are stored as
independent features.

IGDS_EXPAND_CELLS (NO): Only the root cell’s insertion point is stored.
Case-II: Named cells (root) nested unnamed cells:

IGDS_EXPAND_CELLS (YES) AND IGDS_EXPAND_UNNAMED_CELLS(YES): Neither of the two cells is preserved. All
members of both cells are output as independent features. No donuts are formed in case the unnamed cell contained
overlapping polygons.

IGDS_EXPAND_CELLS (YES) AND IGDS_EXPAND_UNNAMED_CELLS(NO): Neither of the two cells is preserved. All
members of both cells are output as independent features. No donuts are formed in case the unnamed cell contained
overlapping polygons.

IGDS_EXPAND_CELLS (NO) AND IGDS_EXPAND_UNNAMED_CELLS(YES): Only the root cell is output. Nested
unnamed cells are ignored.

IGDS_EXPAND_CELLS (NO) AND IGDS_EXPAND_UNNAMED_CELLS(NO): Only the root cell is output. Nested unnamed
cells are ignored.

Case-III: Unnamed cells (root) nested unnamed cells:

IGDS_EXPAND_UNNAMED_CELLS(YES): The insertion point of the root cell is not preserved. No donuts are formed if
existed. All elements of the root and the nested cells are given.

IGDS_EXPAND_UNNAMED_CELLS(NO): Make donuts of all members of the root and nested cells.
Case-IV: Unnamed cells (root) nested named cells:

IGDS_EXPAND_UNNAMED_CELLS (YES) AND IGDS_EXPAND_CELLS(YES): Neither of the cells is preserved. No
donuts are formed. All elements of both cells are output as independent features.

IGDS_EXPAND_UNNAMED_CELLS (YES) AND IGDS_EXPAND_CELLS(NO): Only elements of the root unnamed cell are
output. Nested cells are preserved and output as points.

IGDS_EXPAND_UNNAMED_CELLS (NO) AND IGDS_EXPAND_CELLS(YES): All elements of nested named cells are out-
put. Donuts are formed. If both cells have donuts then an aggregate of donuts is formed.

IGDS_EXPAND_UNNAMED_CELLS (NO) AND IGDS_EXPAND_CELLS(NO): The insertion point of the root unnamed cell
is preserved. Donuts are formed from the root cell only. The nested cell is ignored and so are its members.

Attribute Name Contents

igds_cell_name The name of the cell. Corresponds to the name of the
cell in a cell library.

Range: Character String

Default: No default

igds_cell_x_scale The scaling factors to apply to the cell.
igds_cell_y_scale Range: Any real number > 0

igds_cell_z_scale Default: 1

igds_cell_size The size in ground units of the maximum span of the
cell. If this is specified, the settings for
igds_cell_x_scale,

igds_cell_y_scale, and

igds_cell_z_scale are ignored. If it is not specified,
then the scaling factors described above are used.
This attribute is not assigned any value by the
reader.

Range: Any real numbers > 0

Default: No default

igds_rotation The rotation of the entire cell. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
rotation Range: -360.0..360.0

Default: 0

igds_text_string{#} When reading only, this contains the text string of
the #th text element in the cell.
Range: Any string

igds_cell_sequence_number When reading only with IGDS_EXPAND_CELLS set to
yes, this contains a unique number that can be used

Attribute Name

Contents

to regroup a cell with its component elements.

igds_cell_size_x

This is the difference of minX and maxX stored in
ground units.

Note: If igds_cell_size_x and igds_cell_size_y are
both specified, then igds_cell_size_x_scale, igds_
cell_size_y_scale and igds_cell_size_z_scale values
are ignored.

igds_cell_size_y

This is the difference of minY and maxY stored in
ground units.

igds_cell_num_members

Stores a cell’s total number of members.
Range: Any real numbers > 0
Default: No default

igds_unnamedcell_num_of __
elements

Stores number of elements of an unnamed cell
(group)

Range: Any real numbers > 0

Default: No default

igds_cell_insertion_x
igds_cell_insertion_y

igds_cell_insertion_z

Stores cell insertion point
Range: Any real number
Default: No default

igds_cell_element_class
igds_cell_element_style
igds_cell_element_color
igds_cell_element_weight

igds_cell_element_level

Stores properties of the cell if the cell is graphic.
Default: No default

igds_cell2DTMat11
igds_cell2DTMat12
igds_cell2DTMat21

igds_cell2DTMat22

Cell’s 2D matrix containing rotation and scale infor-
mation.
Default: No default

igds_cell3DTMat11
igds_cell3DTMat12
igds_cell3DTMat13
igds_cell3DTMat21
igds_cell3DTMat22
igds_cell3DTMat23
igds_cell3DTMat31
igds_cell3DTMat32
igds_cell3DTMat33

Cell’s 3D matrix containing rotation and scale infor-
mation.
Default: No default

Cells (Shared)
igds_type: igds_shared_cell

Shared cells correspond to IGDS element type 34 and 35. They consist of two parts: the definition (Type 34) and the
element (Type 35). The definitions list the component elements of the cells. The elements are made up of an insertion
point as well as rotation and scaling parameters. The IGDS reader skips all elements that define the cell and only proc-
esses the element features as point features that have only a single coordinate.

If IGDS_EXPAND_CELLS is set to yes, then the shared cells are expanded into its pieces; otherwise only the cell inser-
tion point is output for each shared cell instance. Expansion of shared cells is supported by both V7 and V8.

The IGDS V8 writer can write shared cells.

Shared cell instances have the following attributes:

Attribute Name Contents

igds_cell_name The name of the cell.
Range: Character String
Default: No default

igds_cell_x_scale The scaling factors to apply to the cell.
igds_cell_y_scale Range: Any real number > 0
Default: 1

igds_cell_z_scale

igds_rotation The rotation of the entire cell. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0

rotation
Default: 0
igds_sharedcell_ The description of the cell. (Supported for version 8
description DGN files only.)
Range: Character String
Default: No default
igds_cell_num_members Stores a cell’s total number of members.

Range: Any real numbers > 0
Default: No default

Complex Shapes/Strings

igds_type: igds_complex_shape
igds_type: igds_complex_string

Complex shape/string elements are normally treated the same as shape/linestring elements by the IGDS reader. How-
ever, if the exact original composition of the complex shape is required, the IGDS_AGGREGATE_COMPLEX_CHAINS
directive can be set to yes and then complex shape/string elements will be returned as single FME features with igds_
complex_shape/igds_complex_string as their igds_type. This allows preservation of any arc elements that made up the
boundary of the shape, for example.

The IGDS writer will accept and write out complex shape/string elements at any time.

The complex shape/string feature consists of an aggregate geometry. Each aggregate geometry corresponds to an
entry in an attribute list. The list is called igds_complex_elements{#}, where # starts at 0 and increments for each aggre-
gate element. The list’s item names are identical to the component feature’s attributes.

Splitting of FME geometries such as IFMEPaths into complex shape and complex string elements will occur auto-
matically on write, such that the size limitations of complex shape and complex string elements are not exceeded. Sim-
ilarly, each line string element component of complex shape and complex string elements will be created so as not to
exceed the maximum number of coordinates for a line string.

Curves
igds_type: igds_curve

Curve features are used in Design files to represent smooth bezier curves. Curve features have four extra points
which are used to determine the slope at the starting and ending points of the curve. These points are not part of the
real coordinates of the feature, and are stored in the attribute list igds_curve_slope{}. The first two entries in the list
define the slope points for the start of the feature, and the last two define the slope points for the end of the feature.
The IGDS reader and writer interpret the curves coordinates as the points which define the curve. If the PRESERVE_
CURVES directive is YES, then the reader does not interpolate points along the curve. If curves are not preserved,
they will have interpolated points added to them and igds_curve elements will be returned as igds_line elements.

A curve feature has these attributes:

Attribute Name Contents

igds_curve_slope{0}.x The ground coordinates of the slope points for the
igds_curve_slope{0}.y beginning of the feature.

igds_curve_slope{0}.z
igds_curve_slope{1}.x If the design file was two-dimensional (2D), then the
igds_curve_slope{1}.y .z attributes will not be present.

igds_curve_slope{1}.z

igds_curve_slope{2}.x The ground coordinates of the slope points for the

igds_curve_slope{2}.y end of the feature
igds_curve_slope{2}.z '

igds_curve_slope{3}.x If the design file was 2D, then the .z attributes will

igds_curve_slope{3}.y not be present.
igds_curve_slope{3}.z

Tip: When a curve feature is reprojected, its slope points are automatically reprojected.

BSpline Curves
igds_type: igds_line

This is stored as an IGDS type 27 element. The information of the poles, knots and weights of a spline are stored in
element types 21, 26 and 28 respectively. Currently, only reading of bsplines is supported. The bsplines are read
and stroked into segments (which is why its igds_type is stored as igds_line).

External Reference Files

Reference files can be read in two ways. In order to read the supported elements stored in reference files, the key-
word READ_XREF_FILES has to be set to yes. The default is no. For this method of reading the following is true: All
the reference files inherit the working units and offsets from the parent file and their respective units and offsets are
ignored. The V8 reader can read both v7 and v8 attachments, whereas V7 will read only V7 references. Both V7 and
V8 can read nested references. The nesting can be restricted to first level only by setting the keyword READ_XREF_
UPTO_FIRST_LVL as true.

Alternatively or in addition, the V8 reader is able to read reference files are also read as individual features with an
igds_type of igds_xref. These features are a non-graphical representation of the XREF elements themselves, not the
elements stored within them. Though the V8 writer does not create external reference elements, when the V8 writer
uses a seed file, the external reference file elements in the seed file are preserved and put into the destination data-
set.

An external reference element has the attributes shown below.

Attribute Name

Contents

igds_xref_camera_focal_len

The focal length value for the camera used for
the view of the external file reference data.
Range: Real Number

Default: 0.0

igds_xref_camera_pos_x

The position in the x dimension for the camera
used for the view of the external reference file
data.

Range: Real Number

Default: 0.0

igds_xref_camera_pos_y

The position in the y dimension for the camera
used for the view of the external reference file
data.

Range: Real Number

Default: 0.0

igds_xref_camera_pos_z

The position in the z dimension for the camera
used for the view of the external reference file
data.

Range: Real Number

Default: 0.0

igds_xref_desc

The position in the z dimension for the camera
used for the view of the external file reference
data.

Range: String

Default: No default

igds_xref_file_build_opts

The file builder option mask for the external ref-
erence file.

Range: Integer

Default: 15

igds_xref_file_disp_opts

The file displayer option mask for the external
reference file.

Range: Integer

Default: 73858

igds_xref_file_name

The filename of the external reference file. This
is a basename and extension, not a path.
Range: String

Default: No default

igds_xref_file_num

The file number for the external reference file.
Range: Integer
Default: 1

igds_xref_group_id

The number of the group to which this external
reference file belongs.

Range: Integer

Default: 0

igds_xref_master_origin_x

The x dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number

Default: 0.0

igds_xref_master_origin_y

The y dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number

Default: 0.0

igds_xref_master_origin_z

The z dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number

Default: 0.0

igds_xref_model_name

The name of the model of the external reference
file. This value may be empty for the default
model.

Range: String

Default: No default

igds_xref_name

The logical name of the external reference file.
This value may distinguish between multiple ref-
erences to the same reference file.

Range: String

Default: No default

igds_xref_nest_depth

The depth of nested reference of the external ref-
erence file.

Range: 0..65536

Default: 0

igds_xref_parent_attach_id

The id of the parent attachment of the external
reference file.

Range: Numeric string

Default: “0”

igds_xref_file_path

The file path of the external reference file.
Range: String
Default: No default

igds_xref_reference_origin_x The x dimension value for the origin of the exter-
nal reference file position in reference UORs.
Range: Real Number

Default: 0.0

igds_xref_reference_origin_y The y dimension value for the origin of the exter-
nal reference file position in reference UORs.
Range: Real Number

Default: 0.0

igds_xref_reference_origin_z The z dimension value for the origin of the exter-
nal reference file position in reference UORs
Range: Real Number

Default: 0.0

igds_xref_rotation The rotation value for the external reference file.
Range: Real Number
Default: 0.0

igds_xref_scale The conversion factor value for the external ref-
erence file.

Range: Real Number

Default: 1.0

igds_xref_version The version number value for the external ref-
erence file.

Range: Integer

Default: 1

igds_xref_z_back The back z clip value for the external reference
file.

Range: Real Number

Default: 0.0

igds_xref_z_front The front z clip value for the external reference
file.

Range: Real Number

Default: 0.0

Multilines
igds_type: igds_line

The multilines are stored with their igds_type as igds_line, but the fact that they are multilines can be detected from
igds_element_type, which is stored as type 36. The multilines are stored as lines, therefore they are written as lines
when performing a DGN to DGN translation. Currently, the multilines are imported with their centerlines only. How-
ever, the attributes such as offset and symbology (style, weight, color) of the pieces are stored in the list attribute
igds_multiline{}. When reading multilines from a V7 dataset, the multilines are ignored if they are part of a cell. In
addition, if the keyword READ_BYTE_OFFSET is set to true, then it gets ignored for multilines.

A multiline has the attributes shown below.

Attribute Name

Contents

igds_mlineStyle{# }.offset
igds_mlineStyle{ # }.style
igds_mlineStyle{# }.color
igds_mlineStyle{# }.weight

igds_mlineStyle{#}.level

Where offset is the perpendicular dis-
tance of the piece from the centerline,
and {}.style, {}.color, {}.weight and
{}.level are the line styles, color, weight
and level of the individual pieces.

igds_mlinehdr_num_lines

Number of pieces of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_num_breaks

Number of breaks of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_num_nodes

Number of nodes of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_startcap_angle

Angle in degrees of the start cap.
Range: -360.0..360.0
Default: 0

igds_mlinehdr_endcap_angle

Angle in degrees of the end cap.
Range: -360.0..360.0
Default: 0

igds_mlinehdr_freeze_group

Multiline header attribute - value is
always 0 (for internal use by the toolkit)

igds_mlinehdr_version

Multiline header version - currently itis 3
(for internal use by the toolkit)

igds_mlinehdr_closed

Whether or not multiline is closed.
Range: Oor 1
Default: No default

igds_mlinehdr_arc_cap_by_profile_
line

Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_offset_model_valid

Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_offset_mode

Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_placement_offset

Global offset from definition points.
Range: Real Number
Default: No default

Attribute Name

Contents

igds_mlinehdr_style_id.lo

igds_mlinehdr_style_id.hi

ID of multiline style element.
Range: Integer
Default: No default

igds_mlinehdr_styleScale

Scale of multiline style element.
Range: Real Number
Default: No default

igds_mlinehdr_updv.x
igds_mlinehdr_updv.y

igds_mlinehdr_updv.z

Up direction vector for 3D to determine
side orientation.

Range: Real Number

Default: No default

igds_mlattrib_startcap.usestyle
igds_mlattrib_startcap.useweight
igds_mlattrib_startcap.usecolor
igds_mlattrib_startcap.cap_on_arc
igds_mlattrib_startcap.cap_out_arc
igds_mlattrib_startcap.cap_line
igds_mlattrib_startcap.use_class
igds_mlattrib_startcap.customstyle

igds_mlattrib_startcap.cap_color_
from_segment

igds_mlattrib_startcap.construction_
class

The same list of attributes is repeated for end_cap and
joint; for example:

igds_mlattrib_endcap.usestyle etc.
and

igds_mlattrib_joint.usestyle etc.

Flags specifying the properties of the
multiline.

Range: Oor 1

Default: No default

igds_mlattrib_startcap.style

Style of start cap.
Range: 0..7
Default: 0

igds_mlattrib_startcap.weight

Weight of start cap.
Range: 0..31
Default: 0

igds_mlattrib_startcap.color

Color of start cap.
Range: 0..254
Default: 0

Attribute Name

Contents

igds_mlattrib_endcap.style

Style of end cap.
Range: 0..7
Default: 0

igds_mlattrib_endcap.weight

Weight of end cap.
Range: 0..31
Default: 0

igds_mlattrib_endcap.color

Color of end cap.
Range: 0..254
Default: 0

igds_mlattrib_joint.style

Style of joint cap.
Range: 0..7
Default: 0

igds_mlattrib_joint.weight

Weight of joint cap.
Range: 0..31
Default: 0

igds_mlattrib_joint.color

Color of joint cap.
Range: 0..254
Default: 0

igds_mlineStyle{#}.offset

Offset of each member of multiline
Default: No Default

igds_mlineStyle{#}.lineattrib.usestyle
igds_mlineStyle{#}.lineattrib.useweight
igds_mlineStyle{#}.lineattrib.usecolor
igds_mlineStyle{#}.lineattrib.cap_on_arc
igds_mlineStyle{# }.lineattrib.cap_out_arc
igds_mlineStyle{#}.lineattrib.cap_line
igds_mlineStyle{#}.lineattrib.use_class
igds_mlineStyle{#}.lineattrib.customstyle

igds_mlineStyle{#?}.lineattrib.cap_color_from_seg-
ment

igds_mlineStyle{# }.lineattrib.construction_class

Values defining the flag of line attribute
Default: No Default

igds_mlineStyle{#}.lineattrib.style

Style of line attribute
Range: 0..7
Default: 0

Attribute Name Contents

igds_mlineStyle{#}.lineattrib.weight Weight of line attribute
Range: 0..31
Default: 0

igds_mlineStyle{# }.lineattrib.color Color of line attribute
Range: 0..254
Default: 0

igds_mlineStyle{# }.lineattrib.level Level of line attribute
Default: 0

igds_mlinenode_props If a multiline has a large number of
nodes, which is very likely, it will need to
be cleaned up before viewing it in the Uni-
versal Viewer. Store these two attributes
as strings with comma-separated values.
This will be the protocol

b_index1, bCountl, b_index2, bCount2,
...... b_indexn, bCountn

The writer will parse them in the same
order and use them.

Default: No default

igds_mlinebreak{# }.segmask Mask bit set for each line that is broken.
Default: No default

igds_mlinebreak{#}.from_joint Flags setting the line break properties
igds_mlinebreak{#?}.to_joint Default: No default
igds_mlinebreak{# }.point_offset Offset from point

Default: No default

igds_mlinebreak{#}.length Break length
Default: No default

igds_mlinebreak{#}.angle Reserved - should be 0.0
Default: No default

Dimensions
igds_type: igds_line

The dimensions are stored with their igds_type as igds_line but the fact that they are dimensions can be detected
from igds_element_type which is stored as type 33. The keyword EXPLODE_DIMENSION_ELEM controls the way the
dimensions are imported. When it is set to yes, the dimensions are exploded into its pieces; when itis set to no, itis
imported as an aggregate. The default is yes. When dimensions are imported as aggregates, the arcs are stroked and
text features are output as list attributes only. Therefore, when performing a DGN-to-DGN translation with the option
EXPLODE_DIMENSION_ELEM set to no, the text features will be lost. When reading dimensions from a V7 dataset, the
dimensions are ignored if they are part of a cell. If the keyword READ_BYTE_OFFSET is set to true, then the dimen-
sions will also be ignored.

A dimension element has the following attributes

Attribute Name

Contents

igds_dim_text{#}.font
igds_dim_text{#}.original_justification
igds_dim_text{#}.text_size
igds_dim_text{#}.text_width_multiplier
igds_dim_text{#}.text_used_string_len
igds_dim_text{#}.text_rotation
igds_dim_text{#}.text_insertion_x
igds_dim_text{#}.text_insertion_y

igds_dim_text{#}.text_string

Stores the standard attributes of the
text member of the dimension. For
example, font, original_jus-
tification, size and width etc.

igds_dim_refx{#3}.pt.x

igds_dim_refx{#}.pt.y

igds_dim_refx{#3}.pt.z

igds_dim_refx{#}.base_offset
igds_dim_refx{#}.segment_text_offset
igds_dim_refx{#}.flags

igds_dim_refx{#}.rxflags.mode

igds_dim_refx{# }.rxflags.hide_extension
igds_dim_refx{#}.rxflags.use_text_margin
igds_dim_refx{#}.rxflags.primary_text_exists
igds_dim_refx{#}.rxflags.display_primary_plus_tolerance
igds_dim_refx{#}.rxflags.display_primary_minus_tolerance
igds_dim_refx{#}.rxflags.secondary_text_exists

igds_dim_refx{#}.rxflags.display_secondary_plus_tol-
erance

igds_dim_refx{#}.rxflags.display_secondary_minus_ tol-
erance

Stores the attributes of reference
points as list attributes of the dimen-
sion.

igds_dim_type

Type of dimension to draw.
Range: 1..53
Default: No default

igds_dim_scale

Scale of dimension
Range: Any real number > 0
Default: No default

igds_dim_style

Style of dimension
Range: Any real number > 0
Default: No default

igds_dim_weight

Weight of dimension
Range: 0..31

Attribute Name Contents
Default: 0
igds_dim_color Color of dimension
Range: 0..254
Default: 0

igds_dim_primary_accuracy

Primary accuracy of dimension
Range: 0..254
Default: None

igds_dim_secondary_accuracy

Secondary accuracy of dimension
Range: 0..254
Default: None

igds_witness_line_offset

Offset of witness lines
Range: Real Number >0
Default: None

igds_witness_line_extension

Witness line extension
Range: Real Number >0
Default: None

igds_base_to_text_dist

Base to text distance
Range: Real Number >0
Default: None

igds_leader_to_text_dist

Leader to text distance
Range: Real Number >0
Default: None

igds_text_min_leader

Text minimum leader
Range: Real Number >0
Default: None

igds_arrow_width

Dimension arrow width
Range: Real Number >0
Default: None

igds_arrow_height

Dimension arrow height
Range: Real Number >0
Default: None

igds_center_mark_size

Center mark size
Range: Real Number >0

igds_base_line_cos_value

Cos value of bearing angle of base
line.
Range: -1..1

Attribute Name

Contents

igds_witness_line_cos_value

Cos value for bearing angle of witness
line.
Range: -1..1

igds_base_line_sin_value

Sin value of bearing angle of base
line.
Range: -1..1

igds_witness_line_sin_value

Sin value of bearing angle of witness
line.
Range: -1..1

igds_quat.w
igds_quat.x
igds_quat.y

igds_quat.z

Components of quaternion for 3D
orientation
Range: Any real number

igds_view_id

To allow to align by view
Range: 1 character (1 byte)

igds_num_ref_points

Number of reference points
Range: Any real number

igds_options_count

Count of options
Range: Any real number

igds_dim_text_width

Width of text member
Range: Real number > 0

igds_dim_text_height

Height of text member
Range: Real number > 0

igds_text_font

Font of text member. See Text Nodes
and Text Strings: igds_font.
Range: 0

igds_text_color

Color of text member
Range: 0..254

igds_text_weight

Weight of text member
Range: 0..31

igds_use_text_color

Use text color and not the dimension
element color
Range: 1/0 (1 bit)

igds_use_text_weight

Use text weight and not the dimension
element weight
Range: 1/0 (1 bit)

Attribute Name

Contents

igds_measure_angle

Measure angle and not the distance
Range: 1/0 (1 bit)

Ellipses

igds_type: igds_ellipse

This geometry type is stored in an IGDS type 15 element.

Ellipse features are point features, and only have a single coordinate. This point serves as the center of the ellipse.
Additional attributes specify the rotation, major axis, and minor axis of the ellipse.

Tip: The function @Arc() can be used to convert an ellipse to a polygon. This is useful for storing ellipses in sys-
tems which do not support them directly.

Attribute Name

Contents

igds_primary_axis

The length of the semi-major axis in
ground units.

Range: Any real number > 0
Default: No default

igds_secondary_axis

The length of the semi-minor axis in
ground units.

Range: Any real number > 0
Default: No default

igds_rotation

The rotation of the major axis. The rota-
tion is measured in degrees counter-
clockwise up from horizontal.
Range: -360.0..360.0

Default: 0

igds_fill_color

The color used to fill the shape. This
will override any solid fill linkage that
may be present on the feature.
Range: 0..255

Default: No fill

igds_fill_color.red

Thefill’s red color intensity, as determined by
looking up the fill color index in the color table.
Reader only.

Range: 0..255

igds_fill_color.green

The fill’s green color intensity, as determined by
looking up the fill color index in the color table.
Reader only.

Range: 0..255

igds_fill_color.blue

The fill’s blue color intensity, as deter-
mined by looking up the fill color index
in the color table. Reader only.

Range: 0..255

igds_fill_anglel

used in V8 only

The angle of the primary hatch lines in
a hatch fill. The angle is measured in
degrees counterclockwise up from hor-

Attribute Name

Contents

izontal.
Range: -360.0..360.0 Default: 0

igds_fill_angle2

used in V8 only

The angle of the secondary hatch lines
in a hatch fill. The angle is measured in
degrees counterclockwise up from hor-
izontal.

Range: -360.0..360.0

Default: 0

igds_fill_hole_style_id

used in V8 only

The style id of the holes of a filled area
element.
Default: 0

igds_fill_island_style_id

used in V8 only

The style id of the island areas of holes
of a filled area element.
Default: 0

igds_fill_offset_x

used in V8 only

The coordinate offset in the x dimen-
sion for the hatch or pattern fill of an
area element.

Range: Any real number

Default: 0

igds_fill_offset_y

used in V8 only

The coordinate offset in the y dimen-
sion for the hatchv fill of an area ele-
ment.

Range: Any real number

Default: 0

igds_fill_offset_z

used in V8 only

The coordinate offset in the z dimension for the
hatch or pattern fill of an area element.

Range: Any real number

Default: 0

igds_fill_pattern_color

used in V8 only

The color used to fill the area element. This cor-
responds to the color of the hatch or pattern fill
linkage.

Range: 0..2545

igds_fill_pattern color.red

used in V8 only

The pattern_fill’s red color intensity, as deter-
mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255

igds_fill_pattern color.green

used in V8 only

The pattern_fill’s green color intensity, as deter-
mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255

igds_fill_pattern color.blue

used in V8 only

The pattern_fill’s blue color intensity, as deter-
mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255

igds_fill_pattern_type

used in V8 only

The type of pattern fill for an area element. Cur-
rently only hatch is supported, and this indicates
that there is one on an area element.

Attribute Name

Contents

Range: hatch
Default: hatch

igds_fill_pixel_size

used in V8 only

The size of pixels for the hatch or pattern fill of an
area element.

Range: Any real number

igds_fill_rotation

used in V8 only

The rotation angle of the hatch or pattern fill
within an area element. The rotation is measured
in degrees counterclockwise up from horizontal.
Range: -360.0..360.0 Default: 0

igds_fill_scale

used in V8 only

The scale of the hatch fill or pattern fill
for an area element.
Range: Any positive real number

igds_fill_snappable

used in V8 only

This flag indicates if the hatch or pat-
tern fill for an area element is snap-
pable.

Range: yes or no

Default: yes

igds_fill_spacing1

used in V8 only

The spacing between the primary hatch
lines in a hatch fill.
Range: Any positive real number

igds_fill_spacing2

used in V8 only

The spacing between the secondary
hatch lines in a hatch fill.
Range: Any positive real number

igds_fill_style_id

used in V8 only

The line style id of the hatch fill or pat-
tern fill for an area element.
Default: 0

igds_fill_tolerance

used in V8 only

The maximum distance between curved
element boundaries and line segments
in a hatch fill.

Range: Any positive real number

igds_fill_weight

used in V8 only

The line weight of the hatch fill or pat-
tern fill for an area element.
Default: 0

/ : Y Axis

‘ \ : ~otatian

-,
' Primary’
Axis
Note: The primary ellipse axis is not necessarily the longest axis, but rather the one whose orientation is specified
by the rotation value.
Lines
igds_type: igds_line

Features with their igds_type set to igds_line are stored in and read from IGDS files in one of three ways, depending on
the number of coordinates they have.

Numb_er of IGDS Element Description

Coordinates Type

2 3 If the feature contained exactly two points,
then an IGDS type 3 element is used to store
the data if IGDS_CREATE_LINE_ELEMENTS was
yes; otherwise, a type 4 element will be
created.

In V7: Between 3 4 If the coordinates can fit in a single element,

and 101 then an IGDS type 4 element is used to store

In V8: Between 3 the line.

and 5000

In V7: Greater than | 12, 4 If the coordinates cannot fit into a single ele-

101 ment, then they are grouped together into a

In V8: Greater than complex line string element (type 12). This

5000 consists of a single type 12 element, followed
by as many type 4 elements as required to
hold all the coordinate data. The type 4 ele-
ments have their complex bit turned on. Fur-
thermore, such a complex line string element

Number of IGDS Element

Coordinates Type Description

will be split into multiple complex line string
elements if the size of the data exceeds the
maximum size that the header can address,
which is approximately 65K words.

There are no attributes specific to this type of element.
Points
igds_type: igds_point

Strictly speaking, the IGDS file format does not support point data. However, for easier interoperability with other for-
mats, the IGDS reader and writer define a synthetic IGDS type for point data. Such features have only a single coor-
dinate, and are stored in an IGDS type 3 element! as a zero length line with the start and the end point the same.
When the IGDS reader encounters such an element, it assigns an igds_type of igds_point. If the IGDS reader encounters
a type 3 element with a different start and end point, it will assign an igds_type of igds_line.

There are no attributes specific to this type of element.
Shapes
igds_type: igds_shape

Shape features are used in IGDS to represent closed polygons. The first coordinate in a shape feature must be equal
to the last coordinate. Such features are stored in and read from IGDS files in one of two ways, depending on the
number of coordinates in their boundaries:

Number of IGDS Element |Description

Coordinates Type

In V7: 6 If the coordinates can fit in a single element,
Between 3 and 101 then an IGDS type 6 element is used to store
In V8: the shape.

Between 3 and 5000

In V7: 14, 4 If the coordinates cannot fit into a single ele-
Greater than 101 ment, then they are grouped together into a
In V8: complex shape element (type 14). This con-
Greater than 5000 sists of a single type 14 element, followed by

as many type 4 elements as required to hold
all the coordinate data. The type 4 elements
have their complex bit turned on. Fur-
thermore, such a complex shape element
will be split into multiple complex line string
elements if the size of the data exceeds the
maximum size that the header can address,
which is approximately 65K words.

Shape elements have the following attributes.

Attribute Name Contents
igds_fill_color The color used to fill the shape. This will override any solid fill

LFME treats IGDS type 3 elements with different start and end points as igds_line features.

Attribute Name Contents
linkage that may be present on the feature.

Range: 0..255
Default: no fill

igds_fill_color.red The fill’s red color intensity, as determined by look-
ing up the fill color index in the color table. Reader
only.
Range: 0..255

igds_fill_color.green Thefill’'s green color intensity, as determined by looking up the
fill color index in the color table. Reader only.
Range: 0..255

igds_fill_color.blue The fill’s blue color intensity, as determined by looking up the fill

color index in the color table. Reader only.

Range: 0..255

Tip: Shapes will not be filled in MicroStation unless the ‘View Attributes: Fill' checkbox is ticked, and a fill color is
specified.

Solids

igds_type: igds_solid

Solids correspond to the grouped shapes in MicroStation. Solids consist of polygons or donut polygons. When a donut
polygon is written out as a solid, all holes are output with the hole bit turned on, and are grouped together with the
enclosing polygon. Groups are created in the Design file by creating an unnamed cell header element, and making
each shape in the donut polygon a member of the group.

If EXPAND_UNNAMED_CELLS is set to yes, then unnamed cell components are output but the cell header itself is not
output. In this case, donut polygons will not be formed from member shape elements. All member elements will retain
their original colors. If it is NO (which is the default), then the cell is not exploded into its components and only the
cell header is output. Donut polygons may be formed if multiple intersecting polygons existed.

If a solid consists of polygons without holes, then it is written out as igds_shape.

Solids are always filled, and accept an additional parameter to define the fill color. Holes within a solid will not be filled
with the color.

The IGDS file format imposes a limit on the number of coordinates which can be presentin a solid. This limit is around
16,000 for two-dimensional IGDS files, and around 10,000 for three-dimensional IGDS files. If a solid with more than
an allowable number of coordinates is encountered, it is rejected and a message to that effect is logged to the FME log
file.

Tip: Solids will not be filled in MicroStation unless the ‘View Attributes: Fill” checkbox is ticked.

Solid elements have the following attributes.

Attribute Name Contents

igds_fill_color The color used to fill the solid. This will override
any solid fill linkage that may be present on the fea-
ture.
Range: 0..255
Default: 0

igds_fill_color.red The fill’s red color intensity, as determined by look-
ing up the fill color index in the color table. Reader
only.

Attribute Name Contents

Range: 0..255

igds_fill_color.green The fill’s green color intensity, as determined by
looking up the fill color index in the color table.
Reader only.

Range: 0..255

igds_fill_color.blue The fill’s blue color intensity, as determined by
looking up the fill color index in the color table.
Reader only.

Range: 0..255

3D Solids
igds_type: igds_3d_solid

This is supported for v8 only. This element should not be confused with igds_solid as it correspond to dgn element
type 19 and not to unnamed cell. FME supports both reading and writing, however, its support is limited to only extru-
sions for now. Work to add support for other solid types is currently underway.

Tags

Elements in a design file may have user-defined attributes attached to them. Such attributes are called tags, and
these may be read and written (DGNV8 only) by FME. In addition, to supply a value for a user-defined attribute, tags
may also be displayed as text in the original design file. The TAGS_AS_TEXT directive controls whether or not tag
data elements will be returned as text elements.

When reading a design file, FME first scans for all the tag data elements and tag set definition elements. Then as it
reads each graphical element from the design file, it uses the element association ID to reconnect the data and attrib-
ute names with the graphical element. All the tag data values are then added to the feature returned into FME.

The attributes shown in the following table are added to an element for each associated tag.

Note: <tag name> is replaced by each TAG NAME that may be associated with the element. For example, if the ele-
ment is associated with tags called "NUMLANES" and "PAVETYPE", then the feature would have attributes like "NUM-
LANES", NUMLANES.height, PAVETYPE, PAVETYPE.rotation, etc.

Note that most of the tag attributes are same as those of text. For example, igds_tag_names{}.height is the same as
igds_text_height and is therefore not explicitly documented. All the other tag attributes are documented as follows:

Attribute Name Contents

igds_tag_names{} List of tag names attached to an element.
Default: No default
Required when writing tags through list attributes.

<tag name>.tagset_name The name of the tagset the tag belongs to.
Default: No default
Required when writing tags to DGNVS8

<tag name>.tagtype The unique tag id
Default: 1
Range:

1 = tag of type character string

3 = tag of type integer

4 = tag of type double

Optional when writing tags to DGNV8. In case tag-
type is not provided, it always defaults to char-
acter string (i.e., type 1).

<tag name>.prompt The value of tag prompt as defined in the tagset
Default: No default
Optional when writing tags to DGNV8

<tag name>.default_value The value of tag default as defined in the tagset
Default: No default
Optional when writing tags to DGNVS8

<tag name>.display The display value of tag as defined in the tagset.
Note that the writer will always set it to NO if tag
offsets are not found on the feature

Default: no

Range: yes/no

Optional when writing tags to DGNVS8

<tag name>.x_offset Tag offset from the element. In case these values
<tag name>.y_offset are not provided the writer uses some default
values to offset tags from the element

Default: No default

Optional when writing tags to DGNV8

<tag name>.z_offset

<tag name>.urx Tag upper right range of rectangle.
<tag name>.ury Default: No default
Not required when writing tags to DGNV8

<tag name>.urz

<tag name>.lIx Tag lower left range of rectangle.
<tag name>.lly Default: No default
Not required when writing tags to DGNV8

<tag name>.lIz

Note that tag writing is supported by DGNVS8 only. In order to attach tags to an element, set writer keyword WRITE_
TAGS to yes.There are two ways tagset and tags definitions can be carried over to V8 writer:

1. Through DEF lines:This is the default behavior. The writer looks at the DEF lines to extract the infor-
mation of tagsets and tag names. The feature type is assigned as the tagset whereas the user attrib-
utes become its tags. For intance, if the DEF line looks like this:

DGNV8_DEF Roads
Name char(50)
Type integer

then a tagset gets written with the name “Road” consisting two tags namely “"Name” of data type string
and “Type” of data type integer. The possible data types are char(n), integer and double. Note that
this approach is introduced to automate the tag writing process and to avoid the amount of work
involved using the “list attribute” approach as explained later. This approach has the following lim-
itations:

a. a.can write one tagset per feature only

b. b. can define tag names and their corresponding data types only. The tag default, prompt and
display properties cannot be set. The display property is automatically set to no and in order to
turn it on the user need to set <tag_name>.display attribute on the feature with the value of
yes.

If someone wants to write multiple tagsets then he can do so by using the “list attribute” approach.
Also note that in case the writer sees list attributes under the name igds_tag_names{} it ignores the
tagset defintions provided on the DEF lines.

2. Through list attributes: Another way of writing tags is by providing all tag names as list attributes
toigds_tag_names({} on the feature.

The DGNVS8 writer looks for the following attributes only when writing tags and uses them to calculate
all other values. Therefore, any tag related attribute provided other than the following will be ignored.

igds_tag_names{}

<tag name>.tagset_name
<tag name>.tagtype

<tag name>.prompt

<tag name>.display

<tag name>.default_value
<tag name>.x_offset

<tag name>.y_offset

<tag name>.z_offset

In case tag offsets are not provided then the writer uses some default values for the offsets and turns
off tag’s display property.
Some tips on tag writing to avoid surprises:

When going from dgn->dgn, it is advised to ensure that the option “TAG_AS_TEXT" is turned off to avoid getting
extra text element on top of the tags being written. Note that this option is set to “no” by default.

When going from dgn->dgn, if the source has tags attached to a cell then note that exploding cell will result into
attaching tags to each cell member. Thus, each cell member will have same tags written in the output file.

Multi-text Strings
igds_type: igds_multi_text

Multi-text string features correspond to an IGDS text node (element type 7) grouping together a series of IGDS text
elements (element type 17), each of which have their complex bit turned on. This feature uses the same attribute
names as a text node, plus it has a feature attribute list of text string attributes. The list is called igds_text_elements{#},
where # starts at 0 and increments for each text element. The list’s item names are identical to the text string features
attributes.

Tip: Multi-text strings can be used to group together text so that it will be manipulated as a sin-
gle entity with MicroStation.
Multi-text features are point features, and only have a single coordinate. This coordinate is used when the text node is

created. If the feature had no coordinates of its own, the text node is created with the coordinates of the first text
string. The coordinates for each of the text strings are stored in the FME feature using the following attribute names.

Attribute Name Contents

igds_text_elements{#}.x The x coordinate of the #t text element.
Range: Any real number
Default: No Default

Attribute Name Contents

igds_text_elements{#}.y The y coordinate of the # ™ text element.
Range: Any real number
Default: No Default

igds_text_elements{#}.z The z coordinate of the # th text element.
Range: Any real number
Default: 0

igds_number_of_strings The number of text elements in the multi-text feature

igds_split_multitext Is added to the feature with the value “yes” if split-
ting multi-text.
Default: No Default

If a setting for a particular text element is not present in the igds_text_elements list, then the setting specified for the
previous text element will be used. If the first element does not have some settings specified, then the corresponding
settings will be borrowed from the text node.

Tip: When a multi-text string feature is reprojected, its rotation and text size are also auto-
matically adjusted to be correct in the new coordinate system.

For example, the FME feature specified by the below partial transfer specification would create a text node, followed
by two text strings, as a single complex element.

IGDS 32 1igds_type igds_multi_text \
igds_node_number 15 \
igds_font 31 \
igds_rotation 0\
igds_text_size 40 \
igds_color 2\
igds_justification 1\
igds_text_elements{0}.1igds_font 33 \

igds_text_elements{0}.igds_rotation 3.1\
igds_text_elements{0}.igds_text_size 52 \

igds_text_elements{0}.igds_color 4 \
igds_text_elements{0}.igds_text_string Hello \
igds_text_elements{0}.x 477556 \
igds_text_elements{0}.y 5360183 \
igds_text_elements{0}.z 20 \
igds_text_elements{1}.igds_text_string world \
igds_text_elements{1}.x 47755 \
igds_text_elements{1l}.y 5359177 \
igds_text_elements{1}.z 20

Note that in this example, the justification code (1) used for the text node would be propagated to each of the text ele-
ments, but that the color used in the text node (2) would not be used in any of the text elements because the first one
set the color to 4.

The in-memory snapshot of the FME feature created by the IGDS writer from this transfer specification is shown
below.

Feature Type: 32

Attribute Name Value

igds_type igds_multi_text

Feature Type: 32

Attribute Name Value
igds_node_number 15
igds_font 31
igds_weight 1
igds_text_size 40
igds_color 2
igds_rotation 0
igds_justification 1

igds_text_elements{0}.igds_text_string Hello

igds_text_elements{0}.igds_font 33

igds_text_elements{0}.igds_rotation 3.1

igds_text_elements{0}.igds_justification |1

igds_text_elements{0}.igds_text_size 52
igds_text_elements{03}.x 477556
igds_text_elements{0}.y 536018
igds_text_elements{0}.z 20

igds_text_elements{1}.igds_text_string World

igds_text_elements{1}.igds_font 33

igds_text_elements{1}.igds_rotation 3.1

igds_text_elements{1}.igds_justification |1

igds_text_elements{1}.igds_text_size 52
igds_text_elements{1}.x 477556
igds_text_elements{1}.y 5359177
igds_text_elements{1}.z 20

Coordinates: (477553,5360181,20)

Text Nodes
igds_type: igds_text_node

Text nodes correspond to IGDS element type 7. Text node features are point features, and only have a single coor-
dinate. Normally, text nodes are used to group together lines of text into a single complex element. However, such
text groups are handled by theigds_multi_text type and not by this type, which is used only for text nodes with no
attached text.

Tip: Free standing text nodes are often used as point features in IGDS files, with the text node
number holding a key to related attribution.

Text node elements have the following attributes.

Attribute Name Contents
igds_node_number The node number assigned to the text node.
Range: 0..65535
Default: 0
igds_font The IGDS font number for the text node. For free standing

text nodes, this value is relatively meaningless. Values
from 0..511 are RSC fonts, while values from 512..1023
are SHX font, and values above 1023 are True Type fonts.
Range: 0

Default: 25

igds_rotation The rotation of the text node. The rotation is measured in
degrees counter clockwise up from horizontal. For free
rotation |standing text nodes, this value is relatively meaningless.
Range: -360.0..360.0

Default: 0

igds_justification The justification code for the text node.
Range: 0..14

0 is Left/Top 8 is Center/Bottom

1is Left/Center 9 is Right Margin/Top

2 is Left/Bottom 10 is Right Margin/Center
3 is Left Margin/Top 11 is Right Margin/Bottom
4 is Left Margin/Center 12 is Right/Top

5 is Left Margin/Bottom 13 is Right/Center
6 is Center/Top 14 is Right/Bottom

7 is Center/Center

Default: 5

igds_text_size The text size of the text in the node. This is stored as the
text height in the element. The text size is measured in
ground units.

Range: Any real number > 0

Default: 20
igds_text_width_ The text width of the text in the node. The text width is
multiplier measured in ground units. If this is not supplied, then
igds_text_size is used.
Range: Any real number > 0
Default: Value of igds_text_size
igds_line_spacing The line spacing between lines of text associated with the

text node. It is measured in ground units.

Attribute Name Contents

Range: Any real number > 0
Default: 0

igds_number_of_strings The number of text elements associated with the text
node. If the number is greater than 0, then the text node
is returned as an igds_multi_text. This is only used by the
IGDS reader.

Range: integer >= 0

Default: Not applicable. This field is only used by the
reader.

igds_max_string_length The maximum length of the strings associated with the
text node.

Range: integer >= 0

Default: 255

igds_max_used_string_ The actual length of the strings associated with the text
length node.

(Not included in Version 8 DGN files.)
Range: integer >= 0
Default: 0

Tip: When a text node feature is reprojected, its rotation and text size are also automatically
adjusted to be correct in the new coordinate system.

Text Strings
igds_type: igds_text

Text string features correspond to IGDS element type 17. Normally, text strings are grouped together into a single
complex element within MicroStation by text nodes. However, such text groups are handled in the FME by the igds_
multi_text type and not by this type, which is used only for single, free standing text strings. Text string features are
point features, and only have a single coordinate. Note that V8 reader is capable of reading texts in unicode (UTF-16)
in Windows only.

Tip: Some applications may use the graphic group field to logically group related text elements together.

Text strings have the following attributes.

Attribute Name Contents

igds_original_justification This attribute contains the original justification of
the element when it was placed in the Design file.
Once placed, all text elements are stored in the
Design file using lower left corner (code 2) jus-
tification. Therefore, all text elements returned by
the reader have an igds_justification of 2. The IDGS
reader returns the original justification code in this
attribute. The IGDS writer stores the value of this
attribute in the justification bits of the placed text
element, but it does NOT use its contents to deter-

Attribute Name

Contents

mine placement of the text.
Range: 0..12

igds_text_string

The text string to be output. Text strings longer
than 255 characters cannot be stored in a Design
file and will be broken into multiple separate text
elements.

Range: Any string

Default: No Default

igds_font

The IGDS font number for the text string. Values
from 0..511 are RSC fonts, while values from
512..1023 are SHX font, and values above 1023 are
True Type fonts.

Range: 0

Default: 25

igds_rotation

rotation

The rotation of the text string. The rotation is meas-
ured in degrees counterclockwise up from hor-
izontal.

Range: -360.0..360.0

Default: 0

igds_justification

The justification code for the text string. See the
Text Node section for documentation on the map-
ping of numbers to alignments. Note that if this is
specified, the IGDS writer will compute the lower
left corner of the text as best it can and use that
when the element is written to the Design file. Text
elements in a Design file are always stored using a
lower left corner.

Range: 0..2,6..8, and 12..14

Default: 2

igds_text_size

The text size of the text, measured in ground units.
This is stored as the height of the text element.
Range: Any real number > 0

Default: 20

igds_text_width_multiplier

The text width of the text. The text width is meas-
ured in ground units.

If this is not supplied, then igds_text_size is used.
Range: Any real number > 0

Default: value of igds_text_size

igds_text_num_lines

If this is specified and is greater than 1, it will
cause the text string to be broken into the number

Attribute Name

Contents

of lines specified, and output as that number of text
elements stacked vertically.

If this is not supplied, then igds_text_size is used.
Range: Any integer > 0

Default: 1

igds_text_horizontal_flip

Indicates whether or not the text should be flipped
horizontally when it is displayed. This is rep-
resented in a Design file by storing the text width
as a negative number if the text should be flipped.
(Not included in Version 8 DGN files.)

Range: Yes|No

Default: No

igds_text_vertical_flip

Indicates whether or not the text should be flipped
vertically when it is displayed. This is represented
in a Design file by storing the text height as a neg-
ative number if the text should be flipped.

(Not included in Version 8 DGN files.)

Range: Yes|No

Default: No

igds_insertion_x
igds_insertion_y

igds_insertion_z

The X, y, and z location of the original insertion
point for the text, before the justification was
applied. Reader only.

Range: Any real number > 0

igds_lower_x
igds_lower_y
igds_upper_x
igds_upper_y

The lower left and upper right x and y coordinates
of the bounding box of the text. Reader only.
Range: Any real number > 0

igds_textstyle_id

The ID of the textstyle being used.
Default: No

igds_textstyle_char_spacing

Textstyle character spacing.
Default: No

igds_textstyle_slant

Textstyle slant
Default: No

igds_textstyle_underline_
spacing

Textstyle underline spacing
Default: No

igds_textstyle_underline_
color

Textstyle underline color
Default: No

igds_textstyle_underline_
style

Textstyle underline style

Attribute Name

Contents

Default: No

igds_textstyle_underline_
weight

Textstyle underline weight
Default: No

igds_textstyle_overline_
spacing

Textstyle overline spacing
Default: No

igds_textstyle_overline_
color

Textstyle overline color
Default: No

igds_textstyle_overline_
style

Textstyle overline style
Default: No

igds_textstyle_overline_
weight

Textstyle overline weight
Default: No

igds_textstyle_line_offset.x

igds_textstyle_line_offset.y

Coordinates of textstyle line offset
Default: No

igds_textstyle_codepage

Textstyle codepage. . Specified as a the integer por-
tion of a Microsoft Windows code page, i.e., 1252
for Latin I.

Default: No

igds_textstyle_bg_color

Textstyle background color
Default: No

igds_textstyle_bg_style

Textstyle background style
Default: No

igds_textstyle_bg_weight

Textstyle background weight
Default: No

igds_textstyle_bg_border.x
igds_textstyle_bg_border.y

Coordinates of textstyle background border
Default: No

igds_textstyle_bg_fill_color

Textstyle background fill color
Default: No

igds_textstyle_color

Textstyle color
Default: No

igds_textstyle_font

Textstyle font
Default: No

igds_textstyle_tnode_word_
wrap_len

Textstyle word wrap length
Default: No

igds_textstyle_overrides_
stylel

Textstyle override styles
Default: No

Attribute Name Contents

igds_textstyle_overrides_

style2

igds_textstyle_txflags Textstyle flags. A reasonable setting to enable text
style on write is 512.
Default: No

igds_textstyle_exflags Textstyle extended flags

Notes: When a text string feature is reprojected, its rotation and text size are also automatically adjusted to be cor-
rect in the new coordinate system.

When writing textstyles, make sure that all the textstyles are added to the seed file being used.

Writing Levels in V8 (DEFLine Params)

In V8, the feature type is always taken as the level name. When WRITE_TAGS is set to yes then feature type will also
be the tagset name. For more information refer to section under TAGS. Levels are created with this name and the level
numbers are assighed from the DEF line. However, for backward compatibility, a feature’s igds_level and igds_level_
name overwrite the level_number and feature_type.

The following protocol is used when processing levels:
1. Ifthelevel is already provided in the seed file, then itis left as-is.

2. If the feature type has a corresponding DEF line parameter, and if that level is not already in the seed file, then
that level is created with symbology as defined on the DEF line. This allows users to create levels with the
desired symbology. Note that in order to apply the level symbology to the features belonging to the level, the
attributes igds_color_set_bylevel, igds_style_set_bylevel and igds_weight_set_bylevel must be set to Yes. If none of
the above are provided, then symbology of the first feature appearing in a level is assigned as its symbology.

3. If thefeature type has a corresponding DEF line parameter, and if the value of idgs_level is undefined and the
feature type (level Name) is not “"Default” then the DGN writer assigns level number 1 to it.

The DEFLine Params for defining levels are as follows:

Parameter Name Contents
igds_level The level number corresponding to the feature type.
Note that feature type is treated as level name.
igds_level_comment The comment of the destination level.
igds_level_color The color of the destination level.
igds_level_style The style of the destination level.
igds_level_weight The weight of the destination level.
Example

DGNV8_1_DEF test2 \

igds_level 4 \

igds_level_comment "This is a test" \
igds_level_color 3 \

igds_level_style 4 \
igds_level_weight 2

In this case, the level will be created with the level name “test2”, the corresponding level number of 4 and the com-
ment and symbology as defined above. Note that if any feature being written to this level is intended to have sym-
bology by_level then the attributes igds_color_set_bylevel, igds_style_set_bylevel and igds_weight_set_bylevel must be set
toYes.

Note that destination feature types are treated differently for V7 and V8. Version 7 always sees the destination feature
types as level numbers, whereas V8 sees them as level names. For V8, the feature attribute igds_level_name over-
writes feature_type, and feature attribute igds_level overwrites DEF line parameter igds_level.

Note that a workspace originally created using a V8 seed file can only be used to write to V8. A workspace originally
created using a V7 seed file can be used to write to both V7 (although there will be a difference in the way destination
feature types are handled) or V8. Two additional limitations are applied to V8:

1. Limitation of level numbers from 1 to 63 will also be applied to V8.

2. Feature types will always be generated as level numbers just like V7, but those level numbers will be treated
as level_names by V8. For instance, if you tried to write to level_number 3, the level would be written as level
number 3 for V7, but the level name would be written as “3” for V8 (when its number may or may not be 3).
This can be overcome by specifying values for igds_level_name and igds_level.

Bentley MicroStation GeoGraphics Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The (Bentley) MicroStation GeoGraphics Reader/Writer is nearly identical to the Intergraph MGE Reader/Writer. The
only difference is that by default, the <ReaderKeyword> for the MGE reader is MGE.

Refer to the chapter Intergraph MGE Reader/Writer for specific information about both the GG and MGE for-
mats.

Overview

The MicroStation GeoGraphics Reader and Writer Modules provide the FME with the ability to read and write design

files and their associated databases. This chapter assumes an operational knowledge of MicroStation GeoGraphics.

GeoGraphics Quick Facts

Format Type Identifier GG

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type GeoGraphics Feature Name

Typical File Extensions .dgn, .cad

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type igds_type

Geometry Support

Geometry Supported? Geometry Supported?
aggregate no point yes
circles yes polygon yes
circular arc yes raster no
donut polygon yes solid no
elliptical arc yes surface no
ellipses yes text yes

Geometry Support

Geometry Supported? Geometry Supported?
line yes z values yes
none no

Canadian Council on Geomatics Interchange Format (CCO-
GIF) Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

The Canadian Council on Geomatics Interchange Format (CCOGIF) ASCII reader and writer module provides FME with
access to the contents of a CCOGIF dataset stored in ASCII format in a single disk file. The structure of this file is dis-
cussed in Canadian Council on Geomatics’ document, Standard File Exchange Format for Digital Spatial Data version
#2.3, published October 1994.

The CCOGIF format, a data exchange format, provides a very general medium in which to represent a data model. FME
accesses the individual records of a CCOGIF file at a very low level, involving only minimal interpretation of the con-
tents of those records. This allows FME to handle virtually any data encoded with the CCOGIF standard, but requires a
somewhat more sophisticated mapping file to make full use of the data.

Overview

The CCOGIF disk file consists of a series of logical records. Each of these records either describes metadata which is
information about the data contents or structuring, or entity data which are geometric features.

The CCOGIF file describes a single data volume, that groups spatial data into datasets, data groups, and data themes.
A CCOGIF volume contains one or more datasets. A single CCOGIF dataset contains one or more data groups, and a sin-
gle data group contains one or more data themes.

At the highest level of grouping, the CCOGIF dataset - not to be confused with FME's concept of a dataset which is
referred to as an FME dataset for the remainder of this chapter — groups the entity data by geographic region, such
as a map sheet. In other words, all geographic data contained in a single CCOGIF dataset are somehow geographically
related. All entity data within a CCOGIF dataset are measured in a single coordinate system.

Each data group provides some conceptual grouping of geographic entities. The criteria of this grouping are entirely
data-dependent and are not constrained by the CCOGIF standard. This grouping is somewhat analogous to FME's
notion of a feature type. For example, a CCOGIF dataset might contain the data groups Highway, Bridge, and Inter-
section.

The data within a single CCOGIF data group is divided into data themes. Each data theme represents a certain entity
type: point, line, or area. The definition of a theme includes a list of data attributes. All attributes are defined on every
entity record within the theme. A single data group may contain more than one theme of a given type - for example,
two point themes. The themes are always ordered so that point themes come first, then line themes, and finally area
themes.

CCOGIF ASCII Quick Facts

Format Type Identifier CCOGIF
Reader/Writer Both
Licensing Level Professional
Dependencies Writer requires extra-cost plug-in
from Safe Software
Dataset Type File
Feature Type Group base name
Typical File Extensions .asc
Automated Translation Support Yes for Reader
No for Writer
User-Defined Attributes Yes
Coordinate System Support No
Generic Color Support Never
Spatial Index Yes
Schema Required No
Transaction Support Yes
Geometry Type ccogif_entity_type
Encoding Support No

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point yes
circles no polygon yes
circular arc no raster no
donut polygon yes solid no
elliptical arc no surface no
ellipses no text no
line yes z values no
none no

Reader Overview

For the most part, the CCOGIF reader simply returns a feature to represent each record it encounters in the CCOGIF
file. The reader does not have any requirement for definition statements.

The feature type of a feature returned from the CCOGIF reader depends on whether the feature represents metadata
or entity data. Features that represent metadata records are returned with a feature type of CCOGIF_METADATA,
whereas features that represent entity records are returned with a feature type dependent on the CCOGIF data group
and theme within that data group. The feature type will have the format <GroupName>_<ThemeIndex>, where

<GroupName> is the name of the group extracted from the Data Group Header Record (DGHR), and <The-
meIndex> is the position of the data theme within the group.

There are different ways to generate mapping files to read CCOGIF data. The generated mapping files run the fea-
tures through a number of factories, so the actual names of the feature types used in an automatically generated map-
ping file will depend on which method is used and may not correspond to the feature types returned from the reader

itself. The different methods are discussed later in this section, under the heading Generated Mapping Files.

Reader Directives

The suffixes shown are prefixed by the current <Readerkeyword> in a mapping file. By default, the <Read-
erkKeywords> for the CCOGIF reader is CCOGIF.

DATASET
Required/Optional: Required

The value for this keyword is the name of the file containing the CCOGIF volume to be read. A typical mapping file frag-
ment specifying an input CCOGIF volume looks like this:

CCOGIF_DATASET /usr/data/ntdb/021g01.asc

Note: Notice that this refers to the CCOGIF volume and not the CCOGIF dataset. There may be several datasets in a
single CCOGIF volume.

Workbench Parameter: Source CCOGIF File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxy >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

¥ Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

#% Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

¥ Workbench Parameter

Additional Attributes to Expose

Writer Overview

The CCOGIF writer provides the ability to write FME feature data to a single CCOGIF file, the name of which is specified
by the DATASET keyword. The contents of this file forms a single CCOGIF volume, consisting of exactly one CCOGIF
dataset.

Metadata records may be inserted into the output data stream (for example, with the CreationFactory) to define
the precise contents of all metadata records in the output file. This technique is described later in this chapter, under
the heading Defining Volume Structure.

Unlike the CCOGIF reader, the writer requires DEF lines to define the attributes of the output CCOGIF file. The writer
provides a mechanism in the DEF lines to precisely specify the attributes and order of every theme within each data
group being written.

FME ships with sample mapping files that output CCOGIF from a NULL data source, as well as from Oracle. These are
found inthegallery/ccogif subdirectory of the FME installation.

Writer Directives

The following directives are processed by the CCOGIF writer.
e DATASET

e DEF

e AREA_RELPOSN_ATTR

The suffixes shown are prefixed by the current <Writerkeyword> in a mapping file. By default, the <wWrit-
erkeyword> for the CCOGIF writer is CCOGIF.

DATASET
The file name of the output CCOGIF data file.
DEF

The CCOGIF DEF line is required to specify the contents of a CCOGIF data theme before any geometric entities may be
written to that theme. All entities in a given data theme have the same geometric entity type - point, line, or area -
and have the same set of attributes defined on them. The DEF line for the theme provides this information.

The syntax of a CCOGIF DEF line is:

<writerkKeyword>_DEF <themeName> \
[CCOGIF_GROUP_NAME <groupName>] \
[CCOGIF_THEME_ENTITY_TYPE <entityType>] \
[CCOGIF_THEME_ORDERING <orderIndex>] \
[<attrName> <attrType>]+

The <themeName> is simply the identifier used within the mapping file to refer to the theme. Data themes do not
have identifiers within the CCOGIF file, so the chosen <themeName> is not actually reflected in the CCOGIF file.

The CCOGIF_GROUP_NAME keyword specifies the name of the group containing the data theme. The value <group-
Name> is placed into the ccogif_data_group_name attribute for the theme’s group’s header record. All themes given a
common <groupName> value belong to the same group.

In general, the DEF lines require each theme to be explicitly specified. Exceptions to this are noted later in this sec-
tion, under the heading Defining Volume Structure.

The CCOGIF_THEME_ENTITY_TYPE keyword specifies the geometric type of the entity records to be written to
the theme and is required in most cases. The value of <entityType> must be one of the values ccogif_point,
ccogif_Tine, or ccogif_area.

The optional CCOGIF_THEME_ORDERING keyword allows each theme to be assigned a numeric ordering value.
When the themes are written out to the CCOGIF file, they are ordered so that:

e All point themes belonging to a given data group are written first, followed by line themes, and finally area themes.

e All of agroup’s themes of a given entity type - line, point, or area — are written with a numerically increasing
<orderIndex> value.

Themes for which no ordering index was specified are written with an arbitrary relative ordering after all themes of
the same entity type for which a theme ordering was specified.

All attribute names must contain no more than 40 characters. They may be composed of nearly any printable char-
acters including alphanumerics, colons, periods, commas, apostrophes, and accented characters. The following
table shows the attribute types that are supported:

Attribute Name Description

INT Integers are represented with 16 ASCII characters. They are
stored as base 10 numbers, right-justified in the field, with
leading zeroes to fill the remaining space. The first character

Attribute Name Description

denotes the sign of the integer and is either + if positive or -

if negative.

REAL Real numbers are stored in base 10 exponential form as 16
ASCII characters. The format for the real number is:
+d.dddddddddE +dd.

DMS Degree Minute Second (DMS) fields are used to store angular

values in terms of degrees, minutes, and seconds. The
degrees and seconds are represented with base 10 integers,
and the seconds value is represented with a fixed point
number with five digits of precision. The format of a DMS
value is +ddd mm ss.sssss. The integer part of each of the
three numbers - degrees, minutes, seconds - is padded on
the left with zeroes to fill its allotted space.

CHAR(<width>) Character fields are stored as fixed-length strings. Their
values are padded on the right with spaces to fill the allotted
space.

DATE Date fields are stored as 8-character strings, with the format
YYYYMMDD.

AREA_RELPOSN_ATTR

Some data encoded in CCOGIF requires each line which defines the boundary or a hole of an area to include an attrib-
ute specifying whether it is a part of a boundary or a specific hole. (For example, NTDB v3.1 uses the “"ATE” attribute
for this purpose.)

All line entities which form the outer boundary of an area will contain a value of 0 for this attribute. Those line entities
which form the first hole will have a value of 1; those which form the second hole will have a value of 2; and so on. All
other entities will have a value of -1 in this attribute.

AREA_RELPOSN_ATTR names the attribute which is to hold this information. If it is not specified, this information will
not be stored on the entities. Otherwise, the named attribute will contain the information. (This attribute must be
defined as a numeric attribute in the data theme’s DEF line for the information to actually appear in the output CCOGIF
file.)

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

A CCOGIF feature can represent either a metadata feature or an entity feature. Metadata features describe the struc-
ture of the CCOGIF data whereas entity features form the geometry of the volume.

Metadata Features

Each metadata feature describes the contents of one of the following records from the CCOGIF file:

Record Name Description

VDR Volume Descriptor Record: contains information about
the entire CCOGIF volume, such as its creation date
and generating agency.

UFLR User Fixed Length Record: contains any user data
associated with the CCOGIF volume or dataset. It
simply contains free-form ASCII data.

DSHR Data Set Header Record: describes each dataset con-
tained in a CCOGIF volume. It contains some extra-
neous information about the data (name, creation
date, geographic location, etc.), as well as information
pertaining to the interpretation of the data itself (X, Y,
and Z data types, topology information, map
projection information, etc.).

EMDR Entity Metadata Record: describes the source and qual-
ity of the entity data contained in a dataset. There are
one or more of these records following each DSHR rec-
ord.

DGHR Data Group Header Record: is the first record of each
data group within a CCOGIF dataset. It provides a
name for the group, as well as provides counts of how
many point, line, and area themes are contained in the
group.

DTHR Data Theme Header Record: describes the contents of
a single data theme. It provides information about the
entity data itself (entity type, number of entities), as
well as a count of user attributes defined on each
entity and a calculation of the length of the fixed-
length part of each entity in the theme.

ADR Attribute Descriptor Record: There is one attribute
descriptor record in each data theme. It is a variable-
length record that describes the hames and types of
attributes defined on each entity contained in the
theme.

EOVR End Of Volume Record: marks the logical and physical
end of the CCOGIF volume. It is always the last record
in a CCOGIF file.

All metadata features have a feature type of CCOGIF_METADATA. The CCOGIF record described by a metadata fea-
ture is reflected by the value of the attribute ccogif_record_code. This attribute has one of three or four char-
acter record names listed in the above table.

Each metadata feature has a particular set of attributes, depending on the CCOGIF record it represents. The following
sections list the attributes for each record type.

Volume Descriptor Record

The Volume Descriptor Record (VDR) is the first record in a CCOGIF file. The FME represents this record as a CCO-
GIF_METADATA feature with the following attributes:

Attribute Name Description Type
ccogif_record_code Record code (constant VDR). char(4)
ccogif_log_vol_id Logical volume identifier. int(16)
ccogif_phys_vol_num Physical volume number in this logical vol- int(16)
ume (numbered sequentially from 1).
ccogif_vol_cre_date Volume creation date. date
ccogif_vol_data_desc Logical volume data description. char(128)
ccogif_vol_gen_cntry Volume generating country. char(64)
ccogif_vol_gen_agncy Volume generating agency. char(64
ccogif_vol_gen_fclty Volume generating facility. char(64)
ccogif_fmt_ctrl_doc_id Format control document identifier. char(64)
ccogif_sw_release_id Software release identifier. char(64)
ccogif_feat_code_rev Feature code revision level. char(64)
ccogif_num_ufl_recs Number of user fixed length records imme- | int(16)
diately following this volume descriptor rec-
ord.
ccogif_bytes_prev_rec Number of bytes left from last logical record | int(16)
of previous physical volume.

User Fixed-Length Record

User Fixed-Length Records (UFLRs) provide a place for the user’s software to place any ASCII information for its own
purpose. Each UFLR contains up to 2044 bytes of user-defined data. There are zero or more UFLRs immediately fol-
lowing each VDR or DSHR in the CCOGIF file. The ccogif_num_ufT_recs attribute of the VDR or DSHR feature
tell us how many UFLR records to expect.

A single FME feature is used to represent a sequence of user fixed length records. The data from the entire sequence
of UFLRs appears concatenated together in a single attribute on the single FME feature.

FME represents the sequence of UFLRs with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type
ccogif_record_code Record code, constant UFLR. char(4)
ccogif_user_def_data User-defined data, concatenated from an char(n)

entire sequence of UFLR records.

Data Set Header Record

The Data Set Header Record (DSHR) defines all information common to all entities contained in a single CCOGIF data-
set. A CCOGIF volume may contain more than one dataset.

FME represents a DSHR record with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type
ccogif_record_code Record code (constant DSHR). char(4)
ccogif_data_set_name Dataset name. char(64)
ccogif_ds_cre_date Dataset creation date. date
ccogif_ds_loc_text Dataset geographic location text. char(64)
ccogif_related_ds Reference to other related datasets. char(64)
ccogif_data_three_dim Specifies whether data is three-dimen- char(1)

sional (3D). If false, Z coordinate is always

zero.

Legal values are T (true), F (false) and
U (unknown).

ccogif_pt_to_In_topo Specifies whether point-to-line topology char(1)
exists in a dataset.

Legal values are T (true), F (false) and
U (unknown).

ccogif_In_to_pt_topo Specifies whether line-to-point topology char(1)
exists in a dataset.

Legal values are T (true), F (false) and
U (unknown).

ccogif_colloc_exists Specifies whether dataset employs line col- | char(1)
location.

Legal values are T (true), F (false) and
U (unknown).

ccogif_In_to_area_topo Specifies whether line-to-area topology char(1)
exists in a dataset.

Legal values are T (true), F (false) and
U (unknown).

ccogif_area_to_In_topo Specifies whether area-to-line topology char(1)
exists in a dataset.

Legal values are T (true), F (false) and
U (unknown).

Attribute Name Description Type

ccogif_known_pt_in_area Specifies whether there is a known point in | char(1)
each area.

Legal values are T (true), F (false) and
U (unknown).

ccogif_attrs_in_entity Specifies whether attributes are presentin |char(1)
entity records.

Legal values are T (true), F (false) and
U (unknown).

ccogif_feat_classes Ordered list of feature classes (A to K) for | char(32)
the dataset. Blanks are placed for classes
not present; e.g., A, D, GH, J.

ccogif_num_data_grp Number of data groups contained in this int(16)
CCOGIF dataset (n>=1).

ccogif_num_ufl_recs Number of user fixed length records imme- |int(16)
diately following this dataset header record
(n>=0).

ccogif_num_emd_recs Number of entity metadata records that int(16)
describe the contents of this CCOGIF data-
set (n>=1).

ccogif_x_data_type, Data type of X, y, or z coordinate values. char(4)

ccogif_y_data_type, Legal values are INT, REAL or DMS.
ccogif_z_data_type

ccogif_x_data_units, Units in which x, y, or z coordinate values char(16)
ccogif_y_data_units, are measured - for example, METRES,
ccogif_z_data_units

METRES ASL.
ccogif_z_min_value, Z coordinate minimum and maximum variable?

ceogif_z_max_value values. Interpretation of this attribute

depends on the values of ccogif_z_data_
type and ccogif_z_data_units.

ccogif_proj_id Map projection identifier that describes the |char(4)
map projection in which the entity data in
the dataset is encoded. See the discussion
below this table for more details.

ccogif_geod_datum Name of geodetic datum. char(16)
ccogif_adj_name Name of adjustment. char(16)
ccogif_vert_datum Name of vertical datum. char(16)

@Fields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHRs ¥, y, or z data type
corresponding to that field.

The ccogif_x_data_type, ccogif_y_data_type, and ccogif_z_data_type tell what numeric for-
mat is used to represent x, y, and z coordinate values. INTEGER and REAL are obvious representations. DMS values
for x and y coordinate values only are stored as +ddd mm ss.sss, where ddd is the degrees portion of the
number, mm is the number of minutes, and SS . SSS is the number of seconds. DMS values are converted by FME to
their corresponding numeric or decimal values.

The DSHR feature also contains a number of attributes specific to the map projection in which the dataset's entities
are expressed. The selection of map projection is made by the ccogif_proj_1id attribute. It has one of the fol-
lowing values:

Map Projection ID Projection Name

0100 Latitude/Longitude

0200 Transverse Mercator—Universal Transverse Mer-
cator (UTM) projections are stored with this ID as
well

0203 Mercator

0300 Lambert Conformal

0400 Stereographic

0500 Polyconic

The attributes for each map projection type are listed in the following sections.
Latitude/Longitude Project Parameters

Datasets in the Latitude/Longitude projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant char(4)
0100.

ccogif_proj_name Map projection name, constant LAT- char(32)
ITUDE/LONGITUDE.

ccogif_proj_origin_x, Longitude/latitude origin for x,y coor- |DMS

ccogif_proj_origin_y dinates

ccogif_proj_num_bnd_crd Number of coordinate pairs that form |int(16)
a bounding polygon for this dataset
(0>=n>=12).

ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon DMS

ccogif_proj_bnd_crd{n}.y

(0>=n>config_num_bnd_crd).

Transverse Mercator Projection Parameters

Datasets in the Transverse Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant char(4)
0200.
ccogif_proj_name Map projection name, constant TRANS char(32)
VERSE MERCATOR.
ccogif_proj_cent_merid Central meridian. DMS
ccogif_proj_zone_width Zone width. DMS
ccogif_proj_sphd_name Spheroid name. char(20)
ccogif_proj_semi_major Semi-major axis. real(16)
ccogif_proj_semi_minor Semi-minor axis. real(16)
ccogif_proj_eccent Eccentricity. real(16)
ccogif_proj_scl_fact Scale factor. real(16)
ccogif_proj_false_east, False Easting/Northing. real(16)

ccogif_proj_fals_north

ccogif_proj_zone Zone number. int(16)

ccogif_proj_orig_east, Origin (easting, northing). variabled

ccogif_proj_orig_north

ccogif_proj_num_bnd_crd Number of coordinate pairs that form |int(16)
a bounding polygon for this dataset
(0>=n>=12).

ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon variable?

ccogif_proj_bnd_crd{n}.y

(0>=n>config_num_bnd_crd).

Mercator Projection Parameters

Datasets in the Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant char(4)
0203.

ccogif_proj_name Map projection name, constant MER- | char(32)
CATOR.

ccogif_proj_mid_lat Mid latitude. DMS

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s X, y, or z data
type corresponding to that field.

Attribute Name Description Type
ccogif_proj_sphd_name Spheroid name. char(20)
ccogif_proj_semi_major Semi-major axis. real(16)
ccogif_proj_semi_minor Semi-minor axis. real(16)
ccogif_proj_eccent Eccentricity. real(16)
ccogif_proj_orig_east, Origin (easting, northing). variable
ccogif_proj_orig_north
ccogif_proj_num_bnd_crd Number of coordinate pairs that form |int(16)
a bounding polygon for this dataset
(0>=n>=12).
ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon variable?
ccogif_proj_bnd_crd{n}.y (0>=n>config_num_bnd_crd).
Lambert Conformal Projection Parameters
Datasets in the Mercator projection have the following attributes defined on their DSHR feature:
Attribute Name Description Type
ccogif_proj_id Map projection identifier, constant char(4)
0300.
ccogif_proj_name Map projection nhame, constant LAM- | char(32)
BERT CONFORMAL.
ccogif_proj_frst_scl_par First scaling parallel. DMS
ccogif_proj_secnd_scl_par Second scaling parallel. DMS
ccogif_proj_sphd_name Spheroid name. char(20)
ccogif_proj_semi_major Semi-major axis. real(16)
ccogif_proj_semi_minor Semi-minor axis. real(16)
ccogif_proj_eccent Eccentricity. real(16)
ccogif_proj_orig_east, Origin (easting, northing). variableP
ccogif_proj_orig_north
ccogif_proj_num_bnd_crd Number of coordinate pairs that form | int(16)
a bounding polygon for this dataset
(0>=n>=12).

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s X, y, or z data

type corresponding to that field.

bFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR's X, y, or z data

type corresponding to that field.

Attribute Name Description Type

ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon variable?
ccogif_proj_bnd_crd{n}.y (0>=n>config_num_bnd_crd).

Stereographic Projection Parameters

Datasets in the Mercator projection will have the following attributes defined on their DSHR feature:

Attribute Name Description Type
ccogif_proj_id Map projection identifier, constant | char(4)
0400
ccogif_proj_name Map projection name, constant char(32)
STEREOGRAPHIC
ccogif_proj_scale_lat Scaling latitude DMS
ccogif_proj_sphd_name Spheroid name char(20)
ccogif_proj_semi_major Semi-major axis real(16)
ccogif_proj_semi_minor Semi-minor axis real(16)
ccogif_proj_eccent Eccentricity real(16)
ccogif_proj_orig_east, Origin (easting, northing) variable?
ccogif_proj_orig_north
ccogif_proj_num_bnd_crd Number of coordinate pairs that int(16)
form a bounding polygon for this
dataset (0>=n>=12)
ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon | variable@
ceogif_proj_bnd_crd{n}.y (0>=n>config_num_bnd_crd)

Polyconic Projection Parameters

Datasets in the Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant char(4)
0500.

ccogif_proj_name Map projection name, constant POLY- | char(32)
CONIC.

ccogif_proj_cent_merid Central meridian. DMS

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHRs X, y, or z data
type corresponding to that field.

Attribute Name Description Type
ccogif_proj_sphd_name Spheroid name. char(20)
ccogif_proj_semi_major Semi-major axis. real(16)
ccogif_proj_semi_minor Semi-minor axis. real(16)
ccogif_proj_eccent Eccentricity. real(16)
ccogif_proj_orig_east, Origin (easting, northing). variable?
ccogif_proj_orig_north
ccogif_proj_num_bnd_crd Number of coordinate pairs that form | int(16)

a bounding polygon for this dataset

(0>=n>=12).
ccogif_proj_bnd_crd{n}.x, Coordinate #n of bounding polygon variable?

ccogif_proj_bnd_crd{n}.y

(0>=n>config_num_bnd_crd).

Entity Metadata Record

The Entity Metadata Record (EMDR) describes the source and quality of the data contained in the CCOGIF dataset.
There may be multiple EMDRs in a single CCOGIF dataset if there are varying sources and quality of data in the data-
set. The entity data records in the CCOGIF dataset refer back to these entity metadata records by ID.

The FME represents an EMDR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type
ccogif_record_code Record code, constant EMDR. char(4)
ccogif_meta_data_id Metadata ID number. int(16)
ccogif_data_gen_agncy Data generating agency. char(64)
ccogif_capture_method Method of data capture or revision. | char(64)
ccogif_col_instrmt Type of collecting instrument. char(64)
ccogif_src_mat_type Type of source material. char(64)
ccogif_src_mat_scale Scale of source material. char(64)
ccogif_src_mat_date Date of source material. date
ccogif_fld_comp_date Date of field completion. date
ccogif_data_captr_date Date of data capture or revision. date
ccogif_src_mat_spec Reference to specification document | char(192)

on source material and collection or
revision methods.

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR's X, Y, or Z data

type corresponding to that field.

Attribute Name Description Type

ccogif_feat_code_spec Reference to specification document | char(192)
on feature coding and attribute
assigning procedures.

ccogif_data_struc_spec Reference to specification document | char(192)
on data structuring process.

ccogif_qual_ctrl_spec Reference to specification document | char(192)
on quality control procedures.

ccogif_trans_gen_spec Reference to specification document | char(192)
on transformations and gen-
eralization procedures.

ccogif_field_cpltn_spec Reference to specification document | char(192)
on field completion procedures.
ccogif_acc_det_proc_ Reference to specification document | char(192)
spec on accuracy determination pro-
cedures.
ccogif_data_resolution Resolution of the data. char(64)
ccogif_x_accuracy, X, Y, Z positional accuracy of the real(16)
ccogif_y_accuracy, data

ccogif_z_accuracy

Data Group Header Record

Each data group within a CCOGIF dataset starts with a Data Group Header Record (DGHR). This record defines the
name of the data group and tells how many point, line, and area themes are contained in the group.

The FME represents a DGHR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type
ccogif_record_code Record code, constant DGHR. char(4)
ccogif_data_group_name Name of data group. char(64)
ccogif_num_point_themes, Number of (point, Tine, area) int(16)
ccogif_num_line_themes, themes contained in this data group.
ccogif_num_area_themes

Data Theme Header Record

Each theme in a data group starts with a Data Theme Header Record (DTHR). This record defines the entity type
(point, line, area) contained in the theme, the number of attributes defined on each entity in the theme, and the
length of the fixed length entity records within the theme.

All entities within a particular theme must be of the same entity type and must have the same set of attributes.

FME represents a DTHR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant DTHR. char(4)

ccogif_entity_type Type of entity in theme (POINT, LINE, | char(8)
AREA).

ccogif_num_entities Number of entities in this data theme. | int(16)

ccogif_num_attr_desc Number of attributes defined on each [int(16)
entity of the theme.

ccogif_fixed_len_bytes Length of the fixed length portion of int(16)
each entity in the theme.

Attribute Descriptor Record

All entities within a given data theme have the same set of attributes defined on them. The Attribute Descriptor Rec-
ord (ADR) lists the name and type of each attribute defined on the entities of the current data theme. The number of
attributes defined on a theme is specified in the ccogif_num_attr_desc attribute of the DTHR.

The FME represents an ADR with a CCOGIF_METADATA feature that has the following attributes:

Attribute Name Description Type
ccogif_record_code Record code, constant ADR. char(4)
ccogif_attr{n}_name Name of attribute #n. char(40)
ccogif_attr{n}_type Type of attribute #n (INT, REAL, char(4)

DMS, CHAR, or DATA).

ccogif_attr{n}_len String length if attribute #nis a int(16)

CHAR type, otherwise 0.

Entity Features

The entity features are the features that represent the entities of the CCOGIF dataset. When reading CCOGIF data, an
entity feature will have a feature type of <data_group>_<theme_index>, where:

<data_group> is the name of the data group, taken from the most recent DGHR metadata record. All special char-
acters—such as spaces, colons, etc.—are replaced with underscores.

<theme_1index> is the index within the data group of the theme containing the entity. The themes are numbered
sequentially within their data group. The first theme in each data group is number 1.

Entities may be described in a CCOGIF file as a pair of records. Each entity has a fixed length record and, optionally, a
variable-length record. The fixed length portion contains information, such as an ID number, a point's location, a
line's topological information, a feature code, and attribute values. In other words, the data present for all entities in
the theme.

The variable-length portion contains the data that varies in size between entities within a given theme and may or
may not be present for a given entity. It contains, for example, a list of lines attached to a point entity, the coordinates
defining a line, or the list of identifiers of lines defining an area's boundaries.

FME's entity features combine the contents of the fixed length and variable length records for a particular entity into a
single FME feature.

All entity features have the following attributes defined on them:

Attribute Name Description Type

ccogif_record_code Record code, constant PFLR for point char(4)
entities, LFLR for line entities, AFLR for
area entities.

ccogif_data_coll_md_ptr Data collection metadata pointer (ref- | int(16)
erence number of EMDR corresponding
to data collection).

ccogif_data_rev_md_ptr Data collection metadata pointer (ref- [int(16)
erence of EMDR corresponding to data
revision or validation).

ccogif_prim_feat_code Primary feature code for the entity. char(12)

ccogif_data_group_name Name of the data group containing the | char(40)
entity.

ccogif_data_theme_id Index of the data theme within the int(16)
data group.

Each specific type of entity has additional attributes to describe the entity and are listed in the sections that follow.

In addition to the standard attributes, each entity feature also has values for all attributes listed in its data theme's
ADR.

Point Entity Features

Point entities are represented in the CCOGIF file as a Point Fixed-Length Record (PFLR) and, optionally, a Point Var-
iable-Length Record (PVLR). The FME combines the contents of these two records into a single feature - the point
entity feature.

The geometry of FME's point entity feature is the point's coordinates from the PFLR. A Z-value of -9999 represents
an undefined value, so any PFLRs that have a Z-value of -9999 are translated as an (x,y) coordinate instead of an
(x,y,z) coordinate.

In addition to the geometry and the attributes common to all entity features (listed in the previous section), point
entity features have the following attributes defined:

Attribute Name Description Type
ccogif_record_code Record code, constant PFLR. char(4)
ccogif_point_id Point ID number. int(16)
ccogif_num_lines Number of lines attached to this point | int(16)
(n>=0).
ccogif_orientation Orientation of point, measured in real(16)
degrees counterclockwise from the x-
axis.
ccogif_line_id{n} Line identifier of nth line attached to | int(16)
this point.

Line Entity Features

Line entities are represented in the CCOGIF file as a Line Fixed-Length Record (LFLR) and optionally, a Line Variable-
Length Record (LVLR). The FME combines the contents of these two records into a single feature—the line entity fea-
ture.

The geometry of FME's line entity feature is the line's coordinates from the LVLR. A Z-value of -9999 represents an
undefined value, so any LVLRs that have Z-values of -9999 are translated as (x,y) coordinates instead of (x,y,z)
coordinates.

In addition to the geometry and attributes common to all entity features, which were listed in the previous section,
line entity features have the following attributes defined:

Attribute Name Description Type

ccogif_record_code Record code, constant LFLR. char(4)

ccogif_line_id Line ID number. int(16)

ccogif_num_lines Number of lines attached to this int(16)
point (n>=0).

ccogif_coll_line_id ID number of collocated line (0 if not | int(16)
collocated).

ccogif_start_node_id Start node ID number (0 if not int(16)
defined).

ccogif_end_node_id End node ID number (0 if not int(16)
defined).

ccogif_left_area_id Left area ID number (0 if not int(16)
defined).

ccogif_right_area_id Right area ID number (0 if not int(16)
defined).

Area Entity Features

Area entities are represented in the CCOGIF file as an Area Fixed-Length Record (AFLR) and optionally, as an Area Var-
iable-Length Record (AVLR). The FME combines the contents of these two records into a single feature - the area
entity feature.

The geometry of FME's area entity feature is the coordinates of a point inside the area, as defined in the AFLR. A Z-
value of ~9999 represents an undefined values so any AFLRs that have a Z-value of ~9999 are translated as an
(x,y) coordinate instead of an (x,y,z) coordinate. Note that the area entity feature itself does not contain any polygonal
geometry. Instead, it contains a list of attributes pointing to the identifiers of the lines that make up the boundary of
the area. To form a polygon from CCOGIF data it is necessary to use the ReferenceFactory, or a similar factory, in the
mapping file to associate the area feature with its polygonal boundaries.

In addition to the geometry and the attributes common to all entity features (listed in the previous section), area
entity features have the following attributes defined:

Attribute Name Description Type
ccogif_record_code Record code, constant AFLR. char(4)
ccogif_area_id Area ID number. int(16)

ccogif_num_bnd_lines Number of lines that form the boundaries | int(16)

Attribute Name Description Type

of this polygon (n>=0).

ccogif_line_id{n} Line identifier of nth boundary line for this | int(16)
area.

Defining Volume Structure

The contents of a CCOGIF volume follow a firm structure, provided through the use of metadata records. The
sequence and contents of these metadata records is crucial to the correctness of a CCOGIF volume. The CCOGIF
writer provides a mechanism for the mapping file to explicitly define the required records and their contents.

There are six areas where the CCOGIF writer provides direct control of the generated CCOGIF records:

e Definition and order of data themes within a data group
e Specification of metadata records, such as:

e the contents of Volume Descriptor Record (VDR)

e the contents of User Fixed-Length Record (UFLR)

e the contents of Data Set Header Record (DSHR)

e the contents of Entity Metadata Record (EMDR)
e Specification of the contents of entity records

e The following sections cover each of these in more detail.
Theme Definition

Geometric entity records are grouped into themes, where all entities within a given theme have the same geometric
type - point, line, or area — and the same set of attributes. Each theme written to a CCOGIF file is defined by a CCOGIF
DEF line. The DEF line specifies the name of the group to which the theme belongs, and allows specification of the rel-
ative ordering of the themes within the groups. The header records for data groups (DGHR) are written to the output
file for each group mentioned on a DEF line.

The group name and theme ordering index may be specified explicitly on the DEF line with the CCOGIF_GROUP_
NAME and CCOGIF_THEME_ORDERING keywords, or they may be implied by the theme identifier. If the DEF line
does not have a CCOGIF_GROUP_NAME, the theme identifier, or FME feature type, becomes the implied group
name. In this case, the DEF line actually defines attributes for the group itself and not a particular theme, and there-
fore must not include any theme ordering or entity type information. The reasons and implications of assigning attrib-
utes to a group instead of a theme within the group are discussed below.

If the DEF line contains neither an explicit group name or an explicit theme ordering, and the theme identifier is of
the form <groupName>_<number>, where <number> is any integer, then the group name and theme ordering
are implied as <groupName> and <number> respectively.

The geometric entity type for each theme must be provided on the theme’s DEF line by using the CCOGIF_THEME_
ENTITY_TYPE keyword. However, it is not necessary for every DEF line to have an entity type provided. If neither
entity type nor theme ordering information is specified, then the DEF line is considered to define a set of attributes
for a data group rather than for a data theme.

Strictly speaking, it makes no sense to talk of attributes being assigned to a CCOGIF data group as attributes are
assigned to themes within the CCOGIF file. This mechanism, however, provides the ability to essentially define a
point, line, and area theme within a single group, with identical sets of attributes. Any features with the specified fea-
ture type are written to the appropriate theme—point, line, or area—depending on the geometry type of the feature.
Features with aggregate geometry or no geometry at all will not be written.

The themes implied with this mechanism, called generic themes from this point on, may coexist with other themes in
a group, making it possible to define a number of themes for a data group as well as to define generic themes for “the
other stuff that we want to write but that doesn’t fit into our predefined themes”. If the generic theme mechanism is

used, its DEF line must appear in the mapping file before the DEF lines for any non-generic themes within that
group.

Specifying Metadata Records

The metadata records in a CCOGIF file contain many pieces of information that must be correctly defined for the file to
be accurate. Much of this information is for the benefit of human users of the end product and may vary not only from
site to site, but from one dataset to another. This information cannot be coded into FME itself, therefore it must be sup-
plied into the mapping file.

The CCOGIF writer expects this information to be passed in the same metadata features that the CCOGIF reader
creates. If the writer receives a feature with a feature type of CCOGIF_METADATA, it will look at the ccogif_rec-
ord_code attribute to see which of the metadata features, described in "Metadata Features" on page 243, the fea-
ture represents. It extracts from this feature whatever ccog1' f_XXX attributes apply to that particular type of
metadata feature and eventually writes the information to the metadata records in the output CCOGIF file.

The order of the incoming metadata features is significant, as they are written out in a similar order to which they are
received. Any volume-specific metadata must come before the Data Set Header Record (DSHR). Metadata features
received after the DSHR appear in the output CCOGIF file as a part of the dataset.

In addition, all metadata features must be presented to the writer before any entity features are presented. The CCO-
GIF writer needs information from the DSHR in order to write entity data, so it creates a default DSHR if none has been
given. Any metadata that comes after the default DSHR has been generated may contradict the default values placed
into the DSHR, resulting in an invalid output CCOGIF file.

Several ways to generate the metadata features for the CCOGIF writer are discussed below:

e Use the Multi-Reader as the input reader and use a template CCOGIF file as a source for CCOGIF_METADATA fea-
tures. In other words, specific metadata features may be chosen from this reader, then redirected to the writer to
provide attribute values for the corresponding metadata records in the output.

e Store the template’'s CCOGIF_METADATA features in a feature store and use the RecordingFactory to
inject them into the feature stream. If this method is chosen, it's important to choose the playback mode of PLAY -
BACK instead of PLAYBACK_AT_END.

e Usethe CreationFactory to create the metadata features with all of the required attributes.

Once the features have been generated, they have to be handed to the writer with a feature type of CCOGIF_META-
DATA. This can be accomplished by creating a false theme in any of the groups in the output file such as:

CCOGIF_DEF CCOGIF_METADATA
CCOGIF_GROUP_NAME "FEATURES"

With this definition in place, you can correlate the metadata features to the CCOGIF_METADATA feature type of the
output format. This correlation must equal all ccog1' f_XXX attributes on the source and target sides for all meta-
data feature types being correlated. For example:

CCOGIF CCOGIF_METADATA \

ccogif_adj_name %ccogif_adj_name \
ccogif_area_to_lIn_topo %ccogif_area_to_In_topo \
ccogif_attrs_in_entity %ccogif_attrs_in_entity \
ccogif_bytes_prev_rec %ccogif_bytes_prev_rec \
ccogif_colloc_exists %ccogif_colloc_exists \
ccogif_z_min_value %ccogif_z_min_value
SHAPE CCOGIF_METADATA \

ccogif_adj_name %ccogif_adj_name \
ccogif_area_to_ln_topo %ccogif_area_to_In_topo \
ccogif_attrs_in_entity %ccogif_attrs_in_entity \
ccogif_bytes_prev_rec %ccogif_bytes_prev_rec \
ccogif_colloc_exists %ccogif_colloc_exists \

ccogif_z_min_value %ccogif_z_min_value

The following sections describe ways in which some of the types of metadata features are treated specially by the CCO-
GIF writer. This special treatment simply ensures that the record exists and has some legal, if not meaningful, default
values in place for the ccogif_XXX attributes.

Volume Descriptor Record Contents

The Volume Descriptor Record (VDR) must be present in every CCOGIF file. If it is not given to the CCOGIF writer, it
will be created with the default attribute values listed in the following table. If a VDR metadata feature is given to the
CCOGIF writer and it defines only some of the ccogi f_XXX attributes that appear in the table below, the default
value will be “taken” for those not specified.

Attribute Name Contents — Default Values

ccogif_log_vol_id FME-generated CCOGIF dataset

ccogif_phys_vol_num 0

ccogif_vol_cre_date Current date

ccogif_vol_data_desc Empty string (* ")

ccogif_vol_gen_cntry Empty string (“ n)

ccogif_vol_gen_agncy Empty string (* ”)

ccogif_vol_gen_fclty Empty string (“ n)

ccogif_fmt_ctrl_doc_id Empty string (* ")

ccogif_sw_release_id Empty string (“ n)

ccogif_feat_code_rev Empty string (*)

ccogif_num_ufl_recs Computed from the amount of user data spec-
ified in the volume’s UFLR metadata features

ccogif_bytes_prev_rec 0

The value for the attribute ccogif_num_uf1_recs is always filled in automatically by the CCOGIF writer. Its
value will be based on the length of the user data passed to the writer via the User Fixed-Length Records’ (UFLR)
metadata features.

User Fixed-Length Record Contents

Each VDR and DSHR record in a CCOGIF file may be immediately followed by zero or more UFLRs. When given a
sequence of UFLR metadata features, the CCOGIF writer will read the ccogif_user_def_data attribute of each
feature and concatenate their values into one large character string. When it comes time to write out the metadata rec-
ords, the writer creates as many UFLRs as are required to hold the accumulated data. Each UFLR can contain up to
2044 bytes of user data.

The placement of the UFLRs in the output CCOGIF file depends on where they occur in the sequence of metadata fea-
tures. If the UFLR appears before the DSHR feature, or the first entity feature, if no DSHR feature is explicitly given,
they will be written out immediately following the volume’s VDR. In this case, the VDR’s ccogif_num_uf1_recs
are set to specify how many UFLRs follow.

If the UFLR metadata features appear after the DSHR metadata feature, then the UFLRs will be written immediately
following the DSHR record and the DSHR’s ccogif_num_uf1_recs will be set to specify how many UFLRs fol-
low.

Data Set Header Record Contents

Every CCOGIF file may contain one or more datasets. 1 The first record of each dataset in a CCOGIF volume is called the
Data Set Header Record (DSHR). It provides information particular to the dataset not only for the human user—it also
directs computer applications on how to process the data.

The portions of the DSHR that relate to the processing of the data are of specific interest to the CCOGIF writer. When
it writes out data within a dataset, it must remain consistent with the dataset characteristics set out in the DSHR. The
following information is particularly interesting to the writing process.

Coordinate data type: The DSHR specifies the data type, INT, REAL or DMS, for each of the x, y, and z coor-
dinate values within the dataset. The CCOGIF writer uses the values of the DSHR metadata feature’s ccogif_x_
data_type, ccogif_y_data_type, and ccogif_z_data_type attributes to format the numerical coor-
dinates correctly.

Data set content indicator: The Data Set Content Indicator (DSCI) is a subrecord of the DSHR that tells
whether data is 3D, whether there is a known point in each area, and whether various topology information such
as, point to line topology, line to point topology, line collocation, line to area topology, and area to line topology, is
present in the entity attributes. FME’s CCOGIF writer currently does not generate any topology information, how-
ever it passes along any that has been added to geometric entity features which have been given to it.

Coordinate system and map projection: The correct coordinate system for the output CCOGIF dataset must be
specified in a DSHR metadata feature, as this information is not yet tied in to FME’s coordinate system manager. If
no coordinate system information is provided to the CCOGIF writer, it will arbitrarily choose a Universal Transverse
Mercator (UTM) zone 18 projection, which is most likely not what is wanted.

The following table lists the default values for all attributes in the DSHR. These default values will be written out for
any attributes not mentioned in “any” DSHR metadata feature given to the writer.

Attribute Name Contents — Default Value

ccogif_data_set_name FME-generated CCOGIF dataset

ccogif_ds_cre_date Current date

ccogif_ds_loc_text Empty string (" ”)

ccogif_related_ds Empty string (" ”)

ccogif_data_three_dim Depends on whether first entity feature written is

two- or three-dimensional.

ccogif_pt_to_In_topo F for False
ccogif_In_to_pt_topo F for False
ccogif_colloc_exists F for False
ccogif_In_to_area_topo F for False
ccogif_area_to_In_topo T for True
ccogif_known_pt_in_area T for True
ccogif_attrs_in_entity T for True
ccogif_feat_classes Empty string (")

1The FME’s CCOGIF writer currently supports only a single dataset.

Attribute Name

Contents - Default Value

ccogif_num_data_grp

Number of data groups written to this CCOGIF
dataset.

ccogif_num_ufl_recs

Computed from the amount of user data specified
on the UFLR metadata records.

ccogif_num_emd_recs

Number of EMDRs to write to the dataset.

ccogif_x_data_type,

REAL

ccogif_y_data_type,
ccogif_z_data_type

ccogif_x_data_units,
ccogif_y_data_units,
ccogif_z_data_units

METRES for x and vy,
METRES ASL for z

ccogif_z_min_value,
ccogif_z_max_value

If the entity data is 3D, these are the actual mini-
mum and maximum elevations. Otherwise, they
are left blank.

ccogif_proj_id Defaults to UTM zone 18, so the projection ID will
be Transverse Mercator (0200)

ccogif_geod_datum Name of geodetic datum

ccogif_adj_name Name of adjustment

ccogif_vert_datum

Name of vertical datum

The ccogif_num_ufl1_recs attribute on the DSHR is completely dependent on the amount of user data passed
to the CCOGIF writer in UFLR metadata features and is always overwritten by the writer.

The FME defaults to a map projection of UTM zone 18. The following table presents the default values for the
projection-related attributes for the DSHR.

Attribute Name Content — Default Value
ccogif_proj_id Constant: 0200

ccogif_proj_name Constant: TRANSVERSE MERCATOR
ccogif_proj_cent_merid Constant: 75

ccogif_proj_zone_width Constant: 6

ccogif_proj_sphd_name GRS 80

ccogif_proj_semi_major Constant: 6.378137E+06
ccogif_proj_semi_minor Constant: 6.35675231E+06
ccogif_proj_eccent Constant: 6.694380070E-03
ccogif_proj_scl_fact Constant: 0.9996

Attribute Name Content - Default Value

ccogif_proj_false_east, Constant: 500000 east, 0 north

ccogif_proj_fals_north

ccogif_proj_zone Constant: 18
ccogif_proj_orig_east, Constant: (0,0)
ccogif_proj_orig_north

ccogif_proj_num_bnd_crd Constant: 0
ccogif_proj_bnd_crd{n}.x, Empty string (*)

ccogif_proj_bnd_crd{n}.y

It is important to note that the CCOGIF writer requires the DSHR information (especially the x,y, and z data types)
before it starts to write entity data to the CCOGIF file.

Entity Metadata Record Contents

Each dataset requires at least one Entity Metadata Record (EMDR). The entity records may reference two or three
EMDRs.

The CCOGIF writer requires EMDR metadata features to define meaningful contents for the EMDRs. If no EMDR meta-
data features are given to the writer, a single EMDR will be written to the output CCOGIF file with all attributes given
default values from the table below. The default attribute values are also used to fill in any values of attributes not
present in the EMDR metadata features passed in.

Attribute Name Description
ccogif_meta_data_id Constant: 0
ccogif_data_gen_agncy Empty string (* ”)
ccogif_capture_method Empty string (* ”)
ccogif_col_instrmt Empty string (u n)
ccogif_src_mat_type Empty string (“ n)
ccogif_src_mat_scale Empty string (* ”)
ccogif_src_mat_date Current date
ccogif_fld_comp_date Current date
ccogif_data_captr_date Current date
ccogif_src_mat_spec Empty string (* ”)
ccogif_feat_code_spec Empty string (“ n)
ccogif_data_struc_spec Empty string (* ”)
ccogif_qual_ctrl_spec Empty string (“ n)
ccogif_trans_gen_spec Empty string (*)
ccogif_field_cpltn_spec Empty string (“ n)

Attribute Name Description

ccogif_acc_det_proc_spec Empty string (“ n)
ccogif_data_resolution Empty string (“ n)
ccogif_x_accuracy, Constant: 0

ccogif_y_accuracy,
ccogif_z_accuracy

The ccogif_data_coll_md_ptrand ccogif_data_rev_md_ptr attributes on all output entity features
must be given an explicit value in the mapping file to ensure they are meaningful.

Entity Record Contents

The entity records written out by the CCOGIF mirror those obtained from the reader. The ccogif XXX attributes must
be defined to be meaningful before the feature is written to the output file. If a feature is passed into the writer with
an attribute named “ccogif_record_code”, the value of that attribute is inspected to see if it contains one of the values:
ccogif_point, ccogif_line, or ccogif_area. If this attribute does not exist, the geometry type of the feature is used to deter-
mine which type of entity is to represent the feature.

No topology is normally created by the CCOGIF writer when writing entities to the CCOGIF file, except when polygon
data is written to a area themes. In this case, a coverage is computed by intersecting the boundaries and holes of all
polygon and donut features written to the group. The coordinates for the lines delineating the resulting areas are
written out as LFLR records to the group’s “generic” linear data theme, and the AFLR records are written to whatever
theme the original polygons were directed at.

If some other topology is required, it can be defined through other means (that is, elsewhere in the mapping file or by
an external tool) and presented to the writer as cc0ogi f_XXX attributes on the entity features. This would require,
however, that every aspect of the CCOGIF entity, including the entity ID and any other internal references, be cor-
rectly defined on the feature before it makes its way to the CCOGIF writer.

Generated Mapping Files

In CCOGIF files, geometric entities are grouped by geographic area, then further grouped according to attributes of
the data itself such as, data themes with common geometric entity types and sets of attributes. This is very different
from the conceptual divisions between data entities that typically must rely on the content of the primary feature code
to provide notion similar to FME’s feature types. The interpretation of a feature type requires knowledge of the con-
ventions by which the data was encoded in the CCOGIF file.

Tip: Geomatics Canada’s document titled “"Conversion of NTDB Data into CCOGIF Format” pro-
vides an example of such a set of convention.

Without knowledge of the underlying conventions, it is very difficult to automatically generate a single mapping file
that works with more than one input file. The definitions of the themes within the groups just isn’t consistent enough.

To overcome this obstacle, FME can generate two different kinds of mapping files:

e Thefirstis a generic mapping file that extracts all of the information it can from the features, then groups them
into FME feature types based on the data theme and data group. When run, this mapping file provides a very sim-
ple representation of the data in the output format without regard to any specific set of conventions.

e The second type of mapping file which may be generated takes into account the representation of the National Top-
ographic Data Base (NTDB) data in the CCOGIF file and is referred to as a profile-specific mapping file.

The term profile is used to refer to a set of file, feature, and attribute naming conventions used to store NTDB in
another, that is non-CCOGIF, format. Geomatics Canada has three such profiles, each designed to embody NTDB data
within the characteristics and limitations of a particular file format. The three profiles are for ASCII Ungenerate (ARC-
GEN), MIF/MID, and DXF. The FME provides a way to generate mapping files to write CCOGIF data in another format,
generally following the conventions of any of these profiles.

Note: The target format does not have to be the same as the format for which the profile was defined.

The resulting files do not exactly conform to the profile, due to differences in data format and to the way in which map-
ping file generation works within FME. However, the resulting data files are generally much closer to what you would
want than those that a generic mapping file would yield. Manual editing of the mapping files can, of course, bring it
much closer.

The advantage of the profile-specific mapping files is that the knowledge of the conventions for storing the NTDB in
the source and destination formats is stored in the mapping file. Therefore a single mapping file may be used for a
whole series of mapsheets, whereas a generic mapping file would only be applicable to a single CCOGIF file.

The disadvantage to the profile-specific mapping file is that the actual generation process needs a few parameters
about the input mapsheets. This requires some knowledge of the data in order to generate the mapping file. In addi-
tion, the generated mapping file must be used with NTDB data that is consistent with the parameters with which the
mapping file was generated.

The following sections describe the process and application of the two kinds of mapping files in greater detail.
Generic Mapping Files

The generic mapping files are useful for a “one-off” translation of a CCOGIF file to another format. It will translate all
of the geometric entities in the file, along with their attributes, and perform simple polygon construction with the area
entities. This sort of translation is useful to quickly determine what kind of data was stored in the CCOGIF file or to
create a starting point for a hand-coded mapping file.

When a generic mapping file is used, an FME feature is generated for each geometric entity. The features generated
have feature types of <groupName>_<themeIndex>, where <groupName> is the name of the data group that
contains the entity and <themeIndex> is the position of the entity’s data theme within all of the group’s themes.
Because the nature of CCOGIF makes it unlikely that two CCOGIF files could have the same group and theme struc-
ture, a mapping file generated from the contents of a given CCOGIF file should only be used to translate that file.

Profile-Specific Mapping Files

Geomatics Canada has defined conventions for storing NTDB data in four different formats:
e CCOGIF

e ASCII Ungenerate, also known as ArcInfo Generate or ARCGEN

e MID/MIF
e DXF

We refer to each of these as a profile.

The published profiles define conventions for attribute naming, file naming, file composition—for example, organized
by NTDB theme versus entity name—and rules for defining the specific attributes’ values. The FME has facilities for
generating mapping files that translate CCOGIF into any FME-supported format, closely adhering to one of these three
profiles:

e ARCGEN
e MID/MIF
e DXF

These profiles are addressed in greater detail following this discussion on profile-specific mapping files.
Aside from choice of profile, the generated mapping file depends on the following three parameters:

e Choice of Language (English or French): NTDB data encoded into CCOGIF contains both French and English
group names and attribute names. A mapping file is configured to choose which language is used on the output
file to name output feature types and attribute names.

e Choice of NTDB Revision (2 or 3): NTDB data in CCOGIF follows either the revision 2 or 3 standard. Since this
information is not made available to the mapping file generation process, the user must specify it at the time of
mapping file generation. A mapping file generated to process mapsheets from one revision cannot be used to proc-
ess mapsheets from another revision.

Choice of Scale (50k or 250k): NTDB data can contain information for a 50k or a 250k mapsheet. The user
must select which scale of data a mapping file is to work with at the time of mapping file generation. A mapping file
generated to process one scale of data may not be used to process a mapsheet from another scale because the set
of groups and attributes differ slightly.

These parameters are supplied to FME mapping file generation process using the macros NTDB_Language,
NTDB_Version, and NTDB_Scale. When generating a mapping file from the command line, the parameters
would be specified something similar to the following command. As no CCOGIF input file is required for a profile-spe-
cific mapping file, the word unusedis given.

fme generate ntdbcg shape unused mymapping.fme --NTDB_Language French --NTDB_Version
3 --NTDB_Scale 50k

Once a profile-specific mapping file has been generated, it may be stored (for example, in the FME gallery) to be used
later. It is not necessary to generate a profile-specific mapping file each time a translation is performed.

The following sections describe the specifics of each of the three profiles in more detail.

ASCII Ungenerate (ARCGEN) Profile

The ASCII Ungenerate profile is specified in the Geomatics Canada document titled "Conversion of NTDB Edition 3
Data into ASCII Ungenerate Format”. This profile has the following properties:

A separate output file is generated for each entity and geometric representation such as, point, line, area.

File names have a maximum of eight characters. The first seven are the seven-character identifier for the theme—
for example, BATIMEN, BUILDIN, CHEMINE, CHIMNEY—followed by a single character for the entity type—P,
L or A.

Point data is stored in a file with the extension . pts, lines in a file with the extension . 11 n, and areas in a pair of
files—a . 11n file for the boundary and a . pts file for the centroid.

The National Topographic System (NTS) mapsheet number; for example, 031h01 is used to name a directory that
contains the subdirectories points, 1ines, and areas.

Attributes are stored in a comma-separated value (CSV) file in the same directory as the corresponding geometry
data.

Each attribute file contains a minimum set of attributes: identifier, entity_name, code_gener, code_
expli, ATG, ATZ, ATE, accuracy (precisionin French), and angle is used for point entities only.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for ARCGEN output, however, FME cannot completely adhere to these
rules without involving manual editing of the generated mapping file.

The FME's approximation to the above conventions are as follows:

Target dataset is specified by the user at run-time to be the NTS map number. For many formats, this is a direc-
tory that contains a separate file for each feature type, or entity file name. Other formats are written to a single file,
with different layers or levels, or whatever the target format’s terminology is, for the entity files.

Feature type names are the same eight-character name mentioned in the specification. The seven-digit entity
name is determined by looking up the generic code in a predefined tables. Some formats tack on a suffix, such as
_arcor _point to the entity name. The way mapping file generation works in FME, this is unavoidable however,
it can be removed by hand once the mapping file has been generated.

No subdirectories are created in the target directory for points, 1ines, and areas.

If the target format were ARCGEN, the file names will all have . gen extensions, instead of . pts and . Tin, and
no CSV files will be created.

When possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes take either the English or French name of the corresponding CCOGIF attributes, depending on the setting of
NTDB_Language.

To generate a mapping file for the ARCGEN profile, a source format specification of ntdbcg, which is an abbreviation
of NTDB CCOGIF to Generate, is used. An example of how this is written is:

fme generate ntdbcg

MID/MIF Profile

The MapInfo Data Interchange Format (MID/MIF) profile is specified in the Geomatics Canada document titled Con-
version of NTDB Edition 3 Data into MID/MIF Format. This profile has the following properties:

e NTDB entities are written to output files organized by theme. The name of the output file combines the NTS map-
sheet number with the theme abbreviation. The table below summarizes the list of themes and their abbreviations.

NTS Mapsheet Themes, Abbreviations, and Numbers

Theme Name Abbreviation Theme
number

Designated areas AD 0
Roads CH 1
Man-made features Co 2
Relief and landform FO 3
General GE 4
Hydrography HD 5
Hypsography HP 6
Power network RE 7

Rail Network RF 8
Road network RR 9
Water saturated soils SS 10
Toponymy TO 11
Vegetation VE 12

e Each dataset in a physical volume occupies a directory identified by the NTS number.

e The output coordinate system for NTDB is a UTM system with a NAD83 datum, coordinates in metres, and a scale
factor of 0.9996.

e The output file contains at a minimum the following attributes:
o CODE (explicit code)
e ATTF
e ELEVATION
e ORIENTATION
e ATV1_ACCURACY
e Other attributes are named ATFn_<attribute_name> and ATVn_<attribute_name>.

e A MaplInfo symbol table is used to represent explicit codes.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for MID/MIF output, however, FME cannot completely adhere to all con-
ventions without involving manual editing of the generated mapping file.

The FME's approximation to the above conventions are as follows:

e The profile specification calls for output files that correspond to FME feature types to have names including the
NTS map number. Unfortunately, the FME mapping file generation process cannot use a variable name for the out-
put feature types, therefore it generates all mapping files with output feature types of NTSNUM_<theme-

Abbrev>, where <themeAbbrev> is a theme abbreviation from NTS Mapsheet Themes,
Abbreviations, and Numbers . It is necessary to modify the generated mapping file to include the map
number as a part of the output feature type names.

e Where possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes take either the English or French name of the corresponding CCOGIF attributes, depending on the setting of
NTDB_Language.

To generate a mapping file for the MID/MIF profile, a source format specification of ntdbcm, which is an abbreviation
of NTDB CCOGIF to MID/MIF, is used. An example of how this is written is:

fme generate ntdbcm

DXF Profile

The DXF profile is specified in the Geomatics Canada document titled "Conversion of NTDB Edition 3 Data into DXF For-
mat”. This profile has the following properties:

e Thedatais written to a DXF file for each theme. The themes are the same thirteen themes as those used for the
MID/MIF profile.

e The file names for the theme files are <nts><abbrev>.dxf where <nts> is the NTS map number and
<abbrevs> is the lower-case equivalent of the theme abbreviation listed in the above-mentioned table.

e Entities are stored in layers named <entityName>_<explicitCode> where <entityName> is the first
11 or fewer characters of the NTDB entity name and <exp 11 citCode> is the explicit code of the entity.

e Fixed attributes—ATFn_<attrName>—are not stored with the features. Their values are implied by the explicit
code.

e Except for toponymy, variable attributes are not transferred to the DXF features.

e Thereis no area under DXF.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for DXF output, however, FME cannot completely adhere to these rules
without involving manual editing of the generated mapping file.

The FME’s approximation to the above conventions are given here:

e FME considers the target dataset of a DXF file to be the file itself, so it is not possible to generate a number of
themes’ output files from a single run of FME. To accomplish this, you would have to run the same CCOGIF file
through the mapping file for each desired themes. Refer to the discussion under the heading Theme Selection for
more details.

e The profile spec calls for output files that correspond to FME feature types to have names including the NTS map
number. Unfortunately, FME mapping file generation process cannot use a variable name for the output feature
types, therefore it generates all mapping files with output feature types of NTSNUM_<themeAbbrev>, where

<themeAbbrev> is a theme abbreviation from NTS Mapsheet Themes, Abbreviations, and
Numbers. It will be necessary to modify the generated mapping file to include the map number as a part of the
output feature type names.

e When possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes will take either the English or French name of the corresponding CCOGIF attributes, depending on the setting
of NTDB_Lanhguage

To generate a mapping file for the DXF profile, a source format specification of ntdbcd, an abbreviation of NTDB
CCOGIF to DXF, is used. An example of how this is written is:

fme generate ntdbcd

Run-Time Options
Language Selection (Generic)

Normally, a generic mapping file names groups and attributes by some combination of their French and English
names. The generated generic mapping file contains a few lines that may be uncommented to specify that the output
files should contain only the French or English data group and attribute names.

Generating Metadata Report (Revision 2)

When a profile-specific mapping file is generated for an NTDB revision 2 CCOGIF file, it generates a report of the meta-
data in the file. When running the mapping file, the macro MetadataReportFilename must be defined. It con-
tains the name of a file where the report is written. If a file already exists with this name, it will be overwritten with

the report.

Tip: The advanced user may be interested to know that the actual generation of the report is
performed by including the file $(FME_HOME)/metafile/ntdbv2Report.fmi into the mapping
file.

Profile-Specific Theme Selection

By default, the profile-specific mapping files export all entity data from the input CCOGIF file to the output file. Often
you only want to extract a single theme or a set of themes.

This may be performed by specifying a value for the NTDB_Se lectedThemes macro when running the mapping
file. This macro contains a comma-separated list of themes to be exported. If the macro is empty as it is by default, all
themes are exported. The themes are specified either by the number or abbreviation in NTS Mapsheet Themes,

Abbreviations, and Numbers.

Known Mapping File Issues

When generating mapping files to write to some formats, FME automatically appends geometry type names to the out-
put feature types. Generally, this is a necessary practice for mapping file generation and cannot be overridden. The
only ways around this is one of these approaches:

e to modify the mapping file after it has been generated

e torename the files after the translation has completed

The first approach is more prudent for profile-specific mapping files, as they are likely to be used several times. The
modified mapping files can be stored in the FME gallery for future use.

CITS Data Transfer Format (QLF) Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The Centre for Topographic Information Sherbrooke (CITS) Data Transfer Format (QLF) Reader/Writer allows FME to
read and write QLF import and export files. The QLF is a published ASCII format used by CITS for import and export.

Overview

QLF files store both feature geometry and attribution. A QLF file has the following file name extension:

File Name Extension

Contents

qlf

Vector geometric data

.qlf.gz

Same as above but in compressed gzip
format.

The extension is added to the basename of the QLF file. Optionally adding .gz to the extension will output a com-
pressed gzip QLF format file; conversely, the reader can directly read files with the extension .glf.gz.

The QLF reader and writer supports the storage of point, line, and polygon geometric data in .glf files. The QLF format
also stores features with no geometry. Features having no geometry are referred to as having a geometry of none.

QLF Quick Facts

Format Type Identifier QLF
Reader/Writer Both
Licensing Level Professional
Dependencies None
Dataset Type File

Feature Type glf_record type
Typical File Extensions .qlf, .qlf.gz
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support No

Generic Color Support No

Spatial Index Never
Schema Required No
Transaction Support No
Geometry Type glf_type
Encoding Support No

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point yes
circles no polygon yes
circular arc no raster no
donut polygon yes solid no
elliptical arc no surface no
ellipses no text no
line yes zvalues yes
none no

Reader Overview

The QLF reader extracts features from a file one at a time, and passes them on to the rest of the FME for further proc-
essing. The reader finishes when it reaches the end of the file.

Reader Directives

The directives processed by the QLF reader are listed below. The suffixes shown are prefixed by the current <Read-
erkeywords> in a mapping file. By default, the <ReaderkKeyword> for the QLF reader is QLF.

DATASET
The value for this keyword is the file path of the QLF file to be read.

Required/Optional

Required

Mapping File Syntax
QLF_DATASET /usr/data/qlf/qlffile.qlf

¥ Workbench Parameter
Source QLF File(s)

DEF

Each QLF file may optionally be defined before it is read. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of a QLF DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The basename specified on the QLF DEF lines is constructed by using either the file name without the extension spec-

ified by the DATASET keyword or q1f_record (used only when QLF is the source).

QLF files require at least one attribute to be defined. The attribute definition given must match the definition of the file
being read. If it does not, translation is halted and the true definition of the QLF file’s attributes gets logged to the log
file.

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The

width parameter controls the maximum number of
characters that can be stored by the field. No pad-
ding is required for strings shorter than this width.

date Date fields store dates as character strings with
the format YYYYMMDD.

number(<width>,<decimals>) Number fields store single and double precision
floating point values. The width parameter is the
total number of characters allocated to the field,
including the decimal point. The decimals param-
eter controls the precision of the data and is the
number of digits to the right of the decimal.

logical Logical fields store TRUE/FALSE data. Data read
or written from and to such fields must always
have a value of either true or false.

The following mapping file fragment defines a QLF file def line when QLF is the source file format.

QLF_DEF glf_record
F1 char(20)
F2 char(20)
F3 char(20)
F4 char(20)
F5 char(20)
F6 char(20)
F7 char(20)
F8 char(20)
F9 char(20)

P

Required/Optional
Required
SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
themitab.d11 in the FME home directory tomapinfo.dlT.
The syntax of the MAPINFO_SEARCH_ENVELOPE directiveis:

MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>
The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional
Optional
Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

#% Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

¥ Workbench Parameter
Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

¥ Workbench Parameter

Additional Attributes to Expose

Writer Overview

The QLF writer creates and writes feature data to a QLF file specified by the DATASET keyword. As with the reader,
the directory must exist before the translation occurs. Any existing QLF files in the directory are overwritten with the
new feature data. Only one QLF file can be written during a single FME session. Optionally a . pr‘j file will also be
written if the the coordinate system’s (projection) information is available. Output . pr‘j files comply with ESRI’s
shape format projection file specification.

Writer Directives

The directives that are processed by the QLF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_in a mapping file. By default, the <wWriterkKeyword> for the QLF writer is QLF.

Note:

By default, the QLF writer will write the coordinates with 15 digits of precision. If this is not desirable or it is caus-
ing problems, then the precision can be easily changed by editing the value of the QLF_PRECISION macro in the
qlf_write.fmi file in the directory [FME_HOME]\pipeline.

For example, if your FME installation is in C:\Program Files\FME the file glf_write.fmi can be found in C:\Program
Files\FME\pipeline directory.

DATASET, DEF
These directives are processed as described in the Reader Directives section.
PRECISION

Define the precision of output coordinates. To be precise, the value of this keyword will determine the number of sig-
nificant digits after the decimal for the output coordinates.

Required/Optional
Optional

Values

1 to 15 (default)

%X Workbench Parameter
Output Precision
NUMFIELD
Defines the number of user defined fields. This should be set during mapping file generation.
Required/Optional
Optional
Values

1to512
Default: 9

¥ Workbench Parameter

Number of Fields

Feature Representation

QLF features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each QLF feature.

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

qlf_type The QLF geometric type of this entity.
Range:

qlf_point]

qlf_polygon|

qlf_line|

glf_none

Default: No default

F1-Fn Represents a feature attribute where *n’ is the number set
via the keyword NUMFIELDS during mapping file gen-
eration.If NUMFIELDS is set to 5 then there will be 5 attrib-
utes F1, F2, F3, F4 and F5.

Range: Maximum of 20 characters

Default: Blank

Points

qlf_type: gIf_point
QLF point features specify a single x and y coordinate in addition to any associated user-defined attributes. There are
no special FME attributes for the QLF line type.

Lines

qlf_type: glf_line
QLF line features specify linear features defined by a sequence of x and y coordinates. There are no special FME attrib-
utes for the QLF lines type.

Polygon

qlf_type: glf_polygon

QLF polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. There are no special FME attributes for the QLF region type.

CityGML Reader/Writer

Format Note: This format is not supported by FME Base Edition.

The CityGML module enables FME to read and write files in the CityGML format.

This chapter assumes familiarity with GML and the CityGML format.

Overview

CityGML is an XML-based format for the storage and exchange of 3D urban models. It extends Geography Markup Lan-
guage 3 (GML3) through an application schema.

This schema specification can be found at the CityGML website http://www.citygml.org/.

CityGML Quick Facts

Format Type Identifier CITYGML
Reader/Writer Both
Licensing Level Professional
Dependencies None
Dataset Type File

Feature Type

CityGML Thematic and Appear-
ance Models

Typical File Extensions .gml, .xml
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support Yes
Generic Color Support No
Spatial Index No
Schema Required No
Transaction Support No
Geometry Type xml_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point yes
circles no polygon yes
circular arc no raster no
donut polygon yes solid yes
elliptical arc no surface yes
ellipses no text no
line yes zvalues yes
none yes

http://www.citygml.org/

Reader Overview
This reader supports CityGML datasets conforming to the CityGML 1.0, 0.4.0, and 0.3.1 application schemas.

The CityGML reader reads all parts of the Thematic and Appearance CityGML models with the exception of the Digital
Terrain Models (DTMs) and Addresses.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the CityGML reader is CITYGML.

DATASET

This directive specifies the location for the input CityGML instance document.

Required/Optional

Required

Mapping File Example

CITYGML_DATASET C:\CityGML_Data\GenericObjects.xml

#¥ Workbench Parameter
Source CityGML File(s)
APPEARANCES

This directive determines whether appearance information specified in the CityGML instance document (including tex-
ture files) should be read into the FME Appearances library.

Required/Optional

Optional

Values

No | Yes

Mapping File Syntax

CITYGML_APPEARANCES Yes

%X Workbench Parameter
Read Textures and materials

MATERIAL_FEATURES

Required/Optional: Optional

This directive specifies whether features types for X3DMaterial and ParameterizedTexture elements should be
created. Valid values are No and Yes.

In general, this keyword should be left with the value of "No” as the CityGML X3DMaterial and ParameterizedTexture
are automatically incorporated into the FME geometry’s appearances.

Example:

CITYGML_MATERIAL_FEATURES No

Workbench Parameter: Inc/ude X3DMaterials and ParameterizedTextures as Feature types
SRS_AXIS_ORDER

This directive overrides the axis order when reading coordinate tuples in a CityGML <pos> or <posList> element.

Required/Optional
Optional

Values

1,2,312,1,3

Mapping File Syntax

CITYGML_SRS_AXIS_ORDER 2,1,3

*X Workbench Parameter
GML SRS Axis Order

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax
<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxyY >

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional
Optional

#% Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

¥ Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

#% Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, itis even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional
Optional

¥ Workbench Parameter
Additional Attributes to Expose

Writer Overview
This writer currently supports writing of the CityGML 1.0 and 0.4 spec.
The Noise Application Domain Extension is also supported for writing (for 0.4 and 1.0).

The writer can be populated with all possible CityGML feature types by importing feature type definitions from files
found in the

xm1/CityGML/writer_feature_types/
subdirectory of the FME installation.
Importing feature type definitions from
CityGML_feature_types.xml

will create feature type definitions for all supported types in the CityGML 1.0 and 0.4 spec, and

CityGML_NoiseADE_feature_types.xm]l
will additionally create definitions for the Noise Application Domain Extension feature types.
Writer Directives

The suffixes listed are prefixed by the current <WriterKeyword> in a mapping file. By default, the <WriterKeyword>
for the CityGML writer is CITYGML.

DATASET
This directive specifies the location for the output CityGML instance document.

By default, the <WriterKeyword> for the CityGML writer is CITYGML.

Required/Optional
Required

Mapping File Syntax

CITYGML_DATASET C:\CityGML_Data\GenericObjects.gml

¥ Workbench Parameter
Destination CityGML Document

DOCUMENT_ENCODING

By default, the CityGML writer produces UTF-8 encoded documents. If this parameter is set to another encoding, the
writer will transcode the data to the specified encoding.

Required/Optional
Optional

Values

No | Yes

Mapping File Syntax

CITYGML_DOCUMENT_ENCODING UTF-16BE

*X Workbench Parameter
CityGML Document Encoding

SRS_NAME

The CityGML writer will attempt to write srsName attributes on the geometry based on EPSG numbers that match the
coordinate system of the features that it is writing.

In some cases, there are no existing well-known names. If this is the case, FME will not write an srsName. However, if
you want to provide an srsName attribute, you can set the directive SRS_NAME and its value will be inserted into the
srsName attribute of the geometry written.

Note that this is not the same as setting the coordinate system keyword/parameter for the writer. No reprojection will
be done on the basis of the SRS_NAME directive. This directive is strictly for those cases where the user can provide a
name (and possibly an axis order) for an srsName that FME is not aware of.

Required/Optional
Optional

Mapping File Syntax

SRS_NAME EPSG:4326

% Workbench Parameter
GML srsName
SRS_AXIS_ORDER
This parameter is used only when the user is providing an srsName via the SRS_NAME parameter.
It determines the coordinate order when writing geometries.
Required/Optional
Optional
Mapping File Syntax

SRS_AXIS_ORDER 2,1,3

¥ Workbench Parameter
GML srs Axis Order
ADE

This directive specifies the name of the Application Domain Extension (ADE), if any, to be used.

Required/Optional

Optional
Values
None | Noise ADE

Mapping File Syntax

CITYGML_ADE NoO1iSeADE

%% Workbench Parameter
Application Domain Extension
TEXTURE_DIRECTORY
This directive specifies the name of the subdirectory to which texture files will be written out, if applicable.

The subdirectory name by default is (filename)_appearance, where (filename) is the name of the dataset.
Required/Optional

Optional

Mapping File Syntax

CITYGML_TEXTURE_DIRECTORY SampleData_Appearance

¥ Workbench Parameter

Texture subdirectory
THEME_NAME

This directive specifies the name of the theme under which FME Appearances are written in the CityGML instance doc-
ument.

Required/Optional
Optional

Mapping File Syntax

CITYGML_THEME_NAME FMETheme

%X Workbench Parameter

Theme name

VERSION

This directive specifies the version of CityGML to be written.

The output documents are quite different, as CityGML changed significantly between these two versions (especially
regarding the namespaces in which objects are located).

Required/Optional
Optional

Values

0.4]1.0

Mapping File Syntax

CITYGML_VERSION 1.0

% Workbench Parameter
CityGML Version for Writing

Feature Representation

This section describes how multiple geometries are handled in the CityGML Reader and writer, how levels of detail are
portrayed, and explains the feature hierarchy that is created when the CityGML Reader interprets a CityGML dataset.

CityGML features read from the CityGML Reader are named the same in FME as they are in the application schema. For
example, a CityGML Building will create a feature type named Building in FME. The only exception to this is Gener-
icCityObjects. As generic objects, the name of the feature-type will match the name of its gml_name attribute when-
ever possible.

Multiple Geometries

In a CityGML dataset, the same feature may be represented in multiple levels of detail simultaneously. Since the FME
does not support multiple geometries on a feature, the CityGML reader will create a single aggregate of geometries for
a feature-type, one geometry for each level of detail.

Should only one level of detail be available for a feature-type, then a non-aggregate geometry representing the fea-
ture will be created.

As multiple geometries defined in CityGML may map to a single FME geometry, we keep the original CityGML geometry
in a trait called gml_geometry.

This flexibility of geometry poses a problem for users wishing to write CityGML. Given a feature with some geometry,
how will the writer interpret the role of the geometry. For example, a Building supports over a dozen different geome-
try elements. How will the writer determine the appropriate role for the geometry? In general, the user must mark
each geometry component with a geometry trait that defines the geometry role that the geometry plays. For example if
the user is writing a Building and has both a multi-surface geometry and a solid geometry, the user can use a Geome-
tryTraitSetter to set the attribute citygml_lod_name to establish the roles, marking the multisurface with, for exam-
ple, lod3MultiSurface and the solid with Lod2Solid. In some cases, it may be necessary to use a Deaggreagator
transformer to split the geometries up, mark each component, and then aggregate them together again.

The value of the citygml_lod_name attribute must also be compatible with the geometry type. For example, a geome-
try tagged with lod3MultiSurface must be a MultiSurface, or the geometry will not be written out. In some cases, a
geometry that is not valid for a given role will be converted to a geometry that is valid. For example, a Surface tagged
with lod3MultiSurface will be wrapped in a MultiSurface, and a BRepSolid tagged with lod2MultiCurve will be con-
verted to a MultiCurve.

In order to aid in automatic translations, geometries without a citygml_lod_name trait will be assumed to be lod4G-
eometry elements if their feature-type is GenericCityObject.

Level of Detail

In order to keep track of the particular level of detail a feature with a geometry has, the CityGML Reader will create a
list attribute called citygml_level_of_detail. The list element values will be integers between zero and four, inclusive.
If the feature-type is an aggregate of features, then the list attribute will contain as many elements as there are geom-
etries in that aggregate. Geometries in an aggregate maintain their order, and the list attribute keeps track of the lev-
els of detail of each geometry in sequence.

Should a non-aggregate geometry be created, the citygml_level_of_detail list attribute will only contain a single ele-
ment referring to the level of detail the geometry created.

In addition to the citygml_level_of_detail list attribute, two geometry traits will be put on the geometry itself in order
to identify its level of detail: citygml_level_of_detail and citygml_lod_name. An example of this follows:

s B s o
Feature Type: CityFurniture'

Attribute(string): citygml_class' has value 1000’
Attribute(string): citygml_function' has value 1080’
Attribute(string): citygml_level_of_detail{0}' has value 2'
Attribute(string): fme_feature_type' has value CityFurniture'
Attribute(string): fme_geometry' has value fme_point'
Attribute(string): fme_type' has value fme_point'
Attribute(string): gml_id' has value gml-idO1'
Attribute(string): xml_type' has value xml_point'

Attribute: citygml_level_of_detail{0}' is sequenced

Coordinate System: '

Geometry Type: IFMEPoint

Number of Geometry Traits: 1

GeometryTrait(string): citygml_level_of_detail' has value 2'
GeometryTrait(string): citygml_lod_name' has value Tod2Geometry'
Coordinate Dimension: 3

(0,0,0)

Feature Hierarchy

The design principle for CityGML is to model real-world entities as features, such as buildings and walls, and to main-
tain ‘part-of’ relationships between features. For example, a window and a door may be on the same semantic level,
thus they can both be ‘part-of’ the same wall.

The CityGML Reader mimics this hierarchy with regards to the CityGML Thematic Model by creating a feature for each
of the CityGML features, and maintains the ‘part-of’ relationships through gm1_id and gm1_parent_id attrib-
utes. In the example above, both the window and the door would specify a gm1 _parent_id equivalent to the
gm1_1d of the wall that they would be a part of.

The reading of texture data may also be suppressed through the APPEARANCES parameter in order to speed up

translations. If texture reading is suppressed, X3DMaterial and ParameterizedTexture features will always be
created.

Data features with no geometries but with a reference point (for example, in the case of implicit geometries) will have
a point geometry created corresponding to this reference point.

The CityGML Writer similarly uses the gm1_7id and gm1_parent_id attributes to determine feature hierarchy.

The following is deprecated and only applies if the MATERTIAL_FEATURES directive is set to Yes: Previously, the
CityGML Reader didn‘t support the FME geometry appearance mode. Thus, the CityGML material XML elements, the
X3DMaterial(s), and ParameterizedTexuture(s) elements were read as separate feature types. The CityGML appear-
ance information is now automatically applied to the specified target surfaces, the creation of feature types from
X3DMaterial and ParameterizedTexture elements are thus unnecessary and suppressed by default.

Attributes

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature
Attributes), this format adds the format-specific attributes and attribute types described in this section.
CityGML Attribute Types

CityGML provides the usual assortment of attribute types, usually prefixed with either citygml_ or xml_. One type that
is particularly interesting to users of the CityGML Writer is the xml_xml type. A string attribute that is set to this type
will not be encoded when written into the XML document. One place that this is very useful is when writing elements
of type xalAddress or other places where you wish to provide a back door into the document and insert an xml frag-
ment into the document directly.

XML Type

The geometry of the CityGML feature may be identified by its xml_type attribute. The valid values for this attribute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point feature.

xml_line Linear feature.

xml_surface Surface feature, may contain gaps.

xml_solid Solid feature, may contain voids.

xml_aggregate A possibly heterogeneous collection of
geometries.

No Geometry

xml_type: xml_no_geom

Features having their xml_type set to xml_no_geom do not contain any geometry data.
Point

xml_type: xml_point

Features having their xml_type set to xml_point are single coordinate features or aggregates of single coordinate fea-
tures.

Line
xml_type: xml_line

Features having their xml_type set to xml_line are polyline features and have at least two coordinates or aggregates of
polyline features.

Surface
xml_type: xml_surface

Features having their xml_type set to xml_surface are surfaces. They may be simple, topologically contiguous surfaces
or aggregates of surface features.

Collection
xml_type: xml_aggregate

Features having their xml_type set to xml_aggregate are complex geometries. Each component of an aggregate may be
any of the types listed in this section, including xml_aggregate (i.e. and aggregate may contain aggregate com-
ponents).

CityGML-Specific Attributes
Other attributes depend on the feature type. Common and feature-specific attributes are as follows.

Common Attributes:

Attribute Name Contents

gml_id The unique identifier for each feature. This attribute
must be unique in the dataset scope.

gml_parent_id The unique identifier representing the feature’s parent
in the hierarchy. This must reference another feature in
the dataset.

gml_name The given name of the feature.
gml_description A description of the feature.
citygmi_class A four-digit identifier for the class.

Range: 1000...9999

citygmi_fu