
FME® Readers and Writers
(formats supported by the Esri® ArcGIS® Data Interoperability
extension)

About Quick Facts Tables

Each format’s chapter overview includes high-level information about the format’s characteristics:

Format Type Identifier

Every format supported by FME is uniquely identified by an uppercase alphanumeric string. This row lists the unique
identifier for this format. For example, the identifier for IGDS Design is IGDS. The format type identifier is used in
mapping files on READER_TYPE and WRITER_TYPE lines to define the reader and writer to be used for trans-
lation. In FME Objects, when a reader or writer is created, the format type identifier is used to specify its type.

Reader/Writer

FME typically allows reading from and writing to a supported data format. However, some formats support either read-
ing or writing, but not both. This row specifies whether reading only, writing only, or reading and writing is available
for this format.

Licensing Level

Some FME-supported formats require specific licensing. For example, certain formats are not supported in FME Base
Edition. This row lists the minimum licensing level required to read from or write to the format.

Dependencies

Some formats require the installation of the application associated with the format, or may require an extra-cost plug-
in.

Dataset Type

FME reads features from datasets and writes features to datasets. The definition of a dataset varies between different
readers and writers, depending nature of the format. This row specifies the type of dataset used by this format.

File Dataset: The most basic type of dataset is the file dataset: a single file whose extension is included in the list of
supported file extensions. A file dataset reader opens the specified file and reads its features. A file dataset writer
creates the specified file if it doesn't exist and writes features into it. In general, file dataset writers overwrite existing
files, but some can append to existing files.

Directory Dataset: A directory dataset consists of a directory specification. A directory dataset reader examines the
name of all the files in the specified directory and reads those files whose extensions are included in the list of sup-
ported file extensions. The order in which files are read is not documented. Many directory dataset readers provide
an option to explicitly name a subset of the directory's files that are to be read. A directory dataset writer creates the
specified directory if it does not exist. In general, if the directory does exist, any files in the directory that match the
name of output files will be overwritten; however, some directory dataset writers can append to existing files.

Database Dataset: A database dataset consists of a set of information needed to connect to a database schema. A
database dataset reader reads all the tables in the specified database schema. The order in which tables are read is
not documented. Many database dataset readers provide an option to explicitly name a subset of the schema's tables
that are to be read. Any tables in the specified database that match the name of output tables will be overwritten.

URL Dataset: A URL dataset consists of a uniform resource locator. A URL dataset reader connects over a network to
a remote server and retrieves the data provided by that resource.

Typical File Extensions

Most file dataset readers will read data from any legally-named file, independent of extension.

Most formats are associated with one or more file extensions. This row lists the file extensions typically associated
with this format. When a format uses several files with the same basename but different extensions, the primary
extension is listed first and the ancillary ones are listed in parentheses.

Automated Translation Support

The FME typically allows automated translation to and from a supported data format. However, some formats support
either automated reading or automated writing, but not both. This row specifies whether this format supports auto-
mated reading, writing, or both. When automated translation is not available, a custommapping file must be used.

Feature Type

Every format supported by FME identifies the features in its datasets according to a well-defined data classification
scheme. This primary classification is known as the feature's type, which serves as the main handle to a feature. This
row describes the format’s classification scheme. For example, a simple classification scheme is to identify features
according to the file or table they reside in (the feature's type is the file base name or table name, respectively). For
level-based formats, features are typically grouped by level (the feature's type is the level in which it resides).
Another common classification is to group features according to the thematic layer to which they belong – for exam-
ple, roads, railways, and rivers. Although these are the most common classification schemes, the list of possible
schemes is quite broad because the classification chosen is individual to the format.

User-Defined Attributes

An FME feature consists of geometry and attributes. While many of a feature's attributes are predefined by FME and
the feature's format (such attributes are constant from one dataset to another), some formats allow users to define
custom attributes. These user-defined attributes give the format flexibility to store arbitrary amounts of domain-spe-
cific information in addition to geometry. This row specifies whether this format supports user-defined attributes.

Coordinate System Support

This row indicates whether datasets of this format can store coordinate system information, and if so, whether the
reader extracts this information.

Generic Color Support

The fme_color and fme_fill_color feature attributes represent the red, green, and blue intensities of a fea-
ture. Intensities can each vary between 0.0 and 1.0, and are calculated by taking the color intensity and dividing it by
the total intensity range. This row indicates whether or not the format supports the generic fme_color and fme_
fill_color attributes.

If a format has generic color support, the reader will add both the generic FME color attributes and the format-spe-
cific color attributes to features.Writers that support generic color will give precedence to the format-specific color
attributes if they are present in addition to the generic attributes.

Since both generic FME attributes and format-specific attributes exist on workspace features, it is important to note
that the co-existence of the two types of attributes can sometimes cause a conflict, and the format-specific attrib-
ute will be deleted. For more information, see Format-Specific Attributes and Generic FME Attributes in Workbench.

Spatial Index

This row applies only to readers: it indicates whether or not the native reader supports spatial indexing. The possible
values are:

Never: This reader never provides a spatial index.

Optional: This reader may or may not provide a spatial index, depending on whether or not one is available for the
specific dataset being read.

Always: This reader always provides a spatial index.

Schema Required

This row applies only to writers. For mapping files, it indicates whether or not DEF lines are required. For FME
Objects applications, it indicates whether or not schema features need to be provided to the writer before data fea-
tures can be written to a dataset.

Encoding Support

This row indicates whether a format supports character encoding schemes for attribute values. Users who need to
translate their international data will benefit from this enhanced support as they will no longer need to set their
default system language (on Windows, this is set through the "Regional and Language Options" dialog) to match the
encoding of the data. Depending on the format, the character encoding may need to be specified by the user.

Transaction Support

This row applies only to readers: it indicates whether or not the native reader supports transaction processing. For
mapping files, it indicates whether or not the starting transaction number and the transaction interval can be spec-
ified. For FME Objects applications, it indicates whether or not the universal writer object honors the start-
Transaction, commitTransaction, and rollbackTransactionmethods.

Enhanced Geometry

Indicates whether the reader/writer supports the enhanced geometry model. The addition of enhanced geometry
model support allows lines and polygons containing arcs to be maintained, rather than stroked or the geometry split
up into multiple segments. It also provides the ability to truly hold measures.

Go to http://www.fmepedia.com/index.php/Geometry_Model for more information.

For more information on the global directive that sets the usage of enhanced geometry in readers and writers (as well
as functions, factories and transformers), see the FME Fundamentals on-line help, in FME Configuration > Geometry
Handling. (The FME Fundamentals help is available as a link from any help menu.)

Geometry Type Attribute

The name of the feature attribute that contains the feature's format-specific geometry type.

Supported Geometry

This table indicates which geometry types the format supports.

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes/no point yes/no
circles yes/no polygon yes/no
circular arc yes/no raster yes/no
donut polygon yes/no solid yes/no
elliptical arc yes/no surface yes/no
ellipses yes/no text yes/no
line yes/no z values yes/no
none yes/no

Raster-Specific Information

In any raster format, this table provides additional raster-specific information.See About FME Rasters for more infor-
mation on each entry.

Band Interpretations Red8, Green8, Blue8

Palette Key Interpretations not applicable

Palette Value Interpretations not applicable

Nodata Value 0,0,0

Cell Origin (x, y) 0.5, 0.5

Rotation Support No

GCP Support No

World File Support No

TAB File Support Yes

About Feature Attributes

Feature attributes are categorized into one of the following three groups:

1. format-specific attributes

2. user attributes

3. generic FME attributes

A feature may have one or more associated format attributes. A format attribute represents an attribute that is spe-
cific to a format. Some examples are: autocad_block_name and sde30_justification.

A feature is also associated with one or more associated user attributes, which represent custom attributes that hold
domain information about a feature, such as: parcel_identifier, owner_name, date_surveyed, etc.

Generic FME attribute names are prefixed by fme_. The benefit of using generic attributes over format-specific attrib-
utes is that they have the samemeaning in all the readers and writers that support them. For example, the fme_
color and fme_fill_color feature attributes represent the red, green, and blue intensities of a feature. If a for-
mat has generic color support, the reader will add both the generic FME color attributes and the format-specific color
attributes to features. Writers that support generic color will give precedence to the format-specific color attributes if
they are present in addition to the generic attributes.

The most important generic attributes are fme_type and fme_geometry. Both of these relate to the geometry of
a feature. The Geometry class represents a feature’s positional information. Feature geometry may consist of points,
lines, or areas. Features that contain multiple geometric parts are said to have an aggregate geometry. Features with
no geometry are also supported.

The distinction between fme_type and fme_geometry is an important one: fme_geometry indicates the
geometry type of the actual coordinates, whereas fme_type specifies how that geometry is to be interpreted. For
example, a point geometry type can be interpreted as one of the following FME types: point, arc, ellipse, or text. The
valid combinations of fme_type and fme_geometry are shown in the table below:

fme_
geometry

fme_
point

fme_
line

fme_
polygon

fme_
donut

fme_
aggregate

fme_
no_
geom

fme_type

fme_point X X

fme_arc X

fme_ellipse X

fme_text X

fme_line X X

fme_area X X X

fme_undefined X

Format-Specific Attributes and Generic FME Attributes in Workbench

Since both generic FME attributes and format-specific attributes exist on workspace features, it is important to note
that the co-existence of the two types of attributes can sometimes cause a conflict. If this happens between a reader
and a writer, the generic fme attribute will take precedence.

For example, if a feature contains a format-specific color specification, and the optional fme_color attribute is
changed between the reader and the writer, fme_color will take precedence and the format-specific color spec-

ification will be deleted from the workspace. (However, if a feature within awriter contains a format-specific color
specification, then that will supersede fme_color. See the section on fme_color in the FME Fundamentals manual.)

This possible conflict also applies if you alter a feature’s geometry in a workspace that has the same source and des-
tination format. If you alter the geometry from the reader to the writer, then the generic fme_type will be used, and
the format-specific geometry type will be deleted.

See the List of Format-Specific Attributes and Corresponding FME Generic Attributes.

List of Format-Specific Attributes and Corresponding FME Generic Attributes

The applicable format attributes and corresponding FME attributes are listed below. Any change (including deletion)
to the fme_* attribute between a reader and writer will cause the format-specific attribute to be deleted.

Format Format-Specific Attribute Corresponding Generic
FME Attribute

AutoCAD fme_color

CGDEF cgdef_color.red
cgdef_color.green
cgdef_color.blue

fme_color

Design (v7 and v8) igds_color
igds_color.red
igds_color.green
igds_color.blue

fme_color

igds_fill_color fme_fill_color

igds_fill_color.red
igds_fill_color.green
igds_fill_color.blue

igds_fill_color

PenMetrics GRD grd_pen_color
grd_layers_pen_color
grd_blocks_pen_color

fme_color

grd_brush_color
grd_layers_brush_color
grd_blocks_brush_color

fme_fill_color

IDEX idex_database_color fme_color

idex_database_hatch_color fme_fill_color

MapInfo Native format
(MAPINFO and MITAB)

mapinfo_brush_foreground fme_fill_color

mapinfo_pen_color
mapinfo_symbol_color

fme_color

mapinfo_text_fontfgcolor

Format Format-Specific Attribute Corresponding Generic
FME Attribute

MIF/MID (MapInfo Data
Interchange Format)

mapinfo_brush_foreground fme_fill_color

mapinfo_pen_color
mapinfo_symbol_color

fme_color

mapinfo_text_fontfgcolor

StruMap strumap_red
strumap_green
strumap_blue
strumap_color

fme_color

Simple Geometries

Simple geometries are geometries that are not composed of other geometries, and do not have associated generic
FME attributes that affect their positional representation. More concretely, features with simple geometries are those
with the following combinations of fme_geometry and fme_type: {fme_line, fme_line}, {fme_
point, fme_point}, {fme_polygon, fme_area}.

Arc and Ellipsoid Geometries

Features with ellipsoid geometry are those with fme_geometry equal to fme_point and fme_type equal to
fme_ellipse.

Donut Geometries

Donut Geometries are used to represent area features with holes, such a lakes with islands. A proper Donut Geometry
contains only polygons that do not overlap each other or share common edges; all of the inner polygons are disjoint
and fully contained within the outer polygon. However, FME does not guarantee that all features with donut geometry
follow these rules. For example, when data is read from a data source that supports donut geometries but do not
enforce non-intersecting and non-overlapping donuts, FME will respect the original geometry. The figure below
shows an example donut geometry.

Features with donut geometry are those with an fme_geometry equal to fme_donut and an fme_type value
equal to fme_area .

Aggregate Geometries

A feature with aggregate geometry has an fme_geometry value equal to fme_aggregate and an fme_type
value equal to either fme_point, fme_line, or fme_area. FME uses aggregates to represent features with
multi-part geometries: geometries that are composed of several disjoint pieces. In most situations, the components
of an aggregate are homogeneous. That is, if fme_type is fme_point, then the aggregate contains point geom-
etries; if fme_type is fme_line then the aggregate contains line geometries; and so on. However, your appli-
cation should be designed to handle non-homogeneous aggregates gracefully since it is possible that some data
sources may contain such features. Non-homogeneous aggregates have no value for fme_type.

OpenGIS Geometries

The OpenGIS Consortium defines a Well-Known Text (WKT) representation for feature geometries. The FME-
OFeature object allows your application to import a geometry fromWKT and export a geometry to WKT using the
importGeometryFromOGCWKT and exportGeometryFromOGCWKTmethods respectively.

About FME Rasters

Overview

Raster data in FME is represented by features with raster geometry. Raster data differs in several key ways from vec-
tor data, and is handled uniquely in FME. A raster can be considered as a grid of values organized into rows and col-
umns, with the relative size of its cells determining its resolution, or level of detail. Each row and column intersection
in raster grid is called a cell or pixel. Vector point geometries can often be thought of as analogous to cells, while lin-
ear geometries like roads are represented as contiguous cells. Vector features tend to be more meaningful when
taken together as a group, while a single raster feature can convey the same spatial information in a non- modular
fashion.

Often a raster serves as a backdrop for overlaying specific vector information. For example, you can place vector lines
and polygons that represent streets and buildings on a raster image that is an aerial photograph of a city. Conversely
raster may be used as a backdrop for creating vector maps. For example, one might use satellite or aerial imagery to
map particular features of an urban environment for city planning or geologic structures for locating natural
resources.

Rasters can be represented as either image or numeric data. Images are commonly derived from satellite data or pho-
tography, while numeric data often represents elevations, temperatures, and other quantitative information.

Raster data is stored in one or more bands whose properties may or may not be homogeneous. Imagery data often
contains several bands of data. This data may come from either Optical or SAR (Synthetic Aperture RADAR) type sen-
sors and may contain any number of image bands of data relating to a wide range of spectral bands or polarizations .
Though a band may have its own specific band properties, all bands on a raster must share a common set of raster
properties such as the number of rows and columns, the cell size and the ground extents.

A band may optionally have one or more palettes, also called colormaps or Look-Up Tables (LUTs), associated with it.
A palette is essentially a lookup table of discrete keys to color or string values. These rasters are often referred to as
classified because of the discrete data ranges. Classified rasters often serve the purpose of providing a visual rep-
resentation or providing additional descriptive information for specific areas of a raster.

About FME Rasters

Overview

Raster data in FME is represented by features with raster geometry. Raster data differs in several key ways from vec-
tor data, and is handled uniquely in FME. A raster can be considered as a grid of values organized into rows and col-
umns, with the relative size of its cells determining its resolution, or level of detail. Each row and column intersection
in raster grid is called a cell or pixel. Vector point geometries can often be thought of as analogous to cells, while lin-
ear geometries like roads are represented as contiguous cells. Vector features tend to be more meaningful when
taken together as a group, while a single raster feature can convey the same spatial information in a non- modular
fashion.

Often a raster serves as a backdrop for overlaying specific vector information. For example, you can place vector lines
and polygons that represent streets and buildings on a raster image that is an aerial photograph of a city. Conversely
raster may be used as a backdrop for creating vector maps. For example, one might use satellite or aerial imagery to
map particular features of an urban environment for city planning or geologic structures for locating natural
resources.

Rasters can be represented as either image or numeric data. Images are commonly derived from satellite data or pho-
tography, while numeric data often represents elevations, temperatures, and other quantitative information.

Raster data is stored in one or more bands whose properties may or may not be homogeneous. Imagery data often
contains several bands of data. This data may come from either Optical or SAR (Synthetic Aperture RADAR) type sen-
sors and may contain any number of image bands of data relating to a wide range of spectral bands or polarizations .
Though a band may have its own specific band properties, all bands on a raster must share a common set of raster
properties such as the number of rows and columns, the cell size and the ground extents.

A band may optionally have one or more palettes, also called colormaps or Look-Up Tables (LUTs), associated with it.
A palette is essentially a lookup table of discrete keys to color or string values. These rasters are often referred to as
classified because of the discrete data ranges. Classified rasters often serve the purpose of providing a visual rep-
resentation or providing additional descriptive information for specific areas of a raster.

Raster Properties

Rasters contain a set of metadata that defines the properties for the raster as a whole. These properties include

l number of bands (channels or layers)

l number of rows and columns (lines and pixels)

l cell size (spacing)

l cell origin

l extents

l rotation

l Ground Control Point (GCPs)

A cell is the rectangular area created in the x and y dimensions by the spacing of pixels from the raster origin.

Spacing or cell size is the fixed distance in the x and y dimensions between each pixel in the raster. Some formats
store only one spacing value, meaning that it must be the same for both the x and y dimensions – this is often
referred to as square cells.

The raster origin is the lower left x and y of the raster at which the coverage of the data sample begins. It contains the
minimal x and minimal y values for the raster. In FME, the raster origin is the lower left corner of the lowest and left-
most cell in the raster.

Cell origin is the point within each cell of a raster from which the pixel for that cell is derived. The lower left corner of
the cell in the x or y dimension is 0.0, while the upper right corner is 1.0. A cell origin of 0.5 in x and 0.5 in y would
put the data point for each cell in the center of the cell, which is the default representation in FME.

Extents or bounds for a raster are represented by the lower left ground coordinate and the upper right coordinate cov-
ered by the raster data. This is sometimes referred to as cell bounded. The minimum x and maximum y values that
comprise the upper left corner of the raster extents are equivalent to the raster origin.

Rotation is a measure of the angle in radians of the CCW rotation of the raster from the positive x axis. The rotation
point is the top left corner of the top left cell of the image. Note that currently the rotation is not applied during factory
or function related processing but is merely being stored at this point. Rotation does not affect the extent values and
is considered a separate property.

Ground Control Points, or GCPs, may also be present in the geometry of a raster. If present, these refer to a set of
points used to georeference image or elevation data, with each point 'tying' a row and column location in the raster to
an x,y location on the earth. A coordinate system will also be present in the properties of a raster containing GCPs, as
opposed to being stored on the feature itself. GCPs can either be applied to the raster resulting in the image being geo-
referenced and tagged with the GCP coordinate system, or the GCPs can be extracted and stored on the resulting data
file for those formats supporting unreferenced data and GCP storage.

Band Properties

Rasters contain a set of metadata that defines the properties for each band. These properties include the band name,
number of palettes, interpretation, bit depth, 'nodata' value, and properties relating to the preferred method of data
access.

The interpretation of a band describes the type of data stored at each cell in the raster and number of bits used for
that type. An interpretation also implies an underlying fundamental data type used to store the data. For example, an
interpretation 'Gray8' implies that the actual data type is FME_UInt8 and that the size of each cell is 8 bits. Possible
interpretation values are Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Real32, Real64, Gray8, Gray16,
Red8, Red16, Green8, Green16, Blue8, Blue16, Alpha8, Alpha16.

Many raster formats store a single data value called 'nodata', transparent or background value that represents
unknown or invalid data. Often the value is at one of the extremes of the data type range. Some formats may specify a
particular nodata value that is unique to that format, while others are capable of handling any single value designated
as nodata.

A second option for nodata specification is a whole band or bitmask of data that acts as a flag for each cell indicating
whether the cell is valid data or not. Several formats do not support nodata values at all.

Bands may also have multiple palettes associated with each instance. The number of palettes on a band can be deter-
mined as part of the band properties.

Palette Properties

Rasters contain a set of metadata that defines the properties for each palette. These properties include the palette
name, key and value interpretation, key and value bitdepth, 'nodata' key and value.

Interpretation on palettes works in much the same way as it does on bands. The interpretation of a palette key must
match the interpretation of the related band. Valid palette key interpretations are UInt8, UInt16, and UInt32. The pal-
ette value interpretation may be a color model such as RGB or RGBA or string data. Valid palette value interpretations
are RGB24, RGBA32, RGB48, RGBA64, Gray8, Gray16, and String.

A palette does not directly store 'nodata' values however since the palette keys are intended to match the band values,
which can store ‘nodata’, a single palette key can be interpreted as ‘nodata’ if it matched the band ‘nodata’ value. This
nodata key also looks up to a palette value which is then considered the 'nodata' value. A nodata value may not exist
without a nodata key.

Raster Concepts

FME Features with raster geometry have some particular features and details not always present in vector features.
Some of these features include storage and formatting concerns such as compression, pyramiding, interleaving,
interpretation, tiling, mosaicking, band merging and splitting, palette creation or resolution and selection.

Compression

Compression is used to reduce the size of a raster on disk, often traded for lessened performance since the format
must often be uncompressed to read and compressed to write. The types of compression available depend on specific
format support.

Pyramiding

Pyramids or overviews create lower resolution views of an original dataset. Often several pyramids are created at var-
ious lower resolutions to be used in the place of the original raster when only a snapshot or overview of the data is
required. An example of when a pyramid is typically employed, is when a raster viewer zooms out leaving a smaller
raster with less detail. Often the smaller raster is rendered using a cached pyramid instead of resampling the image
to a lower resolution at the time of the zoom out request.

Interleaving

Interleaving refers to the storage of multicomponent interpretations and the order in which the individual cell values
are stored together. Bands in FME use Band Sequential (BSQ) interleaving indicating that they are all stored uniquely.
Palettes in FME are Band Interleaved by Pixel (BIP) as each palette value is stored together with each key in the pal-
ette.

Interpretation and Data Type

Interpretation and data type are two related concepts associated with both bands and palettes on a raster. Data type
refers to the fundamental type of the data stored at each cell and is expressed as an enumeration of various floating
point or signed or unsigned integer numbers. Interpretation refers to what the data type is representing. For exam-
ple, a group of three UInt8 data types in each cell may correspond to an interpretation of RGB24 on a palette, such
that each of the three UInt8 values corresponds to red, green and blue values respectively. The data type of a band or
palette can be determined from interpretation but the converse is not true.

Palette Resolution

Rasters containing bands with palettes can be resolved to band without palettes through a process called palette res-
olution. During this process each band value is looked up in the palette and the resultant value is placed in the band.
Once complete, the palette is removed and the band interpretation and data type are adjusted. The resultant raster
has the same appearance and values as the original, except the palette is not present. Alternatively palettes can be
directly removed without the palette resolution step.

Tiling and Mosaicking

Tiling and mosaicking raster refers to dividing or combining spatially related rasters. A single raster can be tiled into
smaller adjacent rasters. A resultant set of tiled rasters can then be mosaicked into a single raster again. The focus is
on the spatial relationship of the tiles which should fit together like pieces in a puzzle.

Band Combining and Separating

Not to be confused with mosaicking, band combining is a raster structural operation that allows for the combination
of bands to formmultiple rasters into one raster. The values of each band remain unchanged and the spatial rela-
tionship required is equivalent resolution and extents between all input rasters. This is useful in situations such as
when one wants to combine three individual one band rasters combined into a single three band raster. Conversely,
separating a raster with multiple bands and palettes is also supported and can be employed to write multi-band or
multi-palette rasters to destination formats that support only single-band or single-palette output.

Band and Palette Selection

Rasters that contain multiple bands and/or palettes need not be split to be operated on individually. FME allows for
individual band and palette selection for operational purposes. For example, an RGB raster that has three bands can
have only the red band selected such that subsequent processing occurs only on the red band, and does not affect
the remaining green and blue bands. Bands and palettes are selected based on their numeric location in the raster.
The numerical relationship is zero based such that the first band is at index 0, the second band at index 1 and so on.

Raster Processing

A secondary set of features specific to processing rasters also exists and is expressed through the variety of raster
functions and factories inside FME. Please see the various transformers in the Raster category or search for raster in
the transformer search box.

Raster versus Vector Features

FME Features with raster geometry cannot be processed in all the ways that vector features can. If an operation that
is not yet supported for a raster is attempted, a vector FME polygon feature is used instead. This substitute feature
represents the original raster bounding box, and contains the original attributes.

Raster-to-vector data translation and vector-to-raster data translation is not an automatic process. There are fac-
tories through which vector data can be transformed into raster data, and raster data into vector points. There cur-
rently do not exist any means of stroking or transforming raster data into non-trivial vector output through FME.

FME features with raster geometry each typically represent one raster data file. Raster writers typically accept a direc-
tory as a destination dataset. When writing multiple raster files for one dataset directory the feature type name is
used to determine the filename. If multiple features are written to the same dataset the name will be suffixed to be
unique. Some writers use feature type fanout by default on the fme_basename attribute on each feature, thus pro-
viding a name with respect to the source data and having some degree of uniqueness.

Raster File Naming

Many file-based raster writers use the feature type as the output filename. For example, if you passed a feature to the
feature type “image” on the TIFF writer, the output would be “image.tif”.

When used in Workbench, most file-based raster format writers fanout on fme_basename. When this is the case, the
feature type will effectively be the value of the fme_basename attribute, which is set by all raster format readers to be
the filename without the path or extension. For example, if you read two files, image1.tif and image2.tif, two features

would be produced, one with an fme_basename value of “image1”, and one with a value of “image2”. Then, if these
two features were written to a writer when fanning out on fme_basename, two new files would be produced, e.g.
image1.png and image2.png.

Raster format writers that store their data in files require a mechanism to avoid overwriting existing files and dif-
ferentiate output file from one another when multiple rasters are written to a writer (particularly if the writer outputs
one file per raster feature). Raster file based writers implement a simple renaming mechanism to deal with name col-
lisions. Renaming the output files only occurs within a single instance of the writer within a given translation.

The first output file is written using the name requested in the workspace. If additional files are produced from the
same feature type, the subsequent files are automatically distinguished by appending sequential numbers to the fil-
enames. For example, if four rasters are written to the same feature type, named "image", the result is a set of output
files with the names image.tif, image_1.tif, image_2.tif, and image_3.tif.

Multiple translations of the same workspace that incorporates a file based raster writer will overwrite previous file out-
put if name collisions occur. Similarly, using multiple writer instances targeted at the same directory is considered
unsafe if the same feature types are used in both translations since data overwriting may occur.

World Files

World files are used to store georeferencing information for rasters. More specifically, they describe the origin, spac-
ing, and rotation of a raster.

Several raster format readers will read world files present alongside a dataset, and many raster writers have the
option to generate a world file to accompany the output dataset. Consult individual format documentation for more
information on their world file support.

Raster format readers will give world file georeferencing more precedence than georeferencing in the raster dataset.
That is, if the world file stores georeferencing information that is different than that from the source dataset, it is the
world file georeferencing that will be applied to the raster. If this is not desired, a simple workaround is simply to
move or rename the world file so it will not be read by the format reader. Additionally, note that readers that read both
world and TAB files will give more precedence to the world file.

Also note that most raster format writers will not write a world file if the output raster contains only default geo-
referencing information: an origin of (0, 0), spacing of 1.0, and rotation of 0.0.

MapInfo TAB Files

Raster TAB files are used to store control points, a coordinate system, and user attributes.

Most raster format readers will read TAB files present alongside a dataset, and most raster format writers have an
option to generate a TAB file to accompany the output dataset. Consult individual format documentation for more infor-
mation on their TAB file support.

The control points represent georeferencing information for the raster. When reading this information, FME will
attempt to determine if these control points represent the extents of the raster (i.e. they occur at the corners of the
raster) or if they are Ground Control Points, and apply this information accordingly. Note that georeferencing infor-
mation will be discarded for datasets that contain multiple subdatasets, as there is no way to ascertain which sub-
dataset the information corresponds to.

Attributes are not natively a part of raster TAB files. However, FME will read and write attributes to raster TAB files in
the samemanner as is done for vector TAB files. This enables the storage of user attributes for many formats that
don’t otherwise support attribution.

Information in TAB files will be given more precedence than information in the raster dataset. For example, if the TAB
file stores georeferencing information that is different than that from the source dataset, it is the TAB file geo-
referencing that will be applied to the raster. If this is not desired, a simple workaround is simply to move or rename
the TAB file so it will not be read by the format reader. Additionally, note that readers that read both world and TAB
files will give more precedence to the world file.

Database Writer Mode

Overview

Most database writers share a WRITER_MODE specification, which indicates the default operations that will be per-
formed by the writer.

Note: Some writers implement only portions of these specifications (for example, the ArcSDE writer and Geo-
database writers do not implement the Table Level mode).

Database Writer Mode

Overview

Most database writers share a WRITER_MODE specification, which indicates the default operations that will be per-
formed by the writer.

Note: Some writers implement only portions of these specifications (for example, the ArcSDE writer and Geo-
database writers do not implement the Table Level mode).

Generic Database Writer Mode

The writer mode can be specified at three unique levels:

l Writer

l Table

l Feature

Writer Level

At the writer level, the WRITER keyword is <Writer>_MODE, prefixed by the writer keyword (for example,
SDE30). Possible values are:

l INSERT (default) – Implies insert only; can be overridden only by table-level modes, not feature-level modes.

l UPDATE – can be overridden by table and feature level modes.

l DELETE – can be overridden by table and feature level modes.

Table Level

At the table level, there is a database-specific feature type DEF parameter called _mode prefixed by the writer key-
word (for example, SDE30_MODE or postgis_mode). Possible values for this attribute are:

0. INHERIT_FROM_WRITER - default
1. INSERT
2. UPDATE
3. DELETE

Feature Level

At the feature level, there is an FME generic attribute called fme_db_operation. Possible values for this attribute
are:

0. <no attribute> - defaults to table level mode
1. INSERT
2. UPDATE
3. DELETE

The FME generic attribute overwrites the value given to the writer keyword <WRITER>_MODE for that feature only
regardless of the value of the table mode, except for when the table level mode is INSERT.

Used in conjunction with the fme_where and the fme_db_transaction attributes for updates.

Feature Level Generic Examples

Insert example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE, INSERT or DELETE
feature type roads
num_lanes 5
surface_type gravel
age 106
location canada
condition poor
name Highway 1
road_id 1234
fme_geometry fme_no_geom
fme_db_operation INSERT

This will insert a row into a table named "roads". This will append to an existing table. Columns not specified will
receive their default values, if there are default values.

Update example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE or DELETE
feature type roads
condition good
fme_db_operation UPDATE
fme_where road_id = 1234

This will update the row in the table "roads" where the road_id = 1234. The column "condition" will have its value
changed from "poor" to "good".

Delete example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE or DELETE
feature type roads
fme_db_operation DELETE
fme_where road_id = 1234

This will delete the row in the table "roads" where the road_id = 1234.

Feature Level Specific Format Examples (PostGIS)

Insert example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE, INSERT or DELETE
feature type roads
num_lanes 5
surface_type gravel
age 106
location canada
condition poor
name Highway 1
road_id 789
fme_geometry fme_point (45, 67)
fme_db_operation INSERT

This will insert a row into a table named "roads". This will append to an existing table. Columns not specified will
receive their default values, if there are default values.

Update example:

WRITER LEVEL: UPDATE
TABLE LEVEL: UPDATE or DELETE
feature type roads
fme_geometry fme_point (100234, 2349)
fme_db_operation UPDATE
fme_where road_id = 789

This will update the row in the table "roads" where the road_id = 789. The geometry column will have its value
changed from (45, 67) to (100234, 2349).

Notes:

l Table level mode specification overrides writer level mode specification.

l Feature level mode specification overrides table level mode specification when the table level mode is NOT
"INSERT".

l Table level mode specification defaults to INHERIT_FROM_WRITER.

l Updates performed on rows that DO NOT EXIST are NOT turned into inserts. The user is warned and the feature is
skipped.

l Inserts performed on rows that EXIST are NOT turned into updates. FME will still attempt to perform the insert: if
it is not prevented by a unique index, it will insert a duplicate row; if it is prevented by a unique index, the trans-
lation with halt with an error.

l Update features are formed in one of two common ways:

l Using a stripped down source feature to update one row per update feature

l Using a new feature and adding the fme_db_operation and fme_where and any attributes that you
want to update.

l Updates are not limited to one row per feature, but can update the entire table if desired. It is mandatory to use the
fme_where attribute to specify which rows to update (or delete).

l Geometry can also be updated using update mode. The geometry on the update feature will replace the geometry
in all of the matched rows. However, an update feature with no geometry will not change the geometry column in
any way.

l Some formats that allow UPDATE and DELETE mode using the fme_where attribute require that the attribute to
be specified to identify which rows to operate on, and will fail if the fme_where attribute is not present (for exam-
ple, PostGIS, MySQL).

Feature Selection

Once you have determined how to specify whether an insert, update, or delete should be performed, you will need to
select the features in the database to be updated or deleted.

Note: This section is irrelevant for features being inserted.

Terminology

l edit: an insert or update

l query feature: the FME feature passed to the writer, which will be used to determine which features from the data-
base are edited

Methods

Currently, there are two ways in which to determine which features to edit:

1. fme_where – This is found on the query feature, and can be any valid WHERE clause (it does not contain the
word WHERE). The value for this keyword is not meant to be parsed and split up by the writer, but passed

directly to the database. The features returned from using this attribute are the same features that would be
returned from executing the SQL query:

SELECT * FROM <feature type of query feature> WHERE <fme_where>;

2. <format_name>_update_key_columns – This specifies which columns to use in creating a WHERE
clause. It is found on the DEF line to which it applies. The values for those columns are then taken from the
query features. For example, the DEF for the table roads would look like:

GEODATABASE_MDB_DEF roads \
GEODATABASE_UPDATE_KEY_COLUMNS name,location,age

The query feature might look like:

feature type roads
num_lanes 5
surface_type gravel
age 106
location canada
condition poor
name Highway 1
road_id 1234

The WHERE clause that the writer assembles would then be:

name = 'Highway 1' AND location = 'Canada' AND age = 106

(notice the use of single quotes around the text columns).

Some writers (for example, ArcSDE and Geodatabase) use the object ID column as the default key column if the user
did not specify any of their own. (However, since we don't know what the object ID column is when the work-
space/mapping file is generated, a blank value is assigned to the parameter and the writer interprets this as "use the
object ID column".)

It should not be mandatory that the columns/attributes specified for this parameter exist on the DEF line, because if
the table exists, attributes are optional on the DEF line.

Limitations

Although a single query feature may cause more than one feature to be edited, the update/delete feature is restricted
to changing only those features of the same feature type as it. This means that we cannot have an update feature with
a feature type of "provinces" updating features of feature type "cities". In general a feature type in a database format
corresponds to a table; however, it may correspond to a view.

Date and Text Fields

It will probably be necessary to place single quotes (') around date and text fields when creating your own WHERE
clause using the columns in

<format_name>_update_key_columns

Or, if you don't need to put single quotes around date fields, you may have to convert the date from the FME format
into the database-specific format. Either way, it will be necessary to know the column data types.

Attribute Selection

In update mode, only the attributes on the feature will be used to update the existing columns. If an attribute is miss-
ing on the feature, the associated column is not updated in the database. Similarly, if the feature has no geometry,
any geometry associated with the row in the database will remain unchanged.

1Spatial Internal Feature Format (IFF) Reader/Writer

Format Notes: This format is not available in FME Base Edition.

The 1Spatial (previously known as Laser-Scan) Internal Feature Format (IFF) Reader/Writer module enables FME to
read and write IFF files. The IFF is an internal ASCII format originally created by Laser-Scan Ltd. This chapter
assumes that you are familiar with the Internal Feature Format.

Overview

IFF files store both geometry and attribution for features. An IFF file has the following file name extension:

File Name Extension Contents

.iff Vector geometric data

The extension is added to the basename of the IFF file.

The Internal Feature reader supports the types of symbol, line, polygon, and text geometric data in .iff files. The
IFF format also stores features with no geometry. Features that have no geometry are referred to as having a geome-
try of none. IFF files support both two- and three-dimensional geometry.

IFF Quick Facts

Format Type Identifier IFF

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .iff

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type Attribute iff_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none yes

Reader Overview

The IFF reader produces FME features for all feature data held in IFF files that are in the specified directory.

The reader first scans the given directory specified by the DATASET keyword. For each IFF file found, it checks to
see if that file is requested in the translation by comparison with the list specified by the ID’s keyword. Then the
reader extracts features from an IFF file one at a time, and passes them on to the rest of the FME for further proc-
essing. When the file is exhausted, the IFF reader moves onto the next file in the directory.

Optionally a single IFF file can be specified. In this case, only that IFF file is read.

Reader Directives

The directives processed by the IFF reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the IFF reader is IFF.

DATASET

Required/Optional: Required

The value for this directive contains the directory where the IFF files will be read, or the file path to the single IFF file.
A typical mapping file fragment specifying an input IFF dataset looks like:

IFF_DATASET /usr/data/iff/iffFile.iff

Workbench Parameter: Source 1Spatial Internal Feature Format (IFF) File(s)

DEF

Required/Optional: Required

Each IFF file may optionally be defined before it is read. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of an IFF DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The file names of the physical IFF files are constructed by using the directory specified by the DATASET keyword,
the basename specified on the IFF DEF lines, and the .iff extension.

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The width

Field Type Description

parameter controls the maximum number of char-
acters that can be stored by the field. No padding is
required for strings shorter than this width.

date Date fields store dates as character strings with the
format YYYYMMDD.

number(<width>,
<decimals>)

Number fields store single and double precision float-
ing point values. The width parameter is the total
number of characters allocated to the field, including
the decimal point. The decimals parameter controls the
precision of the data and is the number of digits to the
right of the decimal.

smallint Small integer fields store 16-bit signed integers and
therefore have a range of -32767 to +32767.

integer Integer fields store 32-bit signed integers.

logical Logical fields store TRUE/FALSE data. Data read or
written from and to such fields must always have a
value of either true or false.

float Float fields store 4-byte floating point values. There is
no ability to specify the precision and width of the
field.

double Double fields store 8-byte floating point values.

The following mapping file fragment defines a IFF file. Notice that the definition specifies the geometric type of the
entities it will contain since IFF files may contain any of the valid geometry types.

IFF_DEF landcover \
area number(12,3) \
landcoverType char(11) \
perimeter float

IDs

Required/Optional: Optional

Contains a list of IFF files to process. If more IFF files were in the directory, they are ignored. If this is not specified,
then all defined IFF files in the directory are read.

This specification is used to limit the available and defined IFF files read. If no IDs are specified, then all defined and
available IFF files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> … \
<baseNameN>

The file IDsmust match those used in DEF lines.

The example below selects only the iff_data IFF file for input during a translation:

IFF_IDs iff_data

APPLY_ORIGIN_OFFSET

Required/Optional: Optional

This directive specifies whether or not to apply the origin offset found in Type 2 Map Descriptor record, to all the fea-
tures.

Values: yes | no

Default: no

Workbench Parameter: Apply Origin Offset

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The IFF Writer creates and writes feature data to IFF files in the directory specified by the directive DATASET. Any
existing IFF files are overwritten with a new IFF file. As features are routed from the FME to the IFF writer, the writer
determines which file the features are to be written to and outputs them accordingly. More than one IFF file can be
written in one translation.

Writer Directives

The IFF writer processes the DATASET and DEF directives as described in the IFF Reader Overview’s Reader Direc-
tives subsection. It does not use the IDs directive.

DATASET

Required/Optional: Required

Workbench Parameter: Destination 1Spatial Internal Feautre Format (IFF) Directory

DEF

Required/Optional: Required

Feature Representation

IFF features consist of geometry and attributes of feature. The attribute names are defined in the DEF line and there
is a value for each attribute in each IFF feature. In addition, each IFF feature contains several special attributes to hold
the type of the geometric entity and its display parameters. All IFF features contain the iff_type attribute, which
identifies the geometric type.

Depending on the geometric type, the feature contains additional attributes (in addition to the generic FME feature
attributes that FME Workbench adds to all features [seeAbout Feature Attributes]) specific to the geometric
type. These are described in subsequent sections.

The general attributes of all IFF geometric features are described in the table below.

Attribute Name Contents

iff_type The IFF geometric type of this entity.
Range:
iff_symbol|
iff_line|
iff_polygon|
iff_text|
iff_none
Default: No default

iff_history The history of the IFF file.
Range: Maximum of 256 characters
Default: Blank

iff_map_area The map area.
Range: Maximum of 256 characters
Default: No default

iff_map_grid The map grid representation
Range: Maximum of 256 characters
Default: No default

iff_map_scale The map scale.
Range: Maximum of 256 characters
Default: No default

iff_map_origin_offset The map’s origin offset or local origin. (Read-only)
Range: Maximum of 256 characters
Default: No default

iff_map_projection The map’s projection as a number. (Read-only)
Range: Integer
Default: No default

iff_map_spheroid The map’s spheroid as number. (Read-only)
Range: Integer
Default: No default

iff_map_units The map’s unit. (Read-only)
Range: Integer
Default: No default

Attribute Name Contents

iff_map_proj_stat The map projection status.
Range: Maximum of 256 characters
Default: No default

iff_map_aux_grid The map auxiliary grid.
Range: Maximum of 256 characters
Default: No default

iff_cubic_coef{#} The matrix for coordinate transformation. Each list
attribute of this type contains 2 numbers that are
part of the transformation matrix for the feature.
Range: Maximum of 256 characters.
Default: No default

iff_ctrl_pt_nw The Northwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_sw The Southwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_se The Southwest control points.
Range: Maximum of 256 characters
Default: No default

iff_ctrl_pt_ne The Northeast control points.
Range: Maximum of 256 characters
Default: No default

iff_sec_descr The section description.
Range: Maximum of 256 characters
Default: Blank

iff_layer_num The layer number of the feature. (0 is a reserved
layer number that is often ignored)
Range: 0...32767
Default: 1

iff_layer_stat The layer status flag (currently not used).
Range: Integer
Default: 0

iff_layer_ptr The layer’s pointer to location of matching end of
layer marker.
Range: Maximum of 256 characters
Default: Blank

iff_serial_num The feature serial number. This number is often the

Attribute Name Contents

same as the iff_seq_num.
Range: 0...65535
Default: No default

iff_seq_num The feature internal sequence number. This number
is unique and corresponds with creation order.
Range: 0...65535
Default: 1 and increment for each new feature

iff_feat_code The feature code number.
Range: 0...32767
Default: 0

iff_feat_stat The feature status.
Range: 0...32767
Default: 0

iff_proc_code The feature type or process code. The last two bits
specify the feature type (0 = line, circle, area or
symbol string feature, 1 = symbol feature, 2 = text
feature, and 3 = value reserved).
Range: 0...32767
Default: 0

iff_user_word The user defined word, this is a reserved field for
use by users.
Range: Smallint
Default: No default

iff_anc_code{#}.type The ancillary code type.
Range: 0...32767
Default: No default

iff_anc_code{#}.value The ancillary code value.
Range: Maximum of 256 characters
Default: No default

iff_anc_code{#}.text The ancillary code text.
Range: Maximum of 255 characters
Default: No default

iff_anc_code The comma-separated ancillary code list.
Range: Maximum of 256 characters
Default: No default

iff_pen_stat The pen status.
Range: 0 - pen up, 1 - pen down
Default: 0

Attribute Name Contents

iff_junc_blk{#}.sec_num The junction block section number.
Range: integer
Default: No default

iff_junc_blk{#}.next_jb The junction block pointer to the next junction block.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.offset The junction block offset number.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.arms_num The junction block number of arms.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk{#}.x_coord The junction block x-coordinate.
Range: Double
Default: No default

iff_junc_blk{#}.y_coord The junction block y-coordinate.
Range: Double
Default: No default

iff_junc_blk{#}.pnt_no The junction block string vertex number.
Range: Integer
Default: No default

iff_junc_blk{#}.addr The junction block address location of the arm coor-
dinates.
Range: Maximum of 256 characters
Default: No default

iff_junc_blk The comma separated junction block list. (Nested
junction block lines are separated by ‘\’s).
Range: Maximum of 256 characters
Default: No default

iff_junc_ptr{#}.offset The junction pointer junction block offset.
Range: Maximum of 256 characters
Default: No default

iff_junc_ptr{#}.addr The junction pointer junction block address.
Range: Maximum of 256 characters
Default: No default

iff_junc_ptr The comma separated junction pointer list.
Range: Maximum of 256 characters
Default: No default

Attribute Name Contents

iff_void_size The size of the void.
Range: Integer
Default: No default

Symbol

iff_type: iff_symbol

IFF symbol features are point features that specify a single x and y coordinate in addition to any associated user-
defined attributes.

There are no special FME attribute names used to control the IFF symbol settings.

Lines

iff_type: iff_line

IFF line features specify linear features defined by a sequence of x and y coordinates.

The following table lists the special FME attribute names used to control the IFF line settings.

Attribute Name Contents

iff_size The line thickness.
Range: Integer
Default: No default

Text

iff_type: iff_text

IFF text features are used to specify annotation information. Although IFF files can have features that have more than
one set of annotation information, only simple text features can be written. The IFF reader is able to read features with
more than one set of annotation information by splitting them into separate features. But the IFF writer will not merge
these separated features when writing, only features with only a set of annotation information are written.

The following table lists the special FME attribute names used to control the IFF text settings.

Attribute Name Contents

iff_rot The text label’s rotation.
Range: 0.00...360.00
Default: 0

iff_text_string The text label.
Range: Maximum of 256 characters
Default: Blank

iff_size The text size.
Range: Integer
Default: No default

iff_text_code The text code value.
Range: Integer
Default: No default

Attribute Name Contents

iff_text_cmpnt The text component.
Range: Integer
Default: No default

iff_text_res1 Reserved space for future use.
Range: Maximum of 256 characters
Default: No default

iff_text_res2 Reserved space for future use.
Range: Maximum of 256 characters
Default: No default

Adobe 3D PDF Writer

Format Notes:
This format is not available in FME Base Edition.

The 3D PDF Writer enables FME to write Adobe® Portable Document Format (PDF) files embedded with interactive 3D
annotations.

Overview

The Adobe Reader software version 7.0 and above has included support for interactive 3D annotations in PDF files.
These annotations allow users to visualize 3D models. For example, users can view the models from different angles
and select sub-elements of the model by picking them with the mouse.

The writer represents the 3D models in the ECMA-363 Universal 3D File Format, which become embedded in a PDF
document. The 3D model can be viewed by PDF viewer applications that support PDF’s interactive 3D annotations.

PDF Quick Facts

Format Type Identifier PDF

Reader/Writer Writer

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type U3D Node

Typical File Extensions PDF

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Never

Enhanced Geometry Yes

Geometry Type Attribute pdf_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon yes solid yes

elliptical arc no surface yes

ellipses no text no

line yes z values yes

none yes

Writer Overview

The writer outputs PDF version 1.7 files. The document will have one page which contains the 3D annotation.

The 3D model has a hierarchal structure of Nodes, which are elements of the model. Feature types become Nodes
with no geometry. Features become Nodes that may have geometries and attributes. Feature Nodes are children of
their corresponding Feature Type Node.

Writer Directives

The directives that are processed by the PDF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the PDF writer is PDF.

DATASET

Required/Optional: Required

The value for this directive is the path to the output file. If the output file does not exist, then the writer will create a
new file. If the output file exists, then the writer will overwrite it. If other applications have the output file opened,
then the writer will be unable to continue and the translation will fail.

Workbench Parameter: Destination PDF File

DEF

Required/Optional: Required

The PDF writer uses PDF_DEF lines to define feature types. A typical mapping file fragment specifying a feature type
looks like:

PDF_DEF <featureName> \
[<attributeName> <attributeType>]*

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

featureName This declares the name of the feature type.

attributeName This declares the name of an attribute. The maximum length
of attribute names is 200 characters.

attributeType This declares the type of the attribute. The only valid attrib-
ute type is string.

CENTER_COORDINATES

Required/Optional: Optional

This directive specifies whether the coordinates of all features should be normalized to the numerical range [-0.5,
0.5]. The PDF format stores coordinates in single precision format. Translating datasets that stores coordinates in
double precision to PDF without normalizing the coordinates may result in severe visual artifacts.

Values: YES | NO

Default Value When Keyword Not Specified: YES

Default for New Workspaces/Mapping Files: YES

Workbench Parameter: Center coordinates at the origin

BACKGROUND_COLOR

Required/Optional: Optional

This directive specifies the background color of the 3D annotation when the output file is viewed with Adobe Acrobat.
The format of the value is a comma delimited list of red, green, and blue components of the desired background color.
Each rgb (red green blue) value should be a real number between 0.0 and 1.0, inclusive. The default value for this
directive is 0.2,0.2,0.2, which is a dark grey color.

Values: <0.0 ... 1.0>,<0.0 ... 1.0>,<0.0 ... 1.0>

Default Value When Keyword Not Specified: 0.2,0.2,0.2

Default for New Workspaces/Mapping Files: 0.2,0.2,0.2

Workbench Parameter: Background color

PAGE_SIZE

Required/Optional: Optional

This directive specifies the size of the output page of the PDF document. The 3D annotation will fill the entire page
leaving a slight margin on all sides. The default value for this directive is 600 600, which specifies a page size of 600
by 600 pixels.

Values: <0.0 ...> <0.0 ...>

Default Value When Keyword Not Specified: 600 600

Default for New Workspaces/Mapping Files: 600 600

Workbench Parameter: Page size

NODE_CREATION_LIST

Required/Optional: Optional

This directive can be used to quickly and conveniently create empty group nodes in the scene graph. The nodes
created by this directive can be used as the targets of the pdf_parent_uid format-specific feature attributes. The for-
mat of the value is a comma delimited lists of node specifiers. Node specifiers are a period delimited list of a node’s
ancestry, starting with the root UID and ending with the leaf UID. For example, the directive value
‘Node1.Node2.Node3,Node1.Node4’ creates 4 nodes altogether with the following node hierarchy:

Node1 <--- Node2 <--- Node3

^--- Node4

Values: <name>[.<name>]*[,<name>[.<name>]*]*

Default Value When Keyword Not Specified: <empty string>

Default for New Workspaces/Mapping Files: <empty string>

Workbench Parameter: Node creation list

DISPLAY_NAV_UI

Required/Optional: Optional

This directive controls whether the the Adobe Acrobat software will display the left-hand side Node navigation UI by
default when opening the ouput PDF file.

Values: YES | NO

Default Value When Keyword Not Specified: NO

Default for New Workspaces/Mapping Files: NO

Workbench Parameter: Display Navigation UI

2D_FEATURE_HANDLING

Required/Optional: Optional

This directive controls whether features with no Z coordinates will have their normals adjusted such that the feature
is visible immediately after opening the PDF file. If the value is YES, all 2D features will be visible from the default cam-
era position after opening the PDF file in Adobe Acrobat software. If the value is NO, the geometries will not be
adjusted and will be written as-is.

Values: REORIENT | AS_IS

Default Value When Keyword Not Specified: AS_IS

Default for New Workspaces/Mapping Files: REORIENT

Workbench Parameter: Reorient 2D features for visibility

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

PDF features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each PDF feature. In addition, each PDF feature contains several special attributes to hold the
type of the geometric entity and its display parameters. All PDF features contain an pdf_type attribute, which iden-
tifies the geometric type. Depending on the geometric type, the feature contains additional attributes specific to the
geometric type. These are described in subsequent sections.

Geometries with no Z coordinates (2D geometries) will be assigned zero as their z values.

The following format specific attributes are applicable to all geometry types, and these attributes do not appear as
user attributes in the output data:

Attribute Name Contents

pdf_uid This is an optional format attribute that can be used to
specify the unique Node name of the feature. If this attrib-
ute is not set, then an unique name is autoatically gen-
erated and assigned. If this attribute is set and each
feature is not given an unique value, then undefined behav-
iour will result.

pdf_parent_uid This is an optional format attribute that can be used to
specify the parent feature Node for this feature Node. The
value for this attribute should correspond to a value given
to the pdf_uid attribute in a different feature.

pdf_child_uid This is an optional format attribute that can be used to
specify the child feature Node for this feature Node. The
value for this attribute should correspond to a value given

Attribute Name Contents

to the pdf_uid attribute in a different feature.

pdf_merge_tolerance This is an optional format attribute that can be used to set
the numerical tolerance used to merge spatially close ver-
tices. If the value is 0.0 or if the attribute is unset, then no
merging will be done. Otherwise, if a positive real number
less than 1.0 is specified, then vertices that lie within the
maximum extent of the scene divided by the number spec-
ified will be merged together. For example, if this attrib-
ute is set to 0.01, and the maximum extent of the scene is
[0,2500] then vertices that are within a distance of 25
units of each other will be merged together.

pdf_ambient_color This is an optional format attribute that can be used to
specify the ambient component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green ambient color for the feature.

pdf_diffuse_color This is an optional format attribute that can be used to
specify the diffuse component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green diffuse color for the feature.

pdf_specular_color This is an optional format attribute that can be used to
specify the specular component of the feature’s material
according to the Phong lighting model. The format of this
attribute is R,G,B where each color component is a real
value in the range [0,1]. For example, a value 0,1,0 spec-
ifies a green specular color for the feature.

Points

pdf_type: pdf_point

PDF point features specify Nodes that is a collection of points. The points are rasterized according to the rendering
mode of the viewer application.

Lines

pdf_type: pdf_line

PDF line features specify Nodes that is a collection of linear line segments. The line segments may be disjoint.

Circular and elliptical arc segments will be stroked into linear line segments. Lines have no area or volume, and will
appear as rasterized according to the rendering mode of the viewer application.

Mesh

pdf_type: pdf_mesh

PDF mesh features specify Nodes with 3D meshes. Meshes are composed of triangular faces. If the input mesh con-
tains faces with more than three distinct vertices, then the face will be converted into multiple triangular faces. The
triangular faces of a mesh need not be connected.

Faces are one-sided: they are only visible from one view direction. A face is visible when its normal points toward the
observer. If the vertices of the outer boundary of the face are observed to be in anti-clockwise order, then the normal
of the face points toward the observer, implying that the face is visible.

Polygons and donuts are treated as meshes. They will be converted into triangular faces that represents the inner
area of the polygon or donut.

Textures are supported. The texture coordinates can be specified through the fme_texture_coordinate_u,
fme_texture_coordinate_v, fme_texture_coordinate_w, and fme_texture_coordinate_q
point measures.

Collection

pdf_type: pdf_collection

PDF collection features specify a parent Node with no geometry but with the feature’s attribute values, and child
Nodes for each element of the collection. The child Nodes do not have the feature’s attribute values. Child nodes can
be of any geometry type.

Adobe Geospatial PDF Writer

Format Notes:
This format is not available in FME Base Edition.

The PDF2D Writer enables FME to write Adobe® Portable Document Format (PDF) with vector drawings and geospatial
information.

Overview

PDF is a document exchange format created by Adobe Systems.

The PDF2D writer will write features with 2D geometry as vector drawings on a page of a PDF document. The output
PDF file can be viewed with Adobe Acrobat Reader or any other PDF viewer application.

Features will be belong to a layer according to its feature type. Feature attribute can be queried using the analysis
tools of the Adobe Acrobat Reader software. If features have a coordinate system defined, then geospatial coordinates
of the cursor location can also be displayed.

PDF Quick Facts

Format Type Identifier PDF2D

Reader/Writer Writer

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Layer

Typical File Extensions PDF

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support Never

Enhanced Geometry Yes

Geometry Type Attribute pdf_type
Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

Geometry Support

Geometry Supported? Geometry Supported?

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values no

none yes

Writer Overview

The writer outputs PDF version 1.7 files. The document will have one page and features will be drawn in a rectangular
region of the page called the viewport. Measurements on the page use the unit of a typographical point. Also known
as a PostScript point, it is defined as 1/72 of an inch on the output page.

If attribution is written, then each feature and feature type will be represented by a logical structure element. In
Adobe Acrobat Reader, features can be visually picked using the Object Data tool.

Features with unsupported geometry types will not be drawn, but their attribution data will still be written.

Features will be grouped into layers according to their feature types. In Adobe Acrobat Reader, the visibility of layers
can be toggled.

PDF files can be opened through a command or an URL that specifies what and how the contents are displayed.

For more details about this feature, see this external documentation: http://www.adobe.co-
m/devnet/acrobat/pdfs/pdf_open_parameters.pdf

Writer Directives

The directives that are processed by the PDF2D writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the PDF2D writer is PDF2D.

DATASET

Required/Optional: Required

The value for this directive is the path to the output file. If the output file does not exist, then the writer will create a
new file. If the output file exists, then the writer will overwrite it. If other applications have the output file opened,
then the writer will be unable to continue and the translation will fail.

Workbench Parameter: Destination PDF File

DEF

Required/Optional: Required

The PDF2D writer uses PDF2D_DEF lines to define feature types. A typical mapping file fragment specifying a fea-
ture type looks like:

PDF2D_DEF <featureName> \
[pdf_layer_order <layerOrder>]? \
[pdf_in_page_coordinates <pageCoordinates>]? \
[pdf_default_opacity <opacity>]? \
[pdf_layer_visibility <visibility>]? \
[<attributeName> <attributeType>]*

http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_open_parameters.pdf

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

featureName This declares the name of the feature type.

attributeName This declares the name of an attribute. The maximum length
of attribute names is 200 characters.

attributeType This declares the type of the attribute. The only valid attrib-
ute type is string.

layerOrder This declares the layer order of the feature type. Valid values
are all integers. Feature types with lower layer orders will be
drawn first. Therefore, features in feature types with higher
layer orders will appear on top of features in feature types
with lower layer orders. If a value is not specified, then the
feature type will have an effective layer order value of ‘0’. If
two features have identical layer order values, then the two
will be ordered arbitrarily.

pageCoordinates The value specifies whether the coordinates of geometries
will be interpreted in page coordinates. If this attribute is set
to YES, then the coordinates of the geometry are treated as
page coordinate values, and the feature can be drawn any-
where on the page. The default value is NO.

opacity This determines the opacity level of features of this feature
type when their pdf_opacity feature attribute is unset. If this
parameter is set, the value overrides the writer parameter
DEFAULT_OPACITY. A value of 1.0 is fully opaque, and 0.0 is
completely transparent.

visibility If the value is VISIBLE, then the layer will be visible by
default after opening the output file in Adobe Acrobat Reader.
If set to HIDDEN, then the layer will not be initially visible.
The visibility of layers can be toggled in Adobe Acrobat
Reader after opening the file.

PAGE_SIZE

This directive specifies the size of the output page of the PDF document. The default page size is Letter.

Preset page sizes for common paper sizes can be selected, or the page size can be specified in typographical points
in the format <width> <height>.

Required/Optional

Optional

Values

A3 | A4 | A5 | B5 | Ledger | Legal | Legal-half | Letter (Default) | Letter-half | <0 ...> <0 ...>

Workbench Parameter

Page size

PAGE_VIEWPORT (Location of Map on Page)

This directive determines where to place the map on the page, and how large the map should be on the page.

The format for this directive is four integers separated by spaces describing the lower left corner and the upper right
corner of the viewport/rectangle, specified in typographical points. The lower left corner of the page contains coor-
dinate (0,0) and the top right corner contains coordinate (<width>,<height>), where these two values are the page
size specified by PAGE_SIZE.

If the aspect ratios of the page viewport and the world viewport (WORLD_VIEWPORT) differ, then the lesser scal-
ing factor will be chosen: data inside the world viewport will not be clipped and data outside the world viewport might
become visible.

If a value for the directive is not specified, then the page viewport rectangle will be a centered rectangle with a width
and length that is 90% of the page width and length. The page viewport coordinates must be between (0,0) and
(page width,page height).

Required/Optional

Optional

Values

<minimum x> <minimum y> <maximum x> <maximum y>

The values can also be specified as a percentage of the page width and page height. The values must be an integer
ending with a percentage sign. The values can also be negative values, and they are interpreted as being relative to
the top and right edges instead of the left and bottom edges. For example, for a page size of 1000 by 1000 points, the
rectangle “50 50 –50 –50” is identical to the rectangle “50 50 950 950” for this page size.

Workbench Parameter

Page viewport dimensions

WORLD_VIEWPORT (Map Extents)

This directive specifies the extents of the map to write within the page viewport, by defining the lower left and upper
right corners of the page viewport in map units.

Geometry outside these extents will be clipped when drawn on the page. The format for the directive is four floating
point numbers separated by spaces describing the lower left corner and the upper right corner of the rectangle.

If a value for the directive is not specified, then the world viewport rectangle will be the bounding box of the entire
dataset.

Required/Optional

Optional

Values

<minimum x> <minimum y> <maximum x> <maximum y>

Workbench Parameter

World viewport dimensions

DEFAULT_OPACITY

This directive specifies the opacity value of the fill color of area geometries. The boundaries of area geometries are not
affected by this setting.

Required/Optional

Optional

Values

<0.0...1.0>

A value of 0 corresponds to complete transparency and a value of 1 is complete opaqueness.

Default Value: 0.4

Workbench Parameter

Default fill opacity value

DEFAULT_POINT_SIZE

This directive specifies the default radius in typographical points for point geometry.

Required/Optional

Optional

Values

<0.0...>

Default Value: 1.0

Workbench Parameter

Default point size value

DEFAULT_LINE_WIDTH

This directive specifies the default width in typographical points for line geometry and boundaries of area geometry.

Required/Optional

Optional

Values

<0.0...>

Default Value: 1.0

Workbench Parameter

Default line width value

PANEL_VISIBILITY

This directive determines the panel that is visible immediately after opening the output PDF file in Adobe Acrobat soft-
ware.

Required/Optional

Optional

Values

None (default): No panel will be initially displayed

Layers: Layer panel will be visible after opening the file

Pages: Page Thumbnails panel will be visible

Workbench Parameter

Navigation Panel to Display

RANDOMIZE_FEATURE_TYPE_COLOR

This directive specifies whether features without the fme_color attribute set will be assigned a random color based on
its feature type.

Required/Optional

Optional

Values

YES (default)

NO (features without the fme_color attribute set will be assigned the color black)

Workbench Parameter

Randomize Feature Type Color

RICH_TEXT

Required/Optional: Optional

This directive specifies whether the text string of text features is in the rich text format. If this directive is set to NO,
then the text string is written as-is to the page. If this directive is set to YES, then the text string will be processed for
style directives. For more details, see the “Text” section under Feature Representation.

Values: YES|NO

Default Value: NO

Workbench Parameter: Text in rich text format

FONT_DIRECTORIES

Required/Optional: Optional

This directive specifies the directories that the writer will search in to find the TrueType fonts used in the workspace.
The workspace directory of the translation is always searched.

Values: <multiple directories>

Default Value:

Workbench Parameter: TrueType font directories

WRITE_ATTRIBUTES

Required/Optional: Optional

This directive specifies whether attribution data will be written. Not writing attribution data will decrease the file size
of the output file and may improve viewing performance.

Values: YES|NO

Default Value: YES

Workbench Parameter:Write attributes

COMPRESS_STREAMS

Required/Optional: Optional

This directive specifies whether streams in PDF files will be compressed.

Values: YES|NO

Default Value: YES

Workbench Parameter: Compress streams

PDF14_COMPATIBLE

Required/Optional: Optional

This directive specifies whether the output file will be PDF1.4 compatible. If the directive is set to NO, then the output
file can only be opened by applications that are compatible with PDF1.5 and above.

Values: YES|NO

Default Value: NO

Workbench Parameter: PDF 1.4 compatible

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

pdf_type The value specifies PDF geometric type of this entity.

Range:
pdf_area
pdf_collection
pdf_line
pdf_point
pdf_text

Default: No default

pdf_name If attribution data is written, then the value of this attrib-
ute determines the name of the structure element asso-
ciated with the feature. If this attribute is not set, then the
structure element will be numbered sequentially. The
names need not be unique.

Range:
<string>

Default: <auto-generated integer>

pdf_line_width The value specifies the line width in typographical points
of line geometries and boundaries of area geometries.
Points within half the line width perpendicular distance
from the line path will be painted.

Range:
<float>

Default: 1.0

pdf_line_cap_style The value specifies the cap style for the ends of lines.

Range: <0,1,2>
0 - Butt cap: Lines are squared off at the end and do not
project past the end of the line.
1 - Round cap: Semicircles with diameter equal to the line
width cap the ends of lines.
2 - Projecting square cap: Lines project past the end by a

Attribute Name Contents

distance equal to half the line width and are squared off.

Default: 0

pdf_line_join_style The value specifies the shape of corners between seg-
ments of paths.

Range: <0,1,2>
0 - Miter join: Outer edges of segments are extended until
they meet.
1 - Round join: Arcs with diameter equal to the line width
are drawn around corners.
2 - Bevel join: Two adjacent segments are finished with
butt caps, and the notch beyond the ends is filled with a tri-
angle.

Default: 0

pdf_line_miter_limit For miter joins, the miter limit imposes a maximum on
the ratio of the miter length to the line width. For exam-
ple, a miter limit of 1.414 will bevel the ends of two seg-
ments meeting at an angle less than 90 degrees (the far
corner will be at a distance sqrt(1^2+1^2)=sqrt(2) from
the line).

Range:
<0.0...>

Default: 0.0

pdf_line_dash_pattern{} The values in this list attribute specify the dash pattern for
line geometries and the boundaries of area geometries.
This attribute works together with pdf_line_dash_pat-
tern_phase to establish a simple dashed line style. Ele-
ments of the list specify the alternating lengths of dashes
and gaps. The pattern starts with a dash.

Range:
For each element in the list: <1,2,...>

Default: Empty list

pdf_line_dash_pattern_
phase

The value specifies the starting phase of the dash pattern.
This attribute works together with pdf_line_dash_pat-
tern to establish a simple dashed line style. The following
is an example dash pattern specification:

Attribute Name Contents

pdf_line_dash_pattern{0} = 2
pdf_line_dash_pattern{1} = 3
pdf_line_dash_pattern_phase = 1

A dash of length 1 will be drawn, then gaps of length 3 and
dashes of length 2 will cyclically follow thereafter.
Range: <0,1,2,...>

Default: 0

pdf_url If this attribute is set, then the feature will become an
interactive annotation. When a user clicks on the feature
in a PDF viewer application that supports URI actions, the
value will be treated as a URI and it will be resolved. In
the common case that the value is a URL, Adobe Acrobat
Reader will open a web browser to resolve the address
specified.

Note: See the “Annotations” section under Feature Rep-
resentation for behavioral notes.

pdf_tooltip If this attribute is set, then the feature will become an
interactive annotation. The value specifies the tooltip
string that will be displayed when an user hovers over the
feature with the mouse cursor in the PDF viewer appli-
cation.

Note: See the “Annotations” section under Feature Rep-
resentation for behavioral notes.

pdf_fill_opacity The value specifies the opacity of the fill color of the fea-
ture. A value of 1.0 is fully opaque, and 0.0 is completely
transparent. If this value is not set, then the opacity of the
feature is determined by the pdf_default_opacity feature
type parameter. If the feature type parameter is not set
either, then the writer directive DEFAULT_OPACITY deter-
mines the opacity.

pdf_pen_opacity The value specifies the opacity of the stroking color of the
feature. A value of 1.0 is fully opaque, and 0.0 is com-
pletely transparent. If this value is not set, then the strok-
ing opacity is set to fully opaque.

Annotations

pdf_type: any

Features with the pdf_url or the pdf_tooltip attribute set become annotation objects. There are
several behavioral differences between annotation objects and non-annotation objects:
l Annotation objects will always appear above non-annotation objects, regardless of layer ordering.

l The interactive area of an annotation object is the rectangular bound of the feature instead of its precise outline.

l Annotation objects are no longer selectable through the Object Data tool or the Model Tree interface.

l Even when the annotation object’s layer is hidden, the annotation will still provide tooltips and be interactive. The
annotation object’s parent layer does not affect the visibility of the annotation; only the object’s layer itself will
affect its visibility.

Points

pdf_type: pdf_point

A PDF point feature is drawn as a point with a radius of 1 typographical point.

The following attribute is applicable to point features:

pdf_point_width The value specifies the point width in typographical
points of point geometries. Range: <float>

Default: 1.0

Lines

pdf_type: pdf_line

A PDF line feature is drawn as a stroked line.

Area

pdf_type: pdf_area

A PDF area feature is written as a filled area with a stroked boundary. The fill opacity is controlled by the DEFAULT_
OPACITY directive.

Collection

pdf_type: pdf_collection

Each component of a PDF collection feature is drawn according to their geometry type.

Text

pdf_type: pdf_text

A PDF text feature is drawn as a text annotation according to its fme_text_string, fme_text_size, and fme_rotation
attributes.

The encoding of the text string is determined as follows: if the font is one of the PDF Core 14 fonts, then the string is
decoded using Windows ANSI code page 1252. If the font is a TrueType font, then the string is decoded using the
Macintosh Roman code page. If the TrueType font has a Microsoft Symbol character map table, then the font is
treated as a symbolic font, and the text string can specify characters in the FF00-FFFF range of the character map by
encoding only the low-byte of the code point. Desired characters in symbolic fonts can either be specified using XML
numeric character references (NCR) in rich text format (see below) or if the code point coincides with ASCII char-
acters, the ASCII characters themselves.

The following attributes are applicable to text features:

Attribute Name Contents

pdf_text_font The value specifies the default font family of the text rep-
resentation. If left blank, Helvetica will be used.

Default: Helvetica

pdf_text_underline If the value is ‘Y’, the text will be underlined.

Default: N

pdf_text_strikethrough If the value is ‘Y’, the text will have a strikethrough.

Default: N

pdf_text_bold If the value is ‘Y’, the text will have a bold style.

Default: N

pdf_text_italic If the value is ‘Y’, the text will have an italic or oblique
style.

Default: N

The text string can be specified in a rich text format. The format is a subset of XHTML. For more information on
XHTML, visit http://www.w3.org/TR/xhtml1/. The following are the supported XML elements:

l <body>...</body>, ..., <p>...</p> - Can be used to specify a style for its enclosed text
through its “style” attribute.

l ... - Bolds the enclosed text.

l <i>...</i> - Italicizes the enclosed text.

l <u>...</u> - Underlines the enclosed text.

l ... - Adds a strikethrough to the enclosed text.

l
 - Adds a line break.

The “style” XML attribute has the following format:

“property:value;...;property:value”

The following properties are supported:

l font-family - Specifies the font family of the text.

l font-size - Specifies the point size of the font.

l color - Specifies the color of the text. The color can be specified through the format “#RRGGBB” where each color
component is specified as a hexadecimal value, or through the 16 HTML color names
(http://www.w3.org/TR/REC-html40/types.html#h-6.5).

l text-decoration - Valid values are “underline” and “line-through”.

The following is an example rich text fme_text_string value:

<body>Hello
World!</body>

In the PDF document, the text “Hello” will use the styling specified through the format attributes. The text “World!”
appears on the next line and will have a font size of 30 but will inherit all other style attributes.

http://www.w3.org/TR/REC-html40/types.html#h-6.5
http://www.w3.org/TR/REC-html40/types.html#h-6.5
http://www.w3.org/TR/REC-html40/types.html#h-6.5

Adobe Illustrator (IEPS) Writer

The Adobe Illustrator Encapsulated PostScript® (IEPS) Writer module enables FME to write Encapsulated PostScript
export files specifically formatted to work with Adobe Illustrator. Illustrator IEPS is a different flavour of EPS and
makes use of some of the functionality of Adobe Illustrator. The most significant additions are the use of layers and
object attributes. In this format, many of the PostScript keywords have been shortened into special Adobe Illustrator
single letter functions. The implication is that EPS files produced by this writer cannot be used outside of Adobe Illus-
trator. The standard EPS writer should be used if the EPS is to be used in other applications.

IEPS is most often used for high-quality plots in desktop publishing software.

Note: This writer may write files that are quite large since it does create an output coordinate for every source coor-
dinate. If you find your .eps files getting too large, it is recommended that you first generalize your source data to
make it less dense using the FME’s @Generalize function (or the FME Workbench Generalizer transformer).

IEPS Quick Facts

Format Type Identifier IEPS

Reader/Writer Writer

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Layer name

Typical File Extensions .eps

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Not applicable

Schema Required Yes

Transaction Support No

Geometry Type Attribute ieps_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

Geometry Support

Geometry Supported? Geometry Supported?

ellipses no text no

line yes z values no

none no no

Overview

IEPS is a two-dimensional (2D) format with the ability to store user-defined attributes for the geometric data.

All IEPS information is contained in a single page beginning with a version header as well as a bounding box def-
inition. IEPS is based upon the PostScript format which provides methods for graphical drawing, simple pro-
gramming control structures and the ability to create user-defined variables and functions.

All IEPS data is contained in a single file with an .ieps extension.

File Name Extension Contents

.ieps All vector geometric data.

The IEPS writer supports export of points, lines, polygons, and text geometric data.

Some geometric entities may have display properties such as pen width, line type, and color. Color may be specified
in red/green/blue (RGB) as well as cyan/magenta/yellow/black (CMYK).

Writer Overview

The IEPS writer creates and writes feature data to an IEPS file specified by the DATASET keyword. The writer
searches the mapping file for the <WriterKeyword>_DATASET keyword in the mapping file. This keyword is
required to be in the mapping file. An old IEPS file in the directory with the same file name is overwritten with the new
feature data. A typical mapping file fragment specifying the output IEPS file looks like:

IEPS_DATASET /usr/data/ieps/myfile.ieps

Writer Directives

The directives processed by the IEPS writer are listed below. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the IEPS writer is IEPS.

DATASET

Required/Optional: Required

The IEPS writer processes theDATASET keyword as described in Writer Overview. Additional keywords can be
used to set default parameters that are applied to all applicable features in the file. However, the values set by the key-
words can be overwritten if the feature itself has a value defined for that parameter. For example, although the
LINE_WIDTH keyword may be used to specify a default width of 5 for all lines in the file, if an ieps_polyline
feature has its ieps_line_width set to a value of 2, then the line width of 2 will be used over the default value of
5.

Workbench Parameter: Destination Adobe Illustrator EPS File

DEF

Required/Optional: Required

This is a required keyword that defines the layers within the file. DEF lines also list the attributes that will be saved as
object tags on features of that layer, and may also include the attribute IEPS_LAYER_COLOR. This should be fol-

lowed by an RGB combination ranging in intensities from 0 to 255, separated by commas. This defines the layer color
seen in Adobe Illustrator.

Attribute Contents Required/Optional

IEPS_LAYER_COLOR This is an attribute that can be used on
a DEF line. It defines the layer color
seen in Illustrator.
Range: 0..255, 0..255, 0..255
Default: No Default

Optional

RESOLUTION _X and RESOLUTION _Y

Required/Optional: Optional

These directives define the bounding box of the IEPS output file. The bounding box extends from the lower left corner
of the page (defined as 0,0) and extends out to the values entered. By default, the X value is set to 612 and the Y
value is set to 792. These values map onto an 8.5 x 11-inch piece of paper.

Range: Integer > 0

Default:

RESOLUTION_X: 612

RESOLUTION_Y: 792

Workbench Parameter:Width (points), Height (points)

MAINTAIN_ASPECT

Required/Optional: Optional

This directive is followed by a value of YES or NO. By default, the value is set to YES. A YES indicates that the orig-
inal map aspect will be maintained to fit within the destination-defined bounding box. This means that the entire des-
tination bounding box defined may not used. Alternatively, the value NO causes the original map to be stretched onto
the defined destination bounding box.

Range: YES | NO

Default: YES

Workbench Parameter: Maintain Map Aspect Ratio

LINE_WIDTH

Required/Optional: Optional

This directive is followed by the value in pixels of the line width you wish to use by default. The default value is set to
0, which is the thinnest printable line width.

Range: float >= 0

Default: 0.0 (1 pixel wide: the thinnest line that can be rendered at device resolution)

Workbench Parameter: Line Width (pixels)

TEXT_WIDTH

Required/Optional: Optional

This directive has an attribute just like LINE_WIDTH except that this width is applied to text features. The default
value is set to 0, which is the thinnest printable line width.

Range: float >= 0

Default: 0.0 (1 pixel wide: the thinnest line that can be rendered at device resolution)

Workbench Parameter: Text Width (pixels)

TEXT_FONT

Required/Optional: Optional

This directive specifies the default font applied to all text features. The font must be a PostScript name. The fonts sup-
ported depend on the destination of the IEPS file. Some typical fonts are NewBaskerville, Times, Helvetica and Cou-
rier. The default is NewBaskerville since it is the most commonly installed with Adobe Illustrator.

Range: String

Default: NewBaskerVille

Workbench Parameter: Text Font

TEXT_STYLE

Required/Optional: Optional

This directive specifies the default style to be applied to the text font all text features. This attribute must be matched
to the current font since it is the combination of text font and text style that is recognized by Adobe Illustrator. Some
typical font and style combinations are NewBaskerville-(None, Bold), Times-(None, Roman, Italic, Bold, BoldItalic),
Helvetica-(None, Oblique, Bold, BoldOblique), and Courier-(None, Oblique, Bold, BoldItalic). Note that the keyword
NONE can be used to specify that no style should be applied to the font.

Range: String

Default: Bold

Workbench Parameter: Text Style

LINE_JOIN_TYPE

Required/Optional: Optional

This directive is followed by the values 0, 1, or 2. These values specify the default shape to be put at corners of
paths painted: 0 specifies a sharp corner, 1 specifies a rounded corner, and 2 specifies a butt-end corner.

Range: 0, 1, 2

Default: 0

Workbench Paramter: Line Join Type

LINE_CAP_TYPE

Required/Optional: Optional

This directive is followed by the values 0, 1, or 2. These values specify the default cap that will be used on line
segments. 0 specifies butt-end caps, 1 specifies rounded-end caps and 2 specifies square-end caps.

Range: 0, 1, 2

Default: 0

Workbench Parameter: Line Cap Type

FORCE_CMYK

Required/Optional: Optional

By setting the value following this keyword to YES, then all color usage output to the IEPS file is in CMYK. By default,
this value is NO,meaning that a mix of RGB and CMYK color schemes may be in the output IEPS file. However, despite
forcing CMYK color output, some IEPS viewers may not support the setcmykcolor call in their library. In these
cases, the actual output of colors is done using a function we define in PostScript which interfaces exactly like the
setcmykcolor call, but uses setrgbcolor underneath. This will depend on the IEPS viewer you are using.

Range: YES | NO

Default: NO

Workbench Parameter: Force CMYK

LOCK_FEATURES

Required/Optional: Optional

If set to YES, by default all features will be locked and cannot be selected or edited in Adobe Illustrator. Note: Even if
LOCK_FEATURES is set to YES, individual features can be unlocked if its eps_lock_feature is set to 0 (mean-
ing NOT locked). Hence, an individual eps_lock_feature value overrides this LOCK_FEATURES default value.

Range: YES | NO

Default: NO

Workbench Parameter: Lock Features

RENDER_TYPE

Required/Optional: Optional

This directive determines how the text is output. This value will be used as the default render type for all text in the
file but it will be overridden if the text feature has its own user-defined render type value.

This directive is followed by the values 0, 1, or 2. These values specify the default rendering that will be applied to
text features: 0 = fill, 1 = stroke, 2 = stroke and fill. The default value is 2.

Range: 0, 1, 2

Default: 2

Workbench Parameter: Render Type

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

IEPS features consist of geometry but no user-defined attributes, although there are special attributes to hold the
type of the geometric entity and its display parameters. The feature type of a feature written to IEPS is used to specify
its layer in the output Adobe Illustrator file.

All IEPS features contain a ieps_type attribute, which identifies the geometric type. Each element type also has a
color associated with it. Depending on the geometric type, the feature contains additional attributes specific to the
geometric type. These are described in subsequent sections.

Attribute Name Contents

ieps_type The IEPS geometric type of this entity.
Range:
ieps_polyline|
ieps_area|
ieps_text| ieps_point
Default: No default

ieps_cmyk_color This is a string that represents the color intensities
of the element. It is formatted as cyan (C),
magenta (M), yellow (Y) and black (K), This color
attribute has highest priority. If present, it will be
used in preference over ieps_color and fme_

Attribute Name Contents

color attributes.
Range: String. (0..1, 0..1, 0..1, 0...1)
Default: String (0,0,0, 1)

ieps_cmyk_fill_color This is a string that represents the fill color inten-
sities of the element. It is formatted as cyan (C),
magenta (M), yellow (Y) and black (K), This color
attribute has highest priority. If present, it will be
used in preference over ieps_fill_color and fme_
fill_color attributes.
Range: String. (0..1, 0..1, 0..1, 0...1)
Default: String (0,0,0,1)

ieps_color This is a string that represents the color intensities
of the element. It is formatted as red, green, blue
intensities which range between 0..1 Note that if
this attribute is not found, then fme_color will be
used.
Range: String. (0..1, 0..1, 0..1)
Default: String (0,0,0)

ieps_fill_color This is a string that represents the color intensities
of the element. It is formatted as red, green, blue
intensities which range between 0..1. If this attrib-
ute is not found, then the writer will refer to fme_
fill_color.
Range: String. (0..1, 0..1, 0..1)
Default: None

ieps_url Allows you to attach a URL to a feature. The URL
should be formatted as http://www.safe.com.
Range: String
Default: No Default

ieps_dash_on The number of pixels to be used as the on part of
the dashed line used to draw the feature. If ieps_
pen_linewidth is specified, then this value is mul-
tiplied by the size of the pen to determine the
number of pixels. If both ieps_dash_on and ieps_
dash_off are 0, then a solid line is used.
Range: Integer > 0
Default: 0

ieps_dash_off The number of pixels to be used as the off part of
the dashed line used to draw the feature. If ieps_
pen_linewidth is specified, then this value is mul-
tiplied by the size of the pen to determine the

Attribute Name Contents

number of pixels. If both ieps_dash_on and ieps_
dash_off are 0, then a solid line is used.
Range: Integer > 0
Default: 0

ieps_line_join_type Specify the type of corner that should be drawn
onto this path.
0 = sharp corners, 1 = rounded corners, 2 = butt-
end corners
Range: 0, 1, 2
Default: 0
Optional: Yes

ieps_line_cap_type Specify the type of caps on line ends. 0 = butt end
caps, 1 = rounded end caps, 2 = square end caps
Range: 0, 1, 2
Default: 0
Optional: Yes

ieps_locked_flag This determines whether or not the feature can be
selected for editing when the document is opened
in Adobe Illustrator. If set to 0, the feature can be
selected for editing. If set to 1, the feature is
locked and cannot be selected.
Range: 0, 1
Default: 0
Optional: Yes

Areas

ieps_type: ieps_area

IEPS polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. Each area has a pen style associated with it to control the color,
line weight, line type, and brush pattern used when it’s drawn. If the area contains holes then when the fill pattern is
applied, the holes enclosed by the area will not be filled. If no pen style is defined for a polygon entity, the previous
style is used.

The following table lists the special FME attribute names used to control the IEPS polygon settings.

Attribute Name Contents

ieps_line_width Defines the line width used to draw the polyline. By
default, the line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

Polylines

ieps_type: ieps_polyline

IEPS polyline features specify linear features defined by a sequence of x and y coordinates. Polylines encapsulate the
concept of a line since a line is just a sequence of two points. Each polyline has a pen style associated with it that spec-
ifies the color, line weight, and line type used when the line is drawn. If no pen type is defined for a polyline entity, if
line attributes aren’t found, then default parameters are used.

The table below lists the special FME attribute names used to control the IEPS polyline settings.

Attribute Name Contents

ieps_line_width Defines the line width used to draw the polyline. By
default, the line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

Text

ieps_type: ieps_text

IEPS text is used for text annotation in IEPS. The coordinates specify the lower left coordinates of the text when it is
placed. In addition, the size and angle in which the text is output can be specified.

The table below lists the special FME attribute names used to control the IEPS text:

Attribute Name Contents

ieps_size The size of the text specified in ground units
Range: float > 0
Default: 0

ieps_illustrator_size The size of the point text specified in points. If this
is set, it will override the ieps_size value.
Range: float > 0
Default: 12pt

ieps_rotation The text rotation is given in degrees and measured
counterclockwise up from the horizontal.
Range: -360..360
Default: 0

ieps_font The PostScript name of the font. The fonts sup-
ported depend on the destination of the IEPS file.
Some typical fonts are Times, Helvetica and Cou-
rier.
Range: String
Default: NewBaskerville

ieps_style The style of the font. This attribute must be
matched with the current font since it’s the com-
bination of font and style that IEPS recognizes.
Some typical fonts and styles are Times-(None,
Roman, Italic, Bold, BoldItalic), Helvetica-(None,
Oblique, Bold, BoldOblique) and Courier-(None,
Oblique, Bold, BoldOblique). Note the keyword

Attribute Name Contents

‘NONE’ can be specified to indicate no style on the
font.
Range: String
Default: Bold

ieps_text_string The text to be displayed.
Range: String
Default: No default

ieps_text_width Defines the line width used to stroke the text. By
default, the stroked line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0 (the thinnest line that can be ren-
dered at device resolution, i.e. 1 pixel wide)

ieps_render_type This determines how the text is output.
0 = filled, 1 = stroked, 2 = stroked and filled
Range: 0,1,2
Default: 2

Point

ieps_type: ieps_point

IEPS point is used for point annotation in IEPS. Points will be represented as text. By default, a symbol will be rep-
resented by a period.

Attribute Name Contents

ieps_size The size of the point text specified in ground units
Range: float > 0
Default: 0

ieps_illustrator_size The size of the point text specified in points. If this
is set, it will override the ieps_size value.

Range: float > 0

Default: 12pt

ieps_rotation The text rotation is given in degrees and measured
counterclockwise up from the horizontal.
Range: -360..360
Default: 0

ieps_font The PostScript name of the font. The fonts sup-
ported depend on the destination of the IEPS file.
Some typical fonts are Times, Helvetica and Cou-
rier.
Range: String
Default: NewBaskerville

Attribute Name Contents

ieps_style The style of the font. This attribute must be
matched with the current font since it’s the com-
bination of font and style that IEPS recognizes.
Some typical fonts and styles are Times-(None,
Roman, Italic, Bold, BoldItalic), Helvetica-
(None,Oblique, Bold, BoldOblique) and Courier-
(None,Oblique, Bold, BoldOblique). Note the key-
word ‘NONE’ can be specified to indicate no style
on the font.
Range: String
Default: Bold

ieps_symbol_string The text to be displayed.
Range: String
Default: “.”

ieps_symbol_width Defines the line width used to stroke the text. By
default, the stroked line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0 (the thinnest line that can be rendered
at device resolution, i.e. 1 pixel wide)

ieps_render_type This determines how the text is output.
0 = filled, 1 = stroked, 2 = stroked and filled
Range: 0,1,2
Default: 2

Aeronautical Information Exchange Model (AIXM) Read-
er/Writer

The AIXM Reader/Writer enables FME to read Aeronautical Information Exchange Model format files.

This chapter assumes familiarity with the AIXM format.

Overview

The Aeronautical Information Exchange Model (AIXM) format was developed by EUROCONTROL, the European
Organisation for the Safety of Air Navigation, to allow aeronautical data standardization and exchange. The role of
AIXM is to enable systems to exchange aeronautical information in the form of XML-encoded data.

AIXM Quick Facts

Format Type Identifier AIXM

Reader/Writer Both

Dataset Type File

Licensing Level Professional

Dependencies None

Feature Type AIXM entity name

Typical File Extensions .xml

Automated Translation Support No

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type Attribute xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values no

none yes

Reader Overview

The AIXM reader presents features by normalizing the XML data into the entities of the AIXM Entity-Relational model.
Thus, the feature representation is not equivalent to the AIXM XML format representation of the AIXM E-R model
entity.

Reader Directives

The suffixes shown below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the AIXM reader is AIXM.

DATASET

Required/Optional: Required

The value for this directive is the path of the AIXM file to be read. A typical mapping file fragment specifying an input
AIXM dataset looks like:

AIXM_DATASET /usr/data/aixm.xml

Workbench Parameter: Source Aeronautical Information Exchange Model (AIXM) File(s)

INTERPOLATE

Required/Optional: Optional

The value for this directive determines whether non-linear interpolation will be performed between two vertices of an
area or line geometry. This keyword will also determine the representation of geometry data. Further information on
this topic can be found under the Feature Representation heading. An example mapping file fragment specifying that
interpolation should be performed looks like:

INTERPOLATE Yes

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The AIXM writer has a fixed output schema that closely resembles the AIXM Entity-Relational model.

The reader can be connected directly to the writer and the output file will be nearly identical to the original source file.

Writer Directives

The following table lists the directives processed by the AIXM writer. The suffixes shown will be prefixed by the cur-
rent <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the AIXM writer is AIXM.

DATASET

Required/Optional: Required

The value for this keyword is the path of the output AIXM file. A typical mapping file fragment specifying an output
AIXM file looks like:

AIXM_DATASET /usr/data/aixm.xml

Workbench Parameter: Destination Aeronautical Information Exchange Model (AIXM) File

WRITE_MODE

Required/Optional: Optional

The value for this keyword determines the type of AIXM file, either an AIXM Snapshot or AIXM Update, produced by
the writer. Valid values are UPDATE and SNAPSHOT. The default value is UPDATE:

AIXM_WRITE_MODE UPDATE

Workbench Parameter: AIXM writer mode

ORIGIN

Required/Optional: Optional

The value for this keyword is a string that determines the originator of the AIXM message:

AIXM_ORIGIN ABC

Workbench Parameter: Origin

CREATED

Required/Optional: Optional

The value for this keyword determines the date and time that the AIXM message was created. The string should be a
valid XML dateTime string:

AIXM_CREATED 2002-10-10

Workbench Parameter: Created

EFFECTIVE

Required/Optional: Optional

The value for this keyword determines the date and time that the AIXM message becomes effective. The string should
be a valid XML dateTime string:

AIXM_CREATED 2002-10-10

Workbench Parameter: Effective

USE_CHG

Required/Optional: Optional

The value for this keyword determines whether the ‘chg’ XML attributes will be added to each XML element written by
the writer. Valid values are YES and NO. If the value is YES, then XML elements whose names appear in the aixm_
update_changed format specific attribute will have an XML attribute named ‘chg’ with a value of ‘1’ inserted.

The default value for this keyword is YES:

AIXM_USE_CHG YES

Workbench Parameter: Add 'chg' attributes

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), special FME feature attributes are used by the AIXM reader to store the characteristics of the features it
reads.

The AIXM Reader module utilizes the XML Reader module in processing the AIXM XML file. Thus, the feature rep-
resentation is similar to the feature representation of the XML Reader module. The format attribute, xml_type,

which may identify the geometry type of the feature, is identical in intent to the same attribute set by the XML Reader.
Details of this attribute can be found in the XML Reader/Writer documentation.

Attribute Name Contents

aixm_update_ID When an AIXM Update message changes the natural key
that identifies an object, then this attribute will hold the
old natural key of the object to be updated.

aixm_update_group_no This attribute determines the order of the AIXM Group ele-
ments within the output file. The values of this attribute
are integers, and identifies the feature with a specific
group. When all features are received by the AIXM writer,
features are grouped according to the values of their aixm_
update_group_no attribute, and the groups are written in
ascending order of through group numbers. If this attrib-
ute is not specified, then the feature will be grouped with
group number zero.

aixm_update_name The value of this attribute specifies the ‘name’ attribute of
the AIXM Group element that holds the feature.

aixm_update_subname The value of this attribute specifies the ‘sub-name’ attrib-
ute of the AIXM Group element that holds the feature.

aixm_update_reason The value of this attribute specifies the ‘reason’ attribute
of the AIXM Group element that holds the feature.

aixm_update_type The value of this attribute determines the type of the AIXM
Update message for that particular feature: New, Update,
or Withdrawn.

aixm_noseq The AIXM reader normalizes the XML schema. After this
transformation, child elements that composed a parent ele-
ment may become independent features. If the child ele-
ments were ordered within the parent element, then this
attribute will hold the sequence number that determines
the child element’s placement within a parent element.

aixm_update_changed This is a list attribute that holds the names of attributes
that are flagged as changed in an AIXM Update message.

ASPRS LIDAR Data Exchange Format (LAS) Reader/Writer

Note: This format is not available in FME Base Edition.

The American Society Photogrammetry and Remote Sensing (ASPRS) LIDAR (LAS) Reader allows FME to read LIDAR
(data exchange format standard) LAS specifications.

Overview

The LAS file is intended to contain LIDAR point records. The data will generally be put into this format from software
(provided by LIDAR hardware vendors) which combines GPS, IMU, and laser pulse range data to produce X, Y, and Z
point data. The intention of the data format is to provide an open format that allows different LIDAR hardware and soft-
ware tools to output data in a common format. FME supports LAS versions 1.0, 1.1, and 1.2.

The format contains binary data consisting of a header block, Variable Length Records (VLRs), and point data.

Note: Reading and writing of arbitrary VLRs is not currently supported; only defined georeferencing information
VLRs are supported.

About Point Clouds

A point cloud is a type of geometry that is useful for storing large amounts of data, typically gathered from LIDAR
applications. The use of LIDAR allows for fast and accurate collection of data, such as for forestry canopy meas-
urements, or landscape modeling. Point cloud geometry allows for quick and efficient processing of a large collection
of vertices in 3D space that represent the external surfaces of objects. Together, these vertices form amodel which
can be transformed, and visualized. Some operations of the point cloud geometry involve thinning, splitting, and com-
bining to produce a more useable set of vertices.

Associated with each vertex are a number of properties called components, which contains a value describing the
point. These component values can be used to classify different sections of the collection of points contained in the
point cloud geometry. The specific set of components stored by the point cloud is referred to as the interpretation.

Interpretation Allowed Values Description
Intensity 1.7E +/- 308 (15 digits) The magnitude of the intensity of the pulse return.

Color 0 to 65,535 The color of the object at the point, in RGB color.

Classification 0 to 65,535 The classification value categorizes the points into
fields, such as ground, building, water, etc.

Returns 1 - 5 The return value is the return number from a pulse.

Number of returns 1 - 5 The total number of detected returns from a single
pulse.

Angle -90 to 90 The angle of the pulse that the point was scanned at.

Flight line 0 to 4,294,967,295 The flight line number the point was detected in.

Scan Direction 0 and 1 The direction in which a scanning mirror was directed
when the point was detected.

Point ID 1 to 65,535 This point ID is indicative of the point origin.

POSIX time 1.7E +/- 308 (15 digits) Used to express the time, as the number of seconds
elapsed since UTC January 1st, 1970.

User data 0 to 65,535 The user data value is for the user to use.

GPS time and

GPS week

GPS Week: 1.7E +/- 308 (15
digits)

GPS Time: 0 to 65,535

Together, these two values express the time since Jan-
uary 6th, 1980. The GPS Week represents a week
number, and the GPS time represents the number of
seconds into a week.

Flight line Edge 1 for points on the edge, 0
otherwise.

The flight line edge value is a flag for points that lie on
the edge of the scan, along the flight line.

LIDAR Quick Facts

Format Type Identifier LIDAR

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File base name

Feature Type Feature Name

Typical File Extensions .las

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Not Applicable

Transaction Support No

Geometry Type Attribute lidar_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no point cloud yes

circular arc no polygon no

donut polygon no raster no

elliptical arc no solid no

ellipses no surface no

line no text no

none no z values no

Point Cloud Component Data Type Notes
fmepc_angle REAL64 Range: -90 to 90
fmepc_classification UINT8
fmepc_color_r UINT16 Only supported in version 1.1+
fmepc_color_g UINT16 Only supported in version 1.1+
fmepc_color_b UINT16 Only supported in version 1.1+
fmepc_flight_line_edge UINT8 Range: 0 to 1
fmepc_flight_line not supported While not directly supported,

flight line will be written as
point source ID if point source
ID does not exist on the point
cloud.

fmepc_gps_time REAL64
fmepc_gps_week not supported
fmepc_intensity UINT16
fmepc_number_of_returns UINT8 Range: 1 to 5
fmepc_point_source_id UINT16 Only supported in version 1.1+
fmepc_posix_time not supported
fmepc_return UINT8 Range: 1 to 5
fmepc_scan_direction UINT8 Range: 0 to 1
fmepc_user_data UINT8 (version 1.1+) or UINT16

(version 1.0)

Reader Overview

FME considers a single LAS file to be a dataset. Each dataset contains a single FME point cloud feature.

Reader Directives

The directives listed below are processed by the LIDAR/LAS reader. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the LIDAR reader is LIDAR.

DATASET

The value for this directive is the LIDAR/LAS file to be read.

Required/Optional

Required

Mapping File Syntax

LIDAR_DATASET /usr/data/test.las

Workbench Parameter

Source ASPRS LAS File(s)

GROUP_BY_DATASET

The value for this directive can be either Yes or No.

When the value is set to No, the only feature type this reader will use is the reader type name, which in this case is
LIDAR. When the value is set to Yes, the feature type of each dataset is the filename (without the path or the exten-
sion) of the dataset. The default value for this directive is No.

Required/Optional

Required

Mapping File Syntax

LIDAR_DATASET /usr/data/test.las

Workbench Parameter

Source ASPRS LAS File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

FME considers a dataset to be a directory name. The feature type of each dataset is the filename. The LIDAR writer dis-
tinguishes duplicate output files by appending numbers to the filenames.

Writer Directives

The directives listed below are processed by the LIDAR/LAS writer. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the LIDAR writer is LIDAR.

DATASET

The value for this directive is the path of the output directory where the data will be written..

Required/Optional

Required

Mapping File Syntax

LIDAR_DATASET /usr/data/

Workbench Parameter

Destination ASPRS LAS Directory

VERSION

The version of the LAS file to be written.

Required/Optional

Optional

Values

1.0 | 1.1 | 1.2 (default)

Mapping File Syntax

LIDAR_DATASET VERSION 1.1

Workbench Parameter

ASPRS LAS Version

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents
lidar_type This will always be lidar_point_cloud.
lidar_file_creation_date The date on which this file was created (LAS 1.1 and 1.2),

or the date on which the data was collected (LAS 1.0).
lidar_file_source_id The file source ID. A value of zero is interpreted to mean

that an ID has not been assigned.
lidar_generating_software Description of the generating software.
lidar_project_id A complete Globally Unique Identifier to serve as a project

ID. By assigning a Project ID and using a File Source ID
(defined above) every file within a project and every point
within a file can be uniquely identified, globally.

lidar_system_identifier A string identifying the hardware system or operation that
generated the data.

lidar_version The version of the LAS file.
lidar_vertical_coordsys_code The GeoTIFF code identifying the vertical coordinate sys-

tem.
lidar_vertical_datum_code The GeoTIFF code identifying the vertical datum.
lidar_vertical_units_code The GeoTIFF code identifying the units of the vertical coor-

dinate system.

Australian Asset Design & As Constructed (ADAC) XML
Reader

Format Notes: This format is not supported by FME Base Edition.

The ADAC XML format is developed by the Asset Design & As Constructed (ADAC) consortium. This reader supports
the ADAC XML version 3.0.1 and 4.0.0.

Further information on ADAC can be found at http://www.adac.com.au.

Overview

An ADAC XML document consists of a root ADAC element containing various data structures from civil engineering
assets.

ADAC v3 defines the following asset themes:

n Sewerage

n Roads

n Water

n Stormwater

n Cadastre

For backwards compatibility, the interpretation/mapping of the ADAC v3 assets remains unchanged.

ADAC v4 defines the following asset themes:

n Sewerage

n Transport

n WaterSupply

n StormWater

n OpenSpace

n Cadastre

n Surface

n Enhancements

n Supplementary

http://www.adac.com.au/

ADAC Quick Facts

Format Type Identifier ADAC

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type The ADAC asset structures

Typical File Extensions .xml

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none yes

Reader Overview

The ADAC reader creates FME features from the various ADAC asset structures.

The reader now supports ADAC v4. The asset structures in v4 are mapped differently from the ADAC v3.

See the Feature Representation section for details.

Coordinate Systems

FME ADAC features are tagged with a coordinate system when the reader finds a mapping between the name spec-
ified in the ADAC <HorizontalCoordinateSystem> element and an FME coordinate system name. The ADAC <Hori-

zontalCoordinateSystem> is a child of the <CoordinateSystem> element which is a child of the ADAC <Project> ele-
ment.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the ADAC reader is ADAC.

DATASET

The location of the ADAC file to be read.

Mapping File Syntax

ADAC_DATASET c:\data\adac_sample.xml

Required/Optional

Required

Workbench Parameter

Source Australian ADAC XML File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

ADAC v3

The ADAC XML reader recognizes the following ADAC v 3.0.1 asset structures:

l Sewerage asset: Manhole, PipeNonPressure, PipePressure, Valve, Fitting, House_Connection.

l Roads asset: Pavement, Parking, RoadEdge, RoadIsland, RoadPathway, PramRamp, RoadSubsoilDrain.

l Water asset: Pipe, Valve, Hydrant, Meter, Fittings, Maintenance_Hole.

l Stormwater asset: ManholePit, EndStructure, Pipe, SurfaceDrainage.

l Cadastre asset: LandParcel.

l OtherData asset: Object.

The feature type names for ADAC FME features closely resemble the naming for the ADAC v3 XML document. Feature
type names are whitespace separated combinations of theme and asset structure names. For example, “Sewerage
Valve”, “Water Valve”, “Stormwater Pipe”, and “Cadastre LandParcel”.

Attribute names also closely resemble their XML counterpart. The non-geometrical, non-repeating, and non-nested
child elements, i.e., the simple type elements whose maxOccurs is 1, of an asset structure are mapped with their
names unchanged. For example, the simple type child element <OutletType> of the <ManholePit> element is mapped
as the “OutletType” attribute of the “Stormwater ManholePit” feature.

Non-geometrical nested child elements, i.e., the complex type elements, of an asset are mapped as whitespace sep-
arated combinations of child and descendant elements. For example, the <ChamberSize> complex type child element
of the <ManholePit> element creates the following FME attributes in a “Stormwater ManholePit” feature: “Cham-
berSize Blankend”, “ChamberSize PS”, “ChamberSize Rectangular” and “ChamberSize Circular”.

Most non-geometrical child elements in an asset structure are non-repeating, these are mapped as simple, atomic
FME attribute values. Repeating non-geometrical child elements, i.e., those with maxOccurs greater than 1 or
unbounded, such as the <ComponentInfo> element, are mapped as CSV values.

The geometry for a feature is mapped from the various ADAC geometry elements. Some ADAC asset structures, such
as the “RoadSubsoilDrain”, may have more than one geometry, these are mapped as aggregates. Two special FME
geometry traits are assigned to the geometries to help identify their original ADAC role. The “adac_geometry” trait
identifies the original ADAC XML geometry element, while the “adac_geometry_parent” trait identifies the geometry’s
parent.

Data not explicitly defined in the ADAC schema is supported in the ADAC XML via the “OtherData” asset model. This
<OtherData> asset model element can contain one or more <Layer> child elements, and each <Layer> can contain
one or more <Object> elements. The FME ADAC reader maps these <Object>s into a single “Object” feature type.

All FME ADAC “Object” features carry a “LayerName” attribute which identifies its original <Layer> container in the
XML document. An “Object” feature can be a point, line, area, text geometry, or an aggregate of these geometries.

An <Object> element may have zero or more <ComponentInfo> child elements. The information for the first <Com-
ponentInfo> element, as with the other predefined ADAC structures which can have at most one <ComponentInfo>,
is represented in the FME ADAC feature by the following attributes:

“ComponentInfo InfrastructureCode”,
“ComponentInfo Status”,
“ComponentInfo Notes”, and
“ComponentInfo Supporting_Info”.

All of the above except for the “ComponentInfo Status” attribute have CSV values. Multiple <ComponentInfo> ele-
ments in a single layer are represented in the FME ADAC feature as a structure list attribute, except for the list index-
ing the representation is similar to the above:

“ComponentInfo{0}.InfrastructureCode”,
“ComponentInfo{0}.Status”,
“ComponentInfo{0}.Notes”, and
“ComponentInfo{0}.Supporting_Info”.

“ComponentInfo{1}.InfrastructureCode”,
“ComponentInfo{1}.Status”,
“ComponentInfo{1}.Notes”, and
“ComponentInfo{1}.Supporting_Info”.

Note that the ComponentInfo list attribute with index 0 is identical to the non-indexed set of ComponentInfo attrib-
utes.

ADAC v4

The ADAC XML reader parses the ADAC v4.0.0 schema to determine the asset structures available to be read.

In ADAC v4 the FME feature type names also closely resemble, as in V3, the ADAC v4 XML element asset names. ADAC
FME feature type names are whitespace separated combinations of theme and asset names. For example, the <Pit>
asset in the <Stormwater> theme is mapped as the FME “Stormwater Pit” feature type. Note that the <Pits> element,

the element representing the feature class of stormwater pits, i.e., the parent element enclosing the <Pit> elements,
is not part of the FME feature type.

Most non-geometrical child elements in an asset structure are non-repeating, these are mapped as simple, atomic
FME attribute values. These elements are mapped as FME attributes with their name unchanged. For example, the
simple type child element <PitNumber> of the <Pit> element is mapped as the “PitNumber” attribute of the “Storm-
water Pit” feature.

Repeating non-geometrical child elements, i.e., those with maxOccurs greater than 1 or unbounded, such as the
<SupportingFile> element, is mapped as a list attribute. The <SupportingFile> element is part of the <Com-
ponentInfo> element, which is an element defined as a complex type, hence <SupportingFile> is mapped in FME as a
nested list attribute, “ComponentInfo.SupportingFiles.SupportingFile{}”.

Non-geometric nested child elements, i.e., the complex type elements, of an asset structure are mapped differently
from v3, in ADAC v4 these complex property elements are mapped as FME nested list attributes. For example, the
<ChamberSize> complex type child element of the <Pit> element creates the following FME nested list attributes in a
“Stormwater Pit” feature:

“ChamberSize.Rectangular.Length_mm”
“ChamberSize.Rectangular.Width_mm”
“ChamberSize.Circular.Diameter_mm”
“ChamberSize.Extended.Radius_mm”
“ChamberSize.Extended.Extension_mm”

The geometry for a feature is mapped from the various ADAC <Geometry> elements. Unlike ADAC v3, the assets data
structure for ADAC v4 do not have multiple geometries.

Geometry

Note: ADAC v4 assets have exactly one geometry. The following applies only to ADAC v3.

ADAC v3 asset structures with multiple geometry elements are mapped into FME geometry aggregates. FME geometry
traits are used to help identify the original ADAC role. Two special geometry traits are assigned, the “adac_geometry”
trait identifies the original ADAC XML geometry element, while the “adac_geometry_parent” trait identifies the geome-
try’s parent. The values for these two traits are their respective ADAC XML element names. The following example
logs a “Stormwater ManholePit” feature:

++
Feature Type: Stormwater ManholePit'
Attribute(encoded: utf-16): ChamberConstruction' has value Precast'
Attribute(encoded: utf-16): ChamberSize Circular Diameter' has value 1050'
Attribute(encoded: utf-16): Construction Date' has value 2007-04-14'
Attribute(encoded: utf-16): Drawing Number' has value B02166-C66'
Attribute(encoded: utf-16): FireRetardant' has value false'
Attribute(encoded: utf-16): InletStructure Depth_m' has value 1.35'
Attribute(encoded: utf-16): InletStructure InvertLevel_m' has value 6.030'
Attribute(encoded: utf-16): InletStructure LidType' has value CIRC CAST IRON'
Attribute(encoded: utf-16): InletStructure PitNumber' has value 13/8'
Attribute(encoded: utf-16): InletStructure SurfaceLevel_m' has value 7.380'
Attribute(encoded: utf-16): OutletType' has value Dry'
Attribute(encoded: utf-16): Owner' has value Council'
Attribute(encoded: utf-16): Project Name' has value '
Attribute(encoded: utf-16): Use' has valueManhole'
Attribute(string) : fme_geometry' has value fme_aggregate'
Attribute(string) : fme_type' has value fme_point'
Attribute(string) : xml_type' has value xml_aggregate'
Coordinate System: '
GeometryType: IFMEAggregate
Number of Geometries: 2

GeometryNumber: 0
GeometryType: IFMEPoint
Number of GeometryTraits: 2
GeometryTrait(encoded: utf-16): adac_geometry' has value Location'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value InletStructure'

Coordinate Dimension: 3
(529958.46299999999,6942011.182,0)

GeometryNumber: 1
GeometryType: IFMEPoint
Number of GeometryTraits: 2
GeometryTrait(encoded: utf-16): adac_geometry' has value Location'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has valueManholePit'
Coordinate Dimension: 3
(529958.46299999999,6942011.182,0)
==

The ADAC v3 <ManholePit> element has two descendant <Location> elements, one is an immediate child element,
while the other grandchild element. In the above example, the “adac_geometry_parent” trait on the point geometries
can be used to identify the geometry’s original role in the ADAC XML document, the first location refers to the <Inlet-
Structure> element, while the second refers to the <ManholePit> element.

Mapped rotated point geometries include an additional “Rotation” trait, illustrated by the log of the following “Water
Valve” feature:

++
Feature Type:Water Valve'
Attribute(encoded: utf-16): Construction Date' has value 2007-04-14'
Attribute(encoded: utf-16): Drawing Number' has value B02166-C66'
Attribute(encoded: utf-16): Owner' has value Council'
Attribute(encoded: utf-16): Project Name' has value '
Attribute(encoded: utf-16): Size_mm' has value 150'
Attribute(encoded: utf-16): Type' has valueGate'
Attribute(encoded: utf-16): Use' has value Control'
Attribute(string) : fme_geometry' has value fme_point'
Attribute(string) : fme_type' has value fme_point'
Attribute(string) : xml_type' has value xml_point'
Coordinate System: '
GeometryType: IFMEPoint
Number of GeometryTraits: 3
GeometryTrait(encoded: utf-16): Rotation' has value 83.496'
GeometryTrait(encoded: utf-16): adac_geometry' has value Location'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value Valve'
Coordinate Dimension: 3
(529952.79399999999,6942138.1310000001,0)
==

The geometry for ADAC v3 and v4 features may be identified by the xml_type attribute. The valid values for this attrib-
ute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point geometry.

xml_line Linear geometry.

xml_area Simple polygon geometry

xml_text Annotation geometry

xml_aggregate An aggregate of the above geometries.

No Geometry

xml_type: xml_no_geom

Features with their xml_type attribute set to xml_no_geom do not contain any geometry data.

Points

xml_type: xml_point

Features with their xml_type set to xml_point are single coordinate features or an aggregate of single points.

Lines

xml_type: xml_line

Features with their xml_type set to xml_line are polyline features or an aggregate of polylines.

Areas

xml_type: xml_polygon

Features with their xml_type set to xml_polygon are polygon features which may or may not have interior boundaries,
or an aggregate of such polygons.

Annotation

xml_type: xml_text

Features with their xml_type set to xml_text are feature with annotation geometry. The text geometry is mapped from
the ADAC “annotation_geometry” complex type. The “annotation_geometry” components: <Text>, <Location>,
including its <Rotation>, and <Height_m> are loaded into the FME text geometry’s “text string”, “point geometry”,
“text rotation”, and “text height”, respectively, other “annotation_geometry” child elements, such as “Justification”,
“FontName” and “Width_m”, do not map cleanly into the FME text geometry and are thus mapped as geometry traits.

The following is an ADAC “Object” feature with an annotation geometry, notice that all of the “annotation_geometry”
components, such as <Text>, <Rotation>, <FontName, etc,..., are also represented as geometry traits:

++
Feature Type: Object'
Attribute(encoded: utf-16) : Construction Date' has value '
Attribute(encoded: utf-16) : Drawing Number' has value '
Attribute(encoded: utf-16) : LayerName' has value CADASTRE_CANCELLED_LOTPLAN'
Attribute(encoded: utf-16) : Owner' has value Council'
Attribute(encoded: utf-16) : Project Name' has value Test.dwg'
Attribute(string) : fme_geometry' has value fme_point'
Attribute(indirect: 64 bit real) : fme_rotation' has value 81'
Attribute(indirect: 64 bit real) : fme_text_size' has value 1.5'
Attribute(indirect: encoded: utf-16): fme_text_string' has valueMyAnnotated text.'
Attribute(string) : fme_type' has value fme_text'
Attribute(64 bit real) : xml_rotation' has value 81'
Attribute(64 bit real) : xml_text_size' has value 1.5'
Attribute(encoded: utf-16) : xml_text_string' has valueMyAnnotated text.'
Attribute(string) : xml_type' has value xml_text'
Coordinate System: '
GeometryType: IFMEText
Number of GeometryTraits: 8
GeometryTrait(encoded: utf-16): FontName' has value Consolas'
GeometryTrait(encoded: utf-16): Height_m' has value 1.5'
GeometryTrait(encoded: utf-16): Justification' has value Left-Bottom'
GeometryTrait(encoded: utf-16): Rotation' has value 81'
GeometryTrait(encoded: utf-16): Text' has valueMyAnnotated text.'
GeometryTrait(encoded: utf-16):Width_m' has value 2.0'
GeometryTrait(encoded: utf-16): adac_geometry' has value Annotation'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has valueObject'
Text String: MyAnnotated text.
Text Size: 1.5
Text Rotation (degreesCCW): 81
GeometryType: IFMEPoint
Number of GeometryTraits: 2
GeometryTrait(encoded: utf-16): adac_geometry' has value InsertionPoint'
GeometryTrait(encoded: utf-16): adac_geometry_parent' has value Location'
Coordinate Dimension: 3
(511337.43646974798,7033866.8198164497,0)

==

Aggregates

xml_type: xml_aggregate

Features with their xml_type set to xml_aggregate are aggregate features whose members maybe point, line, area,
annotation or aggregate geometries.

Autodesk 3ds Writer

Format Notes: This format is not available in FME Base Edition.

Overview

The 3ds Writer allows FME to read and write Autodesk® 3ds Format (3ds) files.

The 3ds format was originally developed as the native format for Autodesk 3D Studio (Releases 1 to 4). It is now com-
monly used as an interchange format between different 3D modelling and rendering applications.

3ds Quick Facts

Format Type Identifier 3DS

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Reader: File
Writer: Directory

Feature Type 3DS_ELEMENT

Typical File Extensions .3ds

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Never

Enhanced Geometry Yes

Geometry Type Attribute 3ds_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point no

circles yes polygon yes

circular arc no raster no

donut polygon yes solid yes

elliptical arc no surface yes

ellipses yes text no

Geometry Support

Geometry Supported? Geometry Supported?

line no z values yes

none yes

Writer Overview

The 3D model has a hierarchical structure of Nodes, which are elements of the model.

For each node, there is a corresponding mesh, which contains the geometry of the object. Feature types become
Nodes. Features become Meshes that may have geometries and attributes.

The 3ds Writer does not support feature type fanout.

Note: The 3ds format is limited to 32-bit precision for its coordinates and, as a result, translations involving a
greater level of precision (i.e., using world coordinates instead of local coordinates) may produce 3ds data where
different coordinates are collapsed into a single coordinate. You can resolve this issue by offsetting the x,y,z coor-
dinates such that the model's origin is moved to (0,0,0) or another point close to this, which has the effect of mov-
ing the model into a local coordinate system.

Writer Directives

This section lists the directives that are processed by the 3ds Writer.

The suffixes shown are prefixed by the current <WriterKeyword>_ in a mapping file. By default, the <Writ-
erKeyword> for the 3ds writer is 3DS.

DATASET

Required/Optional

Required

Values

The value for this directive is the path to the output directory. If the output directory does not exist, then the writer
will create a new directory.

The output file will be created within the specified directory and associated texture files, if any, will be written to the
same directory.

For example, if the output directory is C:\3dsFiles\house\ then the output file will be C:\3dsFiles\house\house.3ds. If
the output file already exists, then the writer will overwrite it.

If any other applications have the output file opened, then the writer will be unable to continue and the translation will
fail.

Workbench Parameter

Destination Autodesk 3ds Directory

DEF

The 3ds Writer ignores this directive because the format itself does not have a notion of layers/feature types.

Workbench Parameter

Not applicable

Required/Optional

Optional

MOVE_TO_LOCAL_COORDSYS

If the value is PRJ_ONLY, a companion.prj file containing the coordinate system and having the same name as the
.3ds file will be written in the same directory as the.3ds file.

If the value is Yes, in addition to writing the.prj file as in the PRJ_ONLY option, a companion.fwt file with the same
name as the .3ds file will be written in the same directory as the .3ds file. The coordinates of all the points in the
written features will be normalized to the interval [-0.5, 0.5] on the largest side of their XYZ-bounding cube.

The other dimensions will be scaled proportionally. The transformation matrix required to scale the model back to
world coordinates is contained in the .fwt file. This can be used to improve precision of the written coordinates.

Required/Optional

Optional

Values

Yes | No (default)

Workbench Parameter

Parameter Name

Move to Local Coordinate System

Parameter Values

Yes | No (default) | PRJ Only

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

3ds features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each 3ds feature.

In addition, each 3ds feature contains several special attributes to hold the type of the geometric entity and its display
parameters. All 3ds features contain a 3ds_type attribute, which identifies the geometric type. Depending on the geo-
metric type, the feature contains additional attributes specific to the geometric type. These are described in sub-
sequent sections.

Geometries with no Z coordinates (2D geometries) will be assigned 0 as their z values.

The following format-specific attributes are applicable to all geometry types, and these attributes do not appear as
user attributes in the output data:

Attribute Name Contents
3ds_mesh_name This is an optional attribute that contains the name of the mesh read

from the 3ds file. The namemust not contain more than 8 characters.

These attributes may be set on the feature or on the geometry of the feature at any level.

If some of the attributes are not set on a certain geometry, they will take the values set the geometry’s container. If
the values are not found, they will take the values set on the feature. If the values are not found at the feature level,
they will assume default values.

If a certain geometry and its container has different values for the same attribute, the value on the geometry, not its
container, will be used.

Mesh

3ds_type: 3ds_mesh

Meshes are composed of triangular faces. If the input mesh contains faces with more than three distinct vertices,
then the face will be converted into multiple triangular fac¬es. The triangular faces of a mesh need not be connected.

Polygons and donuts are treated as meshes. They will be converted into triangular fac¬es that represents the inner
area of the polygon or donut.

The name of a mesh read by the reader will be stored in (3ds_mesh_name) as a string. The name of a mesh produced
by the writer is a unique number.

Material and Appearance

If the feature being read does not contain a valid 3ds material reference, the appearance on the individual face in the
mesh will be set to FME’s default appearance. Any raster referenced as a texture in the 3ds file will be read by FME, as
long as the source format is supported by FME.

If the feature being written does not contain a valid appearance reference, the default material will be assigned to the
corresponding faces. If the feature contains a valid appearance reference, it will be written as faces referenced to a
corresponding 3ds material.

A two-sided surface with matching appearance references will be written out as two-sided faces sharing one material
in 3ds. Due to a limitation within 3ds, a two-sided surface with different appearance references will be written out as
two one-sided faces with different materials.

If the incoming feature contains deprecated attributes such as material name (3ds_material), color (3ds_ambient_
color, 3ds_diffuse_color, or 3ds_specular_color), or texture image (3ds_texture_image) information, a material with
these properties will be created and assigned to the mesh corresponding to the feature.

The material name in 3ds is limited to 8 characters; the writer will truncate appearance names longer than 8 char-
acters.

Autodesk AutoCAD DWF Reader/Writer

The AutoCAD® Reader/Writer enables FME to read and write files used by Autodesk® AutoCAD and compatible sys-
tems. AutoCAD drawing files consist of drawing settings and configuration, as well as a series of entities, or graphic
elements, organized into layers.

FME provides broad support for many AutoCAD entity types and options and for reading and writing AutoCAD file ver-
sion up to and including 2007. When AutoCAD data is output, header information may be copied from a supplied tem-
plate, or prototype, file.

This chapter assumes familiarity with AutoCAD-compatible systems and the entities (features) that are manipulated
within these systems.

Note: Throughout this chapter, the AutoCAD file is referred to as a drawing file rather than a DWF file.

Overview

There are three supported formats used by AutoCAD:

l DXF (drawing exchange format) files, which are large ASCII files,

l DWG (drawing) files, which are binary and support the most entity types, and

l DWF (drawing web format) files, which are binary files of reduced size and functionality intended for display on
limited-bandwidth mediums such as the Internet.

Logically, both DWG and DXF files are identical and, therefore, FME treats both file types in the samemanner.
DWG/DXF files are read by the AutoCAD DWG/DXF reader and writer (seeAutodesk AutoCAD DWF/DXF Read-
er/Writer).

DWF files are handled seamlessly but internally they undergo a different series of translation processes. These are
read separately by the AutoCAD DWF reader and writer. Currently the DWF reader and writer can only read and write
two-dimensional (2D) DWF files.

This document covers information specific to AutoCAD DWF files. For general AutoCAD DWG/DXF information and
AutoCAD feature types supported by FME, please refer to the documentation on theAutoCAD DWG/DXF Read-
er/Writer.

AutoCAD DWF Quick Facts

Format Type Identifier DWF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Layer name

Typical File Extensions .dwf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute autocad_entity

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster yes

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values no

none no

Reader Overview

The AutoCAD DWF reader extracts entities, one at a time, from the entity section of the drawing file and passes them
on to the rest of the FME for processing. Complex entities such as polylines and inserts are exploded and broken into
several individual FME features. If the entity has attribution stored as extended entity data, then this is also read and
placed in the feature.

When the AutoCAD reader encounters an entity type it does not know how to process, it simply sets the entity type of
the feature and returns it. This feature is then logged by the FME correlation subsystem and the reader moves on to
the next entity.

Reader Directives

This section describes the directives that are recognized by the AutoCAD DWF reader. Each directive is prefixed by
the current <ReaderKeyword>_ when placed in a mapping file.

DATASET

Required/Optional: Required

The dataset into which feature data is to be read.

Workbench Parameter: Source Autodesk AutoCAD DWF File(s)

PASSWORD

Required/Optional: Optional

This statement specifies the password to open the DWF file for reading if it is password protected. The statement is of
the following form:

<WriterKeyword>_PASSWORD <autocad dwf password>

The statement below instructs the AutoCAD reader try to open the given dataset with the password “mypass”:

DWF_PASSWORD mypass

Value: <valid password>

Default value: no password

Workbench Parameter: Password

PAPER_WIDTH, PAPER_HEIGHT

Required/Optional: Optional

These statements specify the maxima of the width and height in millimeters for the sheets read from the input DWF
file.. The statements are of the following form:

<WriterKeyword>_PAPER_WIDTH <width in mm>
<WriterKeyword>_PAPER_HEIGHT <height in mm>

The statements below instruct the AutoCAD reader limit the extents of the sheets read from the input DWF file to
297mm by 210 mm:

DWF_PAPER_WIDTH 297
DWF_PAPER_HEIGHT 210

Paper_Width Value: <Valid positive numeric>

Paper_Width Default Value: 297

Paper_Height Value: <Valid positive numeric>

Paper_Height Default Value: 210

Workbench Parameter:Width (mm) and Height (mm)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The AutoCAD writer provides the following capabilities when writing AutoCAD files.

l Password security: Passwords can be created for DWF files written by FME.

l Multiple file formats: DWF files can be written as either compressed or uncompressed binary files, or as ASCII
files.

l Resolution: DWF file resolution can be determined at translation time in the form of the X Size and Y Size writer
keywords. These are specified in pixels.

l Color Map Optimization: Colors in the color map that are unused can be eliminated from the output file to
reduce space.

l Export Invisible Layers: Invisible Layers can be optionally exported if desired. (Not supported for Write 3D)

l Force View Extents: The initial viewport of the output file can be overwritten to include the entire extents of the
drawing instead of the default active viewport.

l Use Inked Area: The inked area of the DWF file can be calculated from the entities in the file to produce a tight
bounding rectangle around drawable graphic entities.

l Skip Layer Info: Additional layer information can be omitted from the output DWF file to reduce space.

l Skip Named Views: Named viewports can be omitted from the output DWF file in order to save space.

l Multi-version Support: The AutoCAD DWF writer supports files that are compatible with any current AutoCAD
release.

When creating AutoCAD DWF files, the AutoCAD writer first defines the linetypes and layers defined within the FME
mapping file. The writer then reads in a template file, if specified, and copies the linetypes, layer definitions, shape
file header information, and block information from the template file to the output dataset.

The AutoCAD writer then outputs each feature it is given to the output file in the appropriate entity type.

When writing an AutoCAD DWF file, the format of file output is determined as follows:

l If the file name contains .dwf or .DWF, then the output dataset is written in DWF format.

l Otherwise, if an error exists in the mapping file, the translation is halted.

Writer Directives

This section describes the directives processed by the AutoCAD DWF writer module. Each of the directives is prefixed
by the current <WriterKeyword>_ when they are placed in a mapping file. By default, the <WriterKeyword> for the
AutoCAD DWF writer is DWF.

DATASET

Required/Optional: Required

The dataset into which feature data is to be written.

Workbench Parameter: Destination Autodesk AutoCAD DWF File

DWF_VERSION

Required/Optional: Optional

The version of the AutoCAD DWF file to be produced.

The value corresponds with the release number of the AutoCAD DWF file that is produced. This statement specifies
the version of AutoCAD file to be output. The statement is of the following form:

<WriterKeyword>_DWF_VERSION <autocad dwf version>

The example statement below instructs the AutoCAD writer to produce a version 4.2 DWF file:

DWF_DWF_VERSION 4.2

Values: 4.2 | 5.5 | 6.0

Default value: 5.5

Workbench Parameter: Version

PASSWORD

Required/Optional: Optional

This statement specifies the password to open the DWF file for reading if it is password protected. The statement is of
the following form:

<WriterKeyword>_PASSWORD <autocad dwf password>

The statement below instructs the AutoCAD writer try to open the given dataset with the password “mypass”:

DWF_PASSWORD mypass

Value: <valid password>

Default value: no password

Workbench Parameter: Password

TEMPLATEFILE

Required/Optional: Optional

The name of an existing AutoCAD DWF file that contains the block definitions and linetype definitions to be used when
creating the output dataset.

Value: <valid password>

Default value: no password

Workbench Parameter: Template File

TEMPLATEFILE_PASSWORD

Required/Optional: Optional

DWF files support an optional password for additional security. If specified, the given password is provided when the
file is opened.

Value: <valid password>

Default value: no password

Workbench Parameter: Template File Password

FORMAT

Required/Optional: Optional

The format of the AutoCAD DWF file to be produced.

Values: COMPRESSED_BINARY | UNCOMPRESSED_BINARY | ASCII

Default value: COMPRESSED_BINARY

Workbench Parameter: Format

X_SIZE

Required/Optional: Optional

Specifies the horizontal width of the output DWF file in pixels.

Values: <valid positive numeric>

Default value: 36000

Workbench Parameter: X Size

Y_SIZE

Required/Optional: Optional

Specifies the vertical height of the output DWF file in pixels.

Values: <valid positive numeric>

Default value: 24000

Workbench Parameter: Y Size

OPTIMIZE_COLOR_MAP

Required/Optional: Optional

This directive, if set, prevents unused colors in the color map from being stored in the DWF file.

Value: YES | NO

Default value: NO

Workbench Parameter: Optimize Colormap

Example:

DWF_OPTIMIZE_COLOR_MAP YES

EXPORT_INVISIBLE_LAYERS

Required/Optional: Optional

This statement exports invisible layers in an AutoCAD file to be output to the DWF file.

Value: YES | NO

Default value: NO

Workbench Parameter: Export Invisible Layers

Example:

DWF_EXPORT_INVISIBLE_LAYERS YES

FORCE_VIEW_TO_EXTENTS

Required/Optional: Optional

This directive, if set, sets the initial viewport of the DWF file to the entire extents instead of the last actively seen view-
port.

Value: YES | NO

Default value: NO

Workbench Parameter: Force Initial View to Extents

Example:

DWF_FORCE_VIEW_TO_EXTENTS YES

USE_INKED_AREA

Required/Optional: Optional

This directive, if set, calculates a tight bounding area around the graphic elements of a drawing.

Value: YES | NO

Default value: NO

Workbench Parameter: Use Inked Area

Example:

DWF_USE_INKED_AREA YES

SKIP_LAYER_INFO

Required/Optional: Optional

This directive, if set, prevents additional layer information from being stored in the DWF file.

Value: YES | NO

Default value: NO

Workbench Parameter: Skip Layer Info

Example:

DWF_SKIP_LAYER_INFO YES

SKIP_NAMED_VIEWS

Required/Optional: Optional

This directive, if set, prevents named views from being stored in the DWF file.

Value: YES | NO

Default value: NO

Workbench Parameter: Skip Named Views

Example:

DWF_SKIP_NAMED_VIEWS YES

DEF

Required/Optional: Optional

The AutoCAD DWF writer requires that every feature written to the AutoCAD file be stored within a predefined Auto-
CAD layer. In AutoCAD, the layers are used to store collections of logically related attributes. Within the FME, the Auto-
CAD layer and the type of the feature are treated synonymously as there is a one-to-one correspondence between FME
feature type and AutoCAD layer.1The order of properties in the layer statement is required as shown, though addi-
tional attribute name and type pairs may be in any order. The layer statement is of the following form:

<WriterKeyword>_DEF <layer name> \
autocad_color <default color> \
autocad_linetype <default linetype>\
[autocad_layer_type frozen] \
[<attribute name> <attribute type>]

where:

l <layer name> is the name of the layer being defined. This is the name that is used throughout the remainder of the
FME mapping files.

l <default color> is the color number used for all features stored within the layer unless explicitly overridden on the
correlation lines below. Valid values are between 1 and 255.

l <default linetype> is the name of the linetype to use for the layer if no linetype is specified on the correlation line. The
linetype specified must either be:

l defined in the mapping file,

l copied from a specified template file, or

l the predefined linetype named CONTINUOUS.

l <autocad_layer_type> is the type of layer to create. Currently, only the value frozen is supported. If specified, then
the created layer is frozen; otherwise, the layer is not frozen.

l <attribute name><attribute type> is the definition of an attribute to be stored within the extended entity data of fea-
tures for the layer. If no attributes are defined, then all feature attributes (except those that start with autocad_)
are stored. The storing of attributes can be turned off by specifying a value of external_attributes for the autocad_
attributes feature attribute on the correlation line. The values for <attribute type> are the same as those for ESRI
Shapefiles.

The example below defines a layer called boundary in which entities are drawn using color 13 (unless otherwise spec-
ified) and a linetype called dash-dot (unless otherwise specified). The feature also has several attributes specified
that will be written to the extended entity data of each feature within the layer.

DWF_DEF boundary \
autocad_color 13 \
autocad_linetype dash-dot \
FEATCODE char(12)\
PPID char(10) \
DATECHNG date \
SURVEYDIST number(8,2)

1Layers can also be defined through the use of a TEMPLATEFILE.

Feature Representation

Special FME feature attributes are used to hold AutoCAD entity attributes. The AutoCAD writer uses these attribute
values as it fills in an entity structure during output. The AutoCAD reader sets these attributes in the FME feature it
creates for each entity it reads.

For more information on general AutoCAD entities and their representations inside FME, please see the documentation
on the AutoCAD DWG/DXF reader and writer.

Autodesk AutoCAD DWG/DXF Reader/Writer

Format Notes: This format contains Autodesk® RealDWG by Autodesk, Inc.1

This chapter contains information related to the AutoCAD DWG/DXF reader/writer and AutoCAD feature types sup-
ported by FME. For 2D AutoCAD DWF information, please refer to the Autodesk AutoCAD DWF Reader/Writer. For 3D
AutoCAD DWF information, please refer to the Autodesk AutoCAD 3D DWF Reader/Writer.

The AutoCAD® Reader/Writer allows FME to read and write files used by Autodesk® AutoCAD and compatible
systems. AutoCAD drawing files consist of drawing settings and configuration, as well as a series of entities, or
graphic elements, organized into layers.

Overview

FME provides broad support for many AutoCAD entity types and options and for reading and writing AutoCAD file
versions up to and including 2010.

When AutoCAD data is output, header information may be copied from a supplied template, or prototype, file.

RealDWG

Support for the AutoCAD files up to version 2010 has also been done with a new format type
identifier labelled REALDWG. This change means that there are some parts of this document
that apply to REALDWG specifically, and may be in duplication of pre-existing information about
the handling of AutoCAD files. One significance of the REALDWG reading and writing of
AutoCAD files is that it complies with AutoDesk AutoCAD TrustedDWG™ reading and writing.

This chapter assumes familiarity with AutoCAD-compatible systems and the entities (features)
that are manipulated within these systems.

Note: Throughout this chapter, the AutoCAD file is referred to as a drawing file rather than a
DWF file.

What is TrustedDWG?

Users can specify whether they would like Autodesk AutoCAD 2007-2010 to notify them when the DWG file they are
opening was saved using an application that was not created by an Autodesk product or RealDWG licensee.

1Copyright © 1998-2006 Autodesk, Inc. All rights reserved.

AutoCAD DWG Quick Facts

Format Type Identifier ACAD

Reader/Writer Both

Dataset Type File

Licensing Level Base

Dependencies None

Feature Type Layer name

Typical File Extensions .dwg, .dxf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute autocad_entity

Enhanced Geometry Yes

Encoding Support Yes

Geometry Support
Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none no

AutoCAD RealDWG Quick Facts

Format Type Identifier REALDWG

Reader/Writer Both

Dataset Type File

Licensing Level Base

Dependencies None

Feature Type Layer name

Typical File Extensions .dwg, .dxf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute autocad_entity

Enhanced Geometry Yes

Encoding Support Yes

Geometry Support
Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none no

Background

There are two formats used by AutoCAD: DXF (drawing exchange format) files, which are large; and ASCII rep-
resentations of the binary DWG (drawing) files. Logically, both files are identical and, therefore, the FME treats both
file types in the samemanner. For AutoCAD DWF reading and writing support please see the chapter on AutoCAD
DWF.

AutoCAD DWG and DXF have been upgraded to take advantage of the FME enhanced geometry model. Advantages
include the storage of linear and bulge arc segments of polylines and hatch loops, the storage of more arcs and

ellipses in more cases without being stroked to lines or polygons, and the reading and writing of 3D geometries. Alto-
gether, the addition of the enhanced geometry model support increases accuracy of geometric representation in Auto-
CAD-to-AutoCAD translations, as well as the creation and interpretation of more accurate features when translating to
or from other FME formats.

AutoCAD files consist of sections, as follows:

1. HEADER: This contains settings of variables associated with the drawing.

2. CLASSES: This contains class definitions associated with the drawing.

3. TABLES: This contains a variety of tables, including:

l Layers: Each layer entry contains layer definition information such as layer color, layer name, and layer line-
type. The AutoCAD reader validates the layer names and may modify them to remove invalid characters.

l Linetypes: Each linetype entry contains the linetype definition information such as name and alignment.
The AutoCAD writer enables linetype definitions to be copied from an existing AutoCAD file, then referenced
by name during the data translation.

l Shape Files: Each shape file entry identifies a shape file referenced by the drawing. Shape files are used by
AutoCAD as a different method for defining symbols or fonts. Note: These are similar to the TextStyles in
AutoCAD.

Note: AutoCAD shape files are not the same thing as ESRI Shapefiles. AutoCAD shape files store symbol
and font definitions.

l Applications: Each application entry contains the name of an application referenced within the AutoCAD
file.

4. BLOCKS: These are used to define symbols and other drawing file objects used repeatedly throughout a draw-
ing. The AutoCAD writer enables copying of block definitions from an existing AutoCAD file, which is then ref-
erenced by name during a data translation operation.

5. ENTITIES: This is the main section of a drawing file and contains the actual feature entities. Each entity con-
tains standard information, such as its color, layer, thickness, linestyle, and geometry, as well as a number of
attributes specific to its entity type. For example, a text entity has fields for font, size, and the text string in
addition to the standard display attributes.

Note: FME supports both 2D and 3D AutoCAD entities. However, many applications only support 2D DWG
and DXF files. The @Force2D function can be used to ensure that only 2D data is written to an output DWG
or DXF file.

6. OBJECTS: This section stores dictionaries and other helper non-entity objects.

Each entity may also have associated attribution stored within an extended entity data section. Extended entity data is
fully supported by the FME.

All coordinates within a drawing file are stored as 64-bit floating point values in world coordinates. As such, there is
no need to scale or otherwise alter coordinates as they are being read from or written to a drawing file.

The AutoCAD reader and writer use symbolic names for the different entity types stored within a drawing file. This
simplifies feature type specification. The following table gives a brief description of each of the different AutoCAD
entity types currently supported by the reader and/or writer. The entities are described in detail in subsequent sec-
tions.

AutoCAD Entity Types and Descriptions

FME autocad_entity Description

autocad_line Linear features stored within drawing file as a
line or unclosed polyline.

autocad_point Point features.

autocad_xline Linear features of type xline.

autocad_ellipse Features with an elliptical or circular rep-
resentation.

autocad_shape Features whose representation is stored in an
AutoCAD shape file.

autocad_polygon Features whose geometry is represented by a
closed polyline.

autocad_face Features represented by a 3D face object. The
face object may have 3 or 4 coordinates.

autocad_arc Features whose geometry represents a portion
of a circular arc.

autocad_trace Features with a 4 coordinate trace geometry.

autocad_solid Features with a 3 or 4 coordinate solid geome-
try.

autocad_ray Features with a linear geometry which rep-
resents a ray.

autocad_text Text features.

autocad_spline Spline features.

autocad_multi_text Text features that store multiple lines of text.
R14 and later only.

autocad_multi_line A linear feature that is represented by more two
or more parallel lines.
Note: R14 and later only. This is supported only
by the Reader.

autocad_insert Point features that represent the location of a
block reference entity.

autocad_leader AutoCAD Leader entity representing leader lines
in drawings.

autocad_hatch Features with 2D boundary loops which form
polygons and donuts, and which may be filled
with line patterns or color gradients.

FME autocad_entity Description

autocad_mpolygon Features with 2D polyline loops which form poly-
gons and donuts and which may be filled with
line patterns or color gradients.

autocad_surface Features with connected and unconnected, pla-
nar and non-planar 3D areas, that may rep-
resent meshes or the boundary representations
of 3D solids.

autocad_solid3d Features with connected and unconnected, 3D
geometries that may be 3D solids or their closed
boundary representations.

autocad_attr_def Features without geometry that contain infor-
mation about AutoCAD attribute definition. Main
information on features would be the Tag,
Prompt and Default value for that attribute def-
inition.

Reader Overview

The AutoCAD reader first reads the header and table information from the drawing file being processed, and caches
information on blocks, shape files, layers, linetypes, and applications. These cached values are referenced by entities
throughout the file and are needed when processing the entities.

The reader then extracts entities, one at a time, from the entity section of the drawing file and passes them on to the
rest of the FME for processing. Complex entities such as polylines and inserts are extracted as single FME features. If
the entity has attribution stored as extended entity data, then this is also read and placed in the feature.

When the AutoCAD reader encounters an entity type it does not know how to process, it simply sets the entity type of
the feature and returns it. This feature is then logged by the FME correlation subsystem and the reader moves on to
the next entity.

ESRI Product Coordinate System Information

To specify the FME coordinate system, the FME AutoCAD reader can recognize a coordinate system associated with
AutoCAD data by ESRI products.

The AutoCAD reader will first look for the following files in the source directory:

l <filename>.prj

l esri_cad.prj

If neither of these files is present, the AutoCAD reader will try to find an ESRI_PRJ entry embedded in the file.

(This is not applicable to the RealDWG reader.)

Reader Directives

This section describes the directives that are recognized by the AutoCAD reader. Each directive is prefixed by the cur-
rent <ReaderKeyword>_ when placed in a mapping file.

DATASET

Required/Optional: Required

The dataset from which feature data is to be read.

Workbench Parameter: Source Autodesk AutoCAD DWG/DXF File(s)

STORE_BULGE_INFO (only applicable with classic geometry)

Required/Optional: Optional

When specified, the AutoCAD Reader doesn’t vectorize the Polyline and LWP Line Bulges but rather just stores the
coefficients in the attribute autocad_bulge. In addition, when specified, this directive allows the creation of auto-
cad_start_width and autocad_end_width attributes to represent the width properties of Polyline and LWP entities.
This is generally set to Yes only when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

SPLIT_BULGE_ARCS (only applicable with classic geometry)

Required/Optional: Optional

When specified, the AutoCAD Reader doesn’t vectorize the polylines but rather returns one feature for each arc that
has a bulge in it as an autocad_arc feature.

When features are read using enhanced geometry this directive will be ignored. To split enhanced geometry paths
use the PathSplitter transformer.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

STORE_SPLINE_DEFS

Required/Optional: Optional

When specified, the AutoCAD Reader, in addition to vectorizing the splines, stores the spline coefficients as attrib-
utes. See the description of Spline below for the attribute names used to store the spline definition. This is generally
set to Yes when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Store Spline Definitions

RESOLVE_BLOCKS

Required/Optional: Optional

Specifies whether the reader will resolve (or explode) the block entities when processing inserts, or if it should just
treat inserts as a point feature. This is generally set to No when performing AutoCAD-to-AutoCAD translations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. The original insert is not output. This results in the full graphical representation of the block transferred
through FME. The exact insertion point of the block is lost unless the STORE_INSERT_POINT directive is also used.

Each block member feature is given the attribute autocad_block_number which is set to the same value for each
block so that the features comprising each block may be combined in subsequent processing. Arbitrarily deep block
nesting is permitted, however, the autocad_block_number attribute is only updated for each block at the outermost
level. The layer of the block members is determined by the USE_BLOCK_HEADER_LAYER directive.

If the block contains “Attribute” then each instance of “Attribute” in the block entity will be returned as “Text” entity
along with a non-spatial feature containing information about that “Attribute” definition and its value for that block.

If the exact insertion point of the block is desired, then block resolution should be turned off and the insert entities for
each block should be translated into point features in the output system. Alternatively, the STORE_INSERT_POINT
directive may be specified to keep the insert point on the attributes of block member features.

Values: YES | NO

Default value: YES

Workbench Parameter: Expand Blocks into Entities

DO_NOT_RESOLVE_BLOCKS

Required/Optional: Optional

This directive is an exception list of the blocks that are not to be resolved, and is processed only when RESOLVE_
BLOCKS is specified. This is a space delimited list of the block names.

Values: space-delimited list of block names

Default value: empty list

Workbench Parameter: Not applicable

STORE_INSERT_POINT

Required/Optional: Optional

Specifies whether the reader should add the insert point location as attributes to the block component entities when
resolving (or exploding) inserts entities. This is generally set to No when performing AutoCAD-to-AutoCAD trans-
lations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. The original insert is not output, but this directive allows the insert location to still be represented.

This results in each block member feature having the following attributes: autocad_block_insert_[xyz].

Values: YES | NO

Default value: NO

Workbench Parameter: Expand Blocks into Entities

USE_BLOCK_HEADER_LAYER

Required/Optional: Optional

Specifies how the reader should set the layer of the block component entities when resolving (or exploding) inserts
entities.

This directive applies only if RESOLVE_BLOCKS is set to Yes. It is generally set to No when performing AutoCAD-to-
AutoCAD translations.

When the reader resolves blocks, it outputs a feature for each of the AutoCAD entities that are part of the block def-
inition. When set to Yes, this directive indicates that all block members will be on the same layer as that of the original
block. Otherwise, the block members will appear on their respective layers.

Values: YES | NO

Default value: YES

Workbench Parameter: Use Block Header Layer for Components

RESOLVE_DIMENSIONS

Required/Optional: Optional

Specifies whether or not to resolve (explode) dimensions into their individual pieces. If the value is yes, then each
piece of the dimension will be output as a separate feature. If the value is no, then an aggregate, containing all the
pieces of the original dimension, will be output. This is generally set to No when performing AutoCAD-to-AutoCAD
translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Resolve Dimensions

PRESERVE_INSERTS

Required/Optional: Optional

If the value for RESOLVE_BLOCKS is yes, and this directive is also yes, then block insert points are output as
point features.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

CONVERT_ZERO_LENGTH_ARCS_TO_POINTS

Required/Optional: Optional

Specifies whether a zero length arc should be converted into a point feature (i.e., autocad_point). If the feature
becomes a point, it will still retain all the attributes it had while it was an arc. This is generally set to no only when
performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Convert Zero Length Arcs to Points

OUTPUT_BLOCKS_AT_START

Required/Optional: Optional

Specifies that the reader will output all the block definitions at the beginning of the translation before any other fea-
tures are output. After the blocks are output, the rest of the translation is run without the blocks being resolved.
When specified, this value overrides the value specified by RESOLVE_BLOCKS.

When set, all features that are part of a block definition have the attribute autocad_block_definition, with the value of the
attribute being the name of the block which they are a component.

Values: YES | NO

Default value: NO

Workbench Parameter: Output Blocks at Start

IGNORE_FROZEN_LAYERS

Required/Optional: Optional

Specifies whether the reader will ignore all features on the frozen layers. If set to yes, then features located on the
frozen layers are not read from the input data set. If set to no, then the features are read from the frozen layer.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

IGNORE_LOCKED_LAYERS

Required/Optional: Optional

Specifies whether the reader will ignore all features on the locked layers. If set to yes, then features located on the
locked layers are not read from the input data set. If set to no, then the features are read from the locked layer.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

IGNORE_HIDDEN_LAYERS

Required/Optional: Optional

Specifies whether the reader will ignore all features on the hidden layers. If set to yes, then features located on the
hidden layers are not read from the input dataset. If set to no, then the features are read from the hidden layer. If this
option is specified at the time of workspace or mapping file generation, and the schemamode is by layer, then no
schema information from hidden layers will be used to generate the workspace or mapping file. This is generally set
to No when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: <WorkbenchParameter>

VISIBLE_ ATTRIBUTES_AS_TEXT

Required/Optional: Optional

Specifies whether the reader should return visible attributes as separate text features or whether they should be
returned as attributes of an insert feature. When this is yes, then each visible attribute is returned as a single text
feature. This is generally set to No when performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Read Visible Attributes as Text Entities

EXTENDED_ENTITY_FORMAT

Required/Optional: Optional

Instructs the FME to use the specified manner when decoding the extended entity data. This directive disables the
automatic parsing.

Values: ALTERNATE_NAME_VALUE | CSV(<SEPARATOR>)

where <SEPARATOR> specifies the character used to delimit the attribute name from the attribute value.

When ALTERNATE_NAME_VALUE is specified, then it is assumed that the values stored with each feature in the
extended entity portion of the feature alternate between specifying the attribute name and attribute value.

When CSV(<SEPARATOR>) is specified, then an attribute name value pair is specified in each extended entity
value. The values are separated by <SEPARATOR>.

Workbench Parameter: <WorkbenchParameter>

READ_PAPER_SPACE

Required/Optional: Optional

Instructs the FME to also read the entities from paper space. By default, the FME only reads the entities frommodel
space.

Values: YES | NO

Default value: NO

Workbench Parameter: Read Paper Space

READ_GROUPS

Required/Optional: Optional

Determines whether or not AutoCAD groups will be read. By default, FME will not read groups.

Values: YES | NO

Default value: NO

Workbench Parameter: Read Groups

IGNORE_UCS

Required/Optional: Optional

Instructs the FME to ignore the user defined coordinate system of the file being read. By default, the FME applies the
UCS when reading the coordinate data.This is generally set to Yes only when performing AutoCAD-to-AutoCAD trans-
lations.

Values: YES | NO

Default value: NO

Workbench Parameter: Ignore UCS

USE_DXF_HEADER

Required/Optional: Optional

When reading DXF files this instructs the FME Reader to use the specified dxf header file as the header for the file
being read. This option is used to handle the case where organizations produce headerless dxf files to save storage
space.

Values: <DXF_HEADER_FILE>

where <DXF_HEADER_FILE> specifies the full pathname to the dxf header file. If this is specified when reading a
DWG file, then the translation is terminated with an error.

Workbench Parameter: Use DXF Header

SKIP_TO_SECTION

Required/Optional: Optional

When USE_DXF_HEADERS is specified above, this specifies how much of headerless file is to be skipped. In some
cases, the headerless file has a placeholder which has to be removed before concatenating the above header file to
the dataset. If not specified, then no lines are skipped.

Values: one of the AutoCAD SECTIONs as specified in AutoCAD files

PRESERVE_COMPLEX_HATCHES

Specifies whether or not to read hatches and mpolygons in a way that preserves their complex properties.

Required/Optional

Optional

Values:

YES | NO (default)

If the value is NO, then the loops of each hatch or mpolygon entity will be converted to areas and aggregated
together. If the value is YES, then the loops will be aggregated together as polygons, ordered such that any enclos-
ing loop will be aggregates before any enclosed loop.

This is generally set to YES when performing AutoCAD-to-AutoCAD translations.

Workbench Parameter

Preserve Complex Hatches and MPolygons

READ_AS_2_5D

Required/Optional: Optional

Determines whether polylines should have their elevation attribute treated as a Z coordinate; when this occurs the
autocad_elevation attribute will not be present. Applies to light-weight polylines and 2D polylines.

Note that this option should not be set when doing AutoCAD-to-AutoCAD translations as the elevations converted to Z
coordinates when read in will not be converted back to elevation attributes when written out.

Values: YES | NO

Default value: NO

Workbench Parameter: Read Polylines as 2.5D

RESOLVE_ENTITY_COLOR

Required/Optional: Optional

Specifies whether or not to resolve the color of the entity to the color of the layer for that entity or block of that entity.
This resolution only affects entity’s who already have a color that is set to COLOR_BYLAYER which is indicated by a
color of ByLayer (index 256), or COLOR_BYBLOCK which is indicated by a color of ByBlock (index 0).

If the value of this directive is yes, and the entity has a color of COLOR_BYLAYER, then the auto-
cad_original_color attribute is set to ByLayer, and the autocad_color attribute is set to the color
index for the layer that the entity is on.

Similarly, If the value of this directive is yes, and the entity has a color of COLOR_BYBLOCK, then the
autocad_original_color attribute is set to ByBlock, and the autocad_color attribute is set to the color
index for the block that the entity is in.

If the value of this directive is no, then both the autocad_color attribute and the autocad_original
color attribute will remain unresolved as a value of ByLayer or ByBlock. This is generally set to No when
performing AutoCAD-to-AutoCAD translations.

Values: YES | NO

Default value: YES

Workbench Parameter: Resolve Entity Color

APPLY_WORLD_FILE

Required/Optional: Optional

Use this directive when you have an ESRI World file (*.wld) that you want FME to use when determining the coor-
dinates for features in your dataset. When this directive has a value of YES FME will search the directory of the data-
set for a file with the same name as your dataset but with a .wld extension. If it cannot find a file with that name it will
then look for the file “esri_cad.wld” within the dataset directory. If either of those files exist then FME will use the
information in the files to translate the coordinates of the features in the dataset to their new geospatial coordinates.
If the files cannot be found then the translation will continue, using the coordinate information found in the dataset,
without performing any additional transformation.

Values: YES | NO

Default Value: NO

Default Workbench Value: YES

Workbench Parameter: Apply World File

EXPLODE_MTEXT

Required/Optional: Optional

Specifies whether the reader will explode the mtext entities into separate text entites. When exploding, the resulting
text features represent fragments of text with the samemtext properties such as style and location. When not explod-
ing, the mtext entity will be read as a single text feature. This is generally set to No when performing AutoCAD-to-
AutoCAD translations.

Values: YES | NO

Default value: NO

Workbench Parameter: Explode MText

STORE_LAYER_INFO (This is not applicable to the RealDWG reader)

Required/Optional: Optional

When specified, the AutoCAD Reader will add additional attributes describing the layer properties for the layer of each
feature. These include autocad_layer_linetype, autocad_layer_color, and autocad_layer_
lineweight.

Values: YES | NO

Default value: NO

Workbench Parameter: Store Layer Properties on Features

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Tips for AutoCAD Reading
Tip: The AutoCAD reader automatically determines whether the file is DWG or DXF and proc-
esses it accordingly. Therefore, the same mapping file can be used to read either DXF or
DWG.

Note that the AutoCAD reader directives list defaults that will produce the best generic result to any non-AutoCAD des-
tination format, resulting in the best presentation at the cost of some of the original AutoCAD types being lost. For
example, blocks and dimensions will be resolved into their component parts. If an AutoCAD-to-AutoCAD translation is
desired, the following set of options should be used for best preservation of the original drawing.

STORE_BULGE_INFO = YES
STORE_SPLINE_DEFS = YES
RESOLVE_BLOCKS = NO
RESOLVE_DIMENSIONS = NO
VISIBLE_ATTRIBUTES_AS_TEXT = NO
IGNORE_UCS = YES
PRESERVE_COMPLEX_HATCHES = YES
IGNORE_HIDDEN_LAYERS = NO
RESOLVE_ENTIY_COLOR = NO

These are also noted on each individual directive description.

Writer Overview

The AutoCAD writer provides the following capabilities when writing AutoCAD files.

l User-defined Linetypes: New linetypes can be defined on FME mapping file lines. These linetypes can then be
referenced by features being written to the AutoCAD file.

l User-defined Layers: Users must define the layers into which features are stored. The layers can also define the
attributes to be stored within the feature.

l Copy Block Definitions: Often users have existing AutoCAD drawing files that contain block definitions they
want the translated data to carry. Specifying the TEMPLATEFILE keyword in the mapping file results in block
definitions being copied from the existing file to the output DWG/DXF file. These blocks can then be referred to by
insert entities.

l Copy Linetypes: Predefined linetypes within existing DWG/DXF files are copied making them available for use by
features being written to the destination file. Specifying the TEMPLATEFILE keyword in the mapping file results in
the predefined linetypes being copied from the template file to the output drawing file. Feature entities can then
refer to these linetype definitions.

l Copy Layer Definitions: Layer definitions within an existing DWG/DXF file identified by TEMPLATEFILE ena-
ble layer definitions to be copied to the destination data set and then referenced.

l Copy Shape Header Definitions: Shape header definitions are also copied from the file specified by the TEM-
PLATEFILE directive.

l Automatic Block Creation:When a feature is passed to the writer that cannot be written as a single AutoCAD
entity, such as a donut polygon, the writer automatically defines an AutoCAD block and inserts entities necessary
to represent the feature. If a block is already defined with that name, either through previous block creation or
through existence in the template file, then the existing block definition will be used and the multi-part feature will
be added at an insert point calculated from the feature geometry. If the autocad_block_insert_[xyz] attributes are
specified, they will be used to specify an insert point for the new block reference.

l Flexible Attribute Support: Attribute information is, by default, written to extended entity data for each feature
written to the data set. This can be overridden, however, through the use of the autocad_attributes attribute being
set as shown in the following table.

l Multi-version Support: Currently the AutoCAD DWG/DXF writer supports files that are compatible with any cur-
rent AutoCAD release.

autocad_attributes value Description

extended_entity_data This results in the attribution being
written to the extended entity for the fea-
ture.

insert_attributes This results in the writer creating an
insert entity for each feature and storing
all attributes with the insert entity. The
insert entity refers to a block that con-
tains the geometry of the output feature.

external_attributes This is the default value. There are no
attributes written to the AutoCAD file.
This is useful if the attributes are being
stored in an external database or if attrib-
ute information is not wanted.

When creating AutoCAD files, the AutoCAD writer first defines the linetypes and layers defined within the FME map-
ping file. The writer then reads in a template file, if specified, and copies the linetypes, layer definitions, shape file
header information, and block information from the template file to the output dataset.

The AutoCAD writer then outputs each feature it is given to the output file in the appropriate entity type.

When writing an AutoCAD file, the format of file output is determined as follows:

l If the file name contains .dwg or .DWG, then the output data set is written in the ACAD format.

l Otherwise, if the file name contains .dxf or .DXF, then the output data set is written in DXF format.

l Otherwise, if an error exists in the mapping file, the translation is halted.

The AutoCAD writer uses the above rules to enable the same FME mapping file to be used to create both DXF and DWG
output files. Users are able to specify their choice simply by changing the suffix of the output file being produced.

Writer Directives

This section describes the directives the AutoCAD writer module recognizes. Each of the directives is prefixed by the
current <WriterKeyword>_ when they are placed in a mapping file. By default, the <WriterKeyword> for the
AutoCAD writer is the same as the <WriterType>.The following directives are used by all AutoCAD.

DATASET

Required/Optional: Required

The dataset into which feature data is to be written.

Workbench Parameter: Destination Autodesk AutoCAD DWG/DXF File

VERSION

Required/Optional: Required

The version of AutoCAD file to be produced. The value corresponds with the release number of the AutoCAD file that is
produced.

Values:

l same_as_template (not applicable to RealDWG) This option takes the version from the template file.

l Release9 and Release10 (Support for these versions has been deprecated)

l Release12 (not applicable to RealDWG)

l Release13 (not applicable to RealDWG)

l Release14

l Release2000

l Release2004

l Release2007

l Release2010

Default value: Release2007

Workbench Parameter: AutoCAD Version

Example:

The example statement below instructs the AutoCAD writer to produce a release 12 AutoCAD file:

ACAD_VERSION Release12

TEMPLATEFILE

Required/Optional: Optional

This statement specifies the name of the existing AutoCAD DXF or DWG file that contains linetype, layer, shape
header, block definitions and a codepage to be copied to the destination AutoCAD file. Some AutoCAD users also refer
to this as a prototype file. This is an optional parameter. If the parameter is not defined, then the output file uses the
linetype defined in the mapping file along with the predefined type of CONTINUOUS which is always present in an
AutoCAD drawing.

Tip:
- LINETYPE definitions found in the mapping file override any linetype definitions found in the
template file.
- The template file can also be used to set the codepage of the resulting AutoCAD file.

The example below specifies that the file called c:\tmp\test.dwg contains the block, layer, shape header definitions,
and linetype definitions for the output data set.

ACAD_TEMPLATEFILE c:/tmp/test.dwg

Tip: Many AutoCAD users refer to the template files as prototype files.

Workbench Parameter: Template File

AUTO_CREATE_LAYERS

Required/Optional: Optional

This statement tells the writer to create layers as needed. Normally, all layers must either be defined by _DEF lines
or by the template file before they can be used. If AUTO_CREATE_LAYERS is specified as YES, then when a fea-
ture is sent to the writer with a feature type that has not previously been defined as a layer, a new layer will be
created with the properties of the last _DEF line found in the mapping file.

This example sets the writer into a mode where it creates layers as needed. Each created layer has a color of 10 and a
linetype of CONTINUOUS.

ACAD_AUTO_CREATE_LAYERS yes
ACAD_DEF DEFAULT \
autocad_color 10 \
autocad_linetype CONTINUOUS

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

OUTPUT_DEFINED_ATTRS_ONLY

Required/Optional: Optional

When this directive is set to yes, then only those attributes defined as part of the layer definition will be stored (see
the DEF directive for more details).

Values: YES | NO

Default value: YES

Workbench Parameter: Output Defined Attributes Only

USE_ATTRDEFS_FOR_INSERTS

Specifies whether the writer should use the attribute definitions that are found within blocks when placing inserts. If
no, then all the attributes on a feature that is passed to the writer are written as insert attributes. If yes, then only
the attributes defined within the block being placed are stored as insert attributes.

Values: YES | NO

Default value: YES

Workbench Parameter: <WorkbenchParameter>

STRIP_HEADER_TO_SECTION

Required/Optional: Optional

This directive is only valid when going out to DXF and tells the FME to remove the header up to the start of the spec-
ified SECTION. The name of the SECTION can be any valid autocad section. If not specified then the file is output as
before.

NEW_HEADER_CONTENT_FILE

Required/Optional: Optional

DEPRECATED. Please use the TEMPLATEFILEdirective instead.

This directive is only valid with the STRIP_HEADER_TO_SECTION directive above and is the name of the file that
contains the new header information. The contents of this file are placed at the start of the output file replacing the
contents removed by STRIP_HEADER_TO_SECTION.

DEFAULT_ATTR_STORAGE

Required/Optional: Optional

This directive specifies the default manner in which attribute data will be stored. If not specified, then the default
value is extended_entity_data. This directive changes the default value for the autocad_attributes
feature based directive. If all attributes are to be stored in a single manner, then this directive is the easiest manner
in which to do this.

Values:

l extended_entity_data instructs the writer to store all attribution in extended entity data as the default

l insert_attributes instructs the writer to store all attribution using inserts

l external_attributes instructs the writer to not store any attribution in the AutoCAD file

Workbench Parameter: Attribute Output

SUPPRESS_FONT_WARNINGS

Required/Optional: Optional

Specifies whether to suppress warnings about unknown font metrics being encountered.

Values: YES | NO

Default value: NO

Workbench Parameter: <WorkbenchParameter>

FONT_DIRECTORY

Required/Optional: Optional

Specifies the directory in which all specified fonts are located. When specified, FME can calculate the font metrics,
enabling it to place fonts more accurately. If not specified, then FME assumes that the full path is specified on the cor-
relation lines via the attribute autocad_shape_filename. If this attribute is not set or it is not the full path of
the font file, then FME will use the default font file called default.shx.

Values:

Workbench Parameter: <WorkbenchParameter>

SHAPE_DIRECTORY

Required/Optional: Optional

Specifies the directory in which to look for shapes files(*.shp) from which information about SHAPE entities will be
extracted for writing.

Values: <shape file directory path>

Workbench Parameter: AutoCAD Shape File Directory

DEFAULT_APPLICATION

Required/Optional: Optional

The application name that is used when writing extended entity data.

Default values: ACAD

Workbench Parameter: Default Application Name

LINETYPE

Required/Optional: Optional

The AutoCAD writer enables linetypes to be defined within the FME mapping file. This enables the user to control how
output lines are to look in the destination data set. The linetype definition is of the following form:

<WriterKeyword>_LINETYPE <linetype name> \
autocad_textpict <picture> \
[autocad_patternLength <pattern Length> \
<segment values>+ \
]

where:

l <linetype name> is the name used throughout the mapping file to refer to the linetype being defined by this
statement.

l <picture> is the text or name displayed in AutoCAD when linetypes are displayed.

l <pattern Length> is the length of a single instance of the line.

l <segment values> are the length of each of the segments within the linetype segment. The segment values
obey the following rules:

l negative value – pen up length (used to create spaces of varying lengths)

l positive value – pen down length (used to make dashes of varying lengths)

l zero – used to create a dot

The following example creates a linetype called dash-dot that appears as
“ __ . __ . __ . ” and so on when displayed on the screen.

ACAD_LINETYPE dash-dot \
autocad_textpict DASHDOT \
autocad_patternLength 1.0 \
0.5 -0.25 0 -0.25

CREATED_BLOCK_NAME_PREFIX

Required/Optional: Optional

The names of blocks created by the writer during automatic block creation will use the value of this keyword as a pre-
fix if specified. If not specified the syntax will be:

<filename>_<writerkeyword>_FME_BLOCK_<blocknumber>

Workbench Parameter: Created Block Name Prefix

DEF

Required/Optional: Optional

The AutoCAD writer requires that every feature written to the AutoCAD file be stored within a predefined AutoCAD
layer. In AutoCAD, the layers are used to store collections of logically related attributes. Within the FME, the AutoCAD
layer and the type of the feature are treated synonymously as there is a one-to-one correspondence between FME fea-
ture type and AutoCAD layer.1The order of properties in the layer statement is required as shown, though additional
attribute name and type pairs may be in any order. The layer statement is of the following form:

<WriterKeyword>_DEF <layer name> \
autocad_color <default color> \
autocad_linetype <default linetype> \
[autocad_layer_type frozen] \
[<attribute name> <attribute type>]

where:

l <layer name> is the name of the layer being defined. This is the name which is used throughout the remainder of
the FME mapping files. Layer name cannot be empty. If no layer name is specified, then FME will provide a fixed
name “_FME_NO_LAYER_NAME_” for such layers.

l <default color> is the color number used for all features stored within the layer unless explicitly overridden on the
correlation lines below. Valid values are between 1 and 255.

l <default linetype> is the name of the linetype to use for the layer if no linetype is specified on the correlation line.
The linetype specified must either be:

l defined in the mapping file,

l copied from a specified template file, or

l the predefined linetype named CONTINUOUS.

l <autocad_layer_type> is the type of layer to create. Currently, only the value frozen is supported. If specified,
then the created layer is frozen; otherwise, the layer is not frozen.

l <attribute name> <attribute type> is the definition of an attribute to be stored within the extended entity data of
features for the layer. If no attributes are defined, then all feature attributes (except those that start with auto-
cad_) are stored. The storing of attributes can be turned off by specifying a value of external_attributes for the
autocad_attributes feature attribute on the correlation line. The values for <attribute type> are the same as those
for ESRI Shapefiles.

The example below defines a layer called boundary in which entities are drawn using color 13 (unless otherwise spec-
ified) and a linetype called dash-dot (unless otherwise specified). The feature also has several attributes specified
that will be written to the extended entity data of each feature within the layer.

ACAD_DEF boundary \
autocad_color 13 \
autocad_linetype dash-dot \
FEATCODE char(12) \
PPID char(10) \
DATECHNG date \
SURVEYDIST number(8,2)

AUDIT_AND_FIX (not supported in RealDWG writer)

Required/Optional: Optional

This directive can be used to turn on/off internal auditing before the final drawing file is written out. By default it is
set to YES, so auditing will be performed and any errors found will be fixed. It is recommended that you leave the
auditing set to YES. If you set it to NO, it is possible that the output file may not be as per the AutoCAD file spec-
ification. As an example of how auditing fixes errors is that if there is a layer name with a space or any other invalid
characters, then that layer name will be changed to something like $DDT_AUDIT_GENERATED_(3B). If auditing

1Layers can also be defined through the use of a TEMPLATEFILE.

is turned off, then the layer name will not be changed and when it is audited in AutoCAD, it will return errors such as
invalid layer names.

Values: YES | NO

Default value: YES

Workbench Parameter: Audit and Fix Errors

COORDINATE_SYSTEM_STORAGE (not applicable to RealDWG writer)

Required/Optional: Optional

This directive controls whether the writer will optionally store the coordinate system of its features. The coordinate
system can be stored inside the output AutoCAD file as an ESRI Well Known Text (in an ESRI_PRJ entry in an internal
dictionary in the file), according to ESRI specifications. It can also be stored externally in a companion ESRI .prj file
that shares the output AutoCAD file's base name, but has a .prj extension.

Values: NONE | EXTERNAL_PRJ | EXTERNAL_AND_INTERNAL | INTERNAL_WKT

Default: NONE, which means projection information is not stored anywhere.

AutoCAD data files written this way with projection information will be recognized by FME and the free ArcGIS for Auto-
CAD application, which installs on top of the AutoCAD application.

Workbench Parameter: Coordinate System Storage

Example:

ACAD_COORDINATE_SYSTEM_STORAGE EXTERNAL_PRJ

APPEND_TO_TEMPLATEFILE

Required/Optional: Optional

This directive can be used to allow the file specified by the DATASET directive to be written as the concatenation of
the full contents of the file specified by the TEMPLATEFILE directive with all written data. By default it is set to NO, so
only header information but no data is used from the template file if one is specified. If this directive is set to YES
then the full header and data information is used from the template file.

Values: YES | NO

Default value: NO

Workbench Parameter: Append Data to Template File

USE_BLOCK_NAME_FOR_CREATION

Required/Optional: Optional

The names of blocks created by the writer during automatic block creation will use the value of the autocad_block_
name attribute if the attribute is present and this directive is specified.

If a template file is used during writing, the block name will be used to try to match an existing block definition in the
template file. This is similar to the behavior for insert entity writing. This directive does not affect the use of the block
name for insert entity writing.

If the intention is that only insert entities should be used to try to match block names with block definitions, set this
directive to NO.

If not specified, the syntax may be the following, but may also be modified by the usage of theCREATED_BLOCK_
NAME_PREFIX directive:

<filename>_<writerkeyword>_FME_BLOCK_<blocknumber>

Values: YES | NO

Default Value: NO

Workbench Parameter: Use the block name to create blocks

Feature Representation

Special FME feature attributes are used to hold AutoCAD entity attributes. The AutoCAD writer uses these attribute
values as it fills in an entity structure during output. The AutoCAD reader sets these attributes in the FME feature it
creates for each entity it reads.

The FME considers the AutoCAD layer1 to be the FME feature type of an AutoCAD feature. Each AutoCAD entity, regard-
less of its entity type, shares a number of other attributes, as described in the following table. Subsequent sections
describe attributes specific to each of the supported entity types.

Attribute Name Content

autocad_layer The name of the feature’s layer. This is the same
value as the feature’s type and is stored when read-
ing for reasons of convenience. This value is
ignored when entities are being written to a draw-
ing file.
Value: char(33)
Default: No default

autocad_layer_color

(not used in RealDWG)

This is the color value for the layer of the entity.
See autocad_color for more information. This is
only set when the STORE_LAYER_INFO reader direc-
tive is set to yes.
Range: 0...256
Default: 256

autocad_layer_linetype

(not used in RealDWG)

This is the linetype value for the layer of the entity.
See autocad_linetype for more information. This is
only set when the STORE_LAYER_INFO reader direc-
tive is set to yes.
Range: char[33]
Default: BYLAYER

autocad_layer_lineweight

(not used in RealDWG)

This is the lineweight value for the layer of the
entity. See autocad_lineweight for more infor-
mation. This is only set when the STORE_LAYER_
INFO reader directive is set to yes.
Range: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50,
53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200,
211, -1 (by layer), -2 (by block), -3 (default)
Default: -3 (Default)

autocad_layer_type

(not used in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a frozen

1The feature layer name corresponds to be the feature type and autocad_layer when reading. This enables the layer
name to be extracted without the need to use the@FeatureType function.

Attribute Name Content

layer.
Range: frozen | not_frozen

autocad_layer_frozen

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a frozen
layer.
Range: yes | no
Default: no

autocad_layer_locked

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a locked
layer.
Range: yes | no
Default: no

autocad_layer_hidden

(only in RealDWG)

This is used by the Reader only and indicates
whether or not the feature comes from a hidden
layer.
Range: yes | no
Default: yes

autocad_color The color number of the entity. If the value is 0,
then the color of the entity is that of the enclosing
block; if the value is 256, then the color of the
entity is that specified by the entity’s layer; other-
wise, the number specified determines the color of
the entity. If autocad_color is not specified, then the
value will be set from fme_color. If fme_color is also
not specified, then it will be set to COLOR_BYLAYER.
Range: 0...256
Default: 256

autocad_original_color The color of the entity before it may be resolved to
a specific color index. If the value is COLOR_
BYBLOCK (index 0) or COLOR_BYLAYER (index
256), then the value of this attribute is ByBlock or
ByLayer respectively. Otherwise, the number spec-
ified determines the color of the entity, like the
value of autocad_color. See autocad_color for more infor-
mation.
Range: 0...256
Default: 256

autocad_true_color The true color Red Green Blue (RGB) values of the entity. This
attribute is conditionally set on read in addition to the autocad_
color attribute. This attribute is used in preference to the auto-
cad_color attribute on write to set the color of an entity. If not
present, see the autocad_color attribute.

Attribute Name Content

Range: 0...255,0...255,0...255

Default: No default

autocad_entity_
handle

The hexadecimal unique identifier for the entity.
This value is unique within each AutoCAD file.
Range:Hexadecimal identifier.
Default: No default

autocad_entity_visibility This is used by the Reader only and indicates
whether or not the feature is visible.
Range: visible | invisible.

autocad_linetype The name of the feature’s linetype. This can be a
specific linetype value or it may be set to BYLAYER,
indicating that the linetype will be set to the line-
type value of the layer. See autocad_resolved_
linetype for more information.
Range: char[33]
Default: BYLAYER

autocad_linetype_scale The amount to scale the feature’s linetype by for
viewing in AutoCAD. Failure to set appropriate
values for linetype may result in viewing errors
such as dashed lines appearing solid.
Range: 64 bit Real
Default: 1.0

autocad_lineweight The lineweight of the AutoCAD entity in 100ths of a
millimeter. To set a lineweight of 0.05 mm in Auto-
CAD, set the attribute value to 5.
Range: 0, 5, 9, 13, 15, 18, 20, 25, 30, 35, 40, 50,
53, 60, 70, 80, 90, 100, 106, 120, 140, 158, 200,
211, -1 (by layer), -2 (by block), -3 (default)
Default: -3 (Default)

autocad_resolved_
linetype

This is used to store actual linetype value used for
a feature. It will be the specific linetype value of
the feature, or if the autocad_linetype has the
value of BYLAYER, then this value will be the line-
type of the layer.
Range: char[33]

autocad_thickness The thickness of the entity’s lines.
Range: 64 bit Real
Default: 0

autocad_entity The FME name for the type of entity this feature rep-
resents.

Attribute Name Content

Range: See AutoCAD Entity Types and Descriptions
Default: No default

autocad_original_entity This attribute indicates that the entity is part of a
block reference entity that has been resolved into
its components. In general, if this attribute exists,
its value will be insert.
Range: See AutoCAD Entity Types and Descriptions
Default: insert

autocad_original_entity_type The FME name for the original type of entity this
feature represents. For example, if the autocad_
entity attribute is autocad_line, this attribute will
indicate what type of line, i.e. line, 2dpolyline, lwpo-
lyline or 3dpolyline.
Range: See AutoCAD Entity Types and Descriptions
Default: The value of the autocad_entity attribute

autocad_original_position_x This indicates the original location in the x dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real

Default: No default

autocad_original_position_y This indicates the original location in the y dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real

Default: No default

autocad_original_position_z This indicates the original location in the z dimension for the
first point of this entity. This attribute is set when the entity loca-
tion is changed, such as for a component of a block reference
when block references are resolved, and a block offset is
applied.

Range: 64 bit Real

Default: No default

autocad_space This is used by the Reader only and indicates if the
entity being read came from paper space or model
space.
Range:model_space | paper_space
Default: No default

autocad_attributes Used by the writer module only. This directs the

Attribute Name Content

writer on how the attributes for the feature are to
be stored. If this attribute is not specified or is spec-
ified as extended_ entity_data then the attribution
associated with the feature is written to the
extended entity portion. If the value is insert_attrib-
utes, insert entities are created for the attributes.
If the value is external_attributes then the attri-
bution is not written to extended entity data.
Range: extended_entity_data | insert_attributes |
external_attributes
Default: external_attributes

Extended Entity Data

Each entity in an AutoCAD file may have associated extended entity data. This data is typically used by applications to
store attribute information. The AutoCAD reader attempts to make extended entity data as simple to use as possible
by storing it in three different formats within the FME feature object. The first two formats merely store the data as
found in the drawing file in the feature, while the third format attempts to present the attribute information in a more
useful manner. It is important to remember that when extended entity data is read from an AutoCAD file, all three for-
mats are stored within a single FME feature. The format that is actually used (if any) is dependent on the con-
figuration of the remainder of the FME mapping file.

The AutoCAD writer understands both the list format, and the interpreted format, creating extended entity data from
attribute data in the list format form, if they are present. In the absence data in the list format form, the writer will
create extended entity data from attribute data in the interpreted format, when autocad_attributes is set to extended_
entity_data. The size of extended entity data that can be stored on an single entity is limited to 16K bytes. The Auto-
CAD writer is limited to creating 8K bytes per entity. (Note that this is not applicable to ReadDWG.)

The interpreted format setting is described in Interpreted Format, for extended entity data. When writing
extended entity data, the FME features being output must structure their attributes in this way. That is, the attribute
data is stored with each attribute being a single extended entity string in the form <attribute name> = <attribute
value>. Storing the data in this manner enables the data to be easily viewed by AutoCAD and read by the FME reader
module.

List Format

In this format, the data is simply stored in a list as found in the AutoCAD file. The data is stored in a single list named
extended_data_list{}. Each value in the list is of the form <attribute tag>: <attribute value>. The <attribute tag>s
supported by the FME are restricted to those given in the following table. The <attribute tag>s define the domain for
the associated <attribute value>. Note that the AutoCAD codes associated with each kind of extended entity data are
not stored in the FME feature.

Attribute Name Content

application_name The name of the application which the following entity data is
associated. This application_name remains in effect until
another application_name entry is specified.
AutoCAD Code: 1001
Example: application_name:ACAD

Attribute Name Content

autocad_layer The name of the layer the extended data is associated.
AutoCAD Code: 1003
Example: autocad_layer:Water

string A character string value from 0 to 255 characters in length.
AutoCAD Code: 1000
Example: string:Thompson

Binary data A hexadecimal string from 0 to 254 characters in length.
AutoCAD Code: 1004
Example: binary:E3B4

three_reals Three 64-bit real numbers separated by commas.
AutoCAD Code: 1010,1020,1030
Example: three_reals:2.3,4.5,3.4

world_position Three real numbers which represent a world position. Each of
the numbers is separated by a comma.
AutoCAD Code: 1011, 1021, 1031
Example: world_position:23.4, -123.5, 0

world_displacement Three real values which represent a world displacement
value. Each of the values is separated by a comma.
AutoCAD Code: 1012, 1022, 1032
Example: world_displacement:1.5, 2.3, 0

world_direction Three real values which represent a world direction vector.
Each of the values is separated by a comma.
AutoCAD Code: 1013,1023,1033
Example: world_direction: 30.0, -12.4, 10

real A 64-bit real number.
AutoCAD Code: 1040
Example: real:3.1415926

distance A 64-bit real number which represents a distance.
AutoCAD Code: 1041
Example: distance:4.56

scale A 64-bit real number which represents a scaling factor.
AutoCAD Code: 1042
Example: scale:34.5

16Bit_integer A 16-bit integer value.
AutoCAD Code: 1070
Example: 16Bit_integer:245

32Bit_integer A 32-bit integer value.
AutoCAD Code: 1071

Attribute Name Content

Example: 32Bit_integer:12983

For example, if the following data was stored in extended entity data:

1001 C_NODE
1000 CONNOBJ_1=43F4
1000 COUNT=3
1000 CONNOBJ_2=43F3
1000 CONNOBJ_3=43F2
1005 163
1010 45.4
1020 -123.5
1030 0
1001 DPRINT
1000 postscript

then the FME AutoCAD reader would store this information as a list within the FME feature:

Attribute Name Attribute Value

extended_data_list{0} application_name:C_NODE

extended_data_list{1} string:CONNOBJ_1=43F4

extended_data_list{2} string:COUNT=3

extended_data_list{3} string:CONNOBJ_2=43F3

extended_data_list{4} string:CONNOBJ_3=43F2

extended_data_list{5} handle:163

extended_data_list{6} three_reals:45.4,-123.5,0

extended_data_list{7} application_name:DPRINT

extended_data_list{8} string:postscript

Notice how the AutoCAD codes are converted to attribute tags when stored in the FME features.

Structure Format

In this representation of extended entity data, the fields are stored with the tags forming part of the attribute names
for each of the extended entity entries. The data is stored in a single structure in the FME feature named extended_
data. As the extended entity data within AutoCAD is grouped into sections, with each section beginning with an appli-
cation group code, the extended_data structure itself is also divided into different sections with each section begin-
ning with extended_data{#}. The remainder of the attribute name consists of one of the parameters:

Extended Entity Parameter Contents

application_name The name of the application which the entity data is
associated.
AutoCAD Code: 1001

Extended Entity Parameter Contents

autocad_layer{#} The name of the layer the extended data is asso-
ciated.
AutoCAD Code: 1003

string{#} A character string value from 0 to 255 characters in
length.
AutoCAD Code: 1000

three_reals{#}.real1

three_reals{#}.real2

three_reals{#}.real3

Three real numbers.
AutoCAD Code: 1010,1020,1030

world_position{#}.x

world_position{#}.y

world_position{#}.z

Three values represent the x, y, and z components of
a world_position value.
AutoCAD Code: 1011, 1021, 1031

world_displacement{#}.x

world_displacement{#}.y

world_displacement{#}.z

Three values which represent a world displacement
value.
AutoCAD Code: 1012, 1022, 1032

world_direction{#}.x

world_direction{#}.y

world_direction{#}.z

Three real values which represent a world direction
vector.
AutoCAD Code: 1013,1023,1033

real{#} A 64 bit real number.
AutoCAD Code: 1040

handle{#} AutoCAD handle value.
AutoCAD Code: 1005

distance{#} A 64 bit real number which represents a distance.
AutoCAD Code: 1041

scale{#} A 64 bit real number which represents a scaling fac-
tor.
AutoCAD Code: 1042

16Bit_integer{#} A 16 bit integer value.
AutoCAD Code: 1070

32Bit_integer{#} A 32 bit integer value.
AutoCAD Code: 1071

For example, given the following extended entity data:

1001 C_NODE
1000 CONNOBJ_1=43F4
1000 COUNT=3
1000 CONNOBJ_2=43F3
1000 CONNOBJ_3=43F2
1005 163
1010 45.4

1020 -123.5
1030 0
1001 DPRINT
1000 postscript

The information will be stored in the FME feature using structure notation as follows:

Attribute Name Attribute Value

extended_data{0}.application_name C_NODE

extended_data{0}.string{0} CONNOBJ_1=43F4

extended_data{0}.string{1} COUNT=3

extended_data{0}.string{2} CONNOBJ_2=43F3

extended_data{0}.string(3} CONNOBJ_3=43F2

extended_data{0}.three_reals{0}.real1 45.4

extended_data{0}.three_reals{0}.real2 -123.5

extended_data{0}.three_reals{0}.real3 0

extended_data{0}.handle{0} 163

extended_data{1}.application_name DPRINT

extended_data{1}.string{0} postscript

Notice how, in this case, the AutoCAD codes are used to form extensions for the attribute names. Also notice how the
extended_data items are grouped in the FME feature as they are within the drawing file.

Interpreted Format

Finally, the FME AutoCAD reader module also attempts to interpret any string held in the extended entity data. If it is
successful in interpreting any data, then it stores it as attributes within the feature. As it is reading each extended
entity string entry, it attempts to determine if the value is composed of an attribute name or value pair and, if it does,
it stores the information as such. For example, if the extended entity data from the previous example were read, the
following interpreted values would be stored within the FME feature.

Attribute Name Attribute Value

CONNOBJ_1 43F4

COUNT 3

CONNOBJ_2 43F3

CONNOBJ_3 43F2

The reader is able to do this by recognizing the = divider within each of the string attributes as the separator
between an encoded attribute name and attribute value. The reader also recognizes a space character as a separator.

The remaining sections discuss the representation of each supported AutoCAD entity type.

Proxy Data

Some proxy data is also supported within the AutoCAD reader and writer. Proxy data is yet another manner in which
data is stored within AutoCAD files. This data is normally associated with ARX extensions. To the rest of the FME, the

proxy objects are made to look as close as possible to regular AutoCAD data. For example, linear entity types are
called autocad_line. Proxy features have a number of associated attributes that are not present in other entities.
Note: Only MPolygon proxy data is supported in AutoCAD R12 and older.

Proxy Data Attribute Contents

autocad_proxy_number A unique number that is assigned to all the components
of a single object. Since a single proxy object can have
a number of geometric primitives associated with it, all
proxy objects are output with the same number so that,
if necessary, they can be identified as belonging
together by the rest of the FME processing.

autocad_class_number The number given to the class of which this proxy object
is an instance.

autocad_class_dxfname The dxf class name of the proxy class.

autocad_class_cppname The C++ class name of the proxy class.

autocad_class_appname The application class name of the proxy class.

autocad_class_version The class version of the proxy class.

Lines

autocad_entity: autocad_line

Features with autocad_entity set to autocad_line are stored in and read from drawing files in one of two ways,
depending on the number of coordinates they have, and whether they store bulge arcs. Bulge arcs are limited to cir-
cular, non-closed arcs within the segments of the line. Any attempts to store elliptical or closed arcs will result in the
arc being stroked into a line segment.

Number of
Coordinates

AutoCAD Entity
Type Description

2 line If the feature contained exactly two points, then
an AutoCAD line entity is used to store the data.

Greater
than 2

polyline If the number of coordinates is greater than 2,
then the AutoCAD polyline entity is used to store
the coordinates. The polyline closed flag is set to
indicate that the polyline entity is not closed.

Attribute Name Content

autocad_bulge

Applicable only with
classic geometry.

Comma-separated value list of the vertex bulges. This is only
useful when performing AutoCAD-to-AutoCAD translations, and
is a measurement of the curvature at each vertex.

autocad_elevation The elevation value stored with the line entity. This is often

Attribute Name Content

used to set the elevation for contour lines, as the single
elevation value is applied to all the vertices.

autocad_linetype_
generation

Whether the generation of the autocad linetype will restart at
every vertex, or be generated continuously around the entire
polyline. Not applicable for 3d polyline features. The possible
values are:
0 = Restart generation at each vertex.
1 = Generate continuously around entire polyline.

autocad_width The width of the line.

autocad_polyflag

Deprecated

A bit-coded flag. This attribute is only present or used on auto-
cad_line features that contain more than two vertices. Values
can be combined by using addition. The values are:

1 = The line is closed (or the line is a polygon mesh closed in the M direction).
Please note that if this bit is set when reading, then the feature will be inter-
preted as an autocad_polygon.

128 = The linetype pattern is generated continuously around the vertices of
the line.

XLines

autocad_entity: autocad_xline

Features with autocad_entity set to autocad_xline are stored in and read from drawing files as an FME feature with
two coordinates representing a line. The reader and writer modules automatically convert the xline to and from its
unit vector representation into a line.

There are no attributes specific to this type of entity.

Points

autocad_entity: autocad_point

Features with autocad_entity set to autocad_point are stored in and read from drawing files as a single coordinate
feature.

Attribute Name Content

autocad_ucs_xangle The rotation angle around the z axis.

Ellipses

autocad_entity: autocad_ellipse

Ellipse features are point features used to represent both AutoCAD circle and AutoCAD ellipse entities. The point
serves as the centre of the ellipse. Ellipse entities with an autocad_primary_axis equal to the autocad_secondary_
axis are stored within the drawing file as a circle entity. Additional attributes specify the rotation, major axis, and
minor axis of the ellipse.

Tip: The function @Arc() can be used to convert an ellipse to a polygon. This is useful for rep-
resenting ellipses in systems that do not support them directly.

Attribute Name Content

autocad_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

autocad_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

autocad_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Polygons

autocad_entity: autocad_polygon

Features with autocad_entity set to autocad_polygon are stored in and read from drawing files as closed polyline
entities.

Attribute Name Content

autocad_width The width of the line.

Splines

autocad_entity: autocad_splines

Spline features are linear or area features – depending on whether or not they are closed – and are used to represent
features that have smooth curves. Each spline has a number of attributes that completely make up the spline. When
STORE_SPLINE_DEFS is set to yes, the reader sets the coordinates to be either the fit points or the control
points (depending on what is used to define the spline). Splines are always 3D – there is no way in AutoCAD to indi-
cate if the feature was intended to be only 2D. If STORE_SPLINE_DEFS is not specified or set to no, then the
coordinates of the spline returned by the reader are interpolated values based on the spline definition.

Tip: When you are performing an AutoCAD-to-AutoCAD translation, then you should always
set STORE_SPLINE_DEFS to yes to get the best results.

AutoCAD splines have several attributes, which are returned when reading and must be specified when writing.

Attribute Name Content

autocad_degree The degree of the polynomial used to form the
spline.

autocad_knot_tolerance The tolerance of the spline knots.

autocad_degree The degree of the spline.

autocad_cntl_pt_tolerance The tolerance of the control points.

autocad_fit_tolerance The tolerance of fit points.

autocad_knot_tolerance The tolerance of knots.

Attribute Name Content

autocad_num_cntl_pts The number of control points.

autocad_num_fit_pts The number of fit points.

autocad_knots The number of knots.

autocad_flag The flag that indicates the type of spline. It is a bit
vector normally only used when going from AutoCAD
to AutoCAD.
1. CLOSED
2. PERIODIC
4. RATIONAL
8. PLANAR
16. LINEAR

autocad_start_tangent_x

autocad_start_tangent_y

autocad_start_tangent_z

The start tangent for the spline.

autocad_end_tangent_x

autocad_end_tangent_y

autocad_end_tangent_z

The end tangent for the spline.

autocad_control_x

autocad_control_y

autocad_control_z

A comma separated list. The control point coor-
dinates in comma separated values. If STORE_
SPLINE_DEFS is specified, then the control points are
also stored as the coordinates.

autocad_control_weights The control point weights. A comma-separated list of
the weight values for each control vertex.

When writing to splines, the spline must be specified exactly as it is returned from the reader with STORE_SPLINE_
DEFS set to yes:

1. If the spline is defined by fit points then autocad_num_cntl_pts must be zero and autocad_num_fit_pts must
be the same as the number of coordinates in the feature. The coordinates of the feature are taken to be the fit
points.

2. If the spline is defined by control points then the autocad_num_fit_ptsmust be zero and autocad_num_cntl_pts
must be the same as the number of coordinates in the feature. The coordinates of the feature are taken to be
the control points.

Shapes

autocad_entity: autocad_shape

Features with autocad_entity set to autocad_shape are point features that identify where to place an AutoCAD
shape object. The reader and writer modules process all attributes needed to fully specify the shape object ref-
erence. Depending on the output file (.dxf or .dwg), different information will be required to write shape entity. If
a template file is specified using the TEMPLATEFILE keyword, then information about shape entity is extracted
from the template file, which requires access to the shape file.

When writing to a DXF file, a shape name and a shape file name is all that is required. The presence of a shape file dur-
ing translation is not required since there is no information lookup.

When writing to a DWG file and a shape name is given, then a lookup is performed to determine the shape index or
shape number from the shape file, which is what DWG stores. For the lookup to be successful, the writer needs
access to the shape file, and the specified shape name should be in the shape file. Similarly when writing to DWG, a
shape number and shape file is all that is required. If there is no shape index or shape number, then the writer has to
perform a lookup from the shape name to the shape index, and for this, access to the shape file is required.

When specifying a shape file, either the full path or just the filename can be specified. If only the shape filename is
given, the writer will first look for that shape file in the directory specified by SHAPE_DIRECTORY keyword, and if
not found then it will look in the directory where the output dataset is being written.

Tip: When an AutoCAD file is output, any shape files it references must be shipped together
with the file.

Attribute Name Contents

autocad_scale The scale of the shape object for this point.
Range: Any real number.
Default: 1

autocad_shape_index This identifies the index of the particular shape within
the shape file. A single shape file may contain many dif-
ferent shapes.
Range: Any real number > 0
Default: No default

autocad_rotation The rotation of the shape for this entity.
Range: -360.0..360.0
Default: 0

autocad_width_factor The width factor for the shape.
Range: Any real number > 0
Default: 0

autocad_oblique The oblique angle of the shape.
Range: -85.0 ..85.0
Default: 0

autocad_big_fontname The name of the file which contains fonts for large char-
acter sets.
Range: char[65]
Default: NULL

autocad_shape_name The name of the shape which is being read or written.
Range: char[33]
Default: No default

autocad_shape_filename The name of the file in which the shape is defined.
Range: char[65];
Default: No default

autocad_shape_rotation The rotation of the shape definition relative to the shape
file specification.
Range: Any real number

Attribute Name Contents

Default: 0

autocad_shape_height The height of the shape.
Range: Any real number
Default: 0

autocad_shape_width The width of the shape.
Range: Any real number
Default: 1

Leaders

autocad_entity: autocad_leader

Features with autocad_entity set to autocad_leader are linear features that identify where to place an AutoCAD
leader entity. The reader modules returns the following leader-specific attributes. This is currently not supported by
the writer.

Attribute Name Contents

autocad_path_type The type of path the leader follows. The path for a
leader is one of autocad_straight_leader in which
case the leader is a straight line, or autocad_
spline_leader in which case the leader is a spline.

autocad_arrow_head_on This specifies if the leader line has an arrowhead on
it.
Range: True | False
Default: True

autocad_hook_line_on_xdir This is True if the hook line is in the same direction as
the x direction and False if it is not.
Range: True | False
Default: True

autocad_has_hook_line This is True if the leader has a hook line, and False if
it does not.
Range: True | False
Default: True

autocad_anno_type The type of annotation of the leader.
Range:
autocad_anno_text – annotation is mtext entity,
autocad_anno_tolerance – annotation is a tolerance
entity,
autocad_anno_block – annotation is a block entity,
and
autocad_anno_none – no annotation with leader.
Default: autocad_anno_none

Attribute Name Contents

autocad_anno_height The height of the associated mtext entity.
Range: Real64

autocad_anno_width The width of the associated mtext entity.
Range: Real64

autocad_txt_offset_x The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_txt_offset_y The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_txt_offset_z The offset of the last leader vertex from the anno-
tation placement point.
Range: Real64

autocad_x_dir_x The x component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_x_dir_y The y component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_x_dir_z The z component of a vector indicating the horizontal
direction of the text.
Range: Any real number

autocad_offset_blkinspt_x The x component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

autocad_offset_blkinspt_y The y component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

autocad_offset_blkinspt_z The z component of the offset of the last leader ver-
tex from the block reference insertion point.
Range: Any real number

Faces

autocad_entity: autocad_face

Features with autocad_entity set to autocad_face are stored as AutoCAD face entities. Additional attributes are
used to define the visibility of the edges of the Face entity. Within the FME, if the reader is not using enhanced geome-
try, faces are stored as four-sided (five vertex) polygons. If the reader is using enhanced geometry, faces wil be rep-
resented as surfaces with with autocad_entity set to autocad_surface. See surfaces below for details.

Face surfaces are one-sided: they are only visible from one view direction. A face is visible when its normal points
toward the observer. If the vertices of the outer boundary of the face are observed to be in anti-clockwise order, then
the normal of the face points toward the observer, implying that the face is visible.

Attribute Name Contents

autocad_edge_1 The visibility of the first edge of the Face.
Range: visible|invisible
Default: visible

autocad_edge_2 The visibility of the second edge of the Face.
Range: visible|invisible
Default: visible

autocad_edge_3 The visibility of the third edge of the Face.
Range: visible|invisible
Default: visible

autocad_edge_4 The visibility of the final edge of the Face.
Range: visible|invisible
Default: visible

Arcs

autocad_entity: autocad_arc

This geometry type is stored in an AutoCAD arc entity. Arc features are like ellipse features, except two additional
angles control the portion of the ellipse boundary which is drawn. There are several properties of an FME arc geome-
try that may result in it being written as an AutoCAD entity other than an arc. If this arc geometry is circular and has a
sweep angle of 360 degrees it will be stored in an AutoCAD circle entity instead of an arc entity. If this arc geometry is
not circular, it will be stored in an AutoCAD ellipse entity.

Tip: The Function @Arc() can be used to convert an arc to a line. This is useful for rep-
resenting arcs in systems that do not support them directly.

Attribute Name Contents

autocad_primary_axis The length of the semi-major axis in ground units.
Currently the value of the primary axis is always
equal to the value of the secondary axis as AutoCAD
arcs must be circular. When writing to an AutoCAD
file, only the primary axis value is used.
Range: Any real number > 0
Default: No default

autocad_secondary_axis The length of the semi-minor axis in ground units.
Currently the value of the primary axis is always
equal to the value of the secondary axis as AutoCAD
arcs must be circular. When writing to an AutoCAD
file, only the primary axis value is used.
Range: Any real number > 0
Default: No default

autocad_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

Attribute Name Contents

autocad_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

autocad_rotation The rotation of the ellipse that defines the arc. The
rotation angle specifies the angle in degrees from the
horizontal axis to the primary axis in a counter-
clockwise direction. This value is fixed at 0 as Auto-
CAD doesn’t support rotation of arcs at this time.
Range: 0
Default: 0

Traces

autocad_entity: autocad_trace

Features with autocad_entity set to autocad_trace are stored in and read from drawing files as a 4-coordinate Auto-
CAD trace entity.

There are no attributes specific to this type of entity.

Solids

autocad_entity: autocad_solid

Features with autocad_entity set to autocad_solid are stored in and read from drawing files as a 3- or 4-coordinate
AutoCAD solid entity. These represent 2D solids in comparison to 3D solids which are represetned by autocad_
solid3d.

There are no attributes specific to this type of entity.

Rays

autocad_entity: autocad_ray

Features with autocad_entity set to autocad_ray are stored in and read from drawing files as a two coordinate line.
The reader and writer modules automatically convert the ray to and from its unit vector representation into a line.

There are no attributes specific to this type of entity.

Text Entities

autocad_entity: autocad_text

Features with autocad_entity set to autocad_text are stored in and read from drawing files as text entities. A text
entity is represented by a single coordinate and the following attributes.

Attribute Name Contents

autocad_text_string The text string.
Range: char[1024]

Attribute Name Contents

Default: No default

autocad_rotation The rotation of the text for this entity.
Range: -360.0..360.0
Default: 0

autocad_true_type_font The name of the TrueType font used to display the text
string. This attribute is only used by the AutoCAD
Writer, since single-line text entities do not have sup-
port for TrueType fonts. If this attribute is specified on
an autocad_text feature, a multiline text entity will be
created and written instead of a single-line text entity.
Default: No default

autocad_text_size The text height.
Range: Any real number > 0
Default: 10

autocad_width_factor The scaling applied in the x direction which makes the
text wider or narrower. However, this doesn’t affect
the weight (i.e., boldness) of the text string.
Range: Any real number > 0 and <= 10000
Default: 1

autocad_oblique The oblique angle of the text.
Range: -85.0 ..85.0
Default: 0

autocad_alignment_x

autocad_alignment_y

autocad_alignment_z

The alignment coordinate of the text. This location is
used in conjunction with the justification and the fea-
ture location to place the text correctly. This is pri-
marily of use when performing an AutoCAD-to-AutoCAD
translation. In order to override the justification of
source AutoCAD dataset, you need to remove these
alignment attributes from the feature and then set the
autocad_justfication attribute. This is because when
performing an AutoCAD-to-AutoCAD translation, these
alignment attributes override the autocad_jus-
tification attribute.
Range: any 64-bit floating point value
Default: x, y, and z value of text alignment point

autocad_big_fontname The name of the file which contains fonts for large char-
acter sets.

Attribute Name Contents

Range: char[65]
Default: NULL

autocad_shape_name The name of the shape which contains the text font def-
inition.
Range: char[33]
Default: STANDARD

autocad_shape_filename The name of the file which contains the text fonta def-
inition.
Range: char[65];
Default: txt

autocad_shape_rotation The angle for the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_height The height of the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_width The width of the text as defined in shape file.
Range: Any real number
Default: 1

autocad_generation The generation of the text entry.
Range:
autocad_normal | autocad_upside_down | auto-

cad_backwards | autocad_upsidedown_backwards

Default: autocad_normal

autocad_justification The justification of the text relative to its insert point.
Range:
autocad_top_left |
autocad_top_center |
autocad_top_right |
autocad_top_middle |
autocad_top_aligned |

autocad_top_fit |

autocad_middle_left |
autocad_middle_center |
autocad_middle_right |

aAutoCAD shape files should not be confused with ESRI Shapefiles. AutoCAD shape files hold font and symbol def-
initions; ESRI Shapefiles hold spatial features.

Attribute Name Contents

autocad_middle_middle |
autocad_middle_aligned |
autocad_middle_fit |

autocad_bottom_left |
autocad_bottom_center |
autocad_bottom_right |
autocad_bottom_middle |
autocad_bottom_aligned |
autocad_bottom_fit |

autocad_baseline_left |
autocad_baseline_center |
autocad_baseline_right |
autocad_baseline_middle |
autocad_baseline_aligned |

autocad_baseline_fit

Default: autocad_baseline_left

autocad_tracking_
percent

The tracking percent. Only used by the Reader. This
attribute will only exist if reading a graphical text
entity.
Default: N/A since this is a Reader-only attribute.

autocad_backwards Indicates whether the text is backwards. Only used by
the Reader. This attribute will only exist if reading a
graphical text entity.
Default: N/A since this is a Reader-only attribute.

autocad_upside_down Indicates if the text is upside down. Used only by the
Reader. This attribute will only exist if reading a graph-
ical text entity.
Default: N/A since this is a Reader-only attribute.

autocad_vertical Indicates if the text is vertical. Used only by the
Reader. This attribute will only exist if reading a graph-
ical text entity.
Default: N/A since this is a Reader-only attribute.

autocad_underlined Indicates if the text is underlined. Used only be the
Reader. This attribute will only exist if reading a graph-
ical text entity.
Default: N/A since this is a Reader-only attribute.

autocad_overlined Indicates if the text is overlined. Used only be the
Reader. This attribute will only exist if reading a graph-
ical text entity.
Default: N/A since this is a Reader-only attribute.

Multi-Text Entities

autocad_entity: autocad_multi_text

Features with autocad_entity set to autocad_multi_text are stored in and read from drawing files as text entities. A
text entity is represented by a single coordinate and the following attributes.

Attribute Name Contents

autocad_text_string The text string.
Range: char[1024]
Default: No default

autocad_rotation The rotation of the text for this entity.
Range: -360.0..360.0
Default: 0

autocad_text_size The text height. When reading, this value is cal-
culated using the height of the bounding box of
the feature and the estimated number of lines.
Range: Any real number
Default: 10

autocad_mtext_string The original formatted mtext string. Writer will
use this attribute’s value to set the destination
mtext entity. When performing an AutoCAD-to-
AutoCAD translation, this attribute will ensure
that the exact formatting is carried over to the
destination.
Range: char[1024]
Default: None

autocad_mtext_text_height The starting text size of the multi-text feature.
This attribute is useful mainly for AutoCAD-to-
AutoCAD translations. If this attribute doesn’t
exist when writing, then a value is calculated for
it.
Range: Any real number
Default: None

autocad_true_type_font The name of the TrueType font used to display
the text string. If this attribute is not specified
when writing, the text will still be written, but not
using a TrueType font.
Default: No default

autocad_linespace_factor The percentage of default line spacing used.
Range: 0.25..4.0
Default: 1

Attribute Name Contents

autocad_mtext_ref_rect_width The width of the reference rectangle in which the
text is contained.
Range: Any real number > 0

autocad_attach_point The attach point for the multi-text. Use this attrib-
ute to set the justification of Multi-Text entities.
Note that there is no autocad_justification
attribute for this type of entity.
Range:
autocad_top_left |
autocad_top_center |
autocad_top_right|

autocad_middle_left |
autocad_middle_center |
autocad_middle_right|

autocad_bottom_left |
autocad_bottom_center |

autocad_bottom_right|

autocad_draw_direction The direction the text is drawn.
Range:
autocad_draw_left_to_right |
autocad_draw_right_to_left |
autocad_draw_top_to_bottom|

autocad_draw_bottom_to_top

autocad_box_width The width of the box which the multi text is
located.
Range: Any real number > 0

autocad_box_height The height of the box which the multi text is
located.
Range: Any real number > 0

autocad_big_fontname The name of the file which contains fonts for
large character sets.
Range: char[65]
Default: NULL

autocad_shape_name The name of the shape which contains the text
font definition.
Range: char[33]
Default: STANDARD

autocad_shape_filename The name of the file which contains the text fonta

aAutoCAD shape files should not be confused with ESRI Shapefiles. AutoCAD shape files hold font and symbol def-
initions; ESRI Shapefiles hold spatial features.

Attribute Name Contents

definition.
Range: char[65];
Default: txt

autocad_shape_rotation The angle for the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_height The height of the text as defined in shape file.
Range: Any real number
Default: 0

autocad_shape_width The width of the text as defined in shape file.
Range: Any real number
Default: 1

autocad_generation The generation of the text entry.
Range:
autocad_normal |
autocad_upside_down |
autocad_backwards |

autocad_upsidedown_backwards

Default: autocad_normal

autocad_estimated_num_lines

(used by the reader only)

The estimated number of lines in the multi-text
feature. This is a calculated value that uses the
starting height of the multi-text feature, the
height of the bounding box of the feature, and the
linespacing factor.
Range: Any integer
Default: Not applicable since this is a reader-
only attribute

Multi-Line

autocad_entity: autocad_multi_line

Multi-line features are linear features that represent a set of parallel lines. They are not capable of representing an
arbitrary set of lines such as can be done with GIS systems. When reading a multi-line feature, the FME will output an
aggregate of lines thereby hiding all AutoCAD format peculiarities. This entity is only supported by the AutoCAD
Reader.

The following attributes are set when reading the multi-lines.

Attribute Name Content

autocad_scale The scale of the multi-line.
Range: Any real number > 0.t

autocad_justification The justification of the multi-line object is set to one of:
Range:

Attribute Name Content

autocad_top |

autocad_middle |
autocad_bottom

autocad_num_verts The number of vertices in one of the parallel multi-lines.
All of the multi-lines have this number of coordinates.
The feature thereby has autocad_num_verts * auto-

cad_num_lines:
Range: Number of vertices in one line.

autocad_num_lines The number of lines in the multi-line set.:
Range: Number of lines.

autocad_mline_type The type of multi-line object.
Range: autocad_open | autocad_closed

autocad_base_x The x coordinate of the base point of the multi-line
entity.
Range: Any real number.

autocad_base_y The y coordinate of the base point of the multi-line
entity.
Range: Any real number.

autocad_base_z The z coordinate of the base point of the multi-line
entity.
Range: Any real number.

Inserts

autocad_entity: autocad_insert

Inserts are point features used in AutoCAD to specify block locations and associated attribution. Inserts are another
way in which attribution is stored within an AutoCAD drawing file. The features returned from the AutoCAD reader
encapsulate all the information from the AutoCAD insert entity and all attribute entities that are associated with the
insert entity.

Insert features can be thought of as block references. They represent the location of an instance of a block definition.
When passing features to the AutoCAD writer, those features with the type autocad_insert can be used to match exist-
ing block definitions in the TEMPLATE file.

If an attribute passed to the writer is defined by an AutoCAD Attribute Definition in the TEMPLATE file, then the place-
ment of the attribute is taken from the TEMPLATE file unless it is overridden by the attributes shown in the table
below.

If the position of the attribute is not specified in a TEMPLATE file and is not specified in the attributes below, then the
attributes are placed at the insert location. Apart from the user-defined attributes specified within it, each insert
entity also has the following attributes.

Attribute Name Contents

autocad_xscale The scale factor for the inserted block in
the x direction.
Range: Any real number.
Default: 1

autocad_yscale The scale factor for the inserted block in
the y direction.
Range: Any real number
Default: 1

autocad_zscale The scale factor for the inserted block in
the z direction.
Range: Any real number
Default: 1

autocad_size_x The size of the inserted block in ground
units in the x direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_xscale
Range: Any positive real number.
Default: No default

autocad_size_y The size of the inserted block in ground
units in the y direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_yscale.
Range: Any positive real number.
Default: No default

autocad_size_z The size of the inserted block in ground
units in the z direction. This value will
be used to set the scale factor of the
inserted block, and takes precedence
over the value for autocad_zscale.
Range: Any positive real number.
Default: No default

autocad_rotation The rotation of the inserted block,
counterclockwise from horizontal.
Range: -360.0 ..360.0
Default: 0

autocad_number_columns The column count for the insert.
Range: 0..65536
Default: 1

Attribute Name Contents

autocad_number_rows The row count for the insert.
Range: 0..65536
Default: 1

autocad_column_distance The column spacing for the insert.
Range: Any real number > 0
Default: 0

autocad_row_distance The row spacing for the insert.
Range: Any real number > 0
Default: 0

autocad_block_name The name of the block entity which is to
be inserted.
Range: char[33]
Default: FMEBLOCK<block_number>
where block_number is some unique
positive integer > 0.

autocad_block_insert_x

autocad_block_insert_y

autocad_block_insert_z

The insert point location of the block reference
entity.

When reading, these attributes are added to the
block reference component entities when the
reader directives RESOLVE_BLOCKS and
STORE_INSERT_POINT are both set to YES.

When writing, these attributes set the insert point
of blocks during automatic block creation.

Range: Any real number

Default: 0

autocad_attributes_follow Used during writing to indicate if attrib-
utes are also to be stored with the insert
entity. This must be specified if feature
attributes are to be written to the Auto-
CAD output file.

This attribute affects both the creation of block
attributes when the DEFAULT_ATTR_STORAGE
directive is set to INSERT_ATTRIBUTES and
the creation of blocks during automatic block cre-
ation.

Range: true | false
Default: true

autocad_attribute_display Indicates if the attribute values are to
be visible or invisible. This will not over-
ride the visibility flag found in an exist-
ing template file attribute definition.

Attribute Name Contents

Range: visible | invisible
Default: invisible

autocad_attr_def_tag Indicates the tag used for “Attribute”
definition. (read-only)
Range: text string

autocad_attr_def_prompt Specifies the prompt that is displayed
when you insert a block containing this
attribute definition. (read-only)
Range: text string

autocad_attr_def_default Specifies the default attribute value.
(read-only)
Range: text string

fme_attrib_info{N}.field_name This list attribute hold the name of the
Nth attribute.
Range:text string

fme_attrib_info{N}.field_size This list attribute hold the size of the Nth
attribute.
Range integer
Default: 0

fme_attrib_info{N}.field_value This list attribute holds the value of the
Nth attribute.
Range: text string

autocad_<attr_name>_x
autocad_<attr_name>_y

autocad_<attr_name>_z

fme_attrib_info{N}.location_x

fme_attrib_info{N}.location_y

fme_attrib_info{N}.location_z

Used when attributes are associated
with the insert elements, enabling the
location of the attributes to be specified
for display purposes. This specifies the
exact location where the attributes are
to be placed. Note that the FME attrib-
utes may contain different values than
the AutoCAD attributes. This is because
the values of the FME attributes will be
modified if the justification is not base-
line_left in an attempt to be more use-
ful when translating into or out of other
formats that support these FME attrib-
utes.
Range: any 64-bit floating point value
Default: x, y, and z value of insert coor-
dinate (for the AutoCAD attributes)
0,0,0 (for the FME attributes)

Attribute Name Contents

autocad_<attr_name>_
alignment_x
autocad_<attr_name>_
alignment_y

autocad_<attr_name>_
alignment_z

fme_attrib_info{N}.align_x

fme_attrib_info{N}.align_y

Used when attributes are associated
with the insert elements, enabling the
location of the attributes to be specified
for display purposes. This specifies the
alignment location where the attributes
are to be placed. Note that the FME
attributes may contain different values
than the AutoCAD attributes. This is
because the values of the FME attributes
will be modified if the justification is not
baseline_left in an attempt to be
more useful when translating into or out
of other formats that support these FME
attributes.
Range: any 64-bit floating point value
Default: 0,0,0 (for the AutoCAD attrib-
utes)
the value of fme_attrib_info{N}-
.location_[x|y|z] (for the FME attrib-
utes)

autocad_<attr_name>_

justification

The justification of the attribute relative
to its insertion point (not its alignment
point).
Range:
autocad_top_left |
autocad_top_center |
autocad_top_right |
autocad_top_middle |
autocad_top_aligned |
autocad_top_fit |

autocad_middle_left |
autocad_middle_center |
autocad_middle_right |
autocad_middle_middle |
autocad_middle_aligned |
autocad_middle_fit |

autocad_bottom_left |
autocad_bottom_center |
autocad_bottom_right|
autocad_bottom_middle |
autocad_bottom_aligned |
autocad_bottom_fit |

autocad_baseline_left |
autocad_baseline_center |
autocad_baseline_right |
autocad_baseline_middle |
autocad_baseline_aligned |

Attribute Name Contents

autocad_baseline_fit

Default: No default

fme_attrib_info{N}.justification The justification of the attribute relative
to its insertion point (not its alignment
point).
Range:
top_left |
top_center |
top_right|
top_middle |
top_aligned |
top_fit |

middle_left |
middle_center |
middle_right|
middle_middle |
middle_aligned |
middle_fit |

bottom_left |
bottom_center |
bottom_right|
bottom_middle |
bottom_aligned |

bottom_fit |

baseline_left |
baseline_center |
baseline_right|
baseline_middle |
baseline_aligned |

baseline_fit

Default: baseline_left

fme_attrib_info{N}.generation The generation of the Nth attribute.
Range:
normal |
upside_down |
backwards |

upsidedown_backwards

Default:normal

autocad_<attr_name>_style

fme_attrib_info{N}.style

The name of the text style for the attrib-
ute. For this attribute to be used by the
Writer, a template file containing the
text style must be specified.
Default: No default

fme_attrib_info{N}.width_
factor

The scaling applied in the x direction,
which makes the text wider or nar-
rower. However, this doesn’t affect the

Attribute Name Contents

weight (i.e., boldness) of the text
string.
Range: Any real number > 0 and <=
10000
Default: 1

autocad_<attr_name>_color The color of the attribute. When read-
ing, this value is always 256, meaning
COLOR_BYLAYER.

Default: The color of the layer on which
the insert is placed (not the same as
COLOR_BYLAYER).

fme_attrib_info{N}.color.red

fme_attrib_info{N}.color.green

fme_attrib_info{N}.color.blue

These list attributes hold the color of
the Nth attribute in RGB values, ranged
between 0.0 and 1.0.
Range: real number 0.0-1.0 (inclusive)
Default: No default

fme_attrib_info{N}.color.source The source of the color. If the attrib-
ute’s color does not come from the
block or layer, then it is given the value
explicit.
Range: use_layer | use_block | explicit
Default: explicit

autocad_<attr_name>_
rotation

fme_attrib_info{N}.rotation

This specifies the rotation of the attrib-
ute, measured in degrees.
Range: degree of rotation measured
counter-clockwise from the horizontal.
Default: 0

fme_attrib_info{N}.oblique This specifies the obliquing angle of the
attribute, which causes the text to lean
to the right or left.
Range: -85.0 ..85.0
Default: 0

autocad_<attr_name>_
height

fme_attrib_info{N}.height

This specifies the height of the attribute
in ground units.
Range: any 64-bit floating point value.
Default: 1

autocad_<attr_name>_attribute_flag

fme_attrib_info{N}.attribute_flag

A bit-coded value. Values can be com-
bined by using addition. Possible values
are:
1 = The attribute is invisible (does not

Attribute Name Contents

appear).
2 = The attribute contains a constant
value.
4 = Verification is required on input of
this attribute.
8 = Attribute is preset (no prompt dur-
ing insertion).
If the fme_attrib_info{N}-
.attribute_flag attribute is used, the
invisibility bit will get overwritten by the
fme_attrib_info{N}.isVisible attrib-
ute.
If the autocad_<attr_name>_attrib-
ute_flag attribute is used, the invis-
ibility bit will get overwritten by
autocad_attribute_display if the attributes
autocad_visible_attributes{} and
autocad_invisible_attributes{}

are specified.
Default: 0 if no attribute definitions
exist for the attribute (i.e., when
DEFAULT_ATTR_STORAGE keyword or
autocad_attributes attribute is set to
insert_attributes), or
value from the attribute definition if
attribute definitions are used.

autocad_<attr_name>_layer

fme_attrib_info{N}.layer

The layer on which the attribute def-
inition, corresponding to this attribute,
was created.
Default: none

fme_attrib_info{N}.isVisible These list attributes indicate whether or
not the Nth attribute should be dis-
played.
Range: TRUE | FALSE
Default: FALSE

autocad_visible_attributes{} The list of attributes that are set to be
visible. This is a list attribute. This list
will override the visibility flag found in
an existing template file attribute def-
inition.

autocad_invisible_attributes{} The list of attributes that are set to be
invisible. This is a list attribute. This list

Attribute Name Contents

will override the visibility flag found in
an existing template file attribute def-
inition.

autocad_<attr_name>_x_off
autocad_<attr_name>_y_off

autocad_<attr_name>_z_off

Used when attributes are associated
with the insert elements enabling the
location of the attributes to be specified
for display purposes. This specifies the
offset from the location of the insert.
Range: any 64-bit floating point value
Default: x, y and z value of insert coor-
dinate

Dimensions

autocad_entity: autocad_dimension

Dimensions are aggregate features used in AutoCAD to specify dimensions within an AutoCAD drawing. The dimen-
sion features have the attributes described below.

Rotated (linear) dimensions:

l The first extension line is specified by defpt2.

l The second extension line is specified by defpt3.

l The dimension line is specified by dimlinedefpt.

Angular dimensions:

l defpt2 and defpt3 are the endpoints of the first extension line.

l dimlinedefpt and defpt4 are the endpoints of the second extension line.

l arcdefpt specifies the dimension line arc.

Angular 3-point dimensions:

l defpt4 is the vertex of the angle.

l defpt2 is the endpoint of the first extension line.

l defpt3 is the endpoint of the second extension line.

l dimlinedefpt specifies the arc for the dimension line.

Diameter dimensions:

l defpt4 is the point selected on the circle or arc being dimensioned.

l dimlinedefpt is the point on the circle exactly across from the selection point.

Ordinate dimensions:

l defpt3 is the point which was selected.

l defpt4 is the point indicating the endpoint of the leader.

Attribute Name Contents

autocad_actual_measurement The scale factor for the inserted block in
the x direction.

Attribute Name Contents

Range: Any real number
Default: 1

autocad_arc_defpt.x
autocad_arc_defpt.y
autocad_arc_defpt.z

This defines the dimension arc for an angu-
lar dimension. This is equivalent to the
16,26,36 group in DXF.
Range: Any real number
Default: none

autocad_arc_defpt2.x
autocad_arc_defpt2.y
autocad_arc_defpt2.z

Definition Point. This is equivalent to the
13,23,33 group in DXF.
Range: Any real number
Default: none

autocad_arc_defpt3.x
autocad_arc_defpt3.y
autocad_arc_defpt3.z

Definition Point. This is equivalent to the
14,24,34 group in DXF.
Range: Any real number
Default: none

autocad_arc_defpt4.x
autocad_arc_defpt4.y
autocad_arc_defpt4.z

Definition Point. This is equivalent to the
15,25,35 group in DXF.
Range: Any real number
Default: none

autocad_dimension_attach_point This is the attachment point of dimension,
as defined
1 = Top Left
2 = Top Center
3 = Top Right
4 = Middle Left
5 = Middle Center
6 = Middle Right
7 = Bottom Left
8 = Bottom Center
9 = Bottom Right

autocad_dim_arrowhead_pt_<number>.x

autocad_dim_arrowhead_pt_<number>.y

These attributes, provided by the reader
but not used by the writer, describe the x,y
coordinates of the vertex, on each arrow-
head, that could be called the “tip of the
arrow.” <number> is some number
between 1 and the number of arrowheads
in the dimension. If there are no arrow-
heads, then this attribute will not be sup-
plied.

Attribute Name Contents

autocad_dimension_flag This is the raw value from the AutoCAD file
that indicates the type of dimension. See
autocad_dimension_type for the decoded
version of this.

autocad_dimension_style_name The name of the dimension style used.
When using the AutoCAD writer, it is impor-
tant that the dimension style used is
defined in the template file; otherwise, no
style will be set and the dimension text will
not be displayed. Even if the standard
dimension style is used, the template file
must hold a definition for it.

autocad_dimension_type This indicates the type of the autocad
dimension. Possible values are:
autocad_rotated
autocad_aligned
autocad_angular
autocad_diameter
autocad_radius
autocad_angular3Pt
autocad_ordinate

autocad_xordinate

autocad_leader_length This is the length of the dimension leader
line.

autocad_linespace_style This is the style of the line spacing. It is
either 1 (at least) or 2 (exact).

autocad_linespace_factor The percentage of default line spacing
used.
Range: 0.25..4.0
Default: 1

autocad_rotation_angle The rotation angle of the dimension.

autocad_text_midpoint.x
autocad_text_midpoint.y
autocad_text_midpoint.z

The midpoint of the text.

autocad_text_rotation The rotation of the dimension text.

autocad_text_size The size of the text in ground units.

autocad_text_string The dimension text value.

autocad_ucs_xangle The angle of the ucs (user coordinate sys-
tem) when the dimension was created.

Group

autocad_entity: autocad_group

Group features are features with no geometry. This feature merely identifies the feature handles that are part of the
group. This entity is only supported by the AutoCAD Reader. The feature type is set to AUTOCAD_GROUP. The fol-
lowing attributes are set when reading groups.

Attribute Name Content

autocad_group_description The descriptive name of the group.
Range: Character string.

autocad_group_name Name of the group.
Range: Character string.

autocad_group_anonymous Whether or not group is anonymous
Range: yes/no.

autocad_group_accessible Whether or not group is accessible.
Range: yes/no.

autocad_group_num_entities Number of entities in the group.
Range: Numeric.

autocad_group_selectable Whether or not group is selectable.
Range: yes/no.

autocad_entity_handle{} The list attribute which contains the hexadecimal
values of the entities that make up the group.
Range: Hexadecimal value.

Hatches

autocad_entity: autocad_hatch

Hatch features represent AutoCAD hatch entities. They are composed of two dimensional boundary loops that define
areas which can be filled with line patterns or color gradients. The loops of each hatch are closed, simple, con-
tinuous, and are not self-intersecting except at their endpoints.

The AutoCAD Reader creates features with varied geometry depending on the geometry of the loops that compose
them. Features created may be of polygon, donut or aggregate geometry, where the aggregates may contain either
donuts and polygons or just ordered polygons depending on the usage of the PRESERVE_COMPLEX_HATCHES key-
word. The AutoCAD reader will also preserve polyline bulge information.

Note: The AutoCAD Reader has the following limitations when reading hatch features: associative hatches are not
preserved, one pattern is allowed per hatch, only one or two color gradients are supported, unclosed hatch bound-
ary loops are closed, and splines are not supported for hatch boundary loops. In addition, elliptical and circular
arcs in boundary loops are stroked unless the reader is using enhanced geometry.

The AutoCAD Writer has the following limitations when writing hatch features: hatch features must be closed area fea-
tures of polygon, donut, or aggregate geometry according to how the AutoCAD Reader created them. The AutoCAD
writer will try to reconstruct polyline bulge information from the feature, but closed and elliptical arcs will be stroked
into line segments.

The following attributes may be set when reading hatches.

Attribute Name Content

autocad_hatch_associative

Used only for reading

The flag indicating if the hatch is asso-
ciative.
Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_complex_mode The flag that represents whether the
hatch feature was created to preserve
complex hatches. This indicates how
the structure of loops is created.
Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_gradient_angle The angle of the gradient fill for the
hatch feature in degrees.
Range: any 64-bit floating point value.
Default: 0

autocad_hatch_gradient_color1 The first color used to interpolate a two
color gradient fill. It the single color
used in a one color gradient fill. Spec-
ified as a character string of comma-
separated red, green and blue values.
Range: 0..255,0..255,0..255.
Default: None.

autocad_hatch_gradient_color2 The second color used to interpolate a
two color gradient fill. Specified as a
character string of comma-separated
red, green and blue values.
Range: 0..255,0..255,0..255
Default: None.

autocad_hatch_gradient_name The name of the gradient. Must be a
predefined value for predefined gra-
dients. This is mandatory for hatches
with gradients.
Range: Curved | Cylinder| Hemi-
spherical | Linear | Spherical |
Invcurved | Invcylinder | Invhe-
mispherical | Invspherical
Default: None

autocad_hatch_gradient_one_
color_mode

The flag indicating whether only one
color should be used in gradient cal-
culation. Gradients can be two color, or
one color with a luminance value set by
autocad_hatch_shade_tint_value.

Attribute Name Content

Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_gradient_
shift

The interpolation value between the
default and shifted values of the gra-
dient's definition.
Range: 0..1
Default: None

autocad_hatch_gradient_type The type of the gradient. Currently this
is set to 0 for predefined gradient. In
the future a value of 1 may be sup-
ported for user-defined gradients. This
is only used for hatches with gradients.
Range: 0 for pre-defined | 1 for user-
defined
Default: None

autocad_hatch_loop{}.autocad_hatch_bulge{}

Applicable only with classic geometry

The list of bulge values for polyline
bulge arcs in each of a list of hatch
boundary loops. The list of bulge
values parallel the vertices in each
loop. A bulge value represents the tan-
gent of 1/4 the included angle in the
arc measured counterclockwise. A
value of 0 represents a line, and a
value of 1 represents a semicircle.
Range: 0..1
Default: 0

autocad_hatch_loop{}.autocad_hatch_bulges_present

Applicable only with classic geometry

The flag indicating if polyline bulge
arcs exist in each of a list of hatch
boundary loops.
Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_loop{}.autocad_hatch_type

Applicable only with classic geometry

The type of the hatch loop. This is an
integer representing the addition of
applicable type flags.
Range: numeric value
Default: None

autocad_hatch_object_type The general type of the hatch, spec-
ifying the usage of either patterns or
gradients.
Range: 0 for classic hatch | 1 for color
gradient

Attribute Name Content

Default: 0

autocad_hatch_origin_point_x The x-axis coordinate of the origin of
the hatch in world coordinates.
Range: any 64-bit floating point value
Default: 0

autocad_hatch_origin_point_y The y-axis coordinate of the origin of
the hatch in world coordinates.
Range: any 64-bit floating point value
Default: 0.

autocad_hatch_pattern_angle The angle of the pattern fill for the
hatch feature in degrees.
Range: any 64-bit floating point value
Default: 0

autocad_hatch_pattern_double The flag indicating if the hatch pattern
is doubled by adding a second set of
lines at 90 degrees to the first. This is
only used for user-defined patterns.
Range: 0 for no | 1 for yes
Default: 0

autocad_hatch_pattern_name The name of the pattern. May be a
predefined value for predefined pat-
terns, a predefined value for custom
patterns, or any string for user-defined
patterns.
Range: Pre-defined or custom pattern
name | any string
Default: SOLID

autocad_hatch_pattern_scale This represents the scaled size of the
pattern for pre-defined and custom-
defined patterns.
Range: positive floating point value >
0
Default: 1

autocad_hatch_pattern_space This represents the space between the
parallel lines of the hatch pattern. This
is only used for user-defined patterns.
Range: positive floating point value >
0
Default: 1

Attribute Name Content

autocad_hatch_pattern_type The type of the hatch pattern. Custom-
defined patterns are pre-created pat-
terns that must be present in the loca-
tion of the predefined patterns. This is
only used for hatches with patterns.
Range: 0 for user-defined | 1 for pre-
defined | 2 for custom-defined
Default: None

autocad_hatch_pixel_size The size of pixels for intersection and
ray casting when drawing the hatch.
Range: positive floating point value >
0
Default: 1

autocad_hatch_shade_tint_value The luminance value of the hatch. If
the hatch has a gradient and is using
one color mode, this value is applied to
the first color.
Range: 0.0..1.0
Default: 0

MPolygons

autocad_entity: autocad_mpolygon

MPolygon features represent AutoCAD mpolygon entities. They are composed of two-dimensional polyline loops defin-
ing areas that can be filled with line patterns or color gradients. The loops of each mpolygon are closed, simple, con-
tinuous, and are not self-intersecting except at their endpoints. This is very similar to the definition of hatch entities.

The AutoCAD Reader creates features with varied geometry depending on the geometry of the loops that compose
each mpolygon. Features created may be of polygon, donut or aggregate geometry, where the aggregates may con-
tain a combination of donuts and polygons.

Note: The AutoCAD Reader has the following limitations when reading mpolygon features: one pattern is allowed
per hatch, only one or two color gradients are supported, unclosed boundary loops are closed, and splines are not
supported for boundary loops.

The AutoCAD Writer has the following limitations when writing mpolygon features: the features must be closed area
features of polygon, donut, or aggregate geometry according to how they were created by the AutoCAD Reader.

The following attributes may be set when reading mpolygons.

Attribute Name Content

autocad_mpolygon_associative

Used only for reading

The flag indicating if the mpolygon is associative.
Range: 0 for no | 1 for yes
Default: 0

Attribute Name Content

autocad_mpolygon_gradient_
angle

The angle of the gradient fill for the mpolygon fea-
ture in degrees.
Range: any 64-bit floating point value.
Default: 0

autocad_mpolygon_gradient_
color1

The first color used to interpolate a two color gra-
dient fill. It the single color used in a one color gra-
dient fill. Specified as a character string of comma-
separated red, green and blue values.
Range: 0..255,0..255,0..255.
Default: None.

autocad_mpolygon_gradient_
color2

The second color used to interpolate a two color gra-
dient fill. Specified as a character string of comma-
separated red, green and blue values.
Range: 0..255,0..255,0..255
Default: None.

autocad_mpolygon_gradient_
name

The name of the gradient. Must be a predefined value
for predefined gradients. This is mandatory for mpo-
lygons with gradients.
Range: Curved | Cylinder| Hemispherical | Linear |
Spherical | Invcurved | Invcylinder | Invhe-
mispherical | Invspherical
Default: None

autocad_mpolygon_gradient_one_
color_mode

The flag indicating whether only one color should be
used in gradient calculation. Gradients can be two
color, or one color with a luminance value set by auto-
cad_mpolygon_shade_tint_value.
Range: 0 for no | 1 for yes
Default: 0

autocad_mpolygon_gradient_
shift

The interpolation value between the default and
shifted values of the gradient's definition.
Range: 0..1
Default: None

autocad_mpolygon_gradient_
type

The type of the gradient. Currently this is set to 0 for
predefined gradient. In the future a value of 1 may
be supported for user-defined gradients. This is man-
datory for mpolygones with gradients.
Range: 0 for pre-defined | 1 for user-defined
Default: None

autocad_mpolygon_object_type The type of the mpolygon. This is mandatory for mpo-
lygones with gradients and patterns other than

Attribute Name Content

SOLID.
Range: 0 for classic mpolygon | 1 for color gradient
Default: 0

autocad_mpolygon_origin_point_x The x-axis coordinate of the origin of the mpolygon
in world coordinates.
Range: any 64-bit floating point value
Default: 0

autocad_mpolygon_origin_point_y The y-axis coordinate of the origin of the mpolygon
in world coordinates.
Range: any 64-bit floating point value
Default: 0.

autocad_mpolygon_offset_x

Used only for reading

The offset along the x-axis coordinate of the center
point of the mpolygon extents in world coordinates.
Range: any 64-bit floating point value
Default: 0

autocad_mpolygon_offset_y

Used only for reading

The offset along the y-axis coordinate of the center
point of the mpolygon extents in world coordinates.
Range: any 64-bit floating point value
Default: 0.

autocad_mpolygon_pattern_
angle

The angle of the pattern fill for the mpolygon feature
in degrees.
Range: any 64-bit floating point value
Default: 0

autocad_mpolygon_pattern_
double

The flag indicating if the mpolygon pattern is doubled
by adding a second set of lines at 90 degrees to the
first. This is only used for user-defined patterns.
Range: 0 for no | 1 for yes
Default: 0

autocad_mpolygon_pattern_name The name of the pattern. May be a predefined value
for predefined patterns, a predefined value for cus-
tom patterns, or any string for user-defined patterns.
Range: Pre-defined or custom pattern name | any
string
Default: SOLID

autocad_mpolygon_pattern_
scale

This represents the scaled size of the pattern for pre-
defined and custom-defined patterns.
Range: positive floating point value > 0
Default: 1

autocad_mpolygon_pattern_
space

This represents the space between the parallel lines

Attribute Name Content

of the mpolygon pattern. This is only used for user-
defined patterns.
Range: positive floating point value > 0
Default: 1

autocad_mpolygon_pattern_type The type of the mpolygon pattern. Custom-defined
patterns are pre-created patterns that must be
present in the location of the predefined patterns.
This is mandatory for mpolygones with patterns
other than SOLID.
Range: 0 for user-defined | 1 for pre-defined | 2 for
custom-defined
Default: 1

autocad_mpolygon_pixel_size The size of pixels for intersection and ray casting
when drawing the mpolygon.
Range: positive floating point value > 0
Default: 1

autocad_mpolygon_shade_tint_
value

The luminance value of the mpolygon. If the mpo-
lygon has a gradient and is using one color mode,
this value is applied to the first color.
Range: 0.0..1.0
Default: 0

Surfaces

autocad_entity: autocad_surface

Features with this value are used to store several AutoCAD entities including face, region, polygon mesh, polyface
mesh, or surface entities. Extruded, planar, revolved, lofted, and swept surfaces are represented as autocad_sur-
face, which may contain multiple unconnected surfaces, each of which is composed of faces, which may or may not
be planar. This value is used by both the reader and the writer.

Surfaces support appearances, but only one appearance per surface. For two-sided surfaces, the writer will split the
surface into one surface per side. Furthermore, only subdivision mesh entities support textured appearances. Sub-
division meshes will preferentially be written from surfaces with textured appearances. (Textured appearances are
only supported by RealDWG.)

For writing, all 3D surface geometry types are supported. Any types of 3D geometry which are not directly supported
as entities are decomposed into triangulated mesh representation prior to writing.

Attribute Name Content

autocad_subdmesh_base_faces This is used by the Reader only and indicates the
number of faces in a subdivision mesh at the base
smoothness level of 0.

Range: A 32 bit integer value. Default: None

autocad_subdmesh_base_vertices This is used by the Reader only and indicates the
number of vertices in a subdivision mesh at the base
smoothness level of 0.

Range: A 32 bit integer value. Default: None

autocad_subdmesh_smooth_level This is used by the Reader only and indicates the
smoothness level of a subdivision mesh. A value of 0
represents the base smoothness of the mesh geome-
try and higher values indicate greater subdivisions
which increase smoothness.

Range: 0-4. Default: 0

autocad_subdmesh_smoothed_faces This is used by the Reader only and indicates the
number of faces in a subdivision mesh at the current
smoothness level.

Range: A 32 bit integer value. Default: None

autocad_subdmesh_smoothed_vertices This is used by the Reader only and indicates the
number of vertices in a subdivision mesh at the cur-
rent smoothness level.

Range: A 32 bit integer value. Default: None

autocad_subdmesh_watertight This is used by the Reader only and indicates whether
a subdivision mesh is watertight, based on adjacent
polygons sharing common vertices.

Range: Yes | No. Default: None

3D Solids

autocad_entity: autocad_solid3d

Features with this value are used to store both AutoCAD 3D solid and body entities. Cone, elliptical cone, cylinder,
elliptical cylinder, revolve, sphere, and torus 3D solids may be represented by an autocad_solid3d. This value is used
by both the reader and the writer.

Closed surface boundary representations of 3D geometric volumes which may contain representations of multiple
unconnected 3D solids may be stored as surfaces or multi-surfaces on read. Most 3D solids will be represented as
surface boundaries and will be handled as autocad_surface type features on write.

For writing, all 3D solid geometry types are supported. Any types of 3D geometry which are not directly supported as
entities are decomposed into triangulated mesh representation prior to writing.

Autodesk MapGuide SDL Reader/Writer

The Autodesk® MapGuide SDL Reader and Writer modules allow FME to read and write SDL files. The SDL file format
is an ASCII format used with AutoDesk’s MapGuide and other World Wide Web map authoring tools.

Overview

SDL data can be either two-dimensional (2D) or three-dimensional (3D).

SDL files store both geometry and attributions. A logical SDL dataset consists of one or more files in the same direc-
tory with the extension .sdl. This extension is added to the basename of the SDL files.

The SDL reader and writer support the storage of point, line, and polygon geometric data in .sdl files. Output files
contain only one geometry type to conform with MapGuide. The SDL format can also store features with no geometry.
Features that have no geometry are referred to as having a geometry of none.

SDL Quick Facts

Format Type Identifier SDL

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .sdl

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute sdl_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values yes (reader only)

none yes

Reader Overview

The SDL reader first scans the directory it is given for SDL files that have been defined in the mapping file. The SDL
reader then extracts features from the files one at a time, and passes them on to the rest of the FME for further proc-
essing. Optionally a single SDL file can be given as the dataset. In this case, only that SDL file is read.

Reader Directives

The directives processed by the SDL reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the SDL reader is SDL.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the SDL files to be read, or a single SDL file. A typical mapping
file fragment specifying an input SDL dataset looks like:

SDL_DATASET /usr/data/sdl/92i080

Workbench Parameter: Source Autodesk MapGuide SDL File(s)

IDs

Required/Optional: Optional

This specification is used to limit the available and defined SDL files read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
 <baseName2> \
 <baseNameN>

The basenames must match those used in DEF lines. The example below selects only the roads SDL file for input dur-
ing a translation:

SDL_IDs roads

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The SDL writer outputs each feature type into a separate file in order to comply with AutoDesk MapGuide. Each fea-
ture has the following associations: vertices, a name, an ID, and a Universal Resource Locator (URL).

Writer Directives

The directives that are processed by the SDL writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the SDL writer is SDL.

DATASET

Required/Optional: Required

The value for this keyword is the name of the created SDL directory. If a directory of this name exists, it is replaced by
the new SDL. A typical mapping file fragment specifying an output SDL dataset looks like:

SDL_DATASET /tmp

Workbench Parameter: Destination Autodesk MapGuide SDL Directory

DEF

Required/Optional: Required

The SDL writer uses SDL_DEF lines to define files to write features to. A typical mapping file fragment specifying an
output SDL file looks like:

SDL_DEF roads

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), special FME feature attributes direct the SDL writer as it renders the feature into the image. The most
important of these is the sdl_type attribute, which controls the overall interpretation of the feature. The correct
values for sdl_type are sdl_line, sdl_point, and sdl_polygon. The parameters specified for each of
these are described in the following subsections, and the attributes common to each are given in the following table:

Attribute Name Contents

sdl_url Specifies a URL for the line, polygon or point.
Required: No
Default: NULL

sdl_name Specifies an internal name for the line, polygon or point.
Required: No
Default: NULL

sdl_id Specifies an ID for the line, polygon or point.
Required: No
Default: NULL

Lines

sdl_type: sdl_line

The SDL writer outputs a line object containing the points as specified in the input file. Also, the SDL writer outputs a
URL, a name, and an ID number associated with the line object as attributes.

Points

sdl_type: sdl_point

The SDL writer will output a point object containing the points as specified in the input file. Also, the SDL writer will
output a URL, a name, and an ID number associated with the point object as attributes.

Polygons

sdl_type: sdl_polygon

The SDL writer outputs a polygon object containing the points as specified in the input file. Also, the SDL writer out-
puts a URL, a name, and an ID number associated with the polygon object as attributes.

BC MOEP Reader/Writer

The British Columbia (BC) Ministry of Environment and Parks (MOEP) format is a compact binary format used in the
province of B.C., Canada. MOEP features have few attributes, one of which is a feature code which encodes the fea-
ture’s properties. MOEP files can store only integer coordinates.

The MOEP Reader and Writer enables FME to read and write files in binary MOEP format, with either 16-bit or 32-bit
integer coordinates. Support for ASCII MOEP files is not provided.

Note: Throughout this section, a binary MOEP file will be referred to simply as an MOEP file; this reader/writer pro-
vides no support for ASCII MOEP files.

Overview

Each MOEP file starts with a small header, which is immediately followed by a sequence of geometric features. The
header contains information which is global to the MOEP file, including a file type, a name for the content of the file
such as, a mapsheet ID, and whether the coordinates are specified with 16-bit or 32-bit integers. Each feature has a
feature code, a single optional attribute, a geometric type, such as point, line, text, etc., and some type-specific infor-
mation, like coordinates, rotation, text size, etc.

The FME considers an MOEP data set to be a collection of MOEP files in a single directory.

MOEP files are referred to in the mapping file by IDs rather than by physical file names. The mapping between IDs
and physical names is defined by the MOEP file definition lines within the mapping file.

BC MOEP Quick Facts

Format Type Identifier MOEP

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .arc, .bin

Automated Translation Support Yes for Reader
No for Writer

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type Attribute moep_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none no

Reader Overview

The MOEP reader produces FME features for all the feature data held in MOEP files residing in a given directory. The
MOEP reader first scans the directory it is given for the MOEP files which have been defined in the mapping file. For
each MOEP file that it finds, it checks to see if it the ID corresponding to the file is requested by looking at the list of
IDsspecified in the mapping file. If a match is found or if no IDs were specified in the mapping file, the MOEP file is
opened for read. The MOEP reader extracts features from the file one at a time, and passes them on to the rest of the
FME for further processing. When the file is exhausted, the MOEP reader starts on the next file in the directory.

Reader Directives

The suffixes shown below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MOEP reader is MOEP.

DATASET

Required/Optional: Required

The value for this directive is the directory name of the input MEOP files, or a single MOEP file to be read. A typical
mapping file fragment specifying an input MOEP data set looks like:

MOEP_DATASET /usr/data/moep/92i080

or

MOEP_DATASET /usr/data/moep/92i080/92i080a.bin

Workbench Parameter: Source B.C. MOEP File(s)

DEF

Required/Optional: Optional

The definition specifies the ID to use to refer to the file, along with the physical file name and its extension. In addition
to the file name, other global attributes from the table below can be specified in the definition. When additional attrib-
utes are specified for an MOEP file being read, the reader will generate warnings if the specified values do not match
those specified in the file’s header. The writer uses the global attributes to fill in the header of the MOEP file being
written.

The syntax of an MOEPDEF line is:

<ReaderKeyword>_DEF <fileID> \
MOEP_FILENAME <physFileName> \
[<attrName> <attrVal>]*

The following table shows the supported global attributes:

Attribute Name Description

MOEP_FILENAME Name of physical file within MOEP data set.

MOEP_RESOLUTION The size of integer used to represent each X and Y
coordinate value within the MOEP file. This can be
either 16 or 32, indicating 16-bit or 32-bit integers,
respectively.
Z coordinates are always 16 bits, regardless of this
attribute’s value.

MOEP_FILE_TYPE An integer in the range 0..9 denoting the type of
data this file contains.

MOEP_NAME An ASCII string 0 to 11 characters in length, pro-
viding a logical name for the file. This is stored in
the file’s header; it typically contains a mapsheet
ID.

MOEP_FORCE_TYPE5 This optional attribute must be set to either yes or
no. The default is no. If it is yes, a type 5 attribute
record is written with each feature, even if it is
empty.

MOEP_DATE The date of submission of the MOEP file. The format
for this date is YYMMDD, where YY is the last two
digits of the year, MM is the month (01-12), and DD
is the day within the month (01-31).

MOEP_OFFSET_MINIMUM The MOEP writer module uses this value to determine
the origin from which 16-bit (X,Y) coordinates are meas-
ured. As features are written to the MOEP file, their mini-
mum bounding rectangle is maintained; once the MBR is
larger than MOEP_OFFSET_MINIMUM in both the X
and Y directions, its centre point is chosen as the origin
for all coordinates written to the file. This attribute has no
effect on 32-bit coordinates, which are always measured
from (0,0).

The following mapping file fragment defines two MOEP files, one containing DEM data with 16-bit coordinates, and
one containing contours, with 32-bit coordinates:

MOEP_DEF dem_data MOEP_FILENAME 92b053d.arc \
MOEP_FILE_TYPE 1 \
MOEP_RESOLUTION 16 \
MOEP_NAME 92b053d \
MOEP_DATE 960913\
MOEP_OFFSET_MINIMUM 1000

MOEP_DEF contour_data MOEP_FILENAME 92b053t \
MOEP_FILE_TYPE 2 \
MOEP_RESOLUTION 32 \
MOEP_NAME 92b053t \
MOEP_DATE 960913

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined MOEP files read. If no IDs are specified, then all
defined and available MOEP files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <fileID1> \
<fileID1> … \
<fileIDn>

The fileIDs must match those used in DEF lines.

The example below selects only the dem_dataMOEP file for input during a translation:

MOEP_IDs dem_data

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MOEP writer creates and writes feature data to MOEP files in the directory specified by theDATASET keyword.
If the directory did not exist before the translation, the writer will create it. Any old MOEP files in the directory will be
overwritten with the new feature data. The FME determines which file features are to be written to as they are routed
to the MOEP writer. Many MOEP files can be written during a single FME session.

Writer Directives

The MOEP writer processes theDATASET and DEF directives as described in the Reader Directives section. Unlike
the reader, the MOEP writer requires DEF directives to be specified. It does not make use of the IDs directive.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Special FME attributes are used to hold the parameters specific to MOEP features. The MOEP writer uses these attrib-
utes to define aspects of the geometries of the features it writes out, and the MOEP reader will define these attributes
from the MOEP features it reads.

One of these attributes is an optional user attribute which can contain up to 66 characters of arbitrary data.

FME considers the ID of the MOEP file to be the FME feature type of an MOEP feature. The feature type of an MOEP fea-
ture must match the ID of an MOEP file defined by an MOEP DEF line.

Every MOEP feature, regardless of its geometry type, shares the parameters shown in the following table. Sub-
sequent subsections will describe parameters specific to each feature type.

Attribute Name Contents

moep_type The type of the geometry for the feature. This attribute
will contain one of:
moep_line
moep_contour_line
moep_point
moep_text
moep_arc

moep_code Character string with up to 10 characters designating
the feature code of the feature. If this is not specified
for a feature being written, the feature will have the
same feature code as the feature which was most
recently written to the MOEP file.

moep_attribute An optional attribute (MOEP type 05 feature) which can
contain up to 66 characters of arbitrary text. (See also
the moep_font, moep_weight, and moep_text_group
attributes defined on moep_text features.)

Line Features

moep_type:moep_line

MOEP line features have two or more coordinates. FME features with an moep_type ofmoep_line correspond to non-
contour MOEP features with a type of 02, 03, 12, or 13; themoep_display_type and moep_line_type differentiate
between the different types.

The following attributes are defined for moep_line features:

Attribute Name Contents

moep_display_type Determines whether the line is a primary line or a dupli-
cate. Legal values are primary and construction. The
default is primary.

moep_line_type Determines whether the MOEP feature is simple or com-
plex (curvilinear). Legal values are curve and line.
The default is line.

Contour Features

moep_type:moep_contour_line

MOEP contour line features have three or more coordinates. FME features with an moep_type of moep_contour cor-
respond to MOEP features with a type of 02, 03, 12, or 13 which are represent contour data; themoep_display_
type and moep_line_type differentiate between the different types.

Aside from themoep_line_type and moep_display_type attributes that contour lines inherit frommoep_line features, the
following attribute is defined for moep_contour_line features:

Attribute Name Contents

moep_contour_elevation The elevation of the contour line.

Point Features

moep_type:moep_point

In addition to an (X,Y,Z) location, an MOEP point has some additional attributes which affect the display of its point
symbol. The symbol will always be centred around its location, but can be rotated and/or scaled, in both the X and Y
directions.

Attribute Name Contents

moep_rotation Determines the rotation applied to the point symbol,
measured in degrees counterclockwise from horizontal.
The default is 0.0 degrees.

moep_scale_x Multiplier applied to scale the point symbol in the X
direction.(If this is not provided, it defaults to 1.0.

moep_scale_y Multiplier applied to scale the point symbol in the Y
direction. If this is not provided, it defaults to 1.0.

Arc Features

moep_type:moep_arc

MOEP arc features represent a directed circular segment between two points on an ellipse. The representation of an
arc is a set of three (X,Y,Z) coordinates—start of arc, end of arc, and origin of arc—along with a the direction of the
arc.

Attribute Name Contents

moep_sweep_direction The direction in which the arc is drawn. Legal values are
clockwise and counterclockwise. The default is clock-
wise.

Text Features

moep_type:moep_text

MOEP text features represent textual annotation placed at specific world coordinates. The full specification of the
geometry includes an (X,Y,Z) position, the rotation of the text, the text string itself, the size of the text, and a spec-
ification of font, weight, and text group number.

Attribute Name Contents

moep_rotation Determines the rotation applied to the text, measured
in degrees counterclockwise from horizontal.

Attribute Name Contents

moep_text_string The characters which make up a line of the text feature.
The maximum length of a line of text is 66 characters.
Several text features can be grouped into a single fea-
ture using the moep_text_group attribute.

moep_text_size The size of the text feature, measured in ground
metres.

moep_font Specifies a font number for the text, an integer in the
range 0..99. See the discussion below this table regard-
ing the encoding of font, weight, and text group.

moep_weight Specifies the weight of the text, an integer in the range
0..99. See the discussion below this table regarding the
encoding of font, weight, and text group.

moep_text_group Specifies a group number; several text features can be
logically grouped together by giving them the same
group number. This number is a five digit, decimal
integer. See the discussion below this table regarding
the encoding of font, weight, and text group.

It is important to note the relationship between the font, weight, text group, and the optional attribute for the feature.
If font, weight, and text group attributes are specified, MOEP uses the optional attribute of a text feature to store their
values. When these are specified, the format of the attribute string is FFFWWWGGGGGG, where FFF is the font
number,WWW is the weight, and GGGGGG is the text group number. Each number is right-justified in its field,
padded to the left with spaces as necessary.

Similarly, when reading a text feature the optional attribute, if present, is broken down into a font, weight, and text
group.

BC MoF Electronic Submission Framework (ESF) - Read-
er/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

BC Ministry of Forests (MoF) Electronic Submission Framework (ESF) is a set of XML/GML formats that allow clients to
submit data electronically to BC Ministry of Forests and Range and Ministry of Agriculture and Lands. Four ESF for-
mats are supported:

l ESF_ABR: Electronic Submission Framework - As Built Roads

l ESF_FSP: Electronic Submission Framework - Forest Stewardship Plan

l ESF_FTA: Electronic Submission Framework - Forest Tenure Application: The BC Ministry of Forests
(MoF) Electronic Submission Framework (ESF) FTA is a GML format specifying Forest Tenures (FTA) submissions
for the British Columbia Ministry of Forests Electronic Submission Framework.

l ESF_RESULTS: Electronic Submission Framework - RESULTS: The BC Ministry of Forests (MoF) Electronic
Submission Framework (ESF) RESULTS is a GML format specifying silviculture (RESULTS) submissions for the Brit-
ish Columbia Ministry of Forests Electronic Submission Framework.

For more information, go to:

http://www.safe.com/support/resources/esf/index.php

http://www.for.gov.bc.ca/his/esf/index.htm

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the ESF reader is ESF.

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

http://www.safe.com/support/resources/esf/index.php
http://www.for.gov.bc.ca/his/esf/index.htm

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the ESF writer is ESF.

DESTINATION_DATASET

Required/Optional: Required

The file to which the should output the ESF text. If the file does not exist, it will be created.

Example:

DESTNATION_DATASET c:\fta_file.xml

Workbench Parameter: Destination BC MoF ESF File

SUBMISSION_FRAMEWORK

Required/Optional: Required

A submission framework must be selected in the settings box when adding a destination dataset. Once this selection
has been set, it will be displayed in the destination parameters in Workbench. Note, however, that it cannot be
changed after it has been set.

Example:

SUBMISSION_FRAMEWORK "ESF_ABR: Electronic Submission Framework - As Built Roads"

Workbench Parameter: Submission Framework

Bentley MicroStation Design Reader/Writer

The Bentley® MicroStation Design Reader/Writer allows FME to access files used by the MicroStation and Intergraph
Interactive Graphics Design System (IGDS).

Intergraph made public the specification for this file format, which they call the Intergraph Standard File Format
(ISFF)1. This chapter assumes familiarity with this format.

Overview

Design files consist of a header, followed by a series of elements. The header contains global information including
the transformation equation from design units to user coordinates, as well as the dimension of the elements in the
file. Each element contains standard display information, such as its color, level, class, and style, as well as a number
of attributes specific to its element type. For example, a text element has fields for font, size, and the text string in
addition to the standard display attributes.

Tip: The IGDS reader and writer modules support both two- and three-dimensional Design
files and cell libraries.

Individual design file elements must be less than a system-imposed maximum number of bytes. Complex elements
solve this problem by physically grouping individual elements together into an object that will be manipulated as a
whole. The FME transparently handles such complex elements as single FME features. This situation occurs when
text elements are grouped together into a single complex element headed up by a text node, and when linear or polyg-
onal features have more than 101 vertices (Microstation V7) or 5000 vertices (Microstation V8). Cells are complex ele-
ments used as symbols, and are treated as atomic entities by the FME.

Each IGDS file element may have one or more attribute linkages associated with it. The IGDS reader and writer sup-
port both user data and database linkages. (Note, however, that the DGN V8 reader and writer do not support the
interpretation of user linkages. Database linkages and MSLINKS are supported. FRAMME linkages are supported for
reading.) The linkage values may be used to join elements with attributes stored in relational tables through the use
of the @Relate FME Transformation Function. Linkages may also be used to specify fill information for fillable IGDS
area geometries such as Shape elements, and other application-specific data. (Note, however, that the igds_fill_color
attribute will override any solid fill color linkage specification if both are present.)

Because Design files support three interpretations of units, the IGDS reader and writer must be told how to interpret
the feature coordinate units and how they will be converted to and from Units of Resolution (UORs). The feature coor-
dinate units may be interpreted as Master Units, SubUnits, or as raw UORs, depending on the setting of IGDS_UNITS
in the mapping file. However, when writing to DGN V8 files, the writer ignores these settings from the mapping file
and adopts the settings as read from the seed file chosen. This means that if you want to do something special with
the working units, you have to do that in the V8 seed file.

The IGDS reader and writer use symbolic names for the IGDS element types rather than the IGDS numeric values.
This greatly simplifies element type specification. The following table maps the IGDS element type number to its cor-
responding FME feature igds_type attribute value that is used by the IGDS reader and writer. Subsequent subsections
describe the handling of each of these element types in detail.

IGDS Element Type FME igds_type

2 igds_cell

3 igds_point

3,4,12 igds_line

6,14 igds_shape

1Throughout this chapter, the terms IGDS file and Design file are used interchangeably to refer to the ISFF format.

7 igds_text_node

11,12 igds_curve

12 igds_complex_string

14 igds_complex_shape

15 igds_ellipse

16 igds_arc

17 igds_text

7,17 igds_multi_text

2,6,14 igds_solid

34,35 igds_shared_cell

19 igds_3d_solid

100 igds_ref

The Reader/Writer has been enhanced to support enhanced geometry. When features are read/written using
enhanced geometry then all the complex chains, complex shapes and solids (unnamed cells) will preserve arcs and
ellipses within them.

Design File Quick Facts

Format Type Identifier IGDS

Reader/Writer Version 7 Both
Version 8 Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Level number

Typical File Extensions .dgn

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required No

Transaction Support No

Enhanced Geometry Yes

Geometry Type Attribute igds_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none no

Reader Overview

The FME reader detects the version of the source dataset (version 7 or 8) internally and handles it accordingly. There
is no difference to users in terms of the reader keyword or attribute names of the elements.

The IGDS reader first reads the header information from the Design file being processed, and extracts the conversion
parameters required to translate coordinates from internal IGDS UORs to ground units. It also determines the dimen-
sion of the input file.

It then extracts each individual element, one at a time, and passes it on to the rest of the FME for processing. Complex
elements are extracted as single FME features. If a complex element contains an arc, then the reader automatically
converts it to a linestring enabling it to be processed by all other readers and writers within the FME. If the element
had any attribute linkages attached to it, these are read and added as attributes to the FME feature being created.

When the IGDS reader encounters an element type it does not know how to process, it simply ignores it and moves on
to read the next element.

DGN Version 8 also reads the models to which the features belong. All the models read retain their respective working
units and global origin values.

Reader Directives

The IGDS reader processes the <ReaderKeyword>_DATASET directive in the mapping file. The value for this directive
is the file name of the IGDS file to be read. By default, the <ReaderKeyword> for the IGDS reader is IGDS, so a typical
mapping file fragment specifying an input IGDS file looks like:

IGDS_DATASET /usr/data/dgn/92b034.dgn

The IGDS reader also processes the <ReaderKeyword>_UNITS directive in the mapping file. This directive controls the
conversion between UORs in the Design file and FME coordinates. There are three possibilities, outlined in the table
below. If no UNITS directive is specified, then IGDS_SUB_UNITS is assumed.

IGDS_UNITS Value Description

IGDS_MASTER_UNITS The UORs read from the Design file are converted into
master units, according to the conversion factor
read from the Design file header, before being stored
in an FME feature.

IGDS_SUB_UNITS The UORs read from the Design file are converted into
subunits, according to the conversion factor read
from the Design file header, before being stored in an

IGDS_UNITS Value Description

FME feature. This is the default.

IGDS_UORS The UORs read from the Design file are stored directly
in an FME feature with no conversion.

The IGDS reader processes several other directives in the mapping file, as shown below. These enable the FME to
override the Global Origin and Scaling information. The first four directives are normally used only when reading
Design files that have bad header information. If the FME detects a difference between these settings and those read
from the Design file, a warning is output to the log file and these settings prevail.

The IGDS reader can also be configured to output all the elements composing cells, or symbols. This is useful if the
graphical representation of the Design file is to be preserved. This is true when, for example, a Design file is trans-
lated to a GIF image.

UOR_SCALE

Required/Optional: Optional

The number of ground units per UOR.

Workbench Parameter: UOR to FME Feature Coordinate Units scale factor

UOR_GLOBAL_ORIGIN_X

Required/Optional: Optional

The global origin of x measured in UORs.

Workbench Parameter: UOR X Global Origin

UOR_GLOBAL_ORIGIN_Y

Required/Optional: Optional

The global origin of y measured in UORs.

Workbench Parameter: UOR Y Global Origin

UOR_GLOBAL_ORIGIN_Z

Required/Optional: Optional

The global origin of z measured in UORs.

Workbench Parameter: UOR Z Global Origin

SUBS_PER_MASTER

Required/Optional: Optional

The number of sub units per master unit. This is only used if UOR_SCALE is not present.

Workbench Parameter: SUBS PER MASTER UNIT

UORS_PER_SUB

Required/Optional: Optional

The number of UORs per sub unit. This is only used if UOR_SCALE is not present.

Workbench Parameter: UORS PER SUB UNIT

EXPAND_CELLS

Required/Optional: Optional

Controls whether or not all components of a cell will be output by the reader.

If the value is YES, then they are and the cell header itself is not output.

If it is NO, then only the cell header is output.

Values: YES | NO

Default Value: NO

Workbench Parameter: Expand Named Cells

EXPAND_UNNAMED_CELLS

Required/Optional: Optional

This directive should not be confused with EXPAND_CELL in terms of its usage. It is better understood in relation to
igds_solid. When it is set to YES, then no donuts are formed even if they existed and the cell members retain their col-
ors. When it is set to NO, then donuts will be formed if they existed, and the pieces may lose their original colors.

Values: YES | NO

Default Value: NO

Workbench Parameter: Expand Unnamed Cells

PRESERVE_CELL_INSERTS

When EXPAND_CELLS is set to YES, this directive controls whether or not the insert points of the cells are also out-
put.

Values

YES: The cell insert points are output as igds_cell features in addition to the cell components

NO (default): Only the cell components are output.

Required/Optional

Optional

Workbench Parameter

Preserve Named Cell Inserts

PRESERVE_UNNAMEDCELL_INSERTS

Required/Optional: Optional

If the value is YES, then the cell insert points are output in addition to the cell components.

If it is NO, then only the cell components are output.

Values: YES | NO

Default Value: NO

Workbench Parameter: Preserve Unnamed Cell Insert Points

PROPAGATE_CHAIN_ELEMENT_LINKAGES (applicable only with classic geometry)

Required/Optional: Optional

Controls how the linkages attached to complex chain element features are handled.

If the value is YES, then the linkages attached to the first component of the complex chain are returned on the FME fea-
ture, supplementing any existing linkages.

If it is NO, then any linkages on the component elements themselves will be lost and only those linkages attached to
the complex chain itself will be returned.

Values: YES | NO

Default Value: NO

Workbench Parameter: <WorkbenchParameter>

SPLIT_COMPLEX_CHAINS (applicable only with classic geometry)

Required/Optional: Optional

Controls whether or not complex chain elements are returned, merged as a single linear feature or as their com-
ponent parts.

If SPLIT_COMPLEX_CHAINS is YES, then FME adds the attribute igds_chain_number which is added to each element
of a chain split. If desired, this can later be used to aggregate chain elements.

If the value is YES, then each component of a complex chain will be returned as its own feature and no feature will be
returned for the complex chain as a whole. This is equivalent to dropping the complex chain in MicroStation. If the
header had any linkage attributes, these will be propagated to the component elements.

If the value is NO, then all elements of the complex chain will be merged into a single linear feature, any arcs in the
complex chain will be converted into linestrings and any linkages on the component elements themselves will be lost.

Values: YES | NO

Default Value: NO

Workbench Parameter: <WorkbenchParameter>

AGGREGATE_COMPLEX_CHAINS (applicable only with classic geometry)

Controls whether or not complex chain element features are returned as aggregates.

If the value is YES then the individual element properties are held in the igds_complex_elements{} list, and the igds_
type is set to igds_complex_string or igds_complex_shape.

If specified, this setting takes precedence over SPLIT_COMPLEX_CHAINS. In other words, if the value of AGGRE-
GATE_COMPLEX_CHAINS is YES, any value specified for SPLIT_COMPLEX_CHAINS is ignored.

Required/Optional

Optional

Values

YES | NO (default)

TAGS_AS_TEXT

Controls whether or not visible tag data elements are output as separate text elements, in addition to having their data
attached to the primary graphic element they go with.

Required/Optional

Optional

Values

YES | NO (visible tag data elements are not output as text elements)

Workbench Parameter

Output Tags as Text

PRESERVE_CURVES

Controls whether or not curve elements will be stroked into lines by adding vertices.

Required/Optional

Optional

Values

YES | NO (curves are not preserved and are stroked into lines)

Workbench Parameter

Preserve Curves

ELEVATION_SHIFT_FACTOR

If an elevation shift is desired to build "fake" 3D topology, this is the scaling factor used to generate the shift.

Specifically, the Z value is divided by this factor and the result is added to the X value.

Required/Optional

Optional

Workbench Parameter

Elevation Shift Factor

CURVE_VERTICES

This directive is used only when PRESERVE_CURVES is set to NO. It controls the number of interpolated points
per segment when the curve is stroked into a line.

Required/Optional

Optional

Default Value

5

Workbench Parameter

Number of interpolated curve vertices

TRIM_DOWN_TAGS

Removes the tag attributes when set to YES.

Required/Optional

Optional

Values

YES | NO (default)

Workbench Parameter

Strip Off Tag Information

SPLIT_MULTITEXT

When set to YES, the reader splits the multi-text into text nodes and outputs the member text elements as individual
text elements.

When set to NO, the text elements are not split.

Required/Optional

Optional

Values

YES (default) | NO

Workbench Parameter

Split multi text

READ_BYTE_OFFSET

Required/Optional: Optional

Version: supported for version 7 only

If set to YES, adds the igds_element_byteoffset attribute (which contains the position of the element in the .dgn
file) to the feature. Note, however, that turning this option on might significantly slow down reading on some plat-
forms like UNIX.

Values: YES | NO

Default Value: NO

Workbench Parameter: <WorkbenchParameter>

EXPLODE_DIMENSION_ELEM

Required/Optional: Optional

If set to YES, explodes the dimension element into its pieces. If set to NO, then imports the dimension element as an
aggregate. When importing as an aggregate, the text members are not output as features but are stored as list attrib-
utes of the dimension, and the arc members are stroked.

Values: YES | NO

Default Value: YES

Workbench Parameter: <WorkbenchParameter>

READ_XREF_FILES

If set to YES, reads all the supported elements in the external reference files attached to the source dataset. If the ref-
erence file has nested references, they are also imported. Note that this directive does not affect the reading of ref-
erence file elements as features with an igds_type of igds_xref.

Required/Optional

Optional

Values

YES | NO (default)

Workbench Parameter

Read Reference Files

READ_XREF_UPTO_FIRST_LVL

If set to YES, reads all the supported elements in the external reference files attached to the source data set up to the
first level of nesting only. Note that this directive does not affect the reading of reference file elements as features
with an igds_type of igds_xref.

This directive is valid only if READ_XREF_FILES is set to YES.

Required/Optional

Optional

Values

YES | NO (default)

Workbench Parameter

Read Reference up to First Level

USE_XREF_PARENT_MODEL

If set to YES, uses the model of the parent file of the xref file. Note that this directive does not affect the reading of ref-
erence file elements as features with an igds_type of igds_xref.

This directive is applicable to version 8 only, since models are supported in version 8 but not in version 7.

Required/Optional

Optional

Values

YES (default) | NO

Workbench Parameter

Use Reference's Parent Model (V8 only)

EXPLODE_MULTI_LINE

Required/Optional: Optional

If set to yes, then multilines are exploded into its pieces.

Values: YES | NO

Default Value: NO

READ_DELETED_ELEMENTS

Required/Optional: Optional

This directive is used to read deleted elements.

Note: This directive will not be made available in Workbench Format Parameters. To use this directive, it has to be
set to TRUE in the mapping file.

Values: TRUE | FALSE

Default Value: FALSE

APPLY_WORLD_FILE

Use this directive when you have an ESRI World file (*.wld) that you want FME to use when determining the coor-
dinates for features in your dataset.

When this directive has a value of YES, FME will search the directory of the dataset for a file with the same name as
your dataset but with a .wld extension. If it cannot find a file with that name, it will then look for the file “esri_
cad.wld” within the dataset directory.

If either of those files exist, FME will use the information in the files to translate the coordinates of the features in the
dataset to their new geospatial coordinates.

If the files cannot be found, then the translation will continue, using the coordinate information found in the dataset,
without performing any additional transformation.

Required/Optional

Optional

Values

n YES (Workbench default)

n NO (mapping file default)

Workbench Parameter

Apply World File (.wld)

REMOVE_DUPLICATES (applies to classic geometry only)

Set this directive to Yes when it is intended to remove the duplicate points (same x and y coordinates) from the geome-
try of the feature.

Required/Optional

Optional

Values

n YES (mapping file default)

n NO (Workbench default)

Workbench Parameter

Remove Duplicate Points

Reader Directives for FME Objects

SCHEMA_INCLUDE_MSLINKS

Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for MSLINKS are added to the feature.

Values: YES | NO

Default Value: NO

Reader Directives for FME Objects

SCHEMA_INCLUDE_MSLINKS

Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for MSLINKS are added to the feature.

Values: YES | NO

Default Value: NO

SCHEMA_INCLUDE_FRAMME

Required/Optional: Optional

This directive can be used for FME Objects only. When set to YES, schema for FRAMME linkages are added to the fea-
ture.

Values: YES | NO

Default Value: NO

Writer Overview

To create a new Design file, header information is obtained from an existing Design file, called a seed file. The IGDS
writer first copies the seed file’s header information to the destination file, and then extracts the conversion param-
eters required to translate coordinates from feature coordinate units to internal IGDS UORs1. This header information

1Since coordinates in Design files are ultimately stored as integer UORs, it is possible for precision to be lost or over-
flow to occur when they are output. Care must be taken to ensure that the conversion parameters in the seed file pre-
serve the data precision and range.

includes type 68 FRAMME elements for V7 only, and type 100 external file reference elements. The IGDS writer uses
the seed file to determine whether the destination file will be two-dimensional or three-dimensional.

Because seed files with a sufficient ground range and resolution may be difficult to obtain, the IGDS V7 writer allows
seed parameters to be overridden in the mapping file. When a seed file with insufficient range available is used, the
IGDS V7 writer will report that features were outside of the bounds of the seed file, and suggest values for the global
origin and UOR/subunit/master unit ratios to use. The FME can also automatically adjust the V7 Design file by setting
the COMPUTE_SEED_FILE_PARAMS flag to yes. Note that this facility has been taken away from the V8 writer – it is no
longer necessary since V8 has a much larger design plane than V7.

Note: When translating from DGN version 8 to DGN version 7 or vice versa in FME Workbench, by default a v8 seed
file is chosen from the set of seed files as provided by FME. This has to be changed to an appropriate version 7 or
version 8 seed file in order to achieve a successful conversion. The seed file is used to determine which version the
user intends to write. Also note that if the user picked a v7 seed file at the time of generating the workspace, the
same workspace can be used to write to v7 or v8 by changing the seed file accordingly. But if a workspace was ini-
tially generated to write to v8, then it cannot be used to write to v7.

A cell library file may optionally be used by both V7 and V8 writer. Cell libraries contain named symbol definitions
which can be used to depict point features. If a cell library is specified, the IGDS writer reads in all the cell definitions
for later when cell features are output. The IGDS writer can use either 2- or 3-dimensional cell libraries, and will auto-
matically convert the cell definitions to be of the correct dimension for output.

The IGDS writer then outputs each FME feature it is given. Most often, a single FME feature corresponds to a single
IGDS element. If any linkages are specified for the element, they are also output. However, some of the IGDS element
types cause several elements to be output as a complex unit, with the complex bit turned on. This occurs when a
multi-line text object, a cell, or a closed shape or linear feature with more than 101 coordinates (5000 coordinates in
V8) is output. The IGDS writer hides all of the details of complex element output.

The IGDS writer can be configured to do one of two things with linear features that have exactly two points. By
default, a type 4 linestring will be created for such features. However, if IGDS_CREATE_LINE_ELEMENTS is set to yes
in the mapping file, then a type 3 line element will be created for the two-point linear feature.

Note: Design files (V7) can be a maximum of 32 MB in size. Files larger than this will not be completely read by
Microstation. The IGDS writer will automatically split any design file it is writing into pieces to avoid overrunning
this maximum size. When this happens, features that would have caused the size limit to be exceeded are written
to additional design files as necessary. The additional files are named <basename>_#.dgn, where # starts at 1 and
increases.

Writer Directives

By default, the <WriterKeyword> for the IGDS writer is IGDS, so a typical mapping file fragment configuring the IGDS
writer would be:

IGDS_DATASET /usr/data/dgn/92b034.dgn
IGDS_SEED_FILE /usr/data/dgn/2dseed.dgn
IGDS_CELL_LIBRARY /usr/data/dgn/cartog.cel

DATASET

The file name of the output IGDS file.

Required/Optional

Required

Workbench Parameter

Destination Bentley MicroStation Design File

SEED_FILE

The file name of the Design file which will be used to seed the output file’s header information. The default seed file
(V8) is:

$(FME_HOME)/design/seed3d_m_v8.dgn

To write to V7, you will have to select a valid V7 seed file.

It is important to note that the seed file determines which destination version to write.

Required/Optional

Required

Workbench Parameter

V7/V8 Seed File

ALLOW_FILL

Controls whether or not fill linkages will be written out for ellipses, shapes, and solids. This setting does not affect the
usable

Required/Optional

Optional

Values

YES (default) | NO

Workbench Parameter

Allow Area Color Fills

CELL_LIBRARY

The file name of an IGDS cell library that contains the definitions of cells which may later be output.

Required/Optional

Optional

Workbench Parameter

Cell Library File

DEFAULT_CELL_NAME

The default cell used in place of any cells requested but not found in the cell library.

Required/Optional

Optional

Version

This directive is not currently supported by the V8 writer.

Workbench Parameter

Default Cell Name

UNITS

Specifies how FME feature coordinates will be interpreted and converted into UORs.

See theReader Overview for details.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

Output Units

CREATE_LINE_ELEMENTS

Controls whether or not type 3 line elements will be created for two point linear features.

Values

YES | NO (default)

If set to NO, then type 4 elements will be created.

Required/Optional

Optional

Workbench Parameter

Type 3 Elements

COMPUTE_SEED_FILE_PARMS

Automatically adjusts the origin and scaling of the seed file to provide an optimum set of parameters for the input
data.

Version

This directive is not currently supported by the V8 writer. It is ignored if chosen with a V8 seed file.

Required/Optional

Optional

Workbench Parameter

Compute Optimal Seed File Parameters

UOR_GLOBAL_ORIGIN_X

The global origin of x, measured in UORs. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

UOR X Global Origin

UOR_GLOBAL_ORIGIN_Y

The global origin of y, measured in UORs. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

UOR Y Global Origin

UOR_GLOBAL_ORIGIN_Z

The global origin of z, measured in UORs. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

UOR Z Global Origin

MASTER_UNIT_NAME

The two-character master unit name to use. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

Master Unit Name

SUB_UNIT_NAME

The two-character sub unit name to use. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

Sub Unit Name

SUBS_PER_MASTER

The number of sub units per master unit. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

Subs per Master

UORS_PER_SUB

The number of UORs per sub unit. Overrides that read from the seed file.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

UOR per Sub

MANGLE_DBCS_TEXT

Controls whether or not double-byte-character-set text is mangled when text strings are written.

MicroStation uses special header bytes to single DBCS text. Note that the IGDS reader automatically de-mangles DBCS
text.

Values

YES | NO (default)

If this directive is set to Yes in the mapping file, then these special bytes will be output when a DBCS text string is
encountered. The default value is No.

Version

This directive is not currently supported by the V8 writer.

Required/Optional

Optional

Workbench Parameter

Mangle DBCS Text

SPLIT_BIG_DGN7_FILES

Allows user to split Version 7 DGN files bigger than 32 MB.

Note that this directive can be manually set to No in the mapping file.

Values

YES (default) | NO

Version

This directive applies to the V7 writer only.

Required/Optional

Optional

Workbench Parameter

Split Files (V7 Only)

SPLIT_SIZE_DGN7_FILES

This directive allows you to set the size of the output file, in MB. It is applicable only if SPLIT_BIG_DGN7_FILES
is set to YES.

Values

Default value: 32 MB

Version

This directive applies to the V7 writer only.

Required/Optional

Optional

Workbench Parameter

Split Size in MB (V7 Only)

WRITE_TAGS

Controls whether or not tags should be written for the elements which have necessary tag information attached to
them as attributes.

Values

YES | NO (default)

Version

This directive currently applies only to the V8 writer.

Required/Optional

Optional

Workbench Parameter

Write Tags

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature Attrib-
utes), this format adds the format-specific attributes described in this section.

Special FME feature attributes are used to hold IGDS element parameters. The IGDS writer will use these attribute
values as it fills in an element structure during output. The IGDS reader will set these attributes in the FME feature it
creates for each element it reads.

The FME considers the IGDS level to be the FME feature type of an IGDS feature. Each IGDS element, regardless of its
geometry type, shares a number of other parameters, as described in the following table. Subsequent subsections
describe parameters specific to each of the supported element types.

When writing elements, igds_type has precedence over the igds_element_type, unless there is more than one ele-
ment type for a given type. For example, for igds_line the igds_element_type can be used to force the element to be a
type 4 line element, even if there are only 2 vertices on the line (that is, by rights it should be a type 3 element).

Attribute Name Contents

igds_basename The base filename (without extension) of the design file the elements
were read from. This attribute is ignored by the writer.

Range: ASCII filename

igds_color The element’s color setting. This is the element’s color index into the
color table stored in the design file. This attribute will be overridden by
the igds_symbology value.

Range: 0..255

Default: 0

igds_color.red

Reader only

The element’s red color intensity, as determined by look-
ing up the element’s color index in the color table.

Range: 0..255

igds_color.green

Reader only

The element’s green color intensity, as determined by looking up the ele-
ment’s color index in the color table.

Range: 0..255

igds_color.blue

Reader only

The element’s blue color intensity, as determined by look-
ing up the element’s color index in the color table.

Range: 0..255

igds_class The element’s class.

Range: 0..15

Default: 0

igds_element_type The numeric Design file element type code of the element. When writing
to a Design file, the igds_type field overrides this attribute. This attrib-
ute will be overridden by the igds_type value.

Range: See the Overview subsection.
Default: No default

igds_graphic_group The element’s graphic group number.

Range: 0..65535

Default: 0

Tip: By using a common value for graphic group value, several other-
wise separate elements may be tied together into a logical super-ele-
ment for later processing by application programs.

Attribute Name Contents

igds_hole

Writer only

If present, it sets the “hole” bit on the element it is creating.

Range: string

Default: No default

igds_level The IGDS level of the feature. The value of this attribute is the same as
the feature type. The Writer will use the value of this attribute if the fea-
ture's type cannot be converted into a valid IGDS level.

Range: 0..64

(There is no upper limit on levels for Version 8 DGN files.)

Default: No default

igds_level_comment

Reader only

The comment associated with the level from which the element orig-
inated.

Range: String
Default: No default

igds_level_group_id

Reader only

The group identification of the level from which the element originated.

(Does not exist for Version 8 DGN files.)

Range: String

Default: No default

igds_level_name During reading this represents the name of the level from which the ele-
ment originated.

Note: For writing to Version 8 DGN files only, this may be used instead
of the feature_type to set the level name.

Range: String

Default: No default

igds_color_set_bylevel Set to yes if the element’s color is set by level; otherwise it is set to no. If
it is set to yes, the writer sets the element’s property to pick the color
from the level it is on. (Note: Applies to Version 8 DGN files only.)

Range: yes/no

Default: No default

igds_style_set_bylevel Set to yes if the element’s style is set by level; otherwise
it is set to no. If it is set to yes, the writer sets the ele-
ment’s property to pick the style from the level it is on.
(Note: Applies to Version 8 DGN files only.)
Range: yes/no
Default: No default

igds_weight_set_bylevel

Note: Applies to Version 8 DGN files
(Reader only)

Set to yes if the element’s weight is set by level; otherwise it is set to no.
If it is set to yes, the writer sets the element’s property to pick the
weight from the level it is on.

Range: yes/no

Default: No default

Attribute Name Contents

igds_snappable The element’s snappability.

Range: yes or no

Default: yes

igds_style The element’s line style. This attribute will be overridden by the igds_
symbology value.

Range: 0..7

Default: 0

igds_style_name

Note: Applies to Version 8 DGN files
(Reader only)

The name of the element's line style. This attribute is used by the reader
to provide the name of the style used in the igds_style attribute.

Range: String

Default: No default

igds_symbology A single integer encoding the element’s style, weight, and color accord-
ing to this formula:

symbology = style + 8*weight + 256 * color

This attribute will override the individual settings for style, weight, and
type if it is specified.

Range: 0..65536

Default: None

igds_type The FME name for the type of element this feature represents.

Range: See the table in the Overview subsection.

Default: No default

igds_weight The element’s line weight. This attribute will be overridden by the igds_
symbology value.

Range: 0..31

Default: 0

igds_xlow The element's minimum X value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_xhigh The element's maximum X value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_ylow The element's minimum Y value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_yhigh The element's maximum Y value in ground units. The value of this attrib-
ute is ignored when writing.

Range: Any Number

igds_zlow The element's minimum Z (elevation) value in ground units. The value of
this attribute is ignored when writing 3D files to V7, and is ignored

Attribute Name Contents

when writing to V8.

Range: Any Number

Default: No default

igds_zlow_uor The element's minimum Z (elevation) value in UORs. The value of this
attribute takes precedence over igds_zlow when the feature is written.
The value of this attribute is ignored when writing 3D files to V7, and is
ignored when writing to V8.

Range: Any Number

Default: No default

igds_zhigh The element's maximum Z (elevation) value in ground units. The value
of this attribute is ignored when writing 3D files to V7, and is ignored
when writing to V8.

Range: Any Number

Default: No default

igds_zhigh_uor The element's maximum Z (elevation) value in UORs. The value of this
attribute takes precedence over igds_zhigh when the feature is written.
The value of this attribute is ignored when writing 3D files to V7, and is
ignored when writing to V8.

Range: Any Number

Default: No default

igds_custom_linestyle If an element has a custom line style, then this attribute will contain the
name of the custom line style. It does not appear as part of the attrib-
utes of the element in case it does not have any custom line styles
defined for it.

Range: String

Default: No default

igds_custom_
linestyle_rbit

This is used to write the custom line styles. This value sets the rbit of
the user linkage.

Range: 0 or 1

Default: 0

igds_custom_
linestyle_mbit

This is used to write the custom line styles. This value sets the mbit of
the user linkage.

Range: 0 or 1

Default: 0

igds_custom_
linestyle_ibit

This is used to write the custom line styles. This value sets the ibit of the
user linkage.

Range: 0 or 1

Default: 0

igds_custom_
linestyle_class

This is used to write the custom line styles. This value sets the class of
the user linkage.

Range: 0 or 1

Attribute Name Contents

Default: 0

igds_element_
byteoffset

This is used to tell the position of the element.

Range: Any Number

Default: No default

igds_model_name

Note: Applies to Version 8 DGN files.

The name of the model to which the feature belongs.

Range: String

Default: No default

igds_model_id

Note: Applies to Version 8 DGN files.

The ID of the model to which the feature belongs.

Range: Any positive integer

Default: No default

igds_element_new The NEW property of the element.

Range: YES or NO

Default: No default

igds_element_modified The MODIFIED property of the element.

Range: YES or NO

Default: No default

igds_date_last_modified

Note: Applies to Version 8 DGN files
(Reader only)

Stores the date the element of last modified in the format YYYYMMDD
hh:mm:ssAM/PM.

Default: No default

igds_element_locked The LOCKED property of the element.
Range: YES or NO
Default: No default

igds_element_id The unique ID of each element in a DGN file.

Note: Applies to Version 8 DGN files.

Range: Any positive integer

Default: No default

mslink_x Value of mslink key of the corresponding linkage, where x is the linkage
number starting with 0.

Default: No default

entity_num_x Value of entity_number of the corresponding linkage where x is the link-
age number starting with 0.

Default: No default

link_type_x Value of link type of the corresponding linkage, where x is the linkage
number starting with 0.

Default: No default

igds_element_association_id The tags store this ID as the element ID it is attached to.

Attribute Name Contents

igds_z_value This attribute is for the writer only and should be used only when 3D is
intended to be forced.

Default: 0

igds_chain_number If SPLIT_COMPLEX_CHAINS is YES, then FME adds the attribute igds_
chain_number which is added to each element of a chain split.

Default: No default

igds_deleted This attribute is set to yes only when the element read was a deleted ele-
ment.

Default: No default

igds_element_visibility

Note: Applies to Version 8 DGN files.

This attribute has the value yes if the level the element is on has its dis-
play property set to “on”; otherwise, the value is no.

Default: No default

igds_element_view_independent

Note: Applies to Version 8 DGN files.

This attribute has the value yes if the element is view-independent;
otherwise, the value is no.

Default: yes

igds_is_graphic_cell_relative Note: This attribute is for graphic cells only. It is ignored for point cells
and shared cells.

If this attribute is set to Yes, then the graphic cell is written as relative
graphic cell. This means that the cell member with the lowest level
number will be put on the current (feature's) level. All the subsequent
ones are offset accordingly.

For example, if a cell had members on level 4, 6 and 7 respectively and
we are writing this cell feature on level 2, then the member with level 4
gets written on level 2. The members with level 6 and 7 are written on
level 4 and 5, respectively.

This also applies to members of nested cells. Note that all the offset lev-
els should be provided in the seed file, otherwise the cell would be
skipped.

Note:When writing to Version 8 DGN files only, if the igds_level is not
supplied, the level name will be used to look up the level number in the
seed file.

Default: No

Attribute Linkages

Each element in an IGDS file may have one or more attribute linkages attached to it. The IGDS reader and writer sup-
port both user data and database attribute linkages.

Note, however, that the DGN V8 reader and writer do not support the interpretation of user linkages. Database link-
ages and MSLINKS are supported. FRAMME linkages are supported for reading.

Because an element may have more than one linkage, linkages are stored in an FME feature attribute list named igds_
linkage{#}. As with other feature attribute lists, # starts at zero and increments for each successive linkage.

Currently, only database and DMRS linkages are supported for reading and writing of Version 8 DGN files. How-
ever, FRAMME linkages are supported when reading Version 8 DGN files.

Attribute Lists – all linkages

The following attribute list item names are used by all linkages. Note that the class and various bit fields are not used
when the linkage type is dmrs.

Linkage Parameter Contents

type The type of linkage.
Range:
user|dbase|odbc|
oracle|informix|ris|
dmrs|framme
Default: No default
Note: User and FRAMME linkages are not currently sup-
ported for Version 8 DGN files.

class Linkage Class.
Range: 0..15
Default: 0

ibit Linkage ibit value. This bit represents whether the linkage
is informational or non-informational.
Range: 0|1
Default: 0

mbit Linkage mbit value. Indicates linkage has been modified.
Range: 0|1
Default: 0

rbit Linkage rbit value. The bit is set for remote linkages.
Range: 0|1
Default: 0

ubit Linkage ubit value.
Range: 0|1
If set to 1 then linkage is user data linkage; if set to 0,
then the linkage type is always dmrs.
Default: 1

Attribute Lists – user linkage

If the linkage is of type user (Version 8 DGN files support user linkages having a userId of 2570, 22244, 32000,
32001, or 39030 only), then these attribute list item names are used to specify the values for the user linkage:

Linkage Parameter Contents

userId The user ID of the linkage. This is application-specific.
Range: 0..65535
Default: No default

long{#} The user data associated with a user linkage may be spec-
ified as a list of 32-bit long integers or as a list of 16-bit

Linkage Parameter Contents

words. If 32-bit long integers are used to fill out the attrib-
ute linkage, they have this suffix and are numbered
sequentially starting from 0.
Range: 32-bit integer
Default: 0

word{#} If 16-bit words are used to fill out the attribute linkage,
they have this suffix and are numbered sequentially start-
ing from 0.
Range: 0..65535
Default: 0

User linkages with a userId of 2570, 22234, 32000, 32001, or 39030 (Extended entity data linkage)

In V7 these linkages are supported like any other user linkages, but in V8 FME stores them as a blob and that gets car-
ried over to V8 as a blob.

Note that in order to get Extended Entity Data linkages to carry over correctly, the original file containing these link-
ages should be picked as the seed file. The support for these linkages would work for V8 to V8 only. Any attempt to
transfer them from V7 to V8 (or vice versa) will not work. In V8, they store linkage attributes as follows:

Linkage Parameter Contents

userId The user -ID of the linkage. This value would be any of
2570, 22244, 32000, 32001, or 39030.
Default: No default

blob This stores the linkage as binary data.
Default: No default

blobsize Stores the size of the blob.
Range: 0..256
Default: No default

flags Flags for the user linkage.
Range: 0..256
Default: No default

type Type of linkage.
Default: user

Attribute Lists – dbase, odbc, oracle, ris, dmrs, informix linkages

If the linkage is of type dbase, odbc, oracle, ris, dmrs, or informix, then these attribute list item names are used to
specify the values for the database linkage.

Linkage Parameter Contents

entity_number The entity number of the linkage.
Range: 0..65535
Default: 1

key The key value of the database linkage. This value cor-
responds to the value in a field in the attribute row asso-
ciated with the element in the database.
Range: 32-bit integer for 8 word linkage formats (i.e.,
Oracle, ODBC) and 24-bit integer for 4 word linkage formats
(i.e., DMRS)
Default: No default

readonly This applies to the dmrs linkages and indicates whether or
not the linkage is readonly. MGE systems also use this to dif-
ferentiate between feature (which are readonly) and attribute
(which are not) linkages.
Range: yes|no
Default: yes

trailing_flags The trailing flags of the database linkage. This can be used
to set the "daskey".
(Not supported for Version 8 DGN files.)
Range: signed 32-bit integer
Default: 0

firstword This is the actual value of the first word of the dmrs linkage.
It is stored for dmrs linkages only.
Range: Unsigned 16-bit integer
Default: 0

ltype This attribute is used internally by the V8 writer and is not
intended for users.

key2 This attribute is used internally by the V8 writer and is not
intended for users.

suspectlinkage This attribute is stored only if the reader detected that a cer-
tain linkage had an odd number of words, rather than an
even number.

Attribute Lists – framme linkage

If the linkage is a framme type, the following attribute list item names are used to specify the values for the Facilities
Rulebase Application Model Management Environment (FRAMME) linkage.

Familiarity with the FRAMME system is necessary to fully understand the meaning of these attributes. Note that
FRAMME linkages are only supported when reading Version 8 DGN files.

Linkage Parameter Contents

ufid The unique feature ID of the linkage. This is part of the data-
base key used by FRAMME.
Range: unsigned 32-bit integer
Default: 0

ufid_low The high low order bytes of the unique feature ID of the linkage. This is part
of the database key used by FRAMME.

Range: unsigned 16-bit integer
Default: 0

ufid_high The low order bytes of the unique feature ID of the linkage. This is part of
the database key used by FRAMME.

Range: unsigned 16-bit integer
Default: 0

design_file The base name of the design file holding the linkage. This
makes up the second part of the database key used by
FRAMME.
Range: character string
Default: No default – not used when writing

state_num The state number of the FRAMME feature
Range: unsigned 16-bit integer
Default: 0

rule_base_id The FRAMME rule base identifier which is fixed at 0x20.
Range: 0x20 (32 decimal)
Default: 0x20

component_num The component number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

component_count The component count, or occurrence, of the FRAMME fea-
ture.
Range: unsigned 16-bit integer
Default: 0

feature_num The feature number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

long{#} A list of 16-bit words that associated with "long" FRAMME
linkages.
Range: unsigned 16-bit integer
Default: 0

For convenience, some of the list item names above are provided as non-list attributes which represent only the first
framme linkage found per element. These attributes are listed below.

Linkage Parameter Contents

ufid The unique feature ID of the linkage. This is part of the data-
base key used by FRAMME.
Range: unsigned 32-bit integer
Default: 0

ufid_low The high low order bytes of the unique feature ID of the link-
age. This is part of the database key used by FRAMME.
Range: unsigned 16-bit integer
Default: 0

ufid_high The low order bytes of the unique feature ID of the linkage.
This is part of the database key used by FRAMME.
Range: unsigned 16-bit integer
Default: 0

dgnfile The base name of the design file holding the linkage. This
makes up the second part of the database key used by
FRAMME.
Range: character string
Default: No default – not used when writing

state_num The state number of the FRAMME feature
Range: unsigned 16-bit integer
Default: 0

comp_num The component number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

comp_count The component count, or occurrence, of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

feat_num The feature number of the FRAMME feature.
Range: unsigned 16-bit integer
Default: 0

Attribute Lists – incosada linkage

If the linkage is an incosada type, then the following attribute names are added by the reader to hold the values for
the British Columbia Forestry File (INCOSADA) linkage. Note that INCOSADA linkages are not supported in Version 8
DGN files, nor are they supported by the Design file writer.

Linkage Parameter Contents

incosada_fid The unique feature ID of the linkage.

Range: Character string of size 32 consisting of hex digits

Linkage Parameter Contents

incosada_sequence_
num

Sequence number of the linkage.

Range: integer

incosada_feature_
code

The feature code of the INCOSADA feature

Range: unsigned 32-bit integer

Example

For example, the FME feature specified by the partial transfer specification below would have two linkages. The first
linkage is a user linkage which specifies that the shape is to be filled with color 12, and the second linkage is a dBASE
linkage which links the element to the record with the key value of 1001. Note that if the same feature were to have an
igds_fill_color attribute, its value would override override the color specified in any solid fill.

MACRO fillUserId 65
MACRO fillMagic 67586
IGDS 32 igds_type igds_shape \

igds_color 8 igds_weight 1 \
igds_linkage{0}.type user \
igds_linkage{0}.userId $(fillUserId) \
igds_linkage{0}.long{0} $(fillMagic) \
igds_linkage{0}.long{1} 12 \
igds_linkage{1}.type dbase \
igds_linkage{1}.key 1001

Custom Line Styles

The custom line styles are stored as linkages of the element.

In V7, each custom line style name has an ID, which is a negative integer, and is stored as igds_link-
age{n}.long{0}. In V8, each custom line style name has an ID, which is a negative integer, and is stored as
igds_style. (Note that there are some limitations to V8 custom line style support.)

It is fairly simple to write custom line styles while translating from dgn to dgn. However, it is the user’s respon-
sibility to provide the correct seed file containing the definitions of the custom line styles and to copy the .rsc file
into the directory containing other Microstation resource files. Here are the steps to configure Microstation for Custom
Line Styles:

1. Open the seed file or destination file.

2. Select Workspace > Configuration > Symbology.

3. Click Select.

4. Select the .rsc file that you want to use.

5. Click Add to add the .rsc file to the list.

6. Click OK and then Done.

7. Close the file and then reopen it. It is important close the file; otherwise, the changes in the configuration just
made are not reflected.

8. From the Active Line Style pull-down menu, select Custom. Then select the name of line style that you want to
use, and double click to activate it.

9. Select File > SaveSettings.

It is also possible to write a new custom line style when writing to a dgn file in cases where it was not originally pro-
vided in the source dataset. The user has to provide the value of igds_custom_linestyle whereas it is
optional to provide the values for igds_custom_linestyle_rbit, igds_custom_linestyle_mbit,
igds_custom_linestyle_ibit and igds_custom_linestyle_class. If they are not provided, the
writer uses the default values.

Note: When translating from DGN to DGN where a complex chain in the source data set has custom line styles, then
you have to set the keyword PROPAGATE_CHAIN_ELEMENT_LINKAGES to true to translate the custom line
styles properly to the destination format.

If a complex chain has different line styles, then in order to retain those line styles, set “Drop Complex Chain” to
yes.

Arcs

igds_type: igds_arc

This geometry type is stored in an IGDS type 16 element. Arc features are just like ellipse features, except that two
additional angles control the portion of the ellipse boundary that is drawn. Arcs with 3D rotations will be stroked into
lines and returned as igds_line elements.

Tip: The function@Arc() can be used to convert an arc to a linestring. This is useful for storing
arcs in systems which do not support them directly.

Attribute Name Contents

igds_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

igds_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

igds_start_angle Refer to the @Arc (function) in the FME Functions and Factories man-
ual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: No default

igds_sweep_angle Refer to the @Arc (function) in the FME Functions and Factories man-
ual for a detailed definition of sweep_angle.

Range: Any real number > 0
Default: No default

igds_rotation The rotation of the major axis. The rotation is measured in
degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

igds_arc_orientation The orientation of the arc. As the sweep angle is always
returned as positive, this field can be used to determine the
original orientation of the arc. This attribute is only used dur-
ing reading.
Range: clockwise | counterclockwise
Default: none

igds_quat_p

igds_quat_q

igds_quat_r

Values of quaternion for 3D arcs
Default: none

Attribute Name Contents

igds_quat_s

Cells

igds_type: igds_cell

Cells correspond to IGDS element type 2. The FME feature used to hold a cell element does not contain the complete
set of elements which make up the cell’s definition. Instead, FME features representing IGDS cells contain only the cel-
l’s name, as well as rotation and scaling parameters. The IGDS reader skips all elements that define the cell (extract-
ing only the text strings from any text elements in the cell), and the IGDS writer extracts the cell description from the
supplied cell library to be output. Cell features are point features and have only a single coordinate. Writing of named
cells is not currently supported by the V8 writer. However, the V8 writer can successfully handle unnamed cells
(groups).

The IGDS reader may be set to expand cells. If the mapping file contains a yes setting for IGDS_EXPAND_CELLS, then
each member element of the cell is read and output. However, the cell insertion point itself is not output. In addition,
the cell members are assigned a unique cell sequence number in the igds_cell_sequence_number. This number can be
used to later regroup the cell components if that is required.

If the setting for IGDS_EXPAND_CELLS is no, then only the cell insertion point is output.

Both graphic and point cells are supported. Graphic cells use the level, color, and style information from the cell
library, and must always have a feature type of 0. Point cells use the level, color, and style information provided in the
mapping file. Note that for point cells, when cell header is assigned igds_color then this color is assigned as fill_color
to all of its members capable of having fill_color i.e. shapes etc. If the cell header had igds_fill_color then it gets
ignored.

Both V7 and V8 can write cells. V8 can also preserve the cell structure. For example, if the cell had any nested cells,
complex chains or complex shapes, then the whole nesting is preserved.

The IGDS reader also supports orphan or unnamed cells and is controlled by the keyword IGDS_EXPAND_UNNAMED_
CELLS. A named/unnamed cell can have further nested named/unnamed cells. The way the IGDS Reader treats them,
depending on their respective keywords, is explained in these sections:

l Case-I: Named cell (root) nested named cell

l Case-II: Named cells (root) nested unnamed cells

l Case-III: Unnamed cells (root) nested unnamed cells

l Case-IV: Unnamed cells (root) nested named cells

Case-I: Named cell (root) nested named cell:

IGDS_EXPAND_CELLS (YES): The cell insertion point is not stored. Members of root and nested cells are stored as
independent features.

IGDS_EXPAND_CELLS (NO): Only the root cell’s insertion point is stored.

Case-II: Named cells (root) nested unnamed cells:

IGDS_EXPAND_CELLS (YES) AND IGDS_EXPAND_UNNAMED_CELLS(YES): Neither of the two cells is preserved. All
members of both cells are output as independent features. No donuts are formed in case the unnamed cell contained
overlapping polygons.

IGDS_EXPAND_CELLS (YES) AND IGDS_EXPAND_UNNAMED_CELLS(NO): Neither of the two cells is preserved. All
members of both cells are output as independent features. No donuts are formed in case the unnamed cell contained
overlapping polygons.

IGDS_EXPAND_CELLS (NO) AND IGDS_EXPAND_UNNAMED_CELLS(YES): Only the root cell is output. Nested
unnamed cells are ignored.

IGDS_EXPAND_CELLS (NO) AND IGDS_EXPAND_UNNAMED_CELLS(NO): Only the root cell is output. Nested unnamed
cells are ignored.

Case-III: Unnamed cells (root) nested unnamed cells:

IGDS_EXPAND_UNNAMED_CELLS(YES): The insertion point of the root cell is not preserved. No donuts are formed if
existed. All elements of the root and the nested cells are given.

IGDS_EXPAND_UNNAMED_CELLS(NO): Make donuts of all members of the root and nested cells.

Case-IV: Unnamed cells (root) nested named cells:

IGDS_EXPAND_UNNAMED_CELLS (YES) AND IGDS_EXPAND_CELLS(YES): Neither of the cells is preserved. No
donuts are formed. All elements of both cells are output as independent features.

IGDS_EXPAND_UNNAMED_CELLS (YES) AND IGDS_EXPAND_CELLS(NO): Only elements of the root unnamed cell are
output. Nested cells are preserved and output as points.

IGDS_EXPAND_UNNAMED_CELLS (NO) AND IGDS_EXPAND_CELLS(YES): All elements of nested named cells are out-
put. Donuts are formed. If both cells have donuts then an aggregate of donuts is formed.

IGDS_EXPAND_UNNAMED_CELLS (NO) AND IGDS_EXPAND_CELLS(NO): The insertion point of the root unnamed cell
is preserved. Donuts are formed from the root cell only. The nested cell is ignored and so are its members.

Attribute Name Contents

igds_cell_name The name of the cell. Corresponds to the name of the
cell in a cell library.
Range: Character String
Default: No default

igds_cell_x_scale

igds_cell_y_scale

igds_cell_z_scale

The scaling factors to apply to the cell.
Range: Any real number > 0
Default: 1

igds_cell_size The size in ground units of the maximum span of the
cell. If this is specified, the settings for
igds_cell_x_scale,
igds_cell_y_scale, and
igds_cell_z_scale are ignored. If it is not specified,
then the scaling factors described above are used.
This attribute is not assigned any value by the
reader.
Range: Any real numbers > 0
Default: No default

igds_rotation The rotation of the entire cell. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

igds_text_string{#} When reading only, this contains the text string of
the #th text element in the cell.
Range: Any string

igds_cell_sequence_number When reading only with IGDS_EXPAND_CELLS set to
yes, this contains a unique number that can be used

Attribute Name Contents

to regroup a cell with its component elements.

igds_cell_size_x This is the difference of minX and maxX stored in
ground units.
Note: If igds_cell_size_x and igds_cell_size_y are
both specified, then igds_cell_size_x_scale, igds_
cell_size_y_scale and igds_cell_size_z_scale values
are ignored.

igds_cell_size_y This is the difference of minY and maxY stored in
ground units.

igds_cell_num_members Stores a cell’s total number of members.
Range: Any real numbers > 0
Default: No default

igds_unnamedcell_num_of_
elements

Stores number of elements of an unnamed cell
(group)
Range: Any real numbers > 0
Default: No default

igds_cell_insertion_x

igds_cell_insertion_y

igds_cell_insertion_z

Stores cell insertion point
Range: Any real number
Default: No default

igds_cell_element_class

igds_cell_element_style

igds_cell_element_color

igds_cell_element_weight

igds_cell_element_level

Stores properties of the cell if the cell is graphic.
Default: No default

igds_cell2DTMat11

igds_cell2DTMat12

igds_cell2DTMat21

igds_cell2DTMat22

Cell’s 2D matrix containing rotation and scale infor-
mation.
Default: No default

igds_cell3DTMat11

igds_cell3DTMat12

igds_cell3DTMat13

igds_cell3DTMat21

igds_cell3DTMat22

igds_cell3DTMat23

igds_cell3DTMat31

igds_cell3DTMat32

igds_cell3DTMat33

Cell’s 3D matrix containing rotation and scale infor-
mation.
Default: No default

Cells (Shared)

igds_type: igds_shared_cell

Shared cells correspond to IGDS element type 34 and 35. They consist of two parts: the definition (Type 34) and the
element (Type 35). The definitions list the component elements of the cells. The elements are made up of an insertion
point as well as rotation and scaling parameters. The IGDS reader skips all elements that define the cell and only proc-
esses the element features as point features that have only a single coordinate.

If IGDS_EXPAND_CELLS is set to yes, then the shared cells are expanded into its pieces; otherwise only the cell inser-
tion point is output for each shared cell instance. Expansion of shared cells is supported by both V7 and V8.

The IGDS V8 writer can write shared cells.

Shared cell instances have the following attributes:

Attribute Name Contents

igds_cell_name The name of the cell.
Range: Character String
Default: No default

igds_cell_x_scale

igds_cell_y_scale

igds_cell_z_scale

The scaling factors to apply to the cell.
Range: Any real number > 0
Default: 1

igds_rotation The rotation of the entire cell. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

igds_sharedcell_
description

The description of the cell. (Supported for version 8
DGN files only.)
Range: Character String
Default: No default

igds_cell_num_members Stores a cell’s total number of members.
Range: Any real numbers > 0
Default: No default

Complex Shapes/Strings

igds_type: igds_complex_shape
igds_type: igds_complex_string

Complex shape/string elements are normally treated the same as shape/linestring elements by the IGDS reader. How-
ever, if the exact original composition of the complex shape is required, the IGDS_AGGREGATE_COMPLEX_CHAINS
directive can be set to yes and then complex shape/string elements will be returned as single FME features with igds_
complex_shape/igds_complex_string as their igds_type. This allows preservation of any arc elements that made up the
boundary of the shape, for example.

The IGDS writer will accept and write out complex shape/string elements at any time.

The complex shape/string feature consists of an aggregate geometry. Each aggregate geometry corresponds to an
entry in an attribute list. The list is called igds_complex_elements{#}, where # starts at 0 and increments for each aggre-
gate element. The list’s item names are identical to the component feature’s attributes.

Splitting of FME geometries such as IFMEPaths into complex shape and complex string elements will occur auto-
matically on write, such that the size limitations of complex shape and complex string elements are not exceeded. Sim-
ilarly, each line string element component of complex shape and complex string elements will be created so as not to
exceed the maximum number of coordinates for a line string.

Curves

igds_type: igds_curve

Curve features are used in Design files to represent smooth bezier curves. Curve features have four extra points
which are used to determine the slope at the starting and ending points of the curve. These points are not part of the
real coordinates of the feature, and are stored in the attribute list igds_curve_slope{}. The first two entries in the list
define the slope points for the start of the feature, and the last two define the slope points for the end of the feature.
The IGDS reader and writer interpret the curves coordinates as the points which define the curve. If the PRESERVE_
CURVES directive is YES, then the reader does not interpolate points along the curve. If curves are not preserved,
they will have interpolated points added to them and igds_curve elements will be returned as igds_line elements.

A curve feature has these attributes:

Attribute Name Contents

igds_curve_slope{0}.x
igds_curve_slope{0}.y
igds_curve_slope{0}.z
igds_curve_slope{1}.x
igds_curve_slope{1}.y
igds_curve_slope{1}.z

The ground coordinates of the slope points for the
beginning of the feature.
If the design file was two-dimensional (2D), then the
.z attributes will not be present.

igds_curve_slope{2}.x
igds_curve_slope{2}.y
igds_curve_slope{2}.z
igds_curve_slope{3}.x
igds_curve_slope{3}.y
igds_curve_slope{3}.z

The ground coordinates of the slope points for the
end of the feature.
If the design file was 2D, then the .z attributes will
not be present.

Tip: When a curve feature is reprojected, its slope points are automatically reprojected.

BSpline Curves

igds_type: igds_line

This is stored as an IGDS type 27 element. The information of the poles, knots and weights of a spline are stored in
element types 21, 26 and 28 respectively. Currently, only reading of bsplines is supported. The bsplines are read
and stroked into segments (which is why its igds_type is stored as igds_line).

External Reference Files

Reference files can be read in two ways. In order to read the supported elements stored in reference files, the key-
word READ_XREF_FILES has to be set to yes. The default is no. For this method of reading the following is true: All
the reference files inherit the working units and offsets from the parent file and their respective units and offsets are
ignored. The V8 reader can read both v7 and v8 attachments, whereas V7 will read only V7 references. Both V7 and
V8 can read nested references. The nesting can be restricted to first level only by setting the keyword READ_XREF_
UPTO_FIRST_LVL as true.

Alternatively or in addition, the V8 reader is able to read reference files are also read as individual features with an
igds_type of igds_xref. These features are a non-graphical representation of the XREF elements themselves, not the
elements stored within them. Though the V8 writer does not create external reference elements, when the V8 writer
uses a seed file, the external reference file elements in the seed file are preserved and put into the destination data-
set.

An external reference element has the attributes shown below.

Attribute Name Contents

igds_xref_camera_focal_len The focal length value for the camera used for
the view of the external file reference data.
Range: Real Number
Default: 0.0

igds_xref_camera_pos_x The position in the x dimension for the camera
used for the view of the external reference file
data.
Range: Real Number
Default: 0.0

igds_xref_camera_pos_y The position in the y dimension for the camera
used for the view of the external reference file
data.
Range: Real Number
Default: 0.0

igds_xref_camera_pos_z The position in the z dimension for the camera
used for the view of the external reference file
data.
Range: Real Number
Default: 0.0

igds_xref_desc The position in the z dimension for the camera
used for the view of the external file reference
data.
Range: String
Default: No default

igds_xref_file_build_opts The file builder option mask for the external ref-
erence file.
Range: Integer
Default: 15

igds_xref_file_disp_opts The file displayer option mask for the external
reference file.
Range: Integer
Default: 73858

igds_xref_file_name The filename of the external reference file. This
is a basename and extension, not a path.
Range: String
Default: No default

igds_xref_file_num The file number for the external reference file.
Range: Integer
Default: 1

igds_xref_group_id The number of the group to which this external
reference file belongs.
Range: Integer
Default: 0

igds_xref_master_origin_x The x dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number
Default: 0.0

igds_xref_master_origin_y The y dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number
Default: 0.0

igds_xref_master_origin_z The z dimension value for the origin of the exter-
nal reference file position in master file UORs.
Range: Real Number
Default: 0.0

igds_xref_model_name The name of the model of the external reference
file. This value may be empty for the default
model.
Range: String
Default: No default

igds_xref_name The logical name of the external reference file.
This value may distinguish between multiple ref-
erences to the same reference file.
Range: String
Default: No default

igds_xref_nest_depth The depth of nested reference of the external ref-
erence file.
Range: 0..65536
Default: 0

igds_xref_parent_attach_id The id of the parent attachment of the external
reference file.
Range: Numeric string
Default: “0”

igds_xref_file_path The file path of the external reference file.
Range: String
Default: No default

igds_xref_reference_origin_x The x dimension value for the origin of the exter-
nal reference file position in reference UORs.
Range: Real Number
Default: 0.0

igds_xref_reference_origin_y The y dimension value for the origin of the exter-
nal reference file position in reference UORs.
Range: Real Number
Default: 0.0

igds_xref_reference_origin_z The z dimension value for the origin of the exter-
nal reference file position in reference UORs
Range: Real Number
Default: 0.0

igds_xref_rotation The rotation value for the external reference file.
Range: Real Number
Default: 0.0

igds_xref_scale The conversion factor value for the external ref-
erence file.
Range: Real Number
Default: 1.0

igds_xref_version The version number value for the external ref-
erence file.
Range: Integer
Default: 1

igds_xref_z_back The back z clip value for the external reference
file.
Range: Real Number
Default: 0.0

igds_xref_z_front The front z clip value for the external reference
file.
Range: Real Number
Default: 0.0

Multilines

igds_type: igds_line

The multilines are stored with their igds_type as igds_line, but the fact that they are multilines can be detected from
igds_element_type, which is stored as type 36. The multilines are stored as lines, therefore they are written as lines
when performing a DGN to DGN translation. Currently, the multilines are imported with their centerlines only. How-
ever, the attributes such as offset and symbology (style, weight, color) of the pieces are stored in the list attribute
igds_multiline{}. When reading multilines from a V7 dataset, the multilines are ignored if they are part of a cell. In
addition, if the keyword READ_BYTE_OFFSET is set to true, then it gets ignored for multilines.

A multiline has the attributes shown below.

Attribute Name Contents

igds_mlineStyle{#}.offset

igds_mlineStyle{#}.style

igds_mlineStyle{#}.color

igds_mlineStyle{#}.weight

igds_mlineStyle{#}.level

Where offset is the perpendicular dis-
tance of the piece from the centerline,
and {}.style, {}.color, {}.weight and
{}.level are the line styles, color, weight
and level of the individual pieces.

igds_mlinehdr_num_lines Number of pieces of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_num_breaks Number of breaks of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_num_nodes Number of nodes of the multiline.
Range: Any real number > 0
Default: No default

igds_mlinehdr_startcap_angle Angle in degrees of the start cap.
Range: -360.0..360.0
Default: 0

igds_mlinehdr_endcap_angle Angle in degrees of the end cap.
Range: -360.0..360.0
Default: 0

igds_mlinehdr_freeze_group Multiline header attribute - value is
always 0 (for internal use by the toolkit)

igds_mlinehdr_version Multiline header version - currently it is 3
(for internal use by the toolkit)

igds_mlinehdr_closed Whether or not multiline is closed.
Range: 0 or 1
Default: No default

igds_mlinehdr_arc_cap_by_profile_
line

Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_offset_model_valid Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_offset_mode Multiline header flags (for internal use by
the toolkit)

igds_mlinehdr_placement_offset Global offset from definition points.
Range: Real Number
Default: No default

Attribute Name Contents

igds_mlinehdr_style_id.lo

igds_mlinehdr_style_id.hi

ID of multiline style element.
Range: Integer
Default: No default

igds_mlinehdr_styleScale Scale of multiline style element.
Range: Real Number
Default: No default

igds_mlinehdr_updv.x

igds_mlinehdr_updv.y

igds_mlinehdr_updv.z

Up direction vector for 3D to determine
side orientation.
Range: Real Number
Default: No default

igds_mlattrib_startcap.usestyle

igds_mlattrib_startcap.useweight

igds_mlattrib_startcap.usecolor

igds_mlattrib_startcap.cap_on_arc

igds_mlattrib_startcap.cap_out_arc

igds_mlattrib_startcap.cap_line

igds_mlattrib_startcap.use_class

igds_mlattrib_startcap.customstyle

igds_mlattrib_startcap.cap_color_
from_segment

igds_mlattrib_startcap.construction_
class

The same list of attributes is repeated for end_cap and
joint; for example:

igds_mlattrib_endcap.usestyle etc.

and

igds_mlattrib_joint.usestyle etc.

Flags specifying the properties of the
multiline.
Range: 0 or 1
Default: No default

igds_mlattrib_startcap.style Style of start cap.
Range: 0..7
Default: 0

igds_mlattrib_startcap.weight Weight of start cap.
Range: 0..31
Default: 0

igds_mlattrib_startcap.color Color of start cap.
Range: 0..254
Default: 0

Attribute Name Contents

igds_mlattrib_endcap.style Style of end cap.
Range: 0..7
Default: 0

igds_mlattrib_endcap.weight Weight of end cap.
Range: 0..31
Default: 0

igds_mlattrib_endcap.color Color of end cap.
Range: 0..254
Default: 0

igds_mlattrib_joint.style Style of joint cap.
Range: 0..7
Default: 0

igds_mlattrib_joint.weight Weight of joint cap.
Range: 0..31
Default: 0

igds_mlattrib_joint.color Color of joint cap.
Range: 0..254
Default: 0

igds_mlineStyle{#}.offset Offset of each member of multiline
Default: No Default

igds_mlineStyle{#}.lineattrib.usestyle

igds_mlineStyle{#}.lineattrib.useweight

igds_mlineStyle{#}.lineattrib.usecolor

igds_mlineStyle{#}.lineattrib.cap_on_arc

igds_mlineStyle{#}.lineattrib.cap_out_arc

igds_mlineStyle{#}.lineattrib.cap_line

igds_mlineStyle{#}.lineattrib.use_class

igds_mlineStyle{#}.lineattrib.customstyle

igds_mlineStyle{#}.lineattrib.cap_color_from_seg-
ment

igds_mlineStyle{#}.lineattrib.construction_class

Values defining the flag of line attribute
Default: No Default

igds_mlineStyle{#}.lineattrib.style Style of line attribute
Range: 0..7
Default: 0

Attribute Name Contents

igds_mlineStyle{#}.lineattrib.weight Weight of line attribute
Range: 0..31
Default: 0

igds_mlineStyle{#}.lineattrib.color Color of line attribute
Range: 0..254
Default: 0

igds_mlineStyle{#}.lineattrib.level Level of line attribute
Default: 0

igds_mlinenode_props If a multiline has a large number of
nodes, which is very likely, it will need to
be cleaned up before viewing it in the Uni-
versal Viewer. Store these two attributes
as strings with comma-separated values.
This will be the protocol
b_index1, bCount1, b_index2, bCount2,
...... b_indexn, bCountn
The writer will parse them in the same
order and use them.
Default: No default

igds_mlinebreak{#}.segmask Mask bit set for each line that is broken.
Default: No default

igds_mlinebreak{#}.from_joint

igds_mlinebreak{#}.to_joint

Flags setting the line break properties
Default: No default

igds_mlinebreak{#}.point_offset Offset from point
Default: No default

igds_mlinebreak{#}.length Break length
Default: No default

igds_mlinebreak{#}.angle Reserved - should be 0.0
Default: No default

Dimensions

igds_type: igds_line

The dimensions are stored with their igds_type as igds_line but the fact that they are dimensions can be detected
from igds_element_type which is stored as type 33. The keyword EXPLODE_DIMENSION_ELEM controls the way the
dimensions are imported. When it is set to yes, the dimensions are exploded into its pieces; when it is set to no, it is
imported as an aggregate. The default is yes. When dimensions are imported as aggregates, the arcs are stroked and
text features are output as list attributes only. Therefore, when performing a DGN-to-DGN translation with the option
EXPLODE_DIMENSION_ELEM set to no, the text features will be lost. When reading dimensions from a V7 dataset, the
dimensions are ignored if they are part of a cell. If the keyword READ_BYTE_OFFSET is set to true, then the dimen-
sions will also be ignored.

A dimension element has the following attributes

Attribute Name Contents

igds_dim_text{#}.font

igds_dim_text{#}.original_justification

igds_dim_text{#}.text_size

igds_dim_text{#}.text_width_multiplier

igds_dim_text{#}.text_used_string_len

igds_dim_text{#}.text_rotation

igds_dim_text{#}.text_insertion_x

igds_dim_text{#}.text_insertion_y

igds_dim_text{#}.text_string

Stores the standard attributes of the
text member of the dimension. For
example, font, original_jus-
tification, size and width etc.

igds_dim_refx{#}.pt.x

igds_dim_refx{#}.pt.y

igds_dim_refx{#}.pt.z

igds_dim_refx{#}.base_offset

igds_dim_refx{#}.segment_text_offset

igds_dim_refx{#}.flags

igds_dim_refx{#}.rxflags.mode

igds_dim_refx{#}.rxflags.hide_extension

igds_dim_refx{#}.rxflags.use_text_margin

igds_dim_refx{#}.rxflags.primary_text_exists

igds_dim_refx{#}.rxflags.display_primary_plus_tolerance

igds_dim_refx{#}.rxflags.display_primary_minus_tolerance

igds_dim_refx{#}.rxflags.secondary_text_exists

igds_dim_refx{#}.rxflags.display_secondary_plus_tol-
erance

igds_dim_refx{#}.rxflags.display_secondary_minus_tol-
erance

Stores the attributes of reference
points as list attributes of the dimen-
sion.

igds_dim_type Type of dimension to draw.
Range: 1..53
Default: No default

igds_dim_scale Scale of dimension
Range: Any real number > 0
Default: No default

igds_dim_style Style of dimension
Range: Any real number > 0
Default: No default

igds_dim_weight Weight of dimension
Range: 0..31

Attribute Name Contents

Default: 0

igds_dim_color Color of dimension
Range: 0..254
Default: 0

igds_dim_primary_accuracy Primary accuracy of dimension
Range: 0..254
Default: None

igds_dim_secondary_accuracy Secondary accuracy of dimension
Range: 0..254
Default: None

igds_witness_line_offset Offset of witness lines
Range: Real Number >0
Default: None

igds_witness_line_extension Witness line extension
Range: Real Number >0
Default: None

igds_base_to_text_dist Base to text distance
Range: Real Number >0
Default: None

igds_leader_to_text_dist Leader to text distance
Range: Real Number >0
Default: None

igds_text_min_leader Text minimum leader
Range: Real Number >0
Default: None

igds_arrow_width Dimension arrow width
Range: Real Number >0
Default: None

igds_arrow_height Dimension arrow height
Range: Real Number >0
Default: None

igds_center_mark_size Center mark size
Range: Real Number >0

igds_base_line_cos_value Cos value of bearing angle of base
line.
Range: -1..1

Attribute Name Contents

igds_witness_line_cos_value Cos value for bearing angle of witness
line.
Range: -1..1

igds_base_line_sin_value Sin value of bearing angle of base
line.
Range: -1..1

igds_witness_line_sin_value Sin value of bearing angle of witness
line.
Range: -1..1

igds_quat.w

igds_quat.x

igds_quat.y

igds_quat.z

Components of quaternion for 3D
orientation
Range: Any real number

igds_view_id To allow to align by view
Range: 1 character (1 byte)

igds_num_ref_points Number of reference points
Range: Any real number

igds_options_count Count of options
Range: Any real number

igds_dim_text_width Width of text member
Range: Real number > 0

igds_dim_text_height Height of text member
Range: Real number > 0

igds_text_font Font of text member. See Text Nodes
and Text Strings: igds_font.
Range: 0

igds_text_color Color of text member
Range: 0..254

igds_text_weight Weight of text member
Range: 0..31

igds_use_text_color Use text color and not the dimension
element color
Range: 1/0 (1 bit)

igds_use_text_weight Use text weight and not the dimension
element weight
Range: 1/0 (1 bit)

Attribute Name Contents

igds_measure_angle Measure angle and not the distance
Range: 1/0 (1 bit)

Ellipses

igds_type: igds_ellipse

This geometry type is stored in an IGDS type 15 element.

Ellipse features are point features, and only have a single coordinate. This point serves as the center of the ellipse.
Additional attributes specify the rotation, major axis, and minor axis of the ellipse.

Tip: The function @Arc() can be used to convert an ellipse to a polygon. This is useful for storing ellipses in sys-
tems which do not support them directly.

Attribute Name Version Info Contents
igds_primary_axis The length of the semi-major axis in

ground units.
Range: Any real number > 0
Default: No default

igds_secondary_axis The length of the semi-minor axis in
ground units.
Range: Any real number > 0
Default: No default

igds_rotation The rotation of the major axis. The rota-
tion is measured in degrees counter-
clockwise up from horizontal.
Range: -360.0..360.0
Default: 0

igds_fill_color The color used to fill the shape. This
will override any solid fill linkage that
may be present on the feature.
Range: 0..255
Default: No fill

igds_fill_color.red The fill’s red color intensity, as determined by
looking up the fill color index in the color table.
Reader only.

Range: 0..255
igds_fill_color.green The fill’s green color intensity, as determined by

looking up the fill color index in the color table.
Reader only.

Range: 0..255
igds_fill_color.blue The fill’s blue color intensity, as deter-

mined by looking up the fill color index
in the color table. Reader only.
Range: 0..255

igds_fill_angle1 used in V8 only The angle of the primary hatch lines in
a hatch fill. The angle is measured in
degrees counterclockwise up from hor-

Attribute Name Version Info Contents
izontal.
Range: -360.0..360.0 Default: 0

igds_fill_angle2 used in V8 only The angle of the secondary hatch lines
in a hatch fill. The angle is measured in
degrees counterclockwise up from hor-
izontal.
Range: -360.0..360.0
Default: 0

igds_fill_hole_style_id used in V8 only The style id of the holes of a filled area
element.
Default: 0

igds_fill_island_style_id used in V8 only The style id of the island areas of holes
of a filled area element.
Default: 0

igds_fill_offset_x used in V8 only The coordinate offset in the x dimen-
sion for the hatch or pattern fill of an
area element.
Range: Any real number
Default: 0

igds_fill_offset_y used in V8 only The coordinate offset in the y dimen-
sion for the hatchv fill of an area ele-
ment.
Range: Any real number
Default: 0

igds_fill_offset_z used in V8 only The coordinate offset in the z dimension for the
hatch or pattern fill of an area element.

Range: Any real number

Default: 0
igds_fill_pattern_color used in V8 only The color used to fill the area element. This cor-

responds to the color of the hatch or pattern fill
linkage.

Range: 0..2545
igds_fill_pattern color.red used in V8 only The pattern_fill’s red color intensity, as deter-

mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255
igds_fill_pattern color.green used in V8 only The pattern_fill’s green color intensity, as deter-

mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255
igds_fill_pattern color.blue used in V8 only The pattern_fill’s blue color intensity, as deter-

mined by looking up the fill color index in the
color table. Reader only.

Range: 0..255
igds_fill_pattern_type used in V8 only The type of pattern fill for an area element. Cur-

rently only hatch is supported, and this indicates
that there is one on an area element.

Attribute Name Version Info Contents
Range: hatch

Default: hatch
igds_fill_pixel_size used in V8 only The size of pixels for the hatch or pattern fill of an

area element.

Range: Any real number
igds_fill_rotation used in V8 only The rotation angle of the hatch or pattern fill

within an area element. The rotation is measured
in degrees counterclockwise up from horizontal.
Range: -360.0..360.0 Default: 0

igds_fill_scale used in V8 only The scale of the hatch fill or pattern fill
for an area element.
Range: Any positive real number

igds_fill_snappable used in V8 only This flag indicates if the hatch or pat-
tern fill for an area element is snap-
pable.
Range: yes or no
Default: yes

igds_fill_spacing1 used in V8 only The spacing between the primary hatch
lines in a hatch fill.
Range: Any positive real number

igds_fill_spacing2 used in V8 only The spacing between the secondary
hatch lines in a hatch fill.
Range: Any positive real number

igds_fill_style_id used in V8 only The line style id of the hatch fill or pat-
tern fill for an area element.
Default: 0

igds_fill_tolerance used in V8 only The maximum distance between curved
element boundaries and line segments
in a hatch fill.
Range: Any positive real number

igds_fill_weight used in V8 only The line weight of the hatch fill or pat-
tern fill for an area element.
Default: 0

Note: The primary ellipse axis is not necessarily the longest axis, but rather the one whose orientation is specified
by the rotation value.

Lines

igds_type: igds_line

Features with their igds_type set to igds_line are stored in and read from IGDS files in one of three ways, depending on
the number of coordinates they have.

Number of
Coordinates

IGDS Element
Type Description

2 3 If the feature contained exactly two points,
then an IGDS type 3 element is used to store
the data if IGDS_CREATE_LINE_ELEMENTS was
yes; otherwise, a type 4 element will be
created.

In V7: Between 3
and 101
In V8: Between 3
and 5000

4 If the coordinates can fit in a single element,
then an IGDS type 4 element is used to store
the line.

In V7: Greater than
101
In V8: Greater than
5000

12, 4 If the coordinates cannot fit into a single ele-
ment, then they are grouped together into a
complex line string element (type 12). This
consists of a single type 12 element, followed
by as many type 4 elements as required to
hold all the coordinate data. The type 4 ele-
ments have their complex bit turned on. Fur-
thermore, such a complex line string element

Number of
Coordinates

IGDS Element
Type Description

will be split into multiple complex line string
elements if the size of the data exceeds the
maximum size that the header can address,
which is approximately 65K words.

There are no attributes specific to this type of element.

Points

igds_type: igds_point

Strictly speaking, the IGDS file format does not support point data. However, for easier interoperability with other for-
mats, the IGDS reader and writer define a synthetic IGDS type for point data. Such features have only a single coor-
dinate, and are stored in an IGDS type 3 element1 as a zero length line with the start and the end point the same.
When the IGDS reader encounters such an element, it assigns an igds_type of igds_point. If the IGDS reader encounters
a type 3 element with a different start and end point, it will assign an igds_type of igds_line.

There are no attributes specific to this type of element.

Shapes

igds_type: igds_shape

Shape features are used in IGDS to represent closed polygons. The first coordinate in a shape feature must be equal
to the last coordinate. Such features are stored in and read from IGDS files in one of two ways, depending on the
number of coordinates in their boundaries:

Number of
Coordinates

IGDS Element
Type

Description

In V7:
Between 3 and 101
In V8:
Between 3 and 5000

6 If the coordinates can fit in a single element,
then an IGDS type 6 element is used to store
the shape.

In V7:
Greater than 101
In V8:
Greater than 5000

14, 4 If the coordinates cannot fit into a single ele-
ment, then they are grouped together into a
complex shape element (type 14). This con-
sists of a single type 14 element, followed by
as many type 4 elements as required to hold
all the coordinate data. The type 4 elements
have their complex bit turned on. Fur-
thermore, such a complex shape element
will be split into multiple complex line string
elements if the size of the data exceeds the
maximum size that the header can address,
which is approximately 65K words.

Shape elements have the following attributes.

Attribute Name Contents
igds_fill_color The color used to fill the shape. This will override any solid fill

1FME treats IGDS type 3 elements with different start and end points as igds_line features.

Attribute Name Contents
linkage that may be present on the feature.

Range: 0..255

Default: no fill
igds_fill_color.red The fill’s red color intensity, as determined by look-

ing up the fill color index in the color table. Reader
only.

Range: 0..255
igds_fill_color.green The fill’s green color intensity, as determined by looking up the

fill color index in the color table. Reader only.

Range: 0..255
igds_fill_color.blue The fill’s blue color intensity, as determined by looking up the fill

color index in the color table. Reader only.

Range: 0..255

Tip: Shapes will not be filled in MicroStation unless the ‘View Attributes: Fill' checkbox is ticked, and a fill color is
specified.

Solids

igds_type: igds_solid

Solids correspond to the grouped shapes in MicroStation. Solids consist of polygons or donut polygons. When a donut
polygon is written out as a solid, all holes are output with the hole bit turned on, and are grouped together with the
enclosing polygon. Groups are created in the Design file by creating an unnamed cell header element, and making
each shape in the donut polygon a member of the group.

If EXPAND_UNNAMED_CELLS is set to yes, then unnamed cell components are output but the cell header itself is not
output. In this case, donut polygons will not be formed frommember shape elements. All member elements will retain
their original colors. If it is NO (which is the default), then the cell is not exploded into its components and only the
cell header is output. Donut polygons may be formed if multiple intersecting polygons existed.

If a solid consists of polygons without holes, then it is written out as igds_shape.

Solids are always filled, and accept an additional parameter to define the fill color. Holes within a solid will not be filled
with the color.

The IGDS file format imposes a limit on the number of coordinates which can be present in a solid. This limit is around
16,000 for two-dimensional IGDS files, and around 10,000 for three-dimensional IGDS files. If a solid with more than
an allowable number of coordinates is encountered, it is rejected and a message to that effect is logged to the FME log
file.

Tip: Solids will not be filled in MicroStation unless the ‘View Attributes: Fill” checkbox is ticked.

Solid elements have the following attributes.

Attribute Name Contents
igds_fill_color The color used to fill the solid. This will override

any solid fill linkage that may be present on the fea-
ture.
Range: 0..255
Default: 0

igds_fill_color.red The fill’s red color intensity, as determined by look-
ing up the fill color index in the color table. Reader
only.

Attribute Name Contents
Range: 0..255

igds_fill_color.green The fill’s green color intensity, as determined by
looking up the fill color index in the color table.
Reader only.
Range: 0..255

igds_fill_color.blue The fill’s blue color intensity, as determined by
looking up the fill color index in the color table.
Reader only.
Range: 0..255

3D Solids

igds_type: igds_3d_solid

This is supported for v8 only. This element should not be confused with igds_solid as it correspond to dgn element
type 19 and not to unnamed cell. FME supports both reading and writing, however, its support is limited to only extru-
sions for now. Work to add support for other solid types is currently underway.

Tags

Elements in a design file may have user-defined attributes attached to them. Such attributes are called tags, and
these may be read and written (DGNV8 only) by FME. In addition, to supply a value for a user-defined attribute, tags
may also be displayed as text in the original design file. The TAGS_AS_TEXT directive controls whether or not tag
data elements will be returned as text elements.

When reading a design file, FME first scans for all the tag data elements and tag set definition elements. Then as it
reads each graphical element from the design file, it uses the element association ID to reconnect the data and attrib-
ute names with the graphical element. All the tag data values are then added to the feature returned into FME.

The attributes shown in the following table are added to an element for each associated tag.

Note: <tag name> is replaced by each TAG NAME that may be associated with the element. For example, if the ele-
ment is associated with tags called "NUMLANES" and "PAVETYPE", then the feature would have attributes like "NUM-
LANES", NUMLANES.height, PAVETYPE, PAVETYPE.rotation, etc.

Note that most of the tag attributes are same as those of text. For example, igds_tag_names{}.height is the same as
igds_text_height and is therefore not explicitly documented. All the other tag attributes are documented as follows:

Attribute Name Contents

igds_tag_names{} List of tag names attached to an element.
Default: No default
Required when writing tags through list attributes.

<tag name>.tagset_name The name of the tagset the tag belongs to.
Default: No default
Required when writing tags to DGNV8

<tag name>.tagtype The unique tag id
Default: 1
Range:

1 = tag of type character string

3 = tag of type integer

4 = tag of type double

Optional when writing tags to DGNV8. In case tag-
type is not provided, it always defaults to char-
acter string (i.e., type 1).

<tag name>.prompt The value of tag prompt as defined in the tagset
Default: No default
Optional when writing tags to DGNV8

<tag name>.default_value The value of tag default as defined in the tagset
Default: No default
Optional when writing tags to DGNV8

<tag name>.display The display value of tag as defined in the tagset.
Note that the writer will always set it to NO if tag
offsets are not found on the feature
Default: no
Range: yes/no
Optional when writing tags to DGNV8

<tag name>.x_offset

<tag name>.y_offset

<tag name>.z_offset

Tag offset from the element. In case these values
are not provided the writer uses some default
values to offset tags from the element
Default: No default
Optional when writing tags to DGNV8

<tag name>.urx

<tag name>.ury

<tag name>.urz

Tag upper right range of rectangle.
Default: No default
Not required when writing tags to DGNV8

<tag name>.llx

<tag name>.lly

<tag name>.llz

Tag lower left range of rectangle.
Default: No default
Not required when writing tags to DGNV8

Note that tag writing is supported by DGNV8 only. In order to attach tags to an element, set writer keyword WRITE_
TAGS to yes.There are two ways tagset and tags definitions can be carried over to V8 writer:

1. Through DEF lines:This is the default behavior. The writer looks at the DEF lines to extract the infor-
mation of tagsets and tag names. The feature type is assigned as the tagset whereas the user attrib-
utes become its tags. For intance, if the DEF line looks like this:

DGNV8_DEF Roads
Name char(50)
Type integer

then a tagset gets written with the name “Road” consisting two tags namely “Name” of data type string
and “Type” of data type integer. The possible data types are char(n), integer and double. Note that
this approach is introduced to automate the tag writing process and to avoid the amount of work
involved using the “list attribute” approach as explained later. This approach has the following lim-
itations:

a. a. can write one tagset per feature only

b. b. can define tag names and their corresponding data types only. The tag default, prompt and
display properties cannot be set. The display property is automatically set to no and in order to
turn it on the user need to set <tag_name>.display attribute on the feature with the value of
yes.

If someone wants to write multiple tagsets then he can do so by using the “list attribute” approach.
Also note that in case the writer sees list attributes under the name igds_tag_names{} it ignores the
tagset defintions provided on the DEF lines.

2. Through list attributes: Another way of writing tags is by providing all tag names as list attributes
to igds_tag_names{} on the feature.

The DGNV8 writer looks for the following attributes only when writing tags and uses them to calculate
all other values. Therefore, any tag related attribute provided other than the following will be ignored.

igds_tag_names{}
<tag name>.tagset_name
<tag name>.tagtype
<tag name>.prompt
<tag name>.display
<tag name>.default_value
<tag name>.x_offset
<tag name>.y_offset
<tag name>.z_offset

In case tag offsets are not provided then the writer uses some default values for the offsets and turns
off tag’s display property.

Some tips on tag writing to avoid surprises:

When going from dgn->dgn, it is advised to ensure that the option “TAG_AS_TEXT” is turned off to avoid getting
extra text element on top of the tags being written. Note that this option is set to “no” by default.

When going from dgn->dgn, if the source has tags attached to a cell then note that exploding cell will result into
attaching tags to each cell member. Thus, each cell member will have same tags written in the output file.

Multi-text Strings

igds_type: igds_multi_text

Multi-text string features correspond to an IGDS text node (element type 7) grouping together a series of IGDS text
elements (element type 17), each of which have their complex bit turned on. This feature uses the same attribute
names as a text node, plus it has a feature attribute list of text string attributes. The list is called igds_text_elements{#},
where # starts at 0 and increments for each text element. The list’s item names are identical to the text string features
attributes.

Tip: Multi-text strings can be used to group together text so that it will be manipulated as a sin-
gle entity with MicroStation.

Multi-text features are point features, and only have a single coordinate. This coordinate is used when the text node is
created. If the feature had no coordinates of its own, the text node is created with the coordinates of the first text
string. The coordinates for each of the text strings are stored in the FME feature using the following attribute names.

Attribute Name Contents

igds_text_elements{#}.x The x coordinate of the #th text element.
Range: Any real number
Default: No Default

Attribute Name Contents

igds_text_elements{#}.y The y coordinate of the # th text element.
Range: Any real number
Default: No Default

igds_text_elements{#}.z The z coordinate of the # th text element.
Range: Any real number
Default: 0

igds_number_of_strings The number of text elements in the multi-text feature

igds_split_multitext Is added to the feature with the value “yes” if split-
ting multi-text.
Default: No Default

If a setting for a particular text element is not present in the igds_text_elements list, then the setting specified for the
previous text element will be used. If the first element does not have some settings specified, then the corresponding
settings will be borrowed from the text node.

Tip: When a multi-text string feature is reprojected, its rotation and text size are also auto-
matically adjusted to be correct in the new coordinate system.

For example, the FME feature specified by the below partial transfer specification would create a text node, followed
by two text strings, as a single complex element.

IGDS 32 igds_type igds_multi_text \
igds_node_number 15 \
igds_font 31 \
igds_rotation 0 \
igds_text_size 40 \
igds_color 2 \
igds_justification 1 \
igds_text_elements{0}.igds_font 33 \
igds_text_elements{0}.igds_rotation 3.1 \
igds_text_elements{0}.igds_text_size 52 \
igds_text_elements{0}.igds_color 4 \
igds_text_elements{0}.igds_text_string Hello \
igds_text_elements{0}.x 477556 \
igds_text_elements{0}.y 5360183 \
igds_text_elements{0}.z 20 \
igds_text_elements{1}.igds_text_string World \
igds_text_elements{1}.x 47755 \
igds_text_elements{1}.y 5359177 \
igds_text_elements{1}.z 20

Note that in this example, the justification code (1) used for the text node would be propagated to each of the text ele-
ments, but that the color used in the text node (2) would not be used in any of the text elements because the first one
set the color to 4.

The in-memory snapshot of the FME feature created by the IGDS writer from this transfer specification is shown
below.

Feature Type: 32

Attribute Name Value

igds_type igds_multi_text

Feature Type: 32

Attribute Name Value

igds_node_number 15

igds_font 31

igds_weight 1

igds_text_size 40

igds_color 2

igds_rotation 0

igds_justification 1

igds_text_elements{0}.igds_text_string Hello

igds_text_elements{0}.igds_font 33

igds_text_elements{0}.igds_rotation 3.1

igds_text_elements{0}.igds_justification 1

igds_text_elements{0}.igds_text_size 52

igds_text_elements{0}.x 477556

igds_text_elements{0}.y 536018

igds_text_elements{0}.z 20

igds_text_elements{1}.igds_text_string World

igds_text_elements{1}.igds_font 33

igds_text_elements{1}.igds_rotation 3.1

igds_text_elements{1}.igds_justification 1

igds_text_elements{1}.igds_text_size 52

igds_text_elements{1}.x 477556

igds_text_elements{1}.y 5359177

igds_text_elements{1}.z 20

Coordinates: (477553,5360181,20)

Text Nodes

igds_type: igds_text_node

Text nodes correspond to IGDS element type 7. Text node features are point features, and only have a single coor-
dinate. Normally, text nodes are used to group together lines of text into a single complex element. However, such
text groups are handled by the igds_multi_text type and not by this type, which is used only for text nodes with no
attached text.

Tip: Free standing text nodes are often used as point features in IGDS files, with the text node
number holding a key to related attribution.

Text node elements have the following attributes.

Attribute Name Contents

igds_node_number The node number assigned to the text node.
Range: 0..65535
Default: 0

igds_font The IGDS font number for the text node. For free standing
text nodes, this value is relatively meaningless. Values
from 0..511 are RSC fonts, while values from 512..1023
are SHX font, and values above 1023 are True Type fonts.
Range: 0
Default: 25

igds_rotation The rotation of the text node. The rotation is measured in
degrees counter clockwise up from horizontal. For free
standing text nodes, this value is relatively meaningless.
Range: -360.0..360.0
Default: 0

igds_justification The justification code for the text node.
Range: 0..14
0 is Left/Top 8 is Center/Bottom
1 is Left/Center 9 is Right Margin/Top
2 is Left/Bottom 10 is Right Margin/Center
3 is Left Margin/Top 11 is Right Margin/Bottom
4 is Left Margin/Center 12 is Right/Top
5 is Left Margin/Bottom 13 is Right/Center
6 is Center/Top 14 is Right/Bottom
7 is Center/Center
Default: 5

igds_text_size The text size of the text in the node. This is stored as the
text height in the element. The text size is measured in
ground units.
Range: Any real number > 0
Default: 20

igds_text_width_
multiplier

The text width of the text in the node. The text width is
measured in ground units. If this is not supplied, then
igds_text_size is used.
Range: Any real number > 0
Default: Value of igds_text_size

igds_line_spacing The line spacing between lines of text associated with the
text node. It is measured in ground units.

Attribute Name Contents

Range: Any real number > 0
Default: 0

igds_number_of_strings The number of text elements associated with the text
node. If the number is greater than 0, then the text node
is returned as an igds_multi_text. This is only used by the
IGDS reader.
Range: integer >= 0
Default: Not applicable. This field is only used by the
reader.

igds_max_string_length The maximum length of the strings associated with the
text node.
Range: integer >= 0
Default: 255

igds_max_used_string_
length

The actual length of the strings associated with the text
node.
(Not included in Version 8 DGN files.)
Range: integer >= 0
Default: 0

Tip: When a text node feature is reprojected, its rotation and text size are also automatically
adjusted to be correct in the new coordinate system.

Text Strings

igds_type: igds_text

Text string features correspond to IGDS element type 17. Normally, text strings are grouped together into a single
complex element within MicroStation by text nodes. However, such text groups are handled in the FME by the igds_
multi_text type and not by this type, which is used only for single, free standing text strings. Text string features are
point features, and only have a single coordinate. Note that V8 reader is capable of reading texts in unicode (UTF-16)
in Windows only.

Tip: Some applications may use the graphic group field to logically group related text elements together.

Text strings have the following attributes.

Attribute Name Contents

igds_original_justification This attribute contains the original justification of
the element when it was placed in the Design file.
Once placed, all text elements are stored in the
Design file using lower left corner (code 2) jus-
tification. Therefore, all text elements returned by
the reader have an igds_justification of 2. The IDGS
reader returns the original justification code in this
attribute. The IGDS writer stores the value of this
attribute in the justification bits of the placed text
element, but it does NOT use its contents to deter-

Attribute Name Contents

mine placement of the text.
Range: 0..12

igds_text_string The text string to be output. Text strings longer
than 255 characters cannot be stored in a Design
file and will be broken into multiple separate text
elements.
Range: Any string
Default: No Default

igds_font The IGDS font number for the text string. Values
from 0..511 are RSC fonts, while values from
512..1023 are SHX font, and values above 1023 are
True Type fonts.
Range: 0
Default: 25

igds_rotation The rotation of the text string. The rotation is meas-
ured in degrees counterclockwise up from hor-
izontal.
Range: -360.0..360.0
Default: 0

igds_justification The justification code for the text string. See the
Text Node section for documentation on the map-
ping of numbers to alignments. Note that if this is
specified, the IGDS writer will compute the lower
left corner of the text as best it can and use that
when the element is written to the Design file. Text
elements in a Design file are always stored using a
lower left corner.
Range: 0..2,6..8, and 12..14
Default: 2

igds_text_size The text size of the text, measured in ground units.
This is stored as the height of the text element.
Range: Any real number > 0
Default: 20

igds_text_width_multiplier The text width of the text. The text width is meas-
ured in ground units.
If this is not supplied, then igds_text_size is used.
Range: Any real number > 0
Default: value of igds_text_size

igds_text_num_lines If this is specified and is greater than 1, it will
cause the text string to be broken into the number

Attribute Name Contents

of lines specified, and output as that number of text
elements stacked vertically.
If this is not supplied, then igds_text_size is used.
Range: Any integer > 0
Default: 1

igds_text_horizontal_flip Indicates whether or not the text should be flipped
horizontally when it is displayed. This is rep-
resented in a Design file by storing the text width
as a negative number if the text should be flipped.
(Not included in Version 8 DGN files.)
Range: Yes|No
Default: No

igds_text_vertical_flip Indicates whether or not the text should be flipped
vertically when it is displayed. This is represented
in a Design file by storing the text height as a neg-
ative number if the text should be flipped.
(Not included in Version 8 DGN files.)
Range: Yes|No
Default: No

igds_insertion_x

igds_insertion_y

igds_insertion_z

The x, y, and z location of the original insertion
point for the text, before the justification was
applied. Reader only.
Range: Any real number > 0

igds_lower_x

igds_lower_y

igds_upper_x

igds_upper_y

The lower left and upper right x and y coordinates
of the bounding box of the text. Reader only.
Range: Any real number > 0

igds_textstyle_id The ID of the textstyle being used.
Default: No

igds_textstyle_char_spacing Textstyle character spacing.
Default: No

igds_textstyle_slant Textstyle slant
Default: No

igds_textstyle_underline_
spacing

Textstyle underline spacing
Default: No

igds_textstyle_underline_
color

Textstyle underline color
Default: No

igds_textstyle_underline_
style

Textstyle underline style

Attribute Name Contents

Default: No

igds_textstyle_underline_
weight

Textstyle underline weight
Default: No

igds_textstyle_overline_
spacing

Textstyle overline spacing
Default: No

igds_textstyle_overline_
color

Textstyle overline color
Default: No

igds_textstyle_overline_
style

Textstyle overline style
Default: No

igds_textstyle_overline_
weight

Textstyle overline weight
Default: No

igds_textstyle_line_offset.x

igds_textstyle_line_offset.y

Coordinates of textstyle line offset
Default: No

igds_textstyle_codepage Textstyle codepage. . Specified as a the integer por-
tion of a Microsoft Windows code page, i.e., 1252
for Latin I.
Default: No

igds_textstyle_bg_color Textstyle background color
Default: No

igds_textstyle_bg_style Textstyle background style
Default: No

igds_textstyle_bg_weight Textstyle background weight
Default: No

igds_textstyle_bg_border.x

igds_textstyle_bg_border.y

Coordinates of textstyle background border
Default: No

igds_textstyle_bg_fill_color Textstyle background fill color
Default: No

igds_textstyle_color Textstyle color
Default: No

igds_textstyle_font Textstyle font
Default: No

igds_textstyle_tnode_word_
wrap_len

Textstyle word wrap length
Default: No

igds_textstyle_overrides_
style1

Textstyle override styles
Default: No

Attribute Name Contents

igds_textstyle_overrides_
style2

igds_textstyle_txflags Textstyle flags. A reasonable setting to enable text
style on write is 512.
Default: No

igds_textstyle_exflags Textstyle extended flags

Notes: When a text string feature is reprojected, its rotation and text size are also automatically adjusted to be cor-
rect in the new coordinate system.

When writing textstyles, make sure that all the textstyles are added to the seed file being used.

Writing Levels in V8 (DEFLine Params)

In V8, the feature type is always taken as the level name. When WRITE_TAGS is set to yes then feature type will also
be the tagset name. For more information refer to section under TAGS. Levels are created with this name and the level
numbers are assigned from the DEF line. However, for backward compatibility, a feature’s igds_level and igds_level_
name overwrite the level_number and feature_type.

The following protocol is used when processing levels:

1. If the level is already provided in the seed file, then it is left as-is.

2. If the feature type has a corresponding DEF line parameter, and if that level is not already in the seed file, then
that level is created with symbology as defined on the DEF line. This allows users to create levels with the
desired symbology. Note that in order to apply the level symbology to the features belonging to the level, the
attributes igds_color_set_bylevel, igds_style_set_bylevel and igds_weight_set_bylevel must be set to Yes. If none of
the above are provided, then symbology of the first feature appearing in a level is assigned as its symbology.

3. If the feature type has a corresponding DEF line parameter, and if the value of idgs_level is undefined and the
feature type (level Name) is not “Default” then the DGN writer assigns level number 1 to it.

The DEFLine Params for defining levels are as follows:

Parameter Name Contents

igds_level The level number corresponding to the feature type.
Note that feature type is treated as level name.

igds_level_comment The comment of the destination level.

igds_level_color The color of the destination level.

igds_level_style The style of the destination level.

igds_level_weight The weight of the destination level.

Example

DGNV8_1_DEF test2 \
igds_level 4 \
igds_level_comment "This is a test" \
igds_level_color 3 \
igds_level_style 4 \
igds_level_weight 2

In this case, the level will be created with the level name “test2”, the corresponding level number of 4 and the com-
ment and symbology as defined above. Note that if any feature being written to this level is intended to have sym-
bology by_level then the attributes igds_color_set_bylevel, igds_style_set_bylevel and igds_weight_set_bylevel must be set
to Yes.

Note that destination feature types are treated differently for V7 and V8. Version 7 always sees the destination feature
types as level numbers, whereas V8 sees them as level names. For V8, the feature attribute igds_level_name over-
writes feature_type, and feature attribute igds_level overwrites DEF line parameter igds_level.

Note that a workspace originally created using a V8 seed file can only be used to write to V8. A workspace originally
created using a V7 seed file can be used to write to both V7 (although there will be a difference in the way destination
feature types are handled) or V8. Two additional limitations are applied to V8:

1. Limitation of level numbers from 1 to 63 will also be applied to V8.

2. Feature types will always be generated as level numbers just like V7, but those level numbers will be treated
as level_names by V8. For instance, if you tried to write to level_number 3, the level would be written as level
number 3 for V7, but the level name would be written as “3” for V8 (when its number may or may not be 3).
This can be overcome by specifying values for igds_level_name and igds_level.

Bentley MicroStation GeoGraphics Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The (Bentley) MicroStation GeoGraphics Reader/Writer is nearly identical to the Intergraph MGE Reader/Writer. The
only difference is that by default, the <ReaderKeyword> for the MGE reader is MGE.

Refer to the chapter Intergraph MGE Reader/Writer for specific information about both the GG and MGE for-
mats.

Overview

The MicroStation GeoGraphics Reader and Writer Modules provide the FME with the ability to read and write design
files and their associated databases. This chapter assumes an operational knowledge of MicroStation GeoGraphics.

GeoGraphics Quick Facts

Format Type Identifier GG

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type GeoGraphics Feature Name

Typical File Extensions .dgn, .cad

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type igds_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values yes

none no

Canadian Council on Geomatics Interchange Format (CCO-
GIF) Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

The Canadian Council on Geomatics Interchange Format (CCOGIF) ASCII reader and writer module provides FME with
access to the contents of a CCOGIF dataset stored in ASCII format in a single disk file. The structure of this file is dis-
cussed in Canadian Council on Geomatics’ document, Standard File Exchange Format for Digital Spatial Data version
#2.3, published October 1994.

The CCOGIF format, a data exchange format, provides a very general medium in which to represent a data model. FME
accesses the individual records of a CCOGIF file at a very low level, involving only minimal interpretation of the con-
tents of those records. This allows FME to handle virtually any data encoded with the CCOGIF standard, but requires a
somewhat more sophisticated mapping file to make full use of the data.

Overview

The CCOGIF disk file consists of a series of logical records. Each of these records either describes metadatawhich is
information about the data contents or structuring, or entity datawhich are geometric features.

The CCOGIF file describes a single data volume, that groups spatial data into datasets, data groups, and data themes.
A CCOGIF volume contains one or more datasets. A single CCOGIF dataset contains one or more data groups, and a sin-
gle data group contains one or more data themes.

At the highest level of grouping, the CCOGIF dataset – not to be confused with FME's concept of a dataset which is
referred to as an FME dataset for the remainder of this chapter – groups the entity data by geographic region, such
as a map sheet. In other words, all geographic data contained in a single CCOGIF dataset are somehow geographically
related. All entity data within a CCOGIF dataset are measured in a single coordinate system.

Each data group provides some conceptual grouping of geographic entities. The criteria of this grouping are entirely
data-dependent and are not constrained by the CCOGIF standard. This grouping is somewhat analogous to FME's
notion of a feature type. For example, a CCOGIF dataset might contain the data groups Highway, Bridge, and Inter-
section.

The data within a single CCOGIF data group is divided into data themes. Each data theme represents a certain entity
type: point, line, or area. The definition of a theme includes a list of data attributes. All attributes are defined on every
entity record within the theme. A single data group may contain more than one theme of a given type – for example,
two point themes. The themes are always ordered so that point themes come first, then line themes, and finally area
themes.

CCOGIF ASCII Quick Facts

Format Type Identifier CCOGIF

Reader/Writer Both

Licensing Level Professional

Dependencies Writer requires extra-cost plug-in
from Safe Software

Dataset Type File

Feature Type Group base name

Typical File Extensions .asc

Automated Translation Support Yes for Reader
No for Writer

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Never

Spatial Index Yes

Schema Required No

Transaction Support Yes

Geometry Type ccogif_entity_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none no

Reader Overview

For the most part, the CCOGIF reader simply returns a feature to represent each record it encounters in the CCOGIF
file. The reader does not have any requirement for definition statements.

The feature type of a feature returned from the CCOGIF reader depends on whether the feature represents metadata
or entity data. Features that represent metadata records are returned with a feature type of CCOGIF_METADATA,
whereas features that represent entity records are returned with a feature type dependent on the CCOGIF data group
and theme within that data group. The feature type will have the format <GroupName>_<ThemeIndex>, where

<GroupName> is the name of the group extracted from the Data Group Header Record (DGHR), and <The-
meIndex> is the position of the data theme within the group.

There are different ways to generate mapping files to read CCOGIF data. The generated mapping files run the fea-
tures through a number of factories, so the actual names of the feature types used in an automatically generated map-
ping file will depend on which method is used and may not correspond to the feature types returned from the reader
itself. The different methods are discussed later in this section, under the heading Generated Mapping Files.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the CCOGIF reader is CCOGIF.

DATASET

Required/Optional: Required

The value for this keyword is the name of the file containing the CCOGIF volume to be read. A typical mapping file frag-
ment specifying an input CCOGIF volume looks like this:

CCOGIF_DATASET /usr/data/ntdb/021g01.asc

Note: Notice that this refers to the CCOGIF volume and not the CCOGIF dataset. There may be several datasets in a
single CCOGIF volume.

Workbench Parameter: Source CCOGIF File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The CCOGIF writer provides the ability to write FME feature data to a single CCOGIF file, the name of which is specified
by the DATASET keyword. The contents of this file forms a single CCOGIF volume, consisting of exactly one CCOGIF
dataset.

Metadata records may be inserted into the output data stream (for example, with the CreationFactory) to define
the precise contents of all metadata records in the output file. This technique is described later in this chapter, under
the heading Defining Volume Structure.

Unlike the CCOGIF reader, the writer requires DEF lines to define the attributes of the output CCOGIF file. The writer
provides a mechanism in the DEF lines to precisely specify the attributes and order of every theme within each data
group being written.

FME ships with sample mapping files that output CCOGIF from a NULL data source, as well as from Oracle. These are
found in the gallery/ccogif subdirectory of the FME installation.

Writer Directives

The following directives are processed by the CCOGIF writer.

l DATASET

l DEF

l AREA_RELPOSN_ATTR

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the CCOGIF writer is CCOGIF.

DATASET

The file name of the output CCOGIF data file.

DEF

The CCOGIF DEF line is required to specify the contents of a CCOGIF data theme before any geometric entities may be
written to that theme. All entities in a given data theme have the same geometric entity type – point, line, or area –
and have the same set of attributes defined on them. The DEF line for the theme provides this information.

The syntax of a CCOGIF DEF line is:

<WriterKeyword>_DEF <themeName> \
[CCOGIF_GROUP_NAME <groupName>] \
[CCOGIF_THEME_ENTITY_TYPE <entityType>] \
[CCOGIF_THEME_ORDERING <orderIndex>] \
[<attrName> <attrType>]+

The <themeName> is simply the identifier used within the mapping file to refer to the theme. Data themes do not
have identifiers within the CCOGIF file, so the chosen <themeName> is not actually reflected in the CCOGIF file.

The CCOGIF_GROUP_NAMEkeyword specifies the name of the group containing the data theme. The value <group-
Name> is placed into the ccogif_data_group_name attribute for the theme’s group’s header record. All themes given a
common <groupName> value belong to the same group.

In general, the DEF lines require each theme to be explicitly specified. Exceptions to this are noted later in this sec-
tion, under the heading Defining Volume Structure.

The CCOGIF_THEME_ENTITY_TYPE keyword specifies the geometric type of the entity records to be written to
the theme and is required in most cases. The value of <entityType>must be one of the values ccogif_point,
ccogif_line, or ccogif_area.

The optional CCOGIF_THEME_ORDERING keyword allows each theme to be assigned a numeric ordering value.
When the themes are written out to the CCOGIF file, they are ordered so that:

l All point themes belonging to a given data group are written first, followed by line themes, and finally area themes.

l All of a group’s themes of a given entity type – line, point, or area – are written with a numerically increasing
<orderIndex> value.

Themes for which no ordering index was specified are written with an arbitrary relative ordering after all themes of
the same entity type for which a theme ordering was specified.

All attribute names must contain no more than 40 characters. They may be composed of nearly any printable char-
acters including alphanumerics, colons, periods, commas, apostrophes, and accented characters. The following
table shows the attribute types that are supported:

Attribute Name Description

INT Integers are represented with 16 ASCII characters. They are
stored as base 10 numbers, right-justified in the field, with
leading zeroes to fill the remaining space. The first character

Attribute Name Description

denotes the sign of the integer and is either + if positive or -
if negative.

REAL Real numbers are stored in base 10 exponential form as 16
ASCII characters. The format for the real number is:
±d.dddddddddE±dd.

DMS Degree Minute Second (DMS) fields are used to store angular
values in terms of degrees, minutes, and seconds. The
degrees and seconds are represented with base 10 integers,
and the seconds value is represented with a fixed point
number with five digits of precision. The format of a DMS
value is ±dddmm ss.sssss. The integer part of each of the
three numbers – degrees, minutes, seconds – is padded on
the left with zeroes to fill its allotted space.

CHAR(<width>) Character fields are stored as fixed-length strings. Their
values are padded on the right with spaces to fill the allotted
space.

DATE Date fields are stored as 8-character strings, with the format
YYYYMMDD.

AREA_RELPOSN_ATTR

Some data encoded in CCOGIF requires each line which defines the boundary or a hole of an area to include an attrib-
ute specifying whether it is a part of a boundary or a specific hole. (For example, NTDB v3.1 uses the “ATE” attribute
for this purpose.)

All line entities which form the outer boundary of an area will contain a value of 0 for this attribute. Those line entities
which form the first hole will have a value of 1; those which form the second hole will have a value of 2; and so on. All
other entities will have a value of -1 in this attribute.

AREA_RELPOSN_ATTR names the attribute which is to hold this information. If it is not specified, this information will
not be stored on the entities. Otherwise, the named attribute will contain the information. (This attribute must be
defined as a numeric attribute in the data theme’s DEF line for the information to actually appear in the output CCOGIF
file.)

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

A CCOGIF feature can represent either a metadata feature or an entity feature. Metadata features describe the struc-
ture of the CCOGIF data whereas entity features form the geometry of the volume.

Metadata Features

Each metadata feature describes the contents of one of the following records from the CCOGIF file:

Record Name Description

VDR Volume Descriptor Record: contains information about
the entire CCOGIF volume, such as its creation date
and generating agency.

UFLR User Fixed Length Record: contains any user data
associated with the CCOGIF volume or dataset. It
simply contains free-form ASCII data.

DSHR Data Set Header Record: describes each dataset con-
tained in a CCOGIF volume. It contains some extra-
neous information about the data (name, creation
date, geographic location, etc.), as well as information
pertaining to the interpretation of the data itself (X, Y,
and Z data types, topology information, map
projection information, etc.).

EMDR Entity Metadata Record: describes the source and qual-
ity of the entity data contained in a dataset. There are
one or more of these records following each DSHR rec-
ord.

DGHR Data Group Header Record: is the first record of each
data group within a CCOGIF dataset. It provides a
name for the group, as well as provides counts of how
many point, line, and area themes are contained in the
group.

DTHR Data Theme Header Record: describes the contents of
a single data theme. It provides information about the
entity data itself (entity type, number of entities), as
well as a count of user attributes defined on each
entity and a calculation of the length of the fixed-
length part of each entity in the theme.

ADR Attribute Descriptor Record: There is one attribute
descriptor record in each data theme. It is a variable-
length record that describes the names and types of
attributes defined on each entity contained in the
theme.

EOVR End Of Volume Record: marks the logical and physical
end of the CCOGIF volume. It is always the last record
in a CCOGIF file.

All metadata features have a feature type of CCOGIF_METADATA. The CCOGIF record described by a metadata fea-
ture is reflected by the value of the attribute ccogif_record_code. This attribute has one of three or four char-
acter record names listed in the above table.

Each metadata feature has a particular set of attributes, depending on the CCOGIF record it represents. The following
sections list the attributes for each record type.

Volume Descriptor Record

The Volume Descriptor Record (VDR) is the first record in a CCOGIF file. The FME represents this record as a CCO-
GIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code (constant VDR). char(4)

ccogif_log_vol_id Logical volume identifier. int(16)

ccogif_phys_vol_num Physical volume number in this logical vol-
ume (numbered sequentially from 1).

int(16)

ccogif_vol_cre_date Volume creation date. date

ccogif_vol_data_desc Logical volume data description. char(128)

ccogif_vol_gen_cntry Volume generating country. char(64)

ccogif_vol_gen_agncy Volume generating agency. char(64

ccogif_vol_gen_fclty Volume generating facility. char(64)

ccogif_fmt_ctrl_doc_id Format control document identifier. char(64)

ccogif_sw_release_id Software release identifier. char(64)

ccogif_feat_code_rev Feature code revision level. char(64)

ccogif_num_ufl_recs Number of user fixed length records imme-
diately following this volume descriptor rec-
ord.

int(16)

ccogif_bytes_prev_rec Number of bytes left from last logical record
of previous physical volume.

int(16)

User Fixed-Length Record

User Fixed-Length Records (UFLRs) provide a place for the user’s software to place any ASCII information for its own
purpose. Each UFLR contains up to 2044 bytes of user-defined data. There are zero or more UFLRs immediately fol-
lowing each VDR or DSHR in the CCOGIF file. The ccogif_num_ufl_recs attribute of the VDR or DSHR feature
tell us how many UFLR records to expect.

A single FME feature is used to represent a sequence of user fixed length records. The data from the entire sequence
of UFLRs appears concatenated together in a single attribute on the single FME feature.

FME represents the sequence of UFLRs with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant UFLR. char(4)

ccogif_user_def_data User-defined data, concatenated from an
entire sequence of UFLR records.

char(n)

Data Set Header Record

The Data Set Header Record (DSHR) defines all information common to all entities contained in a single CCOGIF data-
set. A CCOGIF volume may contain more than one dataset.

FME represents a DSHR record with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code (constant DSHR). char(4)

ccogif_data_set_name Dataset name. char(64)

ccogif_ds_cre_date Dataset creation date. date

ccogif_ds_loc_text Dataset geographic location text. char(64)

ccogif_related_ds Reference to other related datasets. char(64)

ccogif_data_three_dim Specifies whether data is three-dimen-
sional (3D). If false, Z coordinate is always
zero.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_pt_to_ln_topo Specifies whether point-to-line topology
exists in a dataset.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_ln_to_pt_topo Specifies whether line-to-point topology
exists in a dataset.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_colloc_exists Specifies whether dataset employs line col-
location.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_ln_to_area_topo Specifies whether line-to-area topology
exists in a dataset.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_area_to_ln_topo Specifies whether area-to-line topology
exists in a dataset.
Legal values are T (true), F (false) and
U (unknown).

char(1)

Attribute Name Description Type

ccogif_known_pt_in_area Specifies whether there is a known point in
each area.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_attrs_in_entity Specifies whether attributes are present in
entity records.
Legal values are T (true), F (false) and
U (unknown).

char(1)

ccogif_feat_classes Ordered list of feature classes (A to K) for
the dataset. Blanks are placed for classes
not present; e.g., A, D, GH, J.

char(32)

ccogif_num_data_grp Number of data groups contained in this
CCOGIF dataset (n>=1).

int(16)

ccogif_num_ufl_recs Number of user fixed length records imme-
diately following this dataset header record
(n>=0).

int(16)

ccogif_num_emd_recs Number of entity metadata records that
describe the contents of this CCOGIF data-
set (n>=1).

int(16)

ccogif_x_data_type,
ccogif_y_data_type,
ccogif_z_data_type

Data type of x, y, or z coordinate values.
Legal values are INT, REAL or DMS.

char(4)

ccogif_x_data_units,
ccogif_y_data_units,
ccogif_z_data_units

Units in which x, y, or z coordinate values
are measured – for example, METRES,
METRES ASL.

char(16)

ccogif_z_min_value,
ccogif_z_max_value

Z coordinate minimum and maximum
values. Interpretation of this attribute
depends on the values of ccogif_z_data_
type and ccogif_z_data_units.

variablea

ccogif_proj_id Map projection identifier that describes the
map projection in which the entity data in
the dataset is encoded. See the discussion
below this table for more details.

char(4)

ccogif_geod_datum Name of geodetic datum. char(16)

ccogif_adj_name Name of adjustment. char(16)

ccogif_vert_datum Name of vertical datum. char(16)

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHRs x, y, or z data type
corresponding to that field.

The ccogif_x_data_type, ccogif_y_data_type, and ccogif_z_data_type tell what numeric for-
mat is used to represent x, y, and z coordinate values. INTEGER and REAL are obvious representations. DMS values
for x and y coordinate values only are stored as +ddd mm ss.sss, where ddd is the degrees portion of the
number, mm is the number of minutes, and ss.sss is the number of seconds. DMS values are converted by FME to
their corresponding numeric or decimal values.

The DSHR feature also contains a number of attributes specific to the map projection in which the dataset's entities
are expressed. The selection of map projection is made by the ccogif_proj_id attribute. It has one of the fol-
lowing values:

Map Projection ID Projection Name

0100 Latitude/Longitude

0200 Transverse Mercator—Universal Transverse Mer-
cator (UTM) projections are stored with this ID as
well

0203 Mercator

0300 Lambert Conformal

0400 Stereographic

0500 Polyconic

The attributes for each map projection type are listed in the following sections.

Latitude/Longitude Project Parameters

Datasets in the Latitude/Longitude projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0100.

char(4)

ccogif_proj_name Map projection name, constant LAT-
ITUDE/LONGITUDE.

char(32)

ccogif_proj_origin_x,
ccogif_proj_origin_y

Longitude/latitude origin for x,y coor-
dinates.

DMS

ccogif_proj_num_bnd_crd Number of coordinate pairs that form
a bounding polygon for this dataset
(0>=n>=12).

int(16)

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd).

DMS

Transverse Mercator Projection Parameters

Datasets in the Transverse Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0200.

char(4)

ccogif_proj_name Map projection name, constant TRANS-
VERSE MERCATOR.

char(32)

ccogif_proj_cent_merid Central meridian. DMS

ccogif_proj_zone_width Zone width. DMS

ccogif_proj_sphd_name Spheroid name. char(20)

ccogif_proj_semi_major Semi-major axis. real(16)

ccogif_proj_semi_minor Semi-minor axis. real(16)

ccogif_proj_eccent Eccentricity. real(16)

ccogif_proj_scl_fact Scale factor. real(16)

ccogif_proj_false_east,

ccogif_proj_fals_north

False Easting/Northing. real(16)

ccogif_proj_zone Zone number. int(16)

ccogif_proj_orig_east,
ccogif_proj_orig_north

Origin (easting, northing). variablea

ccogif_proj_num_bnd_crd Number of coordinate pairs that form
a bounding polygon for this dataset
(0>=n>=12).

int(16)

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd).

variablea

Mercator Projection Parameters

Datasets in the Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0203.

char(4)

ccogif_proj_name Map projection name, constant MER-
CATOR.

char(32)

ccogif_proj_mid_lat Mid latitude. DMS

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s x, y, or z data
type corresponding to that field.

Attribute Name Description Type

ccogif_proj_sphd_name Spheroid name. char(20)

ccogif_proj_semi_major Semi-major axis. real(16)

ccogif_proj_semi_minor Semi-minor axis. real(16)

ccogif_proj_eccent Eccentricity. real(16)

ccogif_proj_orig_east,
ccogif_proj_orig_north

Origin (easting, northing). variablea

ccogif_proj_num_bnd_crd Number of coordinate pairs that form
a bounding polygon for this dataset
(0>=n>=12).

int(16)

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd).

variablea

Lambert Conformal Projection Parameters

Datasets in the Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0300.

char(4)

ccogif_proj_name Map projection name, constant LAM-
BERT CONFORMAL.

char(32)

ccogif_proj_frst_scl_par First scaling parallel. DMS

ccogif_proj_secnd_scl_par Second scaling parallel. DMS

ccogif_proj_sphd_name Spheroid name. char(20)

ccogif_proj_semi_major Semi-major axis. real(16)

ccogif_proj_semi_minor Semi-minor axis. real(16)

ccogif_proj_eccent Eccentricity. real(16)

ccogif_proj_orig_east,
ccogif_proj_orig_north

Origin (easting, northing). variableb

ccogif_proj_num_bnd_crd Number of coordinate pairs that form
a bounding polygon for this dataset
(0>=n>=12).

int(16)

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s x, y, or z data
type corresponding to that field.

bFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s x, y, or z data
type corresponding to that field.

Attribute Name Description Type

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd).

variablea

Stereographic Projection Parameters

Datasets in the Mercator projection will have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0400

char(4)

ccogif_proj_name Map projection name, constant
STEREOGRAPHIC

char(32)

ccogif_proj_scale_lat Scaling latitude DMS

ccogif_proj_sphd_name Spheroid name char(20)

ccogif_proj_semi_major Semi-major axis real(16)

ccogif_proj_semi_minor Semi-minor axis real(16)

ccogif_proj_eccent Eccentricity real(16)

ccogif_proj_orig_east,
ccogif_proj_orig_north

Origin (easting, northing) variablea

ccogif_proj_num_bnd_crd Number of coordinate pairs that
form a bounding polygon for this
dataset (0>=n>=12)

int(16)

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd)

variablea

Polyconic Projection Parameters

Datasets in the Mercator projection have the following attributes defined on their DSHR feature:

Attribute Name Description Type

ccogif_proj_id Map projection identifier, constant
0500.

char(4)

ccogif_proj_name Map projection name, constant POLY-
CONIC.

char(32)

ccogif_proj_cent_merid Central meridian. DMS

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHRs x, y, or z data
type corresponding to that field.

Attribute Name Description Type

ccogif_proj_sphd_name Spheroid name. char(20)

ccogif_proj_semi_major Semi-major axis. real(16)

ccogif_proj_semi_minor Semi-minor axis. real(16)

ccogif_proj_eccent Eccentricity. real(16)

ccogif_proj_orig_east,
ccogif_proj_orig_north

Origin (easting, northing). variablea

ccogif_proj_num_bnd_crd Number of coordinate pairs that form
a bounding polygon for this dataset
(0>=n>=12).

int(16)

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Coordinate #n of bounding polygon
(0>=n>config_num_bnd_crd).

variablea

Entity Metadata Record

The Entity Metadata Record (EMDR) describes the source and quality of the data contained in the CCOGIF dataset.
There may be multiple EMDRs in a single CCOGIF dataset if there are varying sources and quality of data in the data-
set. The entity data records in the CCOGIF dataset refer back to these entity metadata records by ID.

The FME represents an EMDR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant EMDR. char(4)

ccogif_meta_data_id Metadata ID number. int(16)

ccogif_data_gen_agncy Data generating agency. char(64)

ccogif_capture_method Method of data capture or revision. char(64)

ccogif_col_instrmt Type of collecting instrument. char(64)

ccogif_src_mat_type Type of source material. char(64)

ccogif_src_mat_scale Scale of source material. char(64)

ccogif_src_mat_date Date of source material. date

ccogif_fld_comp_date Date of field completion. date

ccogif_data_captr_date Date of data capture or revision. date

ccogif_src_mat_spec Reference to specification document
on source material and collection or
revision methods.

char(192)

aFields marked with a type of variable are either REAL, INTEGER, or DMS depending on the DSHR’s x, y, or z data
type corresponding to that field.

Attribute Name Description Type

ccogif_feat_code_spec Reference to specification document
on feature coding and attribute
assigning procedures.

char(192)

ccogif_data_struc_spec Reference to specification document
on data structuring process.

char(192)

ccogif_qual_ctrl_spec Reference to specification document
on quality control procedures.

char(192)

ccogif_trans_gen_spec Reference to specification document
on transformations and gen-
eralization procedures.

char(192)

ccogif_field_cpltn_spec Reference to specification document
on field completion procedures.

char(192)

ccogif_acc_det_proc_
spec

Reference to specification document
on accuracy determination pro-
cedures.

char(192)

ccogif_data_resolution Resolution of the data. char(64)

ccogif_x_accuracy,
ccogif_y_accuracy,
ccogif_z_accuracy

X, Y, Z positional accuracy of the
data.

real(16)

Data Group Header Record

Each data group within a CCOGIF dataset starts with a Data Group Header Record (DGHR). This record defines the
name of the data group and tells how many point, line, and area themes are contained in the group.

The FME represents a DGHR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant DGHR. char(4)

ccogif_data_group_name Name of data group. char(64)

ccogif_num_point_themes,
ccogif_num_line_themes,
ccogif_num_area_themes

Number of (point, line, area)
themes contained in this data group.

int(16)

Data Theme Header Record

Each theme in a data group starts with a Data Theme Header Record (DTHR). This record defines the entity type
(point, line, area) contained in the theme, the number of attributes defined on each entity in the theme, and the
length of the fixed length entity records within the theme.

All entities within a particular thememust be of the same entity type and must have the same set of attributes.

FME represents a DTHR with a CCOGIF_METADATA feature with the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant DTHR. char(4)

ccogif_entity_type Type of entity in theme (POINT, LINE,
AREA).

char(8)

ccogif_num_entities Number of entities in this data theme. int(16)

ccogif_num_attr_desc Number of attributes defined on each
entity of the theme.

int(16)

ccogif_fixed_len_bytes Length of the fixed length portion of
each entity in the theme.

int(16)

Attribute Descriptor Record

All entities within a given data theme have the same set of attributes defined on them. The Attribute Descriptor Rec-
ord (ADR) lists the name and type of each attribute defined on the entities of the current data theme. The number of
attributes defined on a theme is specified in the ccogif_num_attr_desc attribute of the DTHR.

The FME represents an ADR with a CCOGIF_METADATA feature that has the following attributes:

Attribute Name Description Type

ccogif_record_code Record code, constant ADR. char(4)

ccogif_attr{n}_name Name of attribute #n. char(40)

ccogif_attr{n}_type Type of attribute #n (INT, REAL,
DMS, CHAR, or DATA).

char(4)

ccogif_attr{n}_len String length if attribute #n is a
CHAR type, otherwise 0.

int(16)

Entity Features

The entity features are the features that represent the entities of the CCOGIF dataset. When reading CCOGIF data, an
entity feature will have a feature type of <data_group>_<theme_index>, where:

<data_group> is the name of the data group, taken from the most recent DGHRmetadata record. All special char-
acters—such as spaces, colons, etc.—are replaced with underscores.

<theme_index> is the index within the data group of the theme containing the entity. The themes are numbered
sequentially within their data group. The first theme in each data group is number 1.

Entities may be described in a CCOGIF file as a pair of records. Each entity has a fixed length record and, optionally, a
variable-length record. The fixed length portion contains information, such as an ID number, a point's location, a
line's topological information, a feature code, and attribute values. In other words, the data present for all entities in
the theme.

The variable-length portion contains the data that varies in size between entities within a given theme and may or
may not be present for a given entity. It contains, for example, a list of lines attached to a point entity, the coordinates
defining a line, or the list of identifiers of lines defining an area's boundaries.

FME's entity features combine the contents of the fixed length and variable length records for a particular entity into a
single FME feature.

All entity features have the following attributes defined on them:

Attribute Name Description Type

ccogif_record_code Record code, constant PFLR for point
entities, LFLR for line entities, AFLR for
area entities.

char(4)

ccogif_data_coll_md_ptr Data collection metadata pointer (ref-
erence number of EMDR corresponding
to data collection).

int(16)

ccogif_data_rev_md_ptr Data collection metadata pointer (ref-
erence of EMDR corresponding to data
revision or validation).

int(16)

ccogif_prim_feat_code Primary feature code for the entity. char(12)

ccogif_data_group_name Name of the data group containing the
entity.

char(40)

ccogif_data_theme_id Index of the data theme within the
data group.

int(16)

Each specific type of entity has additional attributes to describe the entity and are listed in the sections that follow.

In addition to the standard attributes, each entity feature also has values for all attributes listed in its data theme's
ADR.

Point Entity Features

Point entities are represented in the CCOGIF file as a Point Fixed-Length Record (PFLR) and, optionally, a Point Var-
iable-Length Record (PVLR). The FME combines the contents of these two records into a single feature – the point
entity feature.

The geometry of FME's point entity feature is the point's coordinates from the PFLR. A Z-value of -9999 represents
an undefined value, so any PFLRs that have a Z-value of -9999 are translated as an (x,y) coordinate instead of an
(x,y,z) coordinate.

In addition to the geometry and the attributes common to all entity features (listed in the previous section), point
entity features have the following attributes defined:

Attribute Name Description Type

ccogif_record_code Record code, constant PFLR. char(4)

ccogif_point_id Point ID number. int(16)

ccogif_num_lines Number of lines attached to this point
(n>=0).

int(16)

ccogif_orientation Orientation of point, measured in
degrees counterclockwise from the x-
axis.

real(16)

ccogif_line_id{n} Line identifier of nth line attached to
this point.

int(16)

Line Entity Features

Line entities are represented in the CCOGIF file as a Line Fixed-Length Record (LFLR) and optionally, a Line Variable-
Length Record (LVLR). The FME combines the contents of these two records into a single feature—the line entity fea-
ture.

The geometry of FME's line entity feature is the line's coordinates from the LVLR. A Z-value of -9999 represents an
undefined value, so any LVLRs that have Z-values of -9999 are translated as (x,y) coordinates instead of (x,y,z)
coordinates.

In addition to the geometry and attributes common to all entity features, which were listed in the previous section,
line entity features have the following attributes defined:

Attribute Name Description Type

ccogif_record_code Record code, constant LFLR. char(4)

ccogif_line_id Line ID number. int(16)

ccogif_num_lines Number of lines attached to this
point (n>=0).

int(16)

ccogif_coll_line_id ID number of collocated line (0 if not
collocated).

int(16)

ccogif_start_node_id Start node ID number (0 if not
defined).

int(16)

ccogif_end_node_id End node ID number (0 if not
defined).

int(16)

ccogif_left_area_id Left area ID number (0 if not
defined).

int(16)

ccogif_right_area_id Right area ID number (0 if not
defined).

int(16)

Area Entity Features

Area entities are represented in the CCOGIF file as an Area Fixed-Length Record (AFLR) and optionally, as an Area Var-
iable-Length Record (AVLR). The FME combines the contents of these two records into a single feature – the area
entity feature.

The geometry of FME's area entity feature is the coordinates of a point inside the area, as defined in the AFLR. A Z-
value of -9999 represents an undefined values so any AFLRs that have a Z-value of -9999 are translated as an
(x,y) coordinate instead of an (x,y,z) coordinate. Note that the area entity feature itself does not contain any polygonal
geometry. Instead, it contains a list of attributes pointing to the identifiers of the lines that make up the boundary of
the area. To form a polygon from CCOGIF data it is necessary to use the ReferenceFactory, or a similar factory, in the
mapping file to associate the area feature with its polygonal boundaries.

In addition to the geometry and the attributes common to all entity features (listed in the previous section), area
entity features have the following attributes defined:

Attribute Name Description Type

ccogif_record_code Record code, constant AFLR. char(4)

ccogif_area_id Area ID number. int(16)

ccogif_num_bnd_lines Number of lines that form the boundaries int(16)

Attribute Name Description Type

of this polygon (n>=0).

ccogif_line_id{n} Line identifier of nth boundary line for this
area.

int(16)

Defining Volume Structure

The contents of a CCOGIF volume follow a firm structure, provided through the use of metadata records. The
sequence and contents of these metadata records is crucial to the correctness of a CCOGIF volume. The CCOGIF
writer provides a mechanism for the mapping file to explicitly define the required records and their contents.

There are six areas where the CCOGIF writer provides direct control of the generated CCOGIF records:

l Definition and order of data themes within a data group

l Specification of metadata records, such as:

l the contents of Volume Descriptor Record (VDR)

l the contents of User Fixed-Length Record (UFLR)

l the contents of Data Set Header Record (DSHR)

l the contents of Entity Metadata Record (EMDR)

l Specification of the contents of entity records

l The following sections cover each of these in more detail.

Theme Definition

Geometric entity records are grouped into themes, where all entities within a given theme have the same geometric
type – point, line, or area – and the same set of attributes. Each theme written to a CCOGIF file is defined by a CCOGIF
DEF line. The DEF line specifies the name of the group to which the theme belongs, and allows specification of the rel-
ative ordering of the themes within the groups. The header records for data groups (DGHR) are written to the output
file for each group mentioned on a DEF line.

The group name and theme ordering index may be specified explicitly on the DEF line with the CCOGIF_GROUP_
NAME and CCOGIF_THEME_ORDERING keywords, or they may be implied by the theme identifier. If the DEF line
does not have a CCOGIF_GROUP_NAME, the theme identifier, or FME feature type, becomes the implied group
name. In this case, the DEF line actually defines attributes for the group itself and not a particular theme, and there-
fore must not include any theme ordering or entity type information. The reasons and implications of assigning attrib-
utes to a group instead of a theme within the group are discussed below.

If the DEF line contains neither an explicit group name or an explicit theme ordering, and the theme identifier is of
the form <groupName>_<number>, where <number> is any integer, then the group name and theme ordering
are implied as <groupName> and <number> respectively.

The geometric entity type for each thememust be provided on the theme’s DEF line by using the CCOGIF_THEME_
ENTITY_TYPE keyword. However, it is not necessary for every DEF line to have an entity type provided. If neither
entity type nor theme ordering information is specified, then the DEF line is considered to define a set of attributes
for a data group rather than for a data theme.

Strictly speaking, it makes no sense to talk of attributes being assigned to a CCOGIF data group as attributes are
assigned to themes within the CCOGIF file. This mechanism, however, provides the ability to essentially define a
point, line, and area theme within a single group, with identical sets of attributes. Any features with the specified fea-
ture type are written to the appropriate theme—point, line, or area—depending on the geometry type of the feature.
Features with aggregate geometry or no geometry at all will not be written.

The themes implied with this mechanism, called generic themes from this point on, may coexist with other themes in
a group, making it possible to define a number of themes for a data group as well as to define generic themes for “the
other stuff that we want to write but that doesn’t fit into our predefined themes”. If the generic thememechanism is

used, its DEF line must appear in the mapping file before the DEF lines for any non-generic themes within that
group.

Specifying Metadata Records

The metadata records in a CCOGIF file contain many pieces of information that must be correctly defined for the file to
be accurate. Much of this information is for the benefit of human users of the end product and may vary not only from
site to site, but from one dataset to another. This information cannot be coded into FME itself, therefore it must be sup-
plied into the mapping file.

The CCOGIF writer expects this information to be passed in the samemetadata features that the CCOGIF reader
creates. If the writer receives a feature with a feature type of CCOGIF_METADATA, it will look at the ccogif_rec-
ord_code attribute to see which of the metadata features, described in "Metadata Features" on page 243, the fea-
ture represents. It extracts from this feature whatever ccogif_XXX attributes apply to that particular type of
metadata feature and eventually writes the information to the metadata records in the output CCOGIF file.

The order of the incoming metadata features is significant, as they are written out in a similar order to which they are
received. Any volume-specific metadatamust come before the Data Set Header Record (DSHR). Metadata features
received after the DSHR appear in the output CCOGIF file as a part of the dataset.

In addition, all metadata features must be presented to the writer before any entity features are presented. The CCO-
GIF writer needs information from the DSHR in order to write entity data, so it creates a default DSHR if none has been
given. Any metadata that comes after the default DSHR has been generated may contradict the default values placed
into the DSHR, resulting in an invalid output CCOGIF file.

Several ways to generate the metadata features for the CCOGIF writer are discussed below:

l Use the Multi-Reader as the input reader and use a template CCOGIF file as a source for CCOGIF_METADATA fea-
tures. In other words, specific metadata features may be chosen from this reader, then redirected to the writer to
provide attribute values for the corresponding metadata records in the output.

l Store the template’s CCOGIF_METADATA features in a feature store and use the RecordingFactory to
inject them into the feature stream. If this method is chosen, it’s important to choose the playback mode of PLAY-
BACK instead of PLAYBACK_AT_END.

l Use the CreationFactory to create the metadata features with all of the required attributes.

Once the features have been generated, they have to be handed to the writer with a feature type of CCOGIF_META-
DATA. This can be accomplished by creating a false theme in any of the groups in the output file such as:

CCOGIF_DEF CCOGIF_METADATA \
 CCOGIF_GROUP_NAME "FEATURES"

With this definition in place, you can correlate the metadata features to the CCOGIF_METADATA feature type of the
output format. This correlation must equal all ccogif_xxx attributes on the source and target sides for all meta-
data feature types being correlated. For example:

CCOGIF CCOGIF_METADATA \
 ccogif_adj_name %ccogif_adj_name \
 ccogif_area_to_ln_topo %ccogif_area_to_ln_topo \

ccogif_attrs_in_entity %ccogif_attrs_in_entity \
ccogif_bytes_prev_rec %ccogif_bytes_prev_rec \
ccogif_colloc_exists %ccogif_colloc_exists \
...
ccogif_z_min_value %ccogif_z_min_value

SHAPE CCOGIF_METADATA \
ccogif_adj_name %ccogif_adj_name \
ccogif_area_to_ln_topo %ccogif_area_to_ln_topo \
ccogif_attrs_in_entity %ccogif_attrs_in_entity \
ccogif_bytes_prev_rec %ccogif_bytes_prev_rec \
ccogif_colloc_exists %ccogif_colloc_exists \
...
ccogif_z_min_value %ccogif_z_min_value

The following sections describe ways in which some of the types of metadata features are treated specially by the CCO-
GIF writer. This special treatment simply ensures that the record exists and has some legal, if not meaningful, default
values in place for the ccogif_XXX attributes.

Volume Descriptor Record Contents

The Volume Descriptor Record (VDR) must be present in every CCOGIF file. If it is not given to the CCOGIF writer, it
will be created with the default attribute values listed in the following table. If a VDRmetadata feature is given to the
CCOGIF writer and it defines only some of the ccogif_XXX attributes that appear in the table below, the default
value will be “taken” for those not specified.

Attribute Name Contents – Default Values

ccogif_log_vol_id FME-generated CCOGIF dataset

ccogif_phys_vol_num 0

ccogif_vol_cre_date Current date

ccogif_vol_data_desc Empty string (“ ”)

ccogif_vol_gen_cntry Empty string (“ ”)

ccogif_vol_gen_agncy Empty string (“ ”)

ccogif_vol_gen_fclty Empty string (“ ”)

ccogif_fmt_ctrl_doc_id Empty string (“ ”)

ccogif_sw_release_id Empty string (“ ”)

ccogif_feat_code_rev Empty string (“ ”)

ccogif_num_ufl_recs Computed from the amount of user data spec-
ified in the volume’s UFLR metadata features

ccogif_bytes_prev_rec 0

The value for the attribute ccogif_num_ufl_recs is always filled in automatically by the CCOGIF writer. Its
value will be based on the length of the user data passed to the writer via the User Fixed-Length Records’ (UFLR)
metadata features.

User Fixed-Length Record Contents

Each VDR and DSHR record in a CCOGIF file may be immediately followed by zero or more UFLRs. When given a
sequence of UFLRmetadata features, the CCOGIF writer will read the ccogif_user_def_data attribute of each
feature and concatenate their values into one large character string. When it comes time to write out the metadata rec-
ords, the writer creates as many UFLRs as are required to hold the accumulated data. Each UFLR can contain up to
2044 bytes of user data.

The placement of the UFLRs in the output CCOGIF file depends on where they occur in the sequence of metadata fea-
tures. If the UFLR appears before the DSHR feature, or the first entity feature, if no DSHR feature is explicitly given,
they will be written out immediately following the volume’s VDR. In this case, the VDR’s ccogif_num_ufl_recs
are set to specify how many UFLRs follow.

If the UFLRmetadata features appear after the DSHRmetadata feature, then the UFLRs will be written immediately
following the DSHR record and the DSHR’s ccogif_num_ufl_recs will be set to specify how many UFLRs fol-
low.

Data Set Header Record Contents

Every CCOGIF file may contain one or more datasets.1 The first record of each dataset in a CCOGIF volume is called the
Data Set Header Record (DSHR). It provides information particular to the dataset not only for the human user—it also
directs computer applications on how to process the data.

The portions of the DSHR that relate to the processing of the data are of specific interest to the CCOGIF writer. When
it writes out data within a dataset, it must remain consistent with the dataset characteristics set out in the DSHR. The
following information is particularly interesting to the writing process.

l Coordinate data type: The DSHR specifies the data type, INT, REAL or DMS, for each of the x, y, and z coor-
dinate values within the dataset. The CCOGIF writer uses the values of the DSHRmetadata feature’s ccogif_x_
data_type, ccogif_y_data_type, and ccogif_z_data_type attributes to format the numerical coor-
dinates correctly.

l Data set content indicator: The Data Set Content Indicator (DSCI) is a subrecord of the DSHR that tells
whether data is 3D, whether there is a known point in each area, and whether various topology information such
as, point to line topology, line to point topology, line collocation, line to area topology, and area to line topology, is
present in the entity attributes. FME’s CCOGIF writer currently does not generate any topology information, how-
ever it passes along any that has been added to geometric entity features which have been given to it.

l Coordinate system and map projection: The correct coordinate system for the output CCOGIF dataset must be
specified in a DSHRmetadata feature, as this information is not yet tied in to FME’s coordinate systemmanager. If
no coordinate system information is provided to the CCOGIF writer, it will arbitrarily choose a Universal Transverse
Mercator (UTM) zone 18 projection, which is most likely not what is wanted.

The following table lists the default values for all attributes in the DSHR. These default values will be written out for
any attributes not mentioned in “any” DSHRmetadata feature given to the writer.

Attribute Name Contents – Default Value

ccogif_data_set_name FME-generated CCOGIF dataset

ccogif_ds_cre_date Current date

ccogif_ds_loc_text Empty string (“ ”)

ccogif_related_ds Empty string (“ ”)

ccogif_data_three_dim Depends on whether first entity feature written is
two- or three-dimensional.

ccogif_pt_to_ln_topo F for False

ccogif_ln_to_pt_topo F for False

ccogif_colloc_exists F for False

ccogif_ln_to_area_topo F for False

ccogif_area_to_ln_topo T for True

ccogif_known_pt_in_area T for True

ccogif_attrs_in_entity T for True

ccogif_feat_classes Empty string (“ ”)

1The FME’s CCOGIF writer currently supports only a single dataset.

Attribute Name Contents – Default Value

ccogif_num_data_grp Number of data groups written to this CCOGIF
dataset.

ccogif_num_ufl_recs Computed from the amount of user data specified
on the UFLR metadata records.

ccogif_num_emd_recs Number of EMDRs to write to the dataset.

ccogif_x_data_type,
ccogif_y_data_type,
ccogif_z_data_type

REAL

ccogif_x_data_units,
ccogif_y_data_units,
ccogif_z_data_units

METRES for x and y,
METRES ASL for z

ccogif_z_min_value,
ccogif_z_max_value

If the entity data is 3D, these are the actual mini-
mum and maximum elevations. Otherwise, they
are left blank.

ccogif_proj_id Defaults to UTM zone 18, so the projection ID will
be Transverse Mercator (0200)

ccogif_geod_datum Name of geodetic datum

ccogif_adj_name Name of adjustment

ccogif_vert_datum Name of vertical datum

The ccogif_num_ufl_recs attribute on the DSHR is completely dependent on the amount of user data passed
to the CCOGIF writer in UFLRmetadata features and is always overwritten by the writer.

The FME defaults to a map projection of UTM zone 18. The following table presents the default values for the
projection-related attributes for the DSHR.

Attribute Name Content – Default Value

ccogif_proj_id Constant: 0200

ccogif_proj_name Constant: TRANSVERSE MERCATOR

ccogif_proj_cent_merid Constant: 75

ccogif_proj_zone_width Constant: 6

ccogif_proj_sphd_name GRS 80

ccogif_proj_semi_major Constant: 6.378137E+06

ccogif_proj_semi_minor Constant: 6.35675231E+06

ccogif_proj_eccent Constant: 6.694380070E-03

ccogif_proj_scl_fact Constant: 0.9996

Attribute Name Content – Default Value

ccogif_proj_false_east,

ccogif_proj_fals_north

Constant: 500000 east, 0 north

ccogif_proj_zone Constant: 18

ccogif_proj_orig_east,
ccogif_proj_orig_north

Constant: (0,0)

ccogif_proj_num_bnd_crd Constant: 0

ccogif_proj_bnd_crd{n}.x,
ccogif_proj_bnd_crd{n}.y

Empty string (“ ”)

It is important to note that the CCOGIF writer requires the DSHR information (especially the x,y, and z data types)
before it starts to write entity data to the CCOGIF file.

Entity Metadata Record Contents

Each dataset requires at least one Entity Metadata Record (EMDR). The entity records may reference two or three
EMDRs.

The CCOGIF writer requires EMDRmetadata features to define meaningful contents for the EMDRs. If no EMDRmeta-
data features are given to the writer, a single EMDR will be written to the output CCOGIF file with all attributes given
default values from the table below. The default attribute values are also used to fill in any values of attributes not
present in the EMDRmetadata features passed in.

Attribute Name Description

ccogif_meta_data_id Constant: 0

ccogif_data_gen_agncy Empty string (“ ”)

ccogif_capture_method Empty string (“ ”)

ccogif_col_instrmt Empty string (“ ”)

ccogif_src_mat_type Empty string (“ ”)

ccogif_src_mat_scale Empty string (“ ”)

ccogif_src_mat_date Current date

ccogif_fld_comp_date Current date

ccogif_data_captr_date Current date

ccogif_src_mat_spec Empty string (“ ”)

ccogif_feat_code_spec Empty string (“ ”)

ccogif_data_struc_spec Empty string (“ ”)

ccogif_qual_ctrl_spec Empty string (“ ”)

ccogif_trans_gen_spec Empty string (“ ”)

ccogif_field_cpltn_spec Empty string (“ ”)

Attribute Name Description

ccogif_acc_det_proc_spec Empty string (“ ”)

ccogif_data_resolution Empty string (“ ”)

ccogif_x_accuracy,
ccogif_y_accuracy,
ccogif_z_accuracy

Constant: 0

The ccogif_data_coll_md_ptr and ccogif_data_rev_md_ptr attributes on all output entity features
must be given an explicit value in the mapping file to ensure they are meaningful.

Entity Record Contents

The entity records written out by the CCOGIF mirror those obtained from the reader. The ccogif_XXX attributes must
be defined to be meaningful before the feature is written to the output file. If a feature is passed into the writer with
an attribute named “ccogif_record_code”, the value of that attribute is inspected to see if it contains one of the values:
ccogif_point, ccogif_line, or ccogif_area. If this attribute does not exist, the geometry type of the feature is used to deter-
mine which type of entity is to represent the feature.

No topology is normally created by the CCOGIF writer when writing entities to the CCOGIF file, except when polygon
data is written to a area themes. In this case, a coverage is computed by intersecting the boundaries and holes of all
polygon and donut features written to the group. The coordinates for the lines delineating the resulting areas are
written out as LFLR records to the group’s “generic” linear data theme, and the AFLR records are written to whatever
theme the original polygons were directed at.

If some other topology is required, it can be defined through other means (that is, elsewhere in the mapping file or by
an external tool) and presented to the writer as ccogif_XXX attributes on the entity features. This would require,
however, that every aspect of the CCOGIF entity, including the entity ID and any other internal references, be cor-
rectly defined on the feature before it makes its way to the CCOGIF writer.

Generated Mapping Files

In CCOGIF files, geometric entities are grouped by geographic area, then further grouped according to attributes of
the data itself such as, data themes with common geometric entity types and sets of attributes. This is very different
from the conceptual divisions between data entities that typically must rely on the content of the primary feature code
to provide notion similar to FME’s feature types. The interpretation of a feature type requires knowledge of the con-
ventions by which the data was encoded in the CCOGIF file.

Tip: Geomatics Canada’s document titled “Conversion of NTDB Data into CCOGIF Format” pro-
vides an example of such a set of convention.

Without knowledge of the underlying conventions, it is very difficult to automatically generate a single mapping file
that works with more than one input file. The definitions of the themes within the groups just isn’t consistent enough.

To overcome this obstacle, FME can generate two different kinds of mapping files:

l The first is a generic mapping file that extracts all of the information it can from the features, then groups them
into FME feature types based on the data theme and data group. When run, this mapping file provides a very sim-
ple representation of the data in the output format without regard to any specific set of conventions.

l The second type of mapping file which may be generated takes into account the representation of the National Top-
ographic Data Base (NTDB) data in the CCOGIF file and is referred to as a profile-specific mapping file.

The term profile is used to refer to a set of file, feature, and attribute naming conventions used to store NTDB in
another, that is non-CCOGIF, format. Geomatics Canada has three such profiles, each designed to embody NTDB data
within the characteristics and limitations of a particular file format. The three profiles are for ASCII Ungenerate (ARC-
GEN), MIF/MID, and DXF. The FME provides a way to generate mapping files to write CCOGIF data in another format,
generally following the conventions of any of these profiles.

Note: The target format does not have to be the same as the format for which the profile was defined.

The resulting files do not exactly conform to the profile, due to differences in data format and to the way in which map-
ping file generation works within FME. However, the resulting data files are generally much closer to what you would
want than those that a generic mapping file would yield. Manual editing of the mapping files can, of course, bring it
much closer.

The advantage of the profile-specific mapping files is that the knowledge of the conventions for storing the NTDB in
the source and destination formats is stored in the mapping file. Therefore a single mapping file may be used for a
whole series of mapsheets, whereas a generic mapping file would only be applicable to a single CCOGIF file.

The disadvantage to the profile-specific mapping file is that the actual generation process needs a few parameters
about the input mapsheets. This requires some knowledge of the data in order to generate the mapping file. In addi-
tion, the generated mapping file must be used with NTDB data that is consistent with the parameters with which the
mapping file was generated.

The following sections describe the process and application of the two kinds of mapping files in greater detail.

Generic Mapping Files

The generic mapping files are useful for a “one-off” translation of a CCOGIF file to another format. It will translate all
of the geometric entities in the file, along with their attributes, and perform simple polygon construction with the area
entities. This sort of translation is useful to quickly determine what kind of data was stored in the CCOGIF file or to
create a starting point for a hand-coded mapping file.

When a generic mapping file is used, an FME feature is generated for each geometric entity. The features generated
have feature types of <groupName>_<themeIndex>, where <groupName> is the name of the data group that
contains the entity and <themeIndex> is the position of the entity’s data theme within all of the group’s themes.
Because the nature of CCOGIF makes it unlikely that two CCOGIF files could have the same group and theme struc-
ture, a mapping file generated from the contents of a given CCOGIF file should only be used to translate that file.

Profile-Specific Mapping Files

Geomatics Canada has defined conventions for storing NTDB data in four different formats:

l CCOGIF

l ASCII Ungenerate, also known as ArcInfo Generate or ARCGEN

l MID/MIF

l DXF

We refer to each of these as a profile.

The published profiles define conventions for attribute naming, file naming, file composition—for example, organized
by NTDB theme versus entity name—and rules for defining the specific attributes’ values. The FME has facilities for
generating mapping files that translate CCOGIF into any FME-supported format, closely adhering to one of these three
profiles:

l ARCGEN

l MID/MIF

l DXF

These profiles are addressed in greater detail following this discussion on profile-specific mapping files.

Aside from choice of profile, the generated mapping file depends on the following three parameters:

l Choice of Language (English or French): NTDB data encoded into CCOGIF contains both French and English
group names and attribute names. A mapping file is configured to choose which language is used on the output
file to name output feature types and attribute names.

l Choice of NTDB Revision (2 or 3): NTDB data in CCOGIF follows either the revision 2 or 3 standard. Since this
information is not made available to the mapping file generation process, the user must specify it at the time of
mapping file generation. A mapping file generated to process mapsheets from one revision cannot be used to proc-
ess mapsheets from another revision.

l Choice of Scale (50k or 250k): NTDB data can contain information for a 50k or a 250k mapsheet. The user
must select which scale of data a mapping file is to work with at the time of mapping file generation. A mapping file
generated to process one scale of data may not be used to process a mapsheet from another scale because the set
of groups and attributes differ slightly.

These parameters are supplied to FME mapping file generation process using the macros NTDB_Language,
NTDB_Version, and NTDB_Scale. When generating a mapping file from the command line, the parameters
would be specified something similar to the following command. As no CCOGIF input file is required for a profile-spe-
cific mapping file, the word unused is given.

fme generate ntdbcg shape unused mymapping.fme --NTDB_Language French --NTDB_Version
3 --NTDB_Scale 50k

Once a profile-specific mapping file has been generated, it may be stored (for example, in the FME gallery) to be used
later. It is not necessary to generate a profile-specific mapping file each time a translation is performed.

The following sections describe the specifics of each of the three profiles in more detail.

ASCII Ungenerate (ARCGEN) Profile

The ASCII Ungenerate profile is specified in the Geomatics Canada document titled “Conversion of NTDB Edition 3
Data into ASCII Ungenerate Format”. This profile has the following properties:

l A separate output file is generated for each entity and geometric representation such as, point, line, area.

l File names have a maximum of eight characters. The first seven are the seven-character identifier for the theme—
for example, BATIMEN, BUILDIN, CHEMINE, CHIMNEY—followed by a single character for the entity type—P,
L or A.

l Point data is stored in a file with the extension .pts, lines in a file with the extension .lin, and areas in a pair of
files—a .lin file for the boundary and a .pts file for the centroid.

l The National Topographic System (NTS) mapsheet number; for example, 031h01 is used to name a directory that
contains the subdirectories points, lines, and areas.

l Attributes are stored in a comma-separated value (CSV) file in the same directory as the corresponding geometry
data.

l Each attribute file contains a minimum set of attributes: identifier, entity_name, code_gener, code_
expli, ATG, ATZ, ATE, accuracy (precision in French), and angle is used for point entities only.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for ARCGEN output, however, FME cannot completely adhere to these
rules without involving manual editing of the generated mapping file.

The FME’s approximation to the above conventions are as follows:

l Target dataset is specified by the user at run-time to be the NTS map number. For many formats, this is a direc-
tory that contains a separate file for each feature type, or entity file name. Other formats are written to a single file,
with different layers or levels, or whatever the target format’s terminology is, for the entity files.

l Feature type names are the same eight-character namementioned in the specification. The seven-digit entity
name is determined by looking up the generic code in a predefined tables. Some formats tack on a suffix, such as
_arc or _point to the entity name. The way mapping file generation works in FME, this is unavoidable however,
it can be removed by hand once the mapping file has been generated.

l No subdirectories are created in the target directory for points, lines, and areas.

l If the target format were ARCGEN, the file names will all have .gen extensions, instead of .pts and .lin, and
no CSV files will be created.

l When possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes take either the English or French name of the corresponding CCOGIF attributes, depending on the setting of
NTDB_Language.

To generate a mapping file for the ARCGEN profile, a source format specification of ntdbcg, which is an abbreviation
of NTDB CCOGIF toGenerate, is used. An example of how this is written is:

fme generate ntdbcg ...

MID/MIF Profile

The MapInfo Data Interchange Format (MID/MIF) profile is specified in the Geomatics Canada document titled Con-
version of NTDB Edition 3 Data into MID/MIF Format. This profile has the following properties:

l NTDB entities are written to output files organized by theme. The name of the output file combines the NTS map-
sheet number with the theme abbreviation. The table below summarizes the list of themes and their abbreviations.

NTS Mapsheet Themes, Abbreviations, and Numbers

Theme Name Abbreviation Theme
number

Designated areas AD 0

Roads CH 1

Man-made features CO 2

Relief and landform FO 3

General GE 4

Hydrography HD 5

Hypsography HP 6

Power network RE 7

Rail Network RF 8

Road network RR 9

Water saturated soils SS 10

Toponymy TO 11

Vegetation VE 12

l Each dataset in a physical volume occupies a directory identified by the NTS number.

l The output coordinate system for NTDB is a UTM system with a NAD83 datum, coordinates in metres, and a scale
factor of 0.9996.

l The output file contains at a minimum the following attributes:

l CODE (explicit code)

l ATTF

l ELEVATION

l ORIENTATION

l ATV1_ACCURACY

l Other attributes are named ATFn_<attribute_name> and ATVn_<attribute_name>.

l A MapInfo symbol table is used to represent explicit codes.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for MID/MIF output, however, FME cannot completely adhere to all con-
ventions without involving manual editing of the generated mapping file.

The FME’s approximation to the above conventions are as follows:

l The profile specification calls for output files that correspond to FME feature types to have names including the
NTS map number. Unfortunately, the FME mapping file generation process cannot use a variable name for the out-
put feature types, therefore it generates all mapping files with output feature types of NTSNUM_<theme-
Abbrev>, where <themeAbbrev> is a theme abbreviation fromNTS Mapsheet Themes,
Abbreviations, and Numbers . It is necessary to modify the generated mapping file to include the map
number as a part of the output feature type names.

l Where possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes take either the English or French name of the corresponding CCOGIF attributes, depending on the setting of
NTDB_Language.

To generate a mapping file for the MID/MIF profile, a source format specification of ntdbcm, which is an abbreviation
of NTDB CCOGIF toMID/MIF, is used. An example of how this is written is:

fme generate ntdbcm ...

DXF Profile

The DXF profile is specified in the Geomatics Canada document titled “Conversion of NTDB Edition 3 Data into DXF For-
mat”. This profile has the following properties:

l The data is written to a DXF file for each theme. The themes are the same thirteen themes as those used for the
MID/MIF profile.

l The file names for the theme files are <nts><abbrev>.dxf where <nts> is the NTS map number and
<abbrev> is the lower-case equivalent of the theme abbreviation listed in the above-mentioned table.

l Entities are stored in layers named <entityName>_<explicitCode> where <entityName> is the first
11 or fewer characters of the NTDB entity name and <explicitCode> is the explicit code of the entity.

l Fixed attributes—ATFn_<attrName>—are not stored with the features. Their values are implied by the explicit
code.

l Except for toponymy, variable attributes are not transferred to the DXF features.

l There is no area under DXF.

Some of these conventions are difficult to follow with an automatically generated mapping file, especially considering
the variety of output formats available. Even for DXF output, however, FME cannot completely adhere to these rules
without involving manual editing of the generated mapping file.

The FME’s approximation to the above conventions are given here:

l FME considers the target dataset of a DXF file to be the file itself, so it is not possible to generate a number of
themes’ output files from a single run of FME. To accomplish this, you would have to run the same CCOGIF file
through the mapping file for each desired themes. Refer to the discussion under the heading Theme Selection for
more details.

l The profile spec calls for output files that correspond to FME feature types to have names including the NTS map
number. Unfortunately, FME mapping file generation process cannot use a variable name for the output feature
types, therefore it generates all mapping files with output feature types of NTSNUM_<themeAbbrev>, where
<themeAbbrev> is a theme abbreviation fromNTS Mapsheet Themes, Abbreviations, and
Numbers. It will be necessary to modify the generated mapping file to include the map number as a part of the
output feature type names.

l When possible with the choice of output formats, the attributes are defined as described above. Additional attrib-
utes will take either the English or French name of the corresponding CCOGIF attributes, depending on the setting
of NTDB_Language.

To generate a mapping file for the DXF profile, a source format specification of ntdbcd, an abbreviation of NTDB
CCOGIF toDXF, is used. An example of how this is written is:

fme generate ntdbcd ...

Run-Time Options

Language Selection (Generic)

Normally, a generic mapping file names groups and attributes by some combination of their French and English
names. The generated generic mapping file contains a few lines that may be uncommented to specify that the output
files should contain only the French or English data group and attribute names.

Generating Metadata Report (Revision 2)

When a profile-specific mapping file is generated for an NTDB revision 2 CCOGIF file, it generates a report of the meta-
data in the file. When running the mapping file, the macro MetadataReportFilenamemust be defined. It con-
tains the name of a file where the report is written. If a file already exists with this name, it will be overwritten with
the report.

Tip: The advanced user may be interested to know that the actual generation of the report is
performed by including the file $(FME_HOME)/metafile/ntdbv2Report.fmi into the mapping
file.

Profile-Specific Theme Selection

By default, the profile-specific mapping files export all entity data from the input CCOGIF file to the output file. Often
you only want to extract a single theme or a set of themes.

This may be performed by specifying a value for the NTDB_SelectedThemesmacro when running the mapping
file. This macro contains a comma-separated list of themes to be exported. If the macro is empty as it is by default, all
themes are exported. The themes are specified either by the number or abbreviation in NTS Mapsheet Themes,
Abbreviations, and Numbers.

Known Mapping File Issues

When generating mapping files to write to some formats, FME automatically appends geometry type names to the out-
put feature types. Generally, this is a necessary practice for mapping file generation and cannot be overridden. The
only ways around this is one of these approaches:

l to modify the mapping file after it has been generated

l to rename the files after the translation has completed

The first approach is more prudent for profile-specific mapping files, as they are likely to be used several times. The
modified mapping files can be stored in the FME gallery for future use.

CITS Data Transfer Format (QLF) Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The Centre for Topographic Information Sherbrooke (CITS) Data Transfer Format (QLF) Reader/Writer allows FME to
read and write QLF import and export files. The QLF is a published ASCII format used by CITS for import and export.

Overview

QLF files store both feature geometry and attribution. A QLF file has the following file name extension:

File Name Extension Contents

.qlf Vector geometric data

.qlf.gz Same as above but in compressed gzip
format.

The extension is added to the basename of the QLF file. Optionally adding .gz to the extension will output a com-
pressed gzip QLF format file; conversely, the reader can directly read files with the extension .qlf.gz.

The QLF reader and writer supports the storage of point, line, and polygon geometric data in .qlf files. The QLF format
also stores features with no geometry. Features having no geometry are referred to as having a geometry of none.

QLF Quick Facts

Format Type Identifier QLF

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type qlf_record type

Typical File Extensions .qlf, .qlf.gz

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type qlf_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none no

Reader Overview

The QLF reader extracts features from a file one at a time, and passes them on to the rest of the FME for further proc-
essing. The reader finishes when it reaches the end of the file.

Reader Directives

The directives processed by the QLF reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the QLF reader is QLF.

DATASET

The value for this keyword is the file path of the QLF file to be read.

Required/Optional

Required

Mapping File Syntax

QLF_DATASET /usr/data/qlf/qlffile.qlf

Workbench Parameter

Source QLF File(s)

DEF

Each QLF file may optionally be defined before it is read. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of a QLF DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The basename specified on the QLFDEF lines is constructed by using either the file name without the extension spec-
ified by theDATASET keyword or qlf_record (used only when QLF is the source).

QLF files require at least one attribute to be defined. The attribute definition given must match the definition of the file
being read. If it does not, translation is halted and the true definition of the QLF file’s attributes gets logged to the log
file.

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The
width parameter controls the maximum number of
characters that can be stored by the field. No pad-
ding is required for strings shorter than this width.

date Date fields store dates as character strings with
the format YYYYMMDD.

number(<width>,<decimals>) Number fields store single and double precision
floating point values. The width parameter is the
total number of characters allocated to the field,
including the decimal point. The decimals param-
eter controls the precision of the data and is the
number of digits to the right of the decimal.

logical Logical fields store TRUE/FALSE data. Data read
or written from and to such fields must always
have a value of either true or false.

The following mapping file fragment defines a QLF file def line when QLF is the source file format.

QLF_DEF qlf_record \
F1 char(20) \
F2 char(20) \
F3 char(20) \
F4 char(20) \
F5 char(20) \
F6 char(20) \
F7 char(20) \
F8 char(20) \
F9 char(20)

Required/Optional

Required

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The QLF writer creates and writes feature data to a QLF file specified by theDATASET keyword. As with the reader,
the directory must exist before the translation occurs. Any existing QLF files in the directory are overwritten with the
new feature data. Only one QLF file can be written during a single FME session. Optionally a .prj file will also be
written if the the coordinate system’s (projection) information is available. Output .prj files comply with ESRI’s
shape format projection file specification.

Writer Directives

The directives that are processed by the QLF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the QLF writer is QLF.

Note:

By default, the QLF writer will write the coordinates with 15 digits of precision. If this is not desirable or it is caus-
ing problems, then the precision can be easily changed by editing the value of the QLF_PRECISION macro in the
qlf_write.fmi file in the directory [FME_HOME]\pipeline.

For example, if your FME installation is in C:\Program Files\FME the file qlf_write.fmi can be found in C:\Program
Files\FME\pipeline directory.

DATASET, DEF

These directives are processed as described in the Reader Directives section.

PRECISION

Define the precision of output coordinates. To be precise, the value of this keyword will determine the number of sig-
nificant digits after the decimal for the output coordinates.

Required/Optional

Optional

Values

1 to 15 (default)

Workbench Parameter

Output Precision

NUMFIELD

Defines the number of user defined fields. This should be set during mapping file generation.

Required/Optional

Optional

Values

1 to 512

Default: 9

Workbench Parameter

Number of Fields

Feature Representation

QLF features consist of geometry and attributes. The attribute names are defined in theDEF line and there is a value
for each attribute in each QLF feature.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

qlf_type The QLF geometric type of this entity.
Range:
qlf_point|
qlf_polygon|
qlf_line|
qlf_none

Default: No default

F1- Fn Represents a feature attribute where ‘n’ is the number set
via the keyword NUMFIELDS during mapping file gen-
eration.If NUMFIELDS is set to 5 then there will be 5 attrib-
utes F1, F2, F3, F4 and F5.
Range: Maximum of 20 characters
Default: Blank

Points

qlf_type: qlf_point

QLF point features specify a single x and y coordinate in addition to any associated user-defined attributes. There are
no special FME attributes for the QLF line type.

Lines

qlf_type: qlf_line

QLF line features specify linear features defined by a sequence of x and y coordinates. There are no special FME attrib-
utes for the QLF lines type.

Polygon

qlf_type: qlf_polygon

QLF polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. There are no special FME attributes for the QLF region type.

CityGML Reader/Writer

Format Note: This format is not supported by FME Base Edition.

The CityGML module enables FME to read and write files in the CityGML format.

This chapter assumes familiarity with GML and the CityGML format.

Overview

CityGML is an XML-based format for the storage and exchange of 3D urban models. It extends Geography Markup Lan-
guage 3 (GML3) through an application schema.

This schema specification can be found at the CityGML website http://www.citygml.org/.

CityGML Quick Facts

Format Type Identifier CITYGML
Reader/Writer Both
Licensing Level Professional
Dependencies None
Dataset Type File
Feature Type CityGML Thematic and Appear-

ance Models
Typical File Extensions .gml, .xml
Automated Translation Support Yes
User-Defined Attributes Yes
Coordinate System Support Yes
Generic Color Support No
Spatial Index No
Schema Required No
Transaction Support No
Geometry Type xml_type

Geometry Support
Geometry Supported? Geometry Supported?
aggregate yes point yes
circles no polygon yes
circular arc no raster no
donut polygon yes solid yes
elliptical arc no surface yes
ellipses no text no
line yes z values yes
none yes

http://www.citygml.org/

Reader Overview

This reader supports CityGML datasets conforming to the CityGML 1.0, 0.4.0, and 0.3.1 application schemas.

The CityGML reader reads all parts of the Thematic and Appearance CityGML models with the exception of the Digital
Terrain Models (DTMs) and Addresses.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the CityGML reader is CITYGML.

DATASET

This directive specifies the location for the input CityGML instance document.

Required/Optional

Required

Mapping File Example

CITYGML_DATASET C:\CityGML_Data\GenericObjects.xml

Workbench Parameter

Source CityGML File(s)

APPEARANCES

This directive determines whether appearance information specified in the CityGML instance document (including tex-
ture files) should be read into the FME Appearances library.

Required/Optional

Optional

Values

No | Yes

Mapping File Syntax

CITYGML_APPEARANCES Yes

Workbench Parameter

Read Textures and materials

MATERIAL_FEATURES

Required/Optional: Optional

This directive specifies whether features types for X3DMaterial and ParameterizedTexture elements should be
created. Valid values are No and Yes.

In general, this keyword should be left with the value of “No” as the CityGML X3DMaterial and ParameterizedTexture
are automatically incorporated into the FME geometry’s appearances.

Example:

CITYGML_MATERIAL_FEATURES No

Workbench Parameter: Include X3DMaterials and ParameterizedTextures as Feature types

SRS_AXIS_ORDER

This directive overrides the axis order when reading coordinate tuples in a CityGML <pos> or <posList> element.

Required/Optional

Optional

Values

1,2,3 | 2,1,3

Mapping File Syntax

CITYGML_SRS_AXIS_ORDER 2,1,3

Workbench Parameter

GML SRS Axis Order

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

This writer currently supports writing of the CityGML 1.0 and 0.4 spec.

The Noise Application Domain Extension is also supported for writing (for 0.4 and 1.0).

The writer can be populated with all possible CityGML feature types by importing feature type definitions from files
found in the

xml/CityGML/writer_feature_types/

subdirectory of the FME installation.

Importing feature type definitions from

CityGML_feature_types.xml

will create feature type definitions for all supported types in the CityGML 1.0 and 0.4 spec, and

CityGML_NoiseADE_feature_types.xml

will additionally create definitions for the Noise Application Domain Extension feature types.

Writer Directives

The suffixes listed are prefixed by the current <WriterKeyword> in a mapping file. By default, the <WriterKeyword>
for the CityGML writer is CITYGML.

DATASET

This directive specifies the location for the output CityGML instance document.

By default, the <WriterKeyword> for the CityGML writer is CITYGML.

Required/Optional

Required

Mapping File Syntax

CITYGML_DATASET C:\CityGML_Data\GenericObjects.gml

Workbench Parameter

Destination CityGML Document

DOCUMENT_ENCODING

By default, the CityGML writer produces UTF-8 encoded documents. If this parameter is set to another encoding, the
writer will transcode the data to the specified encoding.

Required/Optional

Optional

Values

No | Yes

Mapping File Syntax

CITYGML_DOCUMENT_ENCODING UTF-16BE

Workbench Parameter

CityGML Document Encoding

SRS_NAME

The CityGML writer will attempt to write srsName attributes on the geometry based on EPSG numbers that match the
coordinate system of the features that it is writing.

In some cases, there are no existing well-known names. If this is the case, FME will not write an srsName. However, if
you want to provide an srsName attribute, you can set the directive SRS_NAME and its value will be inserted into the
srsName attribute of the geometry written.

Note that this is not the same as setting the coordinate system keyword/parameter for the writer. No reprojection will
be done on the basis of the SRS_NAME directive. This directive is strictly for those cases where the user can provide a
name (and possibly an axis order) for an srsName that FME is not aware of.

Required/Optional

Optional

Mapping File Syntax

SRS_NAME EPSG:4326

Workbench Parameter

GML srsName

SRS_AXIS_ORDER

This parameter is used only when the user is providing an srsName via theSRS_NAME parameter.

It determines the coordinate order when writing geometries.

Required/Optional

Optional

Mapping File Syntax

SRS_AXIS_ORDER 2,1,3

Workbench Parameter

GML srs Axis Order

ADE

This directive specifies the name of the Application Domain Extension (ADE), if any, to be used.

Required/Optional

Optional

Values

None | Noise ADE

Mapping File Syntax

CITYGML_ADE NoiseADE

Workbench Parameter

Application Domain Extension

TEXTURE_DIRECTORY

This directive specifies the name of the subdirectory to which texture files will be written out, if applicable.

The subdirectory name by default is (filename)_appearance, where (filename) is the name of the dataset.

Required/Optional

Optional

Mapping File Syntax

CITYGML_TEXTURE_DIRECTORY SampleData_Appearance

Workbench Parameter

Texture subdirectory

THEME_NAME

This directive specifies the name of the theme under which FME Appearances are written in the CityGML instance doc-
ument.

Required/Optional

Optional

Mapping File Syntax

CITYGML_THEME_NAME FMETheme

Workbench Parameter

Theme name

VERSION

This directive specifies the version of CityGML to be written.

The output documents are quite different, as CityGML changed significantly between these two versions (especially
regarding the namespaces in which objects are located).

Required/Optional

Optional

Values

0.4 | 1.0

Mapping File Syntax

CITYGML_VERSION 1.0

Workbench Parameter

CityGML Version for Writing

Feature Representation

This section describes how multiple geometries are handled in the CityGML Reader and writer, how levels of detail are
portrayed, and explains the feature hierarchy that is created when the CityGML Reader interprets a CityGML dataset.

CityGML features read from the CityGML Reader are named the same in FME as they are in the application schema. For
example, a CityGML Building will create a feature type named Building in FME. The only exception to this is Gener-
icCityObjects. As generic objects, the name of the feature-type will match the name of its gml_name attribute when-
ever possible.

Multiple Geometries

In a CityGML dataset, the same feature may be represented in multiple levels of detail simultaneously. Since the FME
does not support multiple geometries on a feature, the CityGML reader will create a single aggregate of geometries for
a feature-type, one geometry for each level of detail.

Should only one level of detail be available for a feature-type, then a non-aggregate geometry representing the fea-
ture will be created.

As multiple geometries defined in CityGML may map to a single FME geometry, we keep the original CityGML geometry
in a trait called gml_geometry.

This flexibility of geometry poses a problem for users wishing to write CityGML. Given a feature with some geometry,
how will the writer interpret the role of the geometry. For example, a Building supports over a dozen different geome-
try elements. How will the writer determine the appropriate role for the geometry? In general, the user must mark
each geometry component with a geometry trait that defines the geometry role that the geometry plays. For example if
the user is writing a Building and has both a multi-surface geometry and a solid geometry, the user can use a Geome-
tryTraitSetter to set the attribute citygml_lod_name to establish the roles, marking the multisurface with, for exam-
ple, lod3MultiSurface and the solid with Lod2Solid. In some cases, it may be necessary to use a Deaggreagator
transformer to split the geometries up, mark each component, and then aggregate them together again.

The value of the citygml_lod_name attribute must also be compatible with the geometry type. For example, a geome-
try tagged with lod3MultiSurfacemust be a MultiSurface, or the geometry will not be written out. In some cases, a
geometry that is not valid for a given role will be converted to a geometry that is valid. For example, a Surface tagged
with lod3MultiSurface will be wrapped in a MultiSurface, and a BRepSolid tagged with lod2MultiCurve will be con-
verted to a MultiCurve.

In order to aid in automatic translations, geometries without a citygml_lod_name trait will be assumed to be lod4G-
eometry elements if their feature-type is GenericCityObject.

Level of Detail

In order to keep track of the particular level of detail a feature with a geometry has, the CityGML Reader will create a
list attribute called citygml_level_of_detail. The list element values will be integers between zero and four, inclusive.
If the feature-type is an aggregate of features, then the list attribute will contain as many elements as there are geom-
etries in that aggregate. Geometries in an aggregate maintain their order, and the list attribute keeps track of the lev-
els of detail of each geometry in sequence.

Should a non-aggregate geometry be created, the citygml_level_of_detail list attribute will only contain a single ele-
ment referring to the level of detail the geometry created.

In addition to the citygml_level_of_detail list attribute, two geometry traits will be put on the geometry itself in order
to identify its level of detail: citygml_level_of_detail and citygml_lod_name. An example of this follows:

+++
Feature Type: CityFurniture'
Attribute(string): citygml_class' has value 1000'
Attribute(string): citygml_function' has value 1080'
Attribute(string): citygml_level_of_detail{0}' has value 2'
Attribute(string): fme_feature_type' has value CityFurniture'
Attribute(string): fme_geometry' has value fme_point'
Attribute(string): fme_type' has value fme_point'
Attribute(string): gml_id' has value gml-id01'
Attribute(string): xml_type' has value xml_point'
Attribute: citygml_level_of_detail{0}' is sequenced
Coordinate System: '
Geometry Type: IFMEPoint
Number of Geometry Traits: 1
GeometryTrait(string): citygml_level_of_detail' has value 2'
GeometryTrait(string): citygml_lod_name' has value lod2Geometry'
Coordinate Dimension: 3
(0,0,0)
===

Feature Hierarchy

The design principle for CityGML is to model real-world entities as features, such as buildings and walls, and to main-
tain ‘part-of’ relationships between features. For example, a window and a door may be on the same semantic level,
thus they can both be ‘part-of’ the same wall.

The CityGML Reader mimics this hierarchy with regards to the CityGML Thematic Model by creating a feature for each
of the CityGML features, and maintains the ‘part-of’ relationships through gml_id and gml_parent_id attrib-
utes. In the example above, both the window and the door would specify a gml_parent_id equivalent to the
gml_id of the wall that they would be a part of.

The reading of texture data may also be suppressed through the APPEARANCES parameter in order to speed up
translations. If texture reading is suppressed, X3DMaterial and ParameterizedTexture features will always be
created.

Data features with no geometries but with a reference point (for example, in the case of implicit geometries) will have
a point geometry created corresponding to this reference point.

The CityGML Writer similarly uses the gml_id and gml_parent_id attributes to determine feature hierarchy.

The following is deprecated and only applies if the MATERIAL_FEATURES directive is set to Yes: Previously, the
CityGML Reader didn’t support the FME geometry appearance mode. Thus, the CityGML material XML elements, the
X3DMaterial(s), and ParameterizedTexuture(s) elements were read as separate feature types. The CityGML appear-
ance information is now automatically applied to the specified target surfaces, the creation of feature types from
X3DMaterial and ParameterizedTexture elements are thus unnecessary and suppressed by default.

Attributes

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes and attribute types described in this section.

CityGML Attribute Types

CityGML provides the usual assortment of attribute types, usually prefixed with either citygml_ or xml_. One type that
is particularly interesting to users of the CityGML Writer is the xml_xml type. A string attribute that is set to this type
will not be encoded when written into the XML document. One place that this is very useful is when writing elements
of type xalAddress or other places where you wish to provide a back door into the document and insert an xml frag-
ment into the document directly.

XML Type

The geometry of the CityGML feature may be identified by its xml_type attribute. The valid values for this attribute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point feature.

xml_line Linear feature.

xml_surface Surface feature, may contain gaps.

xml_solid Solid feature, may contain voids.

xml_aggregate A possibly heterogeneous collection of
geometries.

No Geometry

xml_type: xml_no_geom

Features having their xml_type set to xml_no_geom do not contain any geometry data.

Point

xml_type: xml_point

Features having their xml_type set to xml_point are single coordinate features or aggregates of single coordinate fea-
tures.

Line

xml_type: xml_line

Features having their xml_type set to xml_line are polyline features and have at least two coordinates or aggregates of
polyline features.

Surface

xml_type: xml_surface

Features having their xml_type set to xml_surface are surfaces. They may be simple, topologically contiguous surfaces
or aggregates of surface features.

Collection

xml_type: xml_aggregate

Features having their xml_type set to xml_aggregate are complex geometries. Each component of an aggregate may be
any of the types listed in this section, including xml_aggregate (i.e. and aggregate may contain aggregate com-
ponents).

CityGML-Specific Attributes

Other attributes depend on the feature type. Common and feature-specific attributes are as follows.

Common Attributes:

Attribute Name Contents

gml_id The unique identifier for each feature. This attribute
must be unique in the dataset scope.

gml_parent_id The unique identifier representing the feature’s parent
in the hierarchy. This must reference another feature in
the dataset.

gml_name The given name of the feature.

gml_description A description of the feature.

citygml_class A four-digit identifier for the class.
Range: 1000...9999

citygml_function A four-digit identifier for the function.
Range: 1000...9999

citygml_usage A four-digit identifier for the use.
Range: 1000...9999

citygml_level_of_detail{} The level of detail of the geometry/geometries.
Range: 0...4

citygml_lod_name Provides the specific name of the level of detail element
that this feature is enclosed. The Range is (in pseudo-
regular expression syntax) lod[0-4](-
Network|(Multi)?(Surface|Solid). Examples: lod0Ne-
twork, lod3Solid, etc. Not all combinations are legal,

Attribute Name Contents

and not all CityGML feature types support all options.

citygml_library_object The target URI for the implicit geometry.

citygml_mime_type The mime type of the library object.

citygml_transformation_matrix A 4x4 matrix describing the translation of the implicit
geometry. Elements are space-delimited.

Building and BuildingPart Attributes:

Attribute Name Contents

citygml_year_of_construction The construction year.

citygml_year_of_demolition The demolition year.

citygml_roof_type A four-digit identifier for the roof type.
Range: 1000...9999

citygml_measured_height A real number describing the measured height.

citygml_measured_height_units The units of measure for the height.

citygml_storeys_above_ground A positive integer describing the number of storeys
above ground.

citygml_storeys_below_ground A positive integer describing the number of storeys
below ground.

citygml_storey_heights_above_ground A list of real numbers describing the heights of the sto-
reys above ground. Elements are space-delimited, and
the first element corresponds to the storey closest to
ground level.

citygml_storey_heights_above_
ground_units

The units of measure for the heights.

citygml_storey_heights_below_ground A list of real numbers describing the heights of the sto-
reys below ground. Elements are space-delimited, and
the first element corresponds to the storey closest to
ground level.

citygml_storey_heights_below_
ground_units

The units of measure for the heights.

Address Attributes:

Attribute Name Contents

citygml_address An XML fragment describing the address in the OASIS
Extensible Address Language (xAL).

WaterSurface Attributes:

Attribute Name Contents

citygml_water_level A four-digit identifier for the type of water level.
Range:1000...9999

TrafficArea and AuxiliaryTrafficArea Attributes:

Attribute Name Contents

citygml_surface_material A four-digit identifier for the type of surface material.
Range:1000...9999

SolitaryVegetationObject Attributes:

Attribute Name Contents

citygml_species A four-digit identifier for the type of vegetation.
Range: 1000...9999

citygml_height A real number describing the height.

citygml_height_units The units of measure for the height.

citygml_trunk_diameter A real number describing the trunk diameter.

citygml_trunk_diameter_units The units of measure for the diameter.

citygml_crown_diameter A real number describing the crown diameter.

citygml_crown_diameter_units The units of measure for the diameter.

PlantCover Attributes:

Attribute Name Contents

citygml_species A four-digit identifier for the type of vegetation.
Range: 1000...9999

citygml_average_height A real number describing the average height.

citygml_average_height_units The units of measure for the average height.

Appearance Attributes:

Attribute Name Contents

citygml_theme The name of the themed appearance.

X3DMaterial Attributes:

Attribute Name Contents

citygml_is_front A boolean describing whether the material should be
applied to the front or the back of the target surface.
Range: true|false|1|0

Attribute Name Contents

citygml_ambient_intensity A real number describing the ambient intensity.
Range: 0...1

citygml_diffuse_color A list of three real numbers describing diffuse color. Ele-
ments are space-delimited and must conform to the fol-
lowing range.
Range: 0...1

citygml_emissive_color A list of three real numbers describing emissive color.
Elements are space-delimited and must conform to the
following range.
Range: 0...1

citygml_specular_color A list of three real numbers describing specular color.
Elements are space-delimited and must conform to the
following range.
Range: 0...1

citygml_shininess A real number describing the shininess.
Range: 0...1

citygml_transparency A real number describing the transparency.
Range: 0...1

citygml_is_smooth A boolean denoting if the surface is smooth or not.
Range: true|false|1|0

citygml_target Targets to apply the material to.

GeoreferencedTexture Attributes:

Attribute Name Contents

citygml_is_front A boolean describing whether the material should be
applied to the front or the back of the target surface.
Range: true|false|1|0

citygml_image_uri The target uri that the texture is located at.

citygml_mime_type The mime type of the texture.

citygml_texture_type The texture type.
Range: specific|typical|unknown

citygml_wrap_mode The type of wrapping to apply.
Range: none|wrap|mirror|clamp|border

Attribute Name Contents

citygml_border_color A list of three to four real numbers describing the bor-
der color and opacity. Elements are space-delimited and
must conform to the following range.
Range: 0...1

citygml_prefer_world_file A boolean denoting if a world file should be sought and
used when possible instead of the included geo-
referenced texture data.
Range: true|false|1|0

citygml_orientation_matrix A 2x2 matrix describing the rotation and scaling of the
texture. Elements are space-delimited.

citygml_target Targets to apply the texture to.

ParameterizedTexture Attributes:

Attribute Name Contents

citygml_is_front A boolean describing whether the material should be
applied to the front or the back of the target surface.
Range: true|false|1|0

citygml_image_uri The target uri that the texture is located at.

citygml_mime_type The mime type of the texture.

citygml_texture_type The texture type.
Range: specific|typical|unknown

citygml_wrap_mode The type of wrapping to apply.
Range: none|wrap|mirror|clamp|border

citygml_border_color A list of three to four real numbers describing the bor-
der color and opacity. Elements are space-delimited and
must conform to the following range.
Range: 0...1

citygml_target{}.uri The location of the surface that the texture applies to.

citygmal_target{}.coordinate_
list{}.ring

The named ring of the surface that the texture applies
to.

citygml_target{}.coordinate_list{}-
.coordinates

A list of real numbers describing the coordinates on the
ring that the texture applies to. Elements are space-
delimited.

citygml_target{}.coordinate_
list{}.world_to_texture_matrix

A 3x4 matrix describing the linear translation and spa-
tial location of the texture to be mapped. Elements are
space-delimited.

Noise ADE

The Noise Application Data Extension (ADE) extends the CityGML model by adding new feature-types and attributes
that allow noise data to be transported with a CityGML city model. To do this, the Noise ADE adds the Nois-
eRoadSegment, NoiseRailwaySegment, Train, and NoiseCityFurnitureSegment feature-types, as well as adding noise-
specific attributes to the Building feature-type.

To specify that the CityGML Reader should read or write Noise ADE data, please ensure that the ADE directive is set to
NoiseADE.

Feature Hierarchy

The Noise ADE adds a NoiseRoadSegment as part of a Road, a NoiseRailwaySegment as part of a Railway, as well as a
NoiseCityFurnitureSegment, which is part of a CityFurniture. As with standard CityGML, these will have gml_parent_id
attributes which contain the gml_id attributes of their respective parents. Similarly, a new Train feature-type is con-
sidered part of a NoiseRailwaySegment, and will also have a gml_parent_id which reflects this.

Attributes

In addition to the format-specific attributes shown above for standard CityGML, the following attributes are also
added for the Noise ADE. Noise ADE attributes are prefixed with ade_noise to clearly distinguish them. In the case that
a Noise ADE attribute is a measure type, there will be an associated FME attribute with the same name, but suffixed
with ‘_units’ to provide the Units Of Measure.

Building Attributes:

Attribute Name Contents

ade_noise_building_reflection The reflection property of the building.

ade_ noise_ building_ reflection_ cor-
rection

A real number describing noise emission in dB.

ade_noise_building_Lmax_day A real number describing noise emission Lmax for the
day in dB.

ade_noise_building_Lmin_day A real number describing noise emission Lmin for the
day in dB.

ade_noise_building_Lmax_night A real number describing noise emission Lmax for the
night in dB.

ade_noise_building_Lmin_night A real number describing noise emission Lmin for the
night in dB.

ade_noise_building_Leq_day A real number describing noise emission Leq for the day
in dB.

ade_noise_building_Leq_night A real number describing noise emission Leq for the
night in dB.

ade_noise_buildling_inhabitants A positive integer describing the number of building in
habitants.

ade_noise_building_apartments A positive integer describing the number of building
apartments.

Attribute Name Contents

ade_noise_buliding_emission_points A list of integers for emission points. Elements are
space-delimited.

ade_noise_building_remark Any additional remarks.

NoiseRoadSegment Attributes:

Attribute Name Contents

ade_noise_average_hourly_traffic_
day

A real number describing the hourly traffic flow for the
day in vehicles per hour.

ade_noise_average_hourly_traffic_
evening

A real number describing the hourly traffic flow for the
evening in vehicles per hour.

ade_noise_average_hourly_traffic_
night

A real number describing the hourly traffic flow for the
night in vehicles per hour.

ade_ noise_ average_ hourly_ traffic_
day_16

A real number describing the hourly traffic flow for the
16-hour day in vehicles per hour.

ade_ noise_ heavy_ vehicle_ per-
centage_day

A real number describing the percentage of heavy
vehicles for the day.

ade_ noise_ heavy_ vehicle_ per-
centage_evening

A real number describing the percentage of heavy
vehicles for the evening.

ade_ noise_ heavy_ vehicle_ per-
centage_night

A real number describing the percentage of heavy
vehicles for the night.

ade_ noise_ heavy_ vehicle_ per-
centage_day_16

A real number describing the percentage of heavy
vehicles for the 16-hour day.

ade_noise_average_daily_traffic A real number describing the average daily traffic flow
in vehicles per 24 hours.

ade_ noise_ passenger_ car_ speed_
limit_day

A real number describing the speed limit for passenger
cars for the day in kilometers per hour.

ade_ noise_ passenger_ car_ speed_
limit_evening

A real number describing the speed limit for passenger
cars for the evening in kilometers per hour.

ade_ noise_ passenger_ car_ speed_
limit_night

A real number describing the speed limit for passenger
cars for the night in kilometers per hour.

ade_ noise_ heavy_ vehicle_ speed_
limit_day

A real number describing the speed limit for heavy
vehicles for the day in kilometers per hour.

ade_ noise_ heavy_ vehicle_ speed_
limit_evening

A real number describing the speed limit for heavy
vehicles for the evening in kilometers per hour.

Attribute Name Contents

ade_ noise_ heavy_ vehicle_ speed_
limit_night

A real number describing the speed limit for heavy
vehicles for the night in kilometers per hour.

ade_noise_road_surface_material The surface material of the road.

ade_noise_raod_surface_correction A real number describing noise emission in dB.

ade_noise_carriageway_width A real number describing the width of the carriageway
cross-section in meters.

ade_noise_outer_lane_to_center_
width

A real number describing the distance from the outer
road lane to the road center line in meters.

ade_noise_bridge A boolean denoting if this is a bridge or not.
Range: true|false|1|0

ade_noise_tunnel A boolean denoting if this is a tunnel or not.
Range: true|false|1|0

ade_noise_road_gradient A real number describing the road gradient as a per-
centage.

ade_noise_lineage A remark regarding the data source.

NoiseRailwaySegment Attributes:

Attribute Name Contents

ade_noise_railway_surface_material The surface material of the railway.

ade_noise_railway_surface_correction A real number describing noise emission in dB.

ade_noise_bridge A boolean denoting if this is a bridge or not.
Range: true|false|1|0

ade_noise_crossing A boolean denoting if this is a crossing or not.
Range: true|false|1|0

ade_noise_curve_radius A real number describing the curve radius in meters.

ade_noise_additional_correction_seg-
ment

A real number describing an addition noise emission in
dB.

Train Attributes:

Attribute Name Contents

ade_noise_train_type The type of train.

ade_noise_train_type_correction A real number describing noise emission in dB.

ade_noise_brake_portion_day A real number describing the percentage of wagons with
wheel disc brakes during the day.

Attribute Name Contents

ade_noise_brake_portion_evening A real number describing the percentage of wagons with
wheel disc brakes during the evening.

ade_noise_brake_portion_night A real number describing the percentage of wagons with
wheel disc brakes during the night.

ade_noise_train_length_day A real number describing the average train length dur-
ing the day in meters.

ade_noise_train_length_evening A real number describing the average train length dur-
ing the evening in meters.

ade_noise_train_length_night A real number describing the average train length dur-
ing the night in meters.

ade_noise_speed_limit_day A real number describing the speed limit during the day
in kilometers per hour.

ade_noise_speed_limit_evening A real number describing the speed limit during the eve-
ning in kilometers per hour.

ade_noise_speed_limit_night A real number describing the speed limit during the
night in kilometers per hour.

ade_noise_additional_correction_train A real number describing an additional noise emission
in dB.

NoiseCityFurnitureSegment Attributes:

Attribute Name Contents

ade_noise_type The type of noise barrier.

ade_noise_reflection The reflection property of the noise barrier.

ade_noise_reflection_correction A real number describing noise emission in dB.

ade_noise_height A real number describing the height of the noise barrier
in meters.

ade_noise_distance_to_road_center A real number describing the distance between the
noise barrier and the road center line in meters.

Writing CityGML from FME

The FME CityGML writer maps any feature type definitions that are not defined in CityGML into GenericCityObject(s).
This document explains how the FME CityGML writer can be used to output datasets with predefined thematic
CityGML feature types, such as Building, CityFurniture, WaterBody, Road, Railway, etc…

CityGML feature types in FME

The simplest way to get CityGML writer feature type definitions for the supported CityGML features is to import them
from an existing CityGML dataset.

FME ships with two sample CityGML datasets that can be used to populate Workbench with the required CityGML
writer feature types. These file are located under the “xml/CityGML/writer_feature_types” directory of the FME instal-
lation. The “CityGML_feature_types.xml” and “CityGML_NoiseADE_feature_types.xml” sample datasets have the fea-
ture type definitions for CityGML (0.4 and 1.0) and CityGML-NoiseADE (0.4 and 1.0), respectively. Note that these
CityGML sample files are not complete datasets in the GML sense; they do not contain any meaningful data for read-
ing, and are only meant to be used for importing feature type definitions into a writer.

CityGML levels of detail

CityGML specifies five different Levels of Detail (LODs), ranging from 0 (general topology) to 4 (detailed architectural
features and furniture). Most features may contain geometry models for different LODs. LOD0 generally models ter-
rain features. LOD1 models simple prismatic buildings and general landscape features. L0D2 incorporates some
architectural features in building models, greater detail in transportation, vegetation, and outdoor furniture features.
LOD3 models buildings and outdoor objects as they would actually appear. And LOD4 models detailed interior struc-
tures.

In order for various applications to correctly interpret the multiple geometries of a feature, GML geometries are
enclosed in an element that indicates the geometry role. As an example, a Building feature with a solid geometry at
LOD2 is shown below:

<cityObjectMember>

<bldg:Building gml:id="building890384">

<bldg:lod2Solid>

<gml:Solid gml:id="aebd7312">

...

FME Geometries in CityGML features types must be tagged with their intended geometry role in order to be written out
correctly. The geometry role is specified through the geometry trait “citygml_lod_name”. The geometry roles that are
valid for each feature type are given in Table 1, and the valid FME geometry types for each geometry role are shown in
Table 2.

Setting the geometry role in Workbench

The geometry role can be set using the AttributeCreator and the GeometryTraitSetter transformers in tandem.

The reason we are using an AttributeCreator here is to set citygml_lod_name as an attribute, and then transforming it
into a trait using the GeometryTraitSetter.

Since we've passed in a valid FME geometry for the geometry role (an extrusion as a “lod2Solid”), we end up with a
Building feature containing this geometry in our output:

<cityObjectMember>

<bldg:Building gml:id="boring_building_11">

<bldg:lod2Solid>

<gml:Solid srsDimension="3">

...

All of the other CityGML-specific attributes can also be easily set on an FME feature through the AttributeCreator,
though many of these attributes have a restricted set of values that are defined in the CityGML external code lists. See
Tables 1-4 for more details.

Writing multiple geometry roles to one feature

Creating additional geometry roles for a feature is not much more difficult. Simply label a copy of the same, or any
other geometry with the appropriate role, and aggregate all of the geometries for the feature into a single geometry:

Here is the CityGML Road feature:

<tran:Road gml:id="2nd_west_boring_street">

<tran:lod0Network>

<gml:LineString srsDimension="3">

<gml:posList>12 0 0 12 12 0 0 12 0</gml:posList>

</gml:LineString>

</tran:lod0Network>

<tran:lod1MultiSurface>

<gml:MultiSurface srsDimension="3">

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList>13 0 0 11 0 0 11 11 0 0 11 0 0 13 0 13 13 0 13 0 0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

</gml:MultiSurface>

</tran:lod1MultiSurface>

<tran:lod2MultiSurface>

<!--The same gml:MultiSurface as for the lod1MultiSurface-->

</tran:lod2MultiSurface>

</tran:Road>

Generally, the geometry at LOD2 should have more detail than the geometry at LOD1, but using the same geometry
works for this example. In the case of this Road, it may have extra curves representing the separate lanes of the road.

Geometry validation in Workbench

Note that in the above example, we tagged a polygon as a lodXMultiSurface, though it only represents a single area.
The CityGML writer will check that the FME geometry can actually be written out as the specified geometry role. If it is
unable to, and it is easy to convert the geometry to a type that is valid, the writer will make the conversion. For exam-
ple, our polygon was converted to a surface and then wrapped in a multi-surface. If the FME geometry is not valid for
the specified geometry role and cannot be converted to a valid geometry (Eg. a point tagged with “lod3MultiCurve”), it
will not be written out.

Setting CityGML attributes and properties in FME

The non-geometric attributes and properties of the CityGML features are specified through certain attributes of the
FME feature types. Most of these attributes are prefixed with “citygml_”. For example, the value of the “citygml_roof_
type” attribute of an FME Building feature will be written as the value of the “roofType” element of a CityGML Building
feature.

The full list of valid attributes for a CityGML feature type will appear on feature types defined by importing feature
types from a CityGML document that contains those features.

Most of the CityGML attributes and properties that take a string value have an enumerated list of valid values that are
listed in the CityGML external code lists. For example, for the “roofType” element of a Building feature, “1070” indi-
cates a pavilion roof. The corresponding attributes of CityGML features in FME should be set to one of these valid
values, though FME currently does no validation of the values.

Writing CityGML Appearances from FME

FME 2010 supports reading and writing of CityGML appearances. In FME, Appearance objects are stored in a common
library, and surfaces contain a reference to the Appearance that is applied to them. The FME Appearance contains
information about both constant (material) and non-constant (texture) surface properties. Any FME Appearances that
are referenced by a surface passed into the CityGML Writer will be written out as a ParameterizedTexture or an
X3DMaterial, depending on whether or not the Appearance contains textural information. The writer will try to re-use
any existing elements in the case that ParameterizedTexture or X3DMaterial features are passed in (Eg. during a
CityGML to CityGML translation). In this case, the elements will be written out as members of the original CityGML
Appearance and under their original theme. If new elements must be created, they will be members of a new Appear-
ance under the CityModel. The default theme name is “FMETheme”, but it can be changed through the advanced work-
bench parameter “Theme name”. ParameterizedTexture and X3DMaterial elements can belong to the same theme
even under different Appearance features.

If any of the referenced FME Appearances contain texture information, the image files will be written out to a sub-
directory of the destination directory. By CityGML convention, this directory is named “appearance” by default. The
directory namemay be specified through the advanced workbench parameter “Texture subdirectory”.

CityGML Feature Hierarchy

Many CityGML features are aggregations of other features. In FME, this relationship can be specified through the
“gml_id” and “gml_parent_id” attributes. The value of the “gml_parent_id” of a child element should be equal to the
value of the “gml_id” of its parent element. The gml:id attribute must be unique for all features in a CityGML doc-
ument. Using the UUIDGenerator transformer will ensure that these values are unique, but they must be prefixed
with a non-numeric character. Note that the CityGML Writer will dynamically generate gml:id attribute values for all
features it writes (essentially using the samemethod shown below), so it is not necessary to use these transformers
unless the value of the gml_id attribute must be accessed.

This workspace produces the following output:

<bldg:Building gml:id="exciting_building_123">

<bldg:boundedBy>

<bldg:RoofSurface gml:id="UUID_47be0fd6-ccec-45ab-96f7-0868ff9208d0">

<bldg:lod3MultiSurface>

...

</bldg:lod3MultiSurface>

</bldg:RoofSurface>

</bldg:boundedBy>

<bldg:boundedBy>

<bldg:WallSurface gml:id="UUID_dafb5306-41aa-4e07-8f58-80874167a2a7">

<bldg:lod3MultiSurface>

...

</bldg:lod3MultiSurface>

</bldg:WallSurface>

</bldg:boundedBy>

<!--Three more WallSurfaces-->

</bldg:Building>

Valid Geometry Role Lists

Note: Only one of the listed values for “citygml_lod_name Value” is needed.

Table 1: Valid LOD types for CityGML Feature Types

CityGML Feature Type citygml_lod_
name Value

GenericCityObject lod[0-4]Geometry

lod[0-4]T-
errainIntersection

Address multiPoint

Building

BuildingPart

lod[1-4]Solid

lod[1-4]MultiSurface

lod[2-4]MultiCurve

lod[1-4]T-
errainIntersection

BuildingInstallation lod[2-4]Geometry

RoofSurface

WallSurface

GroundSurface

ClosureSurface

FloorSurface

InteriorWallSurface

CeilingSurface

lod[2-4]MultiSurface

Door

Window

lod[3-4]MultiSurface

Room lod4Solid

lod4MultiSurface

BuildingFurniture

IntBuildingInstallation

lod4Geometry

WaterBody lod[0-1]MultiCurve

lod[0-1]MultiSurface

lod[1-4]Solid

WaterSurface

WaterGroundSurface

lod[2-4]Surface

TransportationComplex

Track

Road

Railway

Square

lod0Network

lod[1-4]MultiSurface

TrafficArea lod[2-4]MultiSurface

AuxiliaryTrafficArea

SolitaryVegetationObject lod[1-4]Geometry

PlantCover lod[1-4]MultiSurface

lod[1-3]MultiSolid

CityFurniture lod[1-4]Geometry

lod[1-4]T-
errainIntersection

LandUse lod[0-4]MultiSurface

GeoreferencedTexture referencePoint

TINRelief extent

MassPointRelief reliefPoints

BreaklineRelief ridgeOrValleyLines

breaklines

NoiseRoadSegment

NoiseRailwaySegment

NoiseCityFurnitureSegment

lod0BaseLine

Table 2: Valid geometries for the citygml_lod_name attribute values

LOD name Valid FME Geometries GML Geometry

lod0Geometry

lod1Geometry

lod2Geometry

lod3Geometry

lod4Geometry

relativeGMLGeometry

geometry

all except null, raster, and empty aggre-
gates

gml:GeometryType

lod1MultiSolid

lod2MultiSolid

lod3MultiSolid

all solids

all surfaces

homogeneous aggregates of surfaces or
areas

gml:MultiSolidType

lod0MultiSurface

lod1MultiSurface

lod2MultiSurface

lod3MultiSurface

lod4MultiSurface

all surfaces

all areas

homogeneous aggregates of surfaces or
areas

gml:MultiSurfaceType

lod0MultiCurve

lod1MultiCurve

lod2MultiCurve

lod3MultiCurve

lod4MultiCurve

line

arc

all surfaces

all solids

homogeneous aggregates of lines, arcs, sur-
faces, or solids

gml:MultiCurveType

lod1Solid

lod2Solid

lod3Solid

lod4Solid

all solids

all surfaces

aggregates containing a single solid or sur-
face

gml:SolidType

lod2Surface

lod3Surface

lod4Surface

all surfaces

all areas

aggregates containing a single surface or
area

gml:SurfaceType

lod0TerrainIntersection

lod1TerrainIntersection

lod2TerrainIntersection

lod3TerrainIntersection

lod4TerrainIntersection

line

arc

all surfaces

all solids

homogeneous aggregates of lines, arcs, sur-
faces, or solids

gml:MultiCurveType

lod0Network all points

line

arc

all areas

all surfaces

all solids

aggregates containing a single

point, line, arc, area, surface, or solid

gml:GeometricComplexType

noise:lod0BaseLine(move me) line

arc

aggregates containing a single line or arc

gml:CurveType

referencePoint point

aggregates containing a single point

gml:PointType

reliefPoints point

homogenous aggregates of points

gml:MultiPointType

extent face

rectangular face

all areas

aggregates containing a single face, rec-
tangular face, or area

gml:PolygonType

ridgeOrValleyLines line

arc

all surfaces

all solids

homogeneous aggregates of lines, arcs, sur-
faces, or solids

gml:MultiCurveType

breaklines line

arc

all surfaces

all solids

homogeneous aggregates of lines, arcs, sur-
faces, or solids

gml:MultiCurveType

multiPoint point

aggregate containing a single point

gml:MultiPointType

Table 3: CityGML Feature Roles

CityGML Feature Type citygml_feature_role Value

Appearance appearance *

appearanceMember *

GeoreferencedTexture

ParameterizedTexture

X3DMaterial

surfaceDataMember

TINRelief

MassPointRelief

BreaklineRelief

reliefComponent

BuildingInstallation outerBuildingInstallation

IntBuildingInstallation interiorBuildingInstallation

roomInstallation

RoofSurface

WallSurface

GroundSurface

ClosureSurface

CeilingSurface

InteriorWallSurface

FloorSurface

Building/boundedBy **

Room interiorRoom

BuildingPart consistsOfBuildingPart

Address address

Door

Window

opening

BuildingFurniture interiorFurniture

WaterSurface

WaterGroundSurface

WaterBody/boundedBy **

TrafficArea trafficArea

AuxiliaryTrafficArea auxiliaryTrafficArea

noise:NoiseRailwaySegment noise:noiseRailwaySegmentProperty

noise:NoiseRoadSegment noise:noiseRoadSegmentProperty

noise:NoiseCityFurnitureSegment noise:noiseCityFurnitureSegmentProperty

noise:Train noise:usedBy

Table 4: CityGML Feature Properties

CityGML Parent Feature Type Valid properties

all feature types except

Address

X3DMaterial

ParameterizedTexture

GeoreferencedTexture

noise:Train

appearance *

appearanceMember *

Appearance surfaceDataMember

ReliefFeature reliefComponent

Building

BuildingPart

outerBuildingInstallation

interiorBuildingInstallation

Building/boundedBy **

interiorRoom

consistsOfBuildingPart

address

RoofSurface

WallSurface

GroundSurface

ClosureSurface

FloorSurface

InteriorWallSurface

CeilingSurface

opening

Door address

Room Building/boundedBy **

interiorFurniture

roomInstallation

WaterBody WaterBody/boundedBy **

TransportationComplex

Track

Square

trafficArea

auxiliaryTrafficArea

Road trafficArea

auxiliaryTrafficArea

noise:noiseRoadSegmentProperty

Railway trafficArea

auxiliaryTrafficArea

noise:noiseRailwaySegmentProperty

CityFurniture noise:noiseCityFurnitureSegmentProperty

noise:NoiseRailwaySegment noise:usedBy

* Appearance features that are properties of other features in
CityGML v0.4 are enclosed in an “appearanceMember” element. In
v1.0, Appearances that are properties of features are enclosed in
an “app:appearance” element, but those that are properties of the
CityModel are enclosed in an “app:appearanceMember” element.

** “boundedBy” is a property of both the AbstractBuildingType and of
the WaterBodyType, though the allowed values differ by module.
The recognized “citygml_feature_role” value for both of these prop-
erties is “boundedBy”.

ComGraphix Data Exchange Format (CGDEF) Reader/Writer

The ComGrafix Data Exchange Format (CGDEF) Reader/Writer allows FME to read and write MapGrafix import and
export files. The CGDEF is a published ASCII format that can be used by the MapGrafix™ product for input and output.

ComGraphix Data Exchange Format Files are often called CGDEF files.

Overview

MapGraphix is a two-dimensional (2D) system with no provision for storing user-defined attributes with the geo-
metric data. The CGDEF reader and writer support symbols (point), lines (vector), polylines, arcs (arc, ovalarc, and
polyarc), ellipses (oval, circle), polygons, and text geometric data.

Some geometric entities may have display properties such as pen and brush width
(lineweight), pattern, and color.

CGDEF files are ASCII format, and use a system of keywords and values to define map parameters, overlay (layer)
structure, element definitions and graphic attributes. All CGDEF map and vector geometric data is contained in a sin-
gle file with the .cgdef extension.

FME does not support the import and export of TIFF files with the CGDEF. TIFF files operate on the image layer, which
is something that FME does not support.

CGDEF Quick Facts

Format Type Identifier CGDEF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Overlay base name

Typical File Extensions .cgdef

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type cgdef_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none no

Reader Overview

The CGDEF reader first opens CGDEF file defined in the mapping file. The CGDEF reader then extracts map param-
eters, followed by overlay definitions, and all the features from the file. Options are provided for returning symbols as
single points, or exploded into their component pieces.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the CGDEF Reader is CGDEF.

DATASET

Required/Optional: Required

The value for this directive is the file name of the CGDEF file to be read.

Example:

CGDEF_DATASET /usr/data/cgdef/myfile.cgdef

Workbench Parameter: Source ComGraphix CGDEF File(s)

EXPLODE_SYMBOLS

Required/Optional: Optional

Default Value: Yes

The value for this directive will determine the reader’s action when it comes across a symbol in the file. If the value is
YES, then the reader, rather than outputting a symbol feature, will look at the symbol definition for that symbol and
output it as a series of individual features that make up the symbol. If the value is NO, then a symbol in the source file
is sent as a cgdef_symbol type rather than attempting to send its actual features individually. The default value is
YES, since most formats cannot properly interpret a symbol type as anything more than a point feature – thus, by
exploding the symbol, it can be seen.

Example:

EXPLODE_SYMBOLS yes

Workbench Parameter: Explode Symbols

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The CGDEF writer creates and writes feature data to the CGDEF file specified by the DATASET keyword. The direc-
tory where the file is created must exist before the translation occurs, and if there is an old CGDEF file with the same
filename in the directory, it will be overwritten with the new feature data. Before actually writing out features, the
writer first scans the prototype/template file defined in the mapping file (seeWriter Keywords) to extract all the
header information required by CGDEF.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the CGDEF writer is CGDEF.

DATASET

Required/Optional: Required

The value for this directive is the file name into which data is to be written.

Example:

CGDEF_DATASET /usr/data/cgdef/myfile.cgdef

Workbench Parameter: Destination ComGraphix Data Exchange Format (CGDEF) File

PROTOTYPE_FILE

Required/Optional: Optional

The value following this directive is the file name of the CGDEF file that is used as a template file. This file should
include all setup and header information along with RGB color definitions (required), symbol definitions (required)
and overlay definitions (optional). The writer will collect this information and use it as it processes features to output.

Example:

CGDEF_PROTOTYPE_FILE /usr/data/cgdef/template.cgdef

Workbench Parameter: Prototype File

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

CGDEF features consist of geometry but no user-defined attributes, although there are special attributes to hold the
type of the geometric entity and its display parameters.

The FME considers the CGDEF overlay name to be the FME feature type of a CGDEF feature. When writing, the CGDEF
writer will create a new overlay for each unique feature type that is passed to the writer. All CGDEF features contain a
cgdef_type attribute, which identifies the geometric type. Each geometric/element type can also have an id, up to 31
characters long, associated with it. Every element type except symbols will have associated colors attached to it. Both
cgdef_symbol_name and cgdef_symbol_sequence_number are fields that are only filled if the element is part of a
symbol instance. Depending on the geometric type, the feature contains additional attributes specific to the geo-
metric type. These are described in subsequent sections.

Attribute Name Contents

cgdef_type The CGDEF geometric type of this entity.
Range:
cgdef_symbol| cgdef_polyline| cgdef_polygon| cgdef_text|
cgdef_ellipse| cgdef_arc

Default: No default

cgdef_element_id The CGDEF ID for this entity, this is an optional attribute
Range: String
Default: No default

cgdef_color.red The element’s red color intensity, as determined by
looking up the element’s color index in the color table.
Range: 0..65535
Default: 27000 (when writing only)

cgdef_color.green The element’s green color intensity, as determined by
looking up the element’s color index in the color table.
Range: 0..65535
Default: 30000 (when writing only)

cgdef_color.blue The element’s blue color intensity, as determined by
looking up the element’s color index in the color table.
Range: 0..65535
Default: 38000 (when writing only)

fme_color This is a string that represents the color intensities of
the element. It is formatted as red, green, blue inten-
sities which range between 0..1 This 0..1 value is
arrived at by taking the color intensity and dividing it by
the total intensity range, in this case, 65535
Range: String. (0..1, 0..1, 0..1)
Default: 27000/65535, 30000/65535,
38000/65535(when writing only)

cgdef_symbol_name If the element is part of a symbol and the symbol has

Attribute Name Contents

been exploded into its individual elements, then this
field contains the symbol name
Range: String
Default: None

cgdef_symbol_
sequence_number

If the element is part of a symbol and the symbol has
been exploded into its individual elements, then this
field contains the a unique number which identifies itself
and the other elements in the symbol
Range: String
Default: None

Symbols

cgdef_type: cgdef_symbol

CGDEF symbol features specify a single x and y coordinate. This coordinate defines the center of the symbol The sym-
bol is defined by a symbol number, and a scale attribute. If no scale is defined, then the symbol will be placed at the
current default symbol scale setting.

The table below lists the special FME attribute names used to control the CGDEF symbol settings.

Attribute Name Contents

cgdef_symbol_number This number references a resource in the map. If the
symbol number does not have a resource in the map,
the default symbol rectangle is placed at the specified
location.
Range: Any integer number > 0
Default: No default

cgdef_symbol_scale The scale at which the symbol is to be placed.
Range: 1..20
Default: 1

Symbol and Group Definitions

Symbol Definitions

Symbols are defined as a set of feature/element types. The collection of feature types becomes the symbol. As an
example, a symbol can be defined as two circles and an arc, which together form a happy face. Thus, a cgdef_sym-
bol type actually references its definition through the cgdef_symbol_number and places that symbol with
appropriate scaling at the coordinates specified in the cgdef_symbol type.

Symbol Definitions

Symbols are defined as a set of feature/element types. The collection of feature types becomes the symbol. As an
example, a symbol can be defined as two circles and an arc, which together form a happy face. Thus, a cgdef_sym-
bol type actually references its definition through the cgdef_symbol_number and places that symbol with
appropriate scaling at the coordinates specified in the cgdef_symbol type.

Group Definitions

Along the same lines is a group definition. A group is another feature which is made up of a set of other element
types. However, a group does not have a group number or group name to identify it (although it may still have an ID

which any feature may possess).

FME does not recognize groups; instead, it outputs the elements of the group as independent features.

Text

cgdef_type: cgdef_text

CGDEF text is used for text annotation in CGDEF. The coordinates specify the lower left coordinates of the text when it
is placed. In addition, the size and angle that the text is output can be specified.

The table below lists the special FME attribute names used to control the CGDEF text:

Attribute Name Contents

cgdef_text_size The size of the text specified in ground units of the map.
Range: float > 0
Default: 0

cgdef_text_angle The text angle is given in degrees and measured from
the horizontal.
Range: -360..360
Default: 0

cgdef_text_font The type of font.
Range: String
Default: No default

cgdef_text_style The display style for the text.
Range: String
Default: No default

cgdef_text_string The text to be displayed
Range: String
Default: No default

Polylines

cgdef_type: cgdef_polyline

CGDEF polyline features specify linear features defined by a sequence of x and y coordinates. Polylines encapsulate
the concept of a line since a line is just a sequence of two points. Furthermore, the polyline type will be used with the
cgdef_arc type to handle poly arcs used in MapGraphix. Poly arcs will be represented by a sequence of polylines and
arcs.

Each polyline has a pen style associated with it specifying the color, line weight, and line type used when the line is
drawn. If no pen style is defined for a polyline entity, the previous style is used.

The table below lists the special FME attribute names used to control the CGDEF polyline settings.

Attribute Name Contents

cgdef_pen_lineweight Defines the lineweight used to draw the polyline. This
is measured in screen pixels.
Range: 1..127
Default: 1

Attribute Name Contents

cgdef_pen_linetype The linetype used to draw the line.
Range: 1..19
Default: 1

Polygons

cgdef_type: cgdef_polygon

CGDEF polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. Each polygon has a pen style associated with it to control the
color, line weight, line type, and brush pattern used when it’s drawn. If no pen style is defined for a polygon entity,
the previous style is used.

The following table lists the special FME attribute names used to control the CGDEF polygon settings.

Attribute Name Contents

cgdef_pen_lineweight Defines the lineweight used to draw the polyline. This
is measured in screen pixels
Range: 1…127
Default: 1

cgdef_pen_linetype The linetype used to draw the line.
Range: 1...19
Default: 1

cgdef_brush_pattern The pattern used to draw the line.
Range: 1…41
Default: 1

Ellipse

cgdef_type: cgdef_ellipse

The cgdef_ellipse corresponds to ovals in MapGraphix. Ellipse features are point features, and have only a sin-
gle coordinate. This point serves as the center of the ellipse. Additional attributes specify the primary axis (X) and sec-
ondary axis (Y) of the ellipse. CGDEF ellipses also support rotation.

Tip: The primary ellipse axis is not necessarily the longest axis, but rather the one on the x
axis.

CGDEF ellipses can also arrive at circles, since circles are just ellipses with equal primary axis and the secondary
axis.

In addition to the attributes below, ellipses also make use of the brush and pen attributes as defined by cgdef_poly-
gon.

Attribute Name Contents

cgdef_primary_axis The length of the semi-major axis in ground units. (x-
axis)
Range: Any real number > 0
Default: No default

cgdef_secondary_axis The length of the semi-minor axis in ground units. (y-
axis)
Range: Any real number > 0
Default: No default

cgdef_rotation The rotation of the major axis. The rotation is measured
in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Arc

cgdef_type: cgdef_arc

The arc definition here handles arcs, oval arcs and parts of poly arcs used in MapGraphix. Poly arcs use the cgdef_
arc type as well as cgdef_polyline types to form the original poly arc defined in the CGDEF file.

CGDEF arc features are linear features used to specify elliptical arcs. As such, the feature definition for cgdef_arc
is similar to the ellipse definition, with two additional angles to control the portion of the ellipse boundary drawn.
CGDEF arcs also support rotation.

Tip: The function @Arc() can be used to convert an arc to a linestring. This is useful for storing
Arcs in systems that don’t support them directly.

In addition to the attributes below, arcs also make use of the pen attributes as defined on cgdef_polyline.

Attribute Name Contents

cgdef_primary_axis The length of the semi-major axis in ground units.
(x-axis)
Range: Any real number > 0
Default: No default

cgdef_secondary_axis The length of the semi-minor axis in ground units.
(y-axis)
Range: Any real number > 0
Default: No default

cgdef_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

cgdef_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

cgdef_rotation The rotation of the major axis. The rotation is
measured in degrees counterclockwise up from hor-
izontal.
Range: -360.0..360.0
Default: 0

Comma-Separated Value (CSV) Reader/Writer

The Comma-Separated Value (CSV) Reader/Writer allows FME to read and write files in the CSV format. This read-
er/writer provides a somewhat simpler interface to the FME’s Relational Table Reader/Writer CSV module.

Overview

CSV files are ASCII database files, where each column in a row is separated by some separator character. The FME fea-
ture attributes for each line of the file are the columns values of that row. There is no geometry or dimension to the
features created from the CSV files, but they may have attributes that can be turned into geometry via FME facilities
such as @XValue, @YValue, and ConnectionFactory. Therefore, none of the features read from CSV are directly view-
able.

By convention, these files use the .csv filename extension, but the CSV reader and writer can use any extension. CSV
reader can also read from a gzipped file with that extension “.csv.gz” and the writer can write a gzipped file if the
extension of destination file ends with “.gz”

Tip

When using RELATE statements that use a CSV file (where the CSV file is not part of the source or destination data-
set), the Relational Table reader/writer keywords for CSV should be used instead of the CSV reader/writer keywords
(see the chapter on Relational Table Reader/Writer). For example:

Relate TABLE_DEF roads CSV \
CSV_OUTPUT_FIELDNAMES yes \
MSLINK number(10,0) \
LENGTH number(10,2) \
PAVEMENT char(20)

CSV Quick Facts

Format Type Identifier CSV

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .csv, .csv.gz

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type csv_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The CSV reader module produces an FME feature for each line in each the CSV files residing in the given directory.
The CSV reader first scans the directory for all CSV files that are defined in the mapping file. If IDs lines are specified,
the CSV reader processes only the specified files; otherwise, it reads all files in the directory. Optionally a single CSV
file can be given in the mapping file. In this case, only that CSV file is read.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the CSV reader is CSV.

DATASET

Required/Optional: Required

This is the name of a directory containing one or more CSV files, or the name of a single CSV file. The default exten-
sion for CSV files is .csv.

Example:

CSV_DATASET /usr/data/csv/input

Workbench Parameter: Source Comma Separated Value (CSV) File(s)

DEF

Required/Optional: Required

Each CSV file must be defined before it can be read. The definition contains the file’s base name without any of the
extensions, followed by the names and types of the attributes. There may be many DEF lines, one for each file to be
read. If this is not specified, then all defined CSV files in the directory are read.

The syntax of a CSV DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed length strings. The
width parameter controls the maximum number

Field Type Description

of characters that can be stored by the field. No
padding is required for strings shorter than this
width.

date Date fields store date as character string with
the format YYYYMMDD.

number(<width>,<decimals>) Number fields store single and double precision
floating point values. The width parameter is the
total number of characters allocated to the
field, including the decimal point. The decimals
parameter controls the precision of the data
and is the number of digits to the right of the
decimal.

float Float fields store floating point values. There is
no ability to specify the precision and width of
the field.

integer Integer fields store 32-bit signed integers.

smallint Small integer fields store 16-bit signed integers
and therefore have a range of -32767 to
+32767.

logical Logical fields store TRUE/FALSE data. Data
read or written from and to such fields must
always have a value of either true or false.

The following table shows all the DEF line directives that are supported by the CSV reader. Each of these directives
has the samemeaning as the global CSV reader keyword with the same suffix. Any value specified on a DEF line will
override values defined for equivalent global directives, as they apply to the table being defined.

DEF Line Directives Value Required/
Optional

CSV_FIELD_NAMES

<yes|no>

See FIELD_NAMES for details. Optional

CSV_FIELD_NAMES_AFTER_
HEADER

<yes|no>

See FIELD_NAMES_AFTER_
HEADER for details.

Optional

CSV_SEPARATOR

(<separator>)

See SEPARATOR for details. Optional

CSV_SKIP_LINES

<number>

See SKIP_LINES for details. Optional

DEF Line Directives Value Required/
Optional

CSV_STRIP_QUOTES

<yes|no>

See STRIP_QUOTES for details. Optional

CSV_DUPLICATE_DELIMS

<yes|no>

See DUPLICATE_DELIMS for
details.

Optional

CSV_EXTENSION

<extension>

See EXTENSION for details. Optional

CSV_ENCODING

<encoding>

See ENCODING for details. Optional

The following mapping file fragment defines a CSV file called roads. Here we define the ‘?’ as the separator char-
acter for columns in the file and we choose not to output the field names to the output file.

CSV_DEF roads \

CSV_SEPARATOR (?) \

CSV_FIELD_NAMES no \

id_num number(11,0) \
type char(20)

IDs

Required/Optional: Optional

This specification limits the available and defined CSV files read. If no IDs are specified, then all defined and available
CSV files in the directory are read.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName> \
<baseName1> … \
<baseNameN>

The basenames must match those used in DEF lines.

The example below selects only the roads CSV file for input during a translation:

CSV_IDs roads

Workbench Parameter: Feature Types to Read

FIELD_NAMES

Required/Optional: Optional

If the field or column names of the CSV table are specified in the file, then set this value to yes and the names will be
extracted from the file. Otherwise, the columns of the CSV table are given default names (i.e. col0, col1, ... , colN)
with the setting no. The default is no.

Note: If FIELD_NAMES is set to yes, skip_lines should also be set to skip at least one row, or the first row will be
also be processed as a feature. You can also set FIELD_NAMES_AFTER_HEADER to yes. See FIELD_NAMES_AFTER_
HEADER below for details.

Values: <yes | no>

FIELD_NAMES_AFTER_HEADER

Required/Optional: Optional

If the column/field names is AFTER the header information instead of BEFORE, then you can set FIELD_NAMES_
AFTER_HEADER to yes. Otherwise, by default, the first line of the file will be used as the column/field names.

Notes:
This parameter is ignored if FIELD_NAMES is not set, or it is set to no.

If FIELD_NAMES_AFTER_HEADER is set to yes, SKIP_LINES should also be set to skip at least one row, or the first
row will be also be processed as a feature.

Values: <yes | no>

SEPARATOR

Required/Optional: Optional

A special field is listed to identify the separator used to divide the fields in the file. By default, a comma is used; how-
ever, different one-character separators can also be specified. Tab character separators are indicated by a backslash
(\) followed by a “t”; for example:

CSV_SEPARATOR (\t)

Note: There must be a space between CSV_SEPARATOR and (<separator>). The begin and end parentheses
are optional.

Values: (<separator>)

SKIP_LINES

Required/Optional: Optional

This field can be listed to indicate the number of lines to skip at the top of the file. By default, no lines are skipped.
Each line skipped is logged to the log file. This is useful if the CSV file contains a header line of field names or other
descriptive material that should be skipped.

Values: <number>

Workbench Parameter: Number of Lines to Skip

SKIP_FOOTER

Required/Optional: Optional

This field can be listed to indicate the number of footer lines to skip at the bottom of the file. By default, no footer lines
are skipped. Each footer line skipped is logged to the log file. This is useful if the CSV file contains a footer line of
descriptive material that should be skipped.

Values: <number>

Workbench Parameter: Number of Footer Lines to Skip

STRIP_QUOTES

Required/Optional: Optional

Some CSV files place quotation marks around all values they contain. By setting this special field to yes, then these
quotes can be stripped from each attribute. The default is no.

Values: <yes|no>

Workbench Parameter: Strip Quotes from Fields

DUPLICATE_DELIMS

Required/Optional: Optional

This field can be listed to indicate if duplicate delimiters are to be treated as a single delimiter. If set to yes then mul-
tiple contiguous delimiters are treated as a single delimiter; otherwise, each delimiter is treated as if it delimits a dif-
ferent field.

Values: <yes|no>

Workbench Parameter: Skip Duplicate Delimiters

EXTENSION

Required/Optional: Optional

This specifies the file extension to be read or written in. The default is .csv.

Values: <.extension> (Include the period (.) in front of the extension name.)

Default: 0

ENCODING

Required/Optional: Optional

This specifies the file encoding to use when reading.

Values: <encoding>

Workbench Parameter: Character Encoding

Encodings

UTF-8

UTF-16LE

UTF-16BE

ANSI

BIG5

SJIS

CP437

CP708

CP720

CP737

CP775

CP850

CP852

CP855

CP857

CP860

CP861

CP862

CP863

CP864

Encodings

CP865

CP866

CP869

CP932

CP936

CP950

CP1250

CP1251

CP1252

CP1253

CP1254

CP1255

CP1256

CP1257

CP1258

ISO8859-1

ISO8859-2

ISO8859-3

ISO8859-4

ISO8859-5

ISO8859-6

ISO8859-7

ISO8859-8

ISO8859-9

ISO8859-13

ISO8859-15

Writer Overview

The CSV Writer writes all attributes of a feature to an CSV file. Features of different types are written to different CSV
files.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the CSV reader is CSV.

DATASET

Required/Optional: Required

This is the name of a directory containing one or more CSV files. The default extension for CSV files is .csv. To write
gzipped files, use .csv.gz as the destination file extenstion.

An example of the DATASET keyword in use is:

CSV_DATASET /usr/data/csv/output

Workbench Parameter: Destination Comma Separated Value (CSV) Directory

DEF

Required/Optional: Required

Defines a CSV file. The definition contains the file’s base name without any of the extensions, followed by the def-
initions of the attributes. There may be many DEF lines, one for each file to be written.

The syntax of a CSV DEF line is:

<WriterKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The attribute types supported by the CSV writer are the same as those listed in the Reader Keywords DEF section. The
following DEF line directives are supported by the CSV writer:

DEF Line Directives Value Required/Optional

CSV_FIELD_NAMES

<yes|no>

See FIELD_NAMES below for
details.

Optional

CSV_SEPARATOR

(<separator>)

See SEPARATOR below for
details.

Optional

CSV_EXTENSION

<extension>

See EXTENSION below for
details.

Optional

CSV_ENCODING

<encoding>

See ENCODING for details. Optional

CSV_END_OF_LINE

<encoding>

See END_OF_LINE for
details.

Optional

Each of these directives has the samemeaning as the global CSV writer keyword with the same suffix. Any value spec-
ified on a DEF line will override values defined for equivalent global directives, as they apply to the table being
defined.

FIELD_NAMES

Required/Optional: Optional

If the field or column names of the CSV table are specified as the first row of the file, set this value to yes and the
names will be written to the file. Otherwise, none of the column names will be written to file.

Values: <yes|no>

Default: no

Workbench Parameter: Output field names on first line

SEPARATOR

Required/Optional: Optional

A special field is listed to identify the separator used to divide the fields in the file. By default, a comma is used; how-
ever, different one-character separators can also be specified. Tab character separators are indicated by a backslash
(\) followed by a “t”; for example:

CSV_SEPARATOR (\t)

Note: There must be a space between CSV_SEPARATOR and (<separator>). The begin and end paren-
theses are optional.

Values: (<separator>)

Workbench Parameter: Separator Character

EXTENSION

Required/Optional: Optional

This specifies the file extension to be written. The default is .csv.

Note: Include the period in front of the extension name. .csv.gz extension will output gzipped files.

Values: <extension>

Workbench Parameter: Extension

QUOTE_OUTPUT

Required/Optional: Optional

This specifies whether the fields written to the CSV file are quoted. If set to yes, then every field, including field
names, will be quoted. If set to no, no fields will be quoted. If set to if_needed, fields will be quoted only if they contain
a delimiter character.

Note: The meaning of a yes value differs slightly between the CSV format writer and the CSV mode of the Relational
Table writer.

Values: yes | no | if_needed

Workbench Parameter: Quote Output Values

QUOTE_FIELD_NAMES

Required/Optional: Optional

This specifies whether the field names written on the first row of the CSV file are quoted. If set to yes, then field
names will be quoted. If set to no, field names will not be quoted.

Values: yes | no

Default: no

Workbench Parameter: Quote Field Names

APPEND

Required/Optional: Optional

This specifies whether rows will be appended to existing files if a matching CSV file was found in the destination direc-
tory.

Values: yes | no

Default: no

Workbench Parameter: Append to File

ENCODING

Required/Optional: Optional

This specifies the file encoding to use when writing.

Values: <encoding>

Workbench Parameter: Character Encoding

Encodings

UTF-8

UTF-16LE

UTF-16BE

ANSI

BIG5

SJIS

CP437

CP708

CP720

CP737

CP775

CP850

CP852

CP855

CP857

CP860

CP861

CP862

CP863

CP864

CP865

CP866

CP869

CP932

CP936

CP950

CP1250

CP1251

CP1252

CP1253

CP1254

CP1255

Encodings

CP1256

CP1257

CP1258

ISO8859-1

ISO8859-2

ISO8859-3

ISO8859-4

ISO8859-5

ISO8859-6

ISO8859-7

ISO8859-8

ISO8859-9

ISO8859-13

ISO8859-15

END_OF_LINE

Required/Optional: Optional

This specifies the end of line character to use when writing.

Values: Macintosh | Windows | Unix | System

Default: System

Workbench Parameter: Line Termination

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The CSV feature attributes consists of the columns that were in the CSV table. All CSV features contain a csv_
type attribute, which is always set to csv_none as there is no geometry to CSV features. This represents that the
feature was generated from a CSV file.

Attribute Name Contents

csv_type The CSV geometric type of this entity.
Range: csv_none
Default: csv_none

Danish DSFL Reader

The DSFL Reader module enables FME to read the DSFL basic format which is a genuine subset of the full Danish
National Format (DSFL). This chapter assumes familiarity with that format.

Overview

DSFL is an ASCII format, widely used in Denmark for exchanging Geographic Information System (GIS) data between
different systems. The information within the DSFL file is contained in these four sections:

l header section – contains global information common to all data

l origin section – where the accuracy and the origin of the data are specified

l data section – where data is referenced by features and where the spatial and non-spatial data for the features
are contained

l stop code – this is how the end of the DSFL data set is signalled

The following file extensions are commonly used:

Filename Extension Content

.dsf, .asc, .txt and others Feature geometry and attribution
data

DSFL Quick Facts

Format Type Identifier DSFL

Reader/Writer Reader

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Geometry type

Typical File Extensions .dsf, .fla

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type dsfl_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none no

Reader Overview

The DSFL reader reads the header information from the DFSL file being processed, and extracts the parameters
required to determine the coordinate system and sequence use. The dimension of the input file is also known after
the coordinate sequence had been determined. The reader then returns each read-in feature with its attributes to the
FME for processing. The DSFL reader doesn’t have any requirements for definition statements.

Each feature returned by the DSFL reader has its feature type set to one of the following: dsfl_point, dsfl_line, dsfl_
polygon, dsfl_aggregrate, dsfl_none, or dsfl_header.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the DSFL reader is DSFL.

DATASET

Required/Optional: Required

The file name of the input DSFL file.

Example:

DMDF_DATASET /usr/data/dmdf/input.dd1

Workbench Parameter: Source DSFL File(s)

OUTPUT_ORIGINS

Required/Optional: Optional

Determines whether or not the origin data is output as a separate features. If the value is YES, then origin data is out-
put as dsfl_origin feature type with each feature having its unique index number in dsfl_record_index_
number attribute. If the value is NO, then the origin data is merged with other data features.

Range: YES | NO

Default: NO

Example:

DMDF_RASTER_POINT_FEATURE_CODE HA35000000

Workbench Parameter: Output Origin Data

KEEP_Z_NULL

Required/Optional: Optional

This directive determines whether or not to preserve the NULL value placeholder for z coordinates defined by %H9
header tag. If the value is YES, the z coordinate of the geometry will be unchanged; if the value is NO, it will be set to
0.

For example, if the %H9 tag is set to -99.00 and, while reading a feature, it encounters a z coordinate of -99.00, then
based on the value of this keyword, either the z coordinate will remain as 99.00 (if value is YES) or changed to 0.0 (if
the value is NO).

Range: YES | NO

Default: YES

Workbench Parameter: Preserve Original Null Value for Z

SPLINE_EDGE_TOLERANCE

Required/Optional: Optional

After the DSFL reader has converted splines to straight lines, this directive can be used to remove extraneous points.
Real values from 0 and up are acceptable. If a negative number is input, the DSFL reader will ignore it, and not gen-
eralize the line. This will only be used if SPLINE_TO_POINTS was set to at least 1.

In Workbench, this functions like a LineGeneralizer transformer using the Douglas algorithm.

A recommended use is to set SPLINE_TO_POINTS to a moderately high number, such as 100, and then generalize
to an acceptable precision. This will keep the overall number of points generated down, but will ensure precision is
available where it is needed to keep the error down.

Example:

The following example sets the edge tolerance for generalizing lines to 2.5:

DSFL_SPLINE_EDGE_TOLERANCE 2.5

Workbench Parameter: Edge tolerance for generalizing splines

SPLINE_TO_POINTS

Required/Optional: Optional

The DSFL reader converts all spline curves into straight lines by inserting intermediate points. This directive specifies
the number of intermediate points to be inserted. Integer values from 0 to 10 are acceptable. If an illegal value is
entered, the DSFL reader will automatically use the default value of 3. The recommended range is 0 to 10.

Example:

The following example sets the number of intermediate points to be calculated to four:

DSFL_SPLINE_TO_POINTS 4

Range: >=0

Default: 3

Workbench Parameter: Points Per Segment

COMMA_IS_A_DELIMITER

Required/Optional: Optional

When set to “Yes”, this directive will tell the DSFL reader to also use the comma (,) as a delimiter when separating
DSFL tokens as well as when parsing attributes. This will remove commas from attributes (for example, “Vancouver,
Canada” becomes “Vancouver Canada”). Therefore, by setting this value to “No,” it will keep the commas in the attrib-
utes.

It should be noted that if the DSFL file’s tokens or coordinate points were separated with commas, then the reader
may not work properly. However, since FME only supports the basic version of DSFL (and commas are not allowed to
separate tokens and coordinates in the basic version), this should never be a problem.

The default value of this directive is “No”. However, if the directive is missing, then it will implicitly set the value to
“Yes” so that workspaces created prior to the addition of this directive will continue to exhibit the same behavior as
before.

Example:

DSFL_COMMA_IS_A_DELIMITER No

Range: Yes | No

Default: No

Workbench Parameter: Use Comma as a Delimiter

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

DSFL features consist of geometry and attributes. When reading-in a feature, the DSFL reader holds a set of currently
active DSFL data fields. These active data fields are controlled by definitions of the%D token, found in the DSFL input
file. The active data fields are given as attributes to the feature being read. The active set of data fields may be empty.
In this case, the feature has no DSFL data fields attributes. The name for these attributes are of the formDx, where x
is a positive integer.

If the feature references any of the accuracy and origin definitions processed at the beginning of the file, these def-
initions will also become attributes for the referencing feature.

All DSFL features contain a dsfl_type attribute that identifies the geometric type. Depending on the geometric
type, the features may contain additional attributes that are specific to them.

Attribute Name Contents

dsfl_type The DSFL geometric type of this feature.
Range:
dsfl_point|
dsfl_line|
dsfl_polygon|
dsfl_text|
dsfl_aggregate|
dsfl_none|
dsfl_header
dsfl_origin

Default: No default

General Attributes

Attributes specific to each dsfl_type are described in the next sections. All DSFL features, except those features having
dsfl_text and dsfl_header as the value of their dsfl_type, may contain the following attributes:

Attribute Name Contents

dsfl_class This is the DSFL feature code class.

dsfl_subclass This is the DSFL feature code subclass.

dsfl_origin_ND1 Acronyms for production, also known as data generation,

Attribute Name Contents

method
Range: DU | DF | DL | SK | SL | UU | FF | LL

Default: No default

dsfl_origin_ND11 Standard deviation for plane coordinates, in metres with
decimals.
Default: No default

dsfl_origin_ND12 Standard deviation for height coordinate, in metres with
decimals
Default: No default

dsfl_origin_ND21 Date of base map generation
Range:yymmdd
Default: No default

dsfl_origin_ND22 Date of land surveying
Range: yymmdd
Default: No default

dsfl_origin_ND23 Date for photo flight
Range: yymmdd
Default: No default

dsfl_origin_ND32 Scale of photogrammetric photos
Default: No default

dsfl_origin_ND41 Producer of digital data
Range: String, maximum 40 characters
Default: No default

dsfl_origin_ND51
to
dsfl_origin_ND59

Descriptive text
Range: String, maximum 40 characters
Default: No default

Points

dsfl_type: dsfl_point

DSFL point features specify a single x and y coordinate for two-dimensional (2D) data or a single x, y, and z coor-
dinate for three-dimensional (3D) data. Point features may have the following additional special attributes associated
with them.

Attribute Name Contents

dsfl_point_rotation DSFL angles are defined as grades. The DSFL reader auto-
matically converts these into degrees. The degrees are
measured counterclockwise from horizontal.
Range: 0.0 .. 360.0

Default: 0.0

Attribute Name Contents

Z When the DSFL data is 3D, the dsfl_point will contain
this attribute having as its value the third, or z, coor-
dinate of the point.

Lines

dsfl_type: dsfl_line

DSFL line features specify linear features by a sequence of x and y coordinates for 2D data or by a sequence of x, y,
and z coordinates for 3D data.

Polygons

dsfl_type: dsfl_polygon

DSFL polygon features specify polygon features by a sequence of x and y coordinates for 2D data or by a sequence of
x, y, and z coordinates for 3D data. The first and last coordinates of the polygon are equal.

Text

dsfl_type: dsfl_text

DSFL text features are used to specify annotation information. Each text feature has a single x and y coordinate for 2D
data or a single x, y, and z coordinate for 3D data. The following table lists the special FME attribute names for the
DSFL text feature.

Attribute Name Contents

dsfl_text_code The DSFL data field code.

dsfl_text_value The value for the DSFL data field.

dsfl_rotation DSFL angles are defined as grades. The DSFL reader
automatically converts these into degrees measured
counterclockwise from horizontal.
Range: 0.0 .. 360.0

Default: 0.0

dsfl_text_justification Indicates the position of the text coordinate in rela-
tion to the text.
Range:
dsfl_top_left |
dsfl_top_center |
dsfl_top_right |
dsfl_middle_left |
dsfl_middle_center |
dsfl_middle_right |
dsfl_bottom_left |
dsfl_bottom_center |
dsfl_bottom_right

Default: No default

Aggregate

dsfl_type: dsfl_aggregate

DSFL aggregates are a collection of dsfl_line or dsfl_polygon features. The geometry of the dsfl_aggregate feature
is homogeneous. The dsfl_type attribute of this feature will be set to dsfl_polygon if all composing features are poly-
gons. If all composing features are lines, it will be set to dsfl_line.

None

dsfl_type: dsfl_none

This is a DSFL feature with no geographic representation.

Header

dsfl_type: dsfl_header

This DSFL feature contains the metadata stored in the header section for the input DSFL file. The feature contains no
geometry. The following table lists the attributes that this feature contains. Basically, all header tokens with their
values become attributes for this feature.

Attribute Name Contents

H0 Character string specifying the three special Danish char-
acters in upper- and lowercase.

H1 Plane coordinate system—this value is used to set the
coordinate system on the features
Range: S34J | S34S | S45B | U32 | U33 |
U32W | U33W | LOK

H2 Acronym for the height coordinate system
Range: DNNGI

H3 Coordinate sequence
Range: XY | XYZ | YX | YXZ | NE | NEH

H9 Specific value for “no available height”
Range: Real

H11 Supplier’s company name
Range: String

H12 Supplier’s address
Range: String

H13 Supplier’s postal code
Range: String

H14 Supplier’s postal district
Range: String

H15 Supplier’s phone number
Range: String

H16 Supplier’s fax number
Range: String

Attribute Name Contents

H41 Date and time of generation for the data set
Range: yymmdd hhmm

H58 Data content
Range: Basis-udgave 970901 for the DSFL basic for-
mat

H59 Version date of DSFL format
Range: yymmdd

Danish UFO Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

The Danish UFO Reader/Writer allows FME to read and write UFO files. The UFO is a published ASCII format used by
the National Survey and Cadastre of Denmark.

Overview

The UFO format provides facilities for carrying a variety of metadata together with the actual feature data. Metadata
can even be associated with individual vertices. The UFO reader and writer provide a complete set of facilities for read-
ing and writing this metadata, however, custommapping files are required to populate the metadata fields. A custom
mapping file is provided with FME to do UFO to UFO translation in a lossless manner.

UFO files store both feature geometry and attribution. UFO feature coordinates are always measured in centimetres.

A UFO file has the following file name extension:

File Name Extension Contents

.ufo UFO format file

The extension is added to the basename of the UFO file.

UFO Quick Facts

Format Type Identifier UFO

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Feature role

Typical File Extensions .ufo

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type ufo_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

Reader Overview

The UFO reader module produces FME features for all data held in the UFO file. The UFO reader extracts data from the
file one row at a time, producing FME features from the file before passing them on to the rest of the FME for further
processing. The features are produced in the order they are read from the source file. The various metadata features
are emitted first, followed by the feature data. When the file is exhausted, the UFO reader terminates.

Reader Directives

The directives listed below are processed by the UFO reader. The suffixes listed are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the UFO reader is UFO.

DATASET

Required/Optional: Required

This is the name of an UFO file. The extension for UFO files is .ufo.

An example of the DATASET keyword in use is:

UFO_DATASET /usr/data/ufo/input.ufo

Workbench Parameter: Source Danish UFO File(s)

Writer Overview

The UFO writer creates and writes feature data to an UFO file specified by the DATASET keyword. Existing UFO files
with the same name as the specified file are overwritten with the new feature data.

The UFO writer process two kinds of features: regular features and meta features. Regular features are features such
as points and lines, which are commonly seen in FME formats. Meta features are features specifically created for the
UFO writer so that it can receive information for the origin for objects, label types, and the other metadata types
stored in Sections 2 through 5 of the format. Note that the order in which the meta features are received by the writer
is extremely important. They must be received in the order listed in the meta feature section under the Feature Rep-
resentation section.

Writer Directives

The directives listed below are processed by the UFO writer. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the UFO writer is UFO.

DATASET

Required/Optional: Required

TheDATASET directive operates in the samemanner as it does for the UFO reader.

Workbench Parameter: Destination Danish UFO File

DEF

Required/Optional: Required

SOURCE_IS_UFO

The translation from UFO to UFO is handled differently from a translation from other formats to UFO. In such a sit-
uation, the input data stream will contain additional information that the UFO writer can make use of. This directive is
used in the “ufo2ufo.fme” mapping file provided in the FME installation directory.

An example of the SOURCE_IS_UFOkeyword in use is:

UFO_SOURCE_IS_UFO yes

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Each UFO element, regardless of its geometry type, shares a number of other parameters, as described in the fol-
lowing tables. Subsequent sections will describe parameters specific to each of the supported element types.

Attribute Name Contents

ufo_type The UFO geometric type of this entity.
Range:

ufo_point |
ufo_line |
ufo_polygon |
ufo_text |
ufo_none

Default: No default

The main object line:

Attribute Name Contents

ufo_obj_code An integer that expresses the object code.
Range: 32 bit integer
Default: 0

ufo_db A text string which indicates the database the
object connects to.
Range: Max. of 80 characters
Default: no_database

ufo_key The unique identification in a database expressed
as a whole number. 0 means that the object has
not yet been assigned a unique identification.
Range: 32 bit integer
Default: 0

ufo_obj_origin A whole number which indicates the object origin
group the object belongs to.

Attribute Name Contents

Range: 32 bit integer
Default: 0

The object reference:

Attribute Name Contents

ufo_obj_ref{<number>}.group A integer that refers to an object reference type
group.
Note: The <number> refers to the group of object
reference description. Directives that belong to the
same description should have the same number.
The <number> is a positive integer which starts at
0.
Range: 32 bit integer
Default: 0

ufo_obj_ref

{<number>}.database

A text string which indicates the database being
referred to.
Range:max. 80 characters
Default: no_database

ufo_obj_ref

{<number>}.key

A whole number which indicates the object being
referred to in the database.
Range: 32 bit integer
Default: 0

The label description:

Attribute Name Contents

ufo_label

{<number>}.ufo_text_type

A character which indicates if the label has a full
description or a free text description.
The allowable range for the string are “L” and “F”
corresponding to “full” and “free”.
Note: The <number> refers to the group of label
description. Directives that belong to the same
description should have the same number. The
<number> is a positive integer which starts at 0.
Range: L or F
Default: No default.

ufo_label{<number>}

.ufo_group

A whole number that refers to a label type group.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_northing

An integer which refers to the north-coordinate of
the label.

Attribute Name Contents

Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_easting

An integer which refers to the east-coordinate of
the label.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_height

An integer which refers to the height-component of
the label.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_pt_origins

A whole number which refers to the point origin
group.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_font

A whole number code for the label text font.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_caps

Specifies the capitalization of the label text.
Range: 32 bit integer
0 = Mix of lower and uppercase letters,
1 = Only upper case letters.
Default: 0

ufo_label{<number>}

.ufo_text_size

A whole number that refers to the height of the
label.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_color

A whole number that refers to the color of the
label.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_justification

A code in DSFL that indicates the justification of
the label.
Range: 32 bit integer
1 = TL (top left), 2 = TM (top middle),
3 = TR (top right), 4 = ML (middle left),
5 = MM (middle middle), 6 = MR (middle right),
7 = BL (bottom left), 8 = BM (bottom middle),
9 = BR (bottom right)
Default: 3

Attribute Name Contents

ufo_label{<number>}

.ufo_orientation

A whole number that indicates the orientation of
the label.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_spacing

A whole number that indicates how many extra
spaces are needed.
Range: 32 bit integer
Default: 0

ufo_label{<number>}

.ufo_number

A whole number used in SNOSOR to indicate the
place/appellative-flag.
Range: 32 bit integer
0 = appellative, 1 = place name.
Default: 0

ufo_label{<number>}

.ufo_text_string

The actual text for the label.
Range:max. 80 characters
Default: no_label

Points

ufo_type: ufo_point

A multi-point feature in UFO turns into an aggregate point feature in FME. In this case, the feature will have the attrib-
ute ufo_pt_origins{<number>} for each point with the <number> being the coordinate index. The value of
this attribute is a comma separated value list of point origin numbers with the first one being the point origin number
for the first point and the second one being the point origin number of the second point and so on.

Attribute Name Contents

ufo_pt_origins This is the point origin number that refers to the
meta feature ufo_meta_pt_origin’s ufo_group_
id.
Range: 32 bit integer
Default: 0

Lines

ufo_type: ufo_line

A multi-line feature in UFO turns into an aggregate line feature in FME. In this case, the feature will have the attribute
ufo_pt_origins{<number>} for each line with the <number> being the line index. The value of this attribute
is a comma separated value of point origin numbers with the first one being the point origin number for the first point
and the second one being the point origin number of the second point. Each comma-separated value list contains the
point origin number for a line.

Attribute Name Contents

ufo_pt_origins This a comma-separated string that holds the list
of ufo_pt_origins as describe for Points. If all
points of the line has the same value for ufo_pt_

Attribute Name Contents

origins then this string will only hold that single
value.
Range: 32 bit integer
Default: 0

Polygons

ufo_type: ufo_polygon

A polygon with more than one line is turned into a donut feature in FME. There is also a multi-polygon feature in UFO
that turns into an aggregate polygon feature. In both cases, the feature will have the attribute ufo_pt_origins{<number>}
for each polygon, with <number> being the polygon index. The order of the polygons are important.

The value of ufo_pt_origins{<number>} is a comma separated value of point origin numbers with the first one being the
point origin number for the first point and the second one being the point origin number of the second point. Each
comma-separated value list contains the point origin number for a polygon.

Attribute Name Contents

ufo_pt_origins This a comma-separated string that holds the list
of ufo_pt_origins as describe for Points. If all
points of the polygon has the same value for ufo_
pt_origins then this string will only hold that single
value.
Range: 32 bit integer
Default: 0

Text

ufo_type: ufo_text

Text features are not native UFO features. They are created during translation from UFO to other formats, in order to
convert the text information which can be part of the UFO feature label descriptions (Here, we call this UFO feature
the original feature). The text feature is a clone of the original feature with the addition of the attributes ufo_text_
size,ufo_text_string and ufo_orientationwhich are listed in the label description part of the Feature
Representation Section, but do no contain the ufo_label{<number>} prefix. The coordinates for the text features are the
first set of coordinates of the original feature if it is not available through the original features label description.

Meta Features

ufo_type: ufo_none

Note that the meta features must be created in the mapping file in the exact order as it is listed here. Otherwise, an
error is output. In addition, all regular feature must be created before the meta features in order for the UFOWriter to
function correctly.

Header

This is the header feature of the ufo file. The feature type of this feature is ufo_meta_header. The supported
attributes are as followed:

Attribute Name Contents

ufo_coord_sys A text string which describes the coordinate sys-
tem used.
Range: Text string with max length of 25
Default: ufo_coord_sys

Origin and Definitions of Precision for Points

This is the Origin and Definitions of Precision for Points feature of the ufo file. The feature type of this feature is ufo_
meta_pt_origin. The supported attributes are as followed:

Attribute Name Contents

ufo_group_id A unique number for KMS which expresses a
number for the group.
Range: Integer
Default: 0

ufo_attr{<number>} Text strings which contain information belonging to
the group.
<number> is a positive integer which expresses the
line number of the text strings.
Range: Consecutive integer starting from 0
Default: 0

Label Types

This is the Label Types feature of the ufo file. The feature type of this feature is ufo_meta_label. The supported
attributes are exactly the same as those supported by Origin And Definitions of Precision For Points feature.

Object Reference Types

This is the Object Reference Types feature of the ufo file. The feature type of this feature is ufo_meta_ref. The
supported attributes are exactly the same as those supported by Origin And Definitions of Precision For Points fea-
ture.

Origin for objects

This is the Origin for Object feature of the ufo file. The feature type of this feature is ufo_meta_obj_origin.
The supported attributes are exactly the same as those supported by Origin And Definitions of Precision For Points fea-
ture.

dBase (DBF) Reader/Writer

The dBase Format (DBF) Reader/Writer allows FME to read and write data in the DBF format.

All DBF files are formatted according to the dBase III specification. The DBF Reader/Writer reuses the Relational Table
Reader/Writer’s CSV to expand its capabilities from being usable only in the FME Universal (Quick) Translator to also
being usable in FME Workbench and Universal Viewer.

Note: Any single DBF file can have a maximum file size of 2 GB, a limit imposed by the dBase III specification. Files
larger than 2 GB may be readable, but not officially supported. Files larger than 2 GB are not writable, and will
produce an error message.

Overview

A DBF file defines a single table within a database. The feature attribution of a FME feature are the columns and values
of the DBF database table. There is no geometry or dimension to the features created from the DBF files. They are all
undefined. Therefore, none of the features created are viewable because there is no graphical component to the fea-
tures.

DBF files store only feature attribution. The DBF format has one physical file. The extension is added to the basename
of the DBF file.

DBF Quick Facts

Format Type Identifier DBF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .dbf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type dbf_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The DBF reader module produces FME feature for each table entry held in the DBF files residing in the given directory.
The DBF reader first scans the directory for all DBF files which are defined in the mapping file. It processes only the
specified files if IDs lines are available. Otherwise, all files in the directory are read. The DBF reader extracts data
from the file one row at a time, producing FME features before passing them on to the rest of the FME for further proc-
essing. When the file is exhausted, the DBF reader moves on to the next file in the directory. Optionally a single DBF
file can be given as the dataset. In this case, only the single file is read. The reader supports dBASE III, dBASE IV and
FoxPro files.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the DBF reader is DBF.

DATASET

Required/Optional: Required

This is the name of a directory containing one or more DBF files, or a single DBF file. The extension for DBF files is
.dbf.

Example:

DBF_DATASET /usr/data/dbf/input

Workbench Parameter: Source dBASE (DBF) File(s)

DEF

Required/Optional: Required

Each DBF file may optionally be defined before it can be read. The definition specifies the base name of the file, and
the names and the types of all attributes.

Example:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed length strings.
The width parameter controls the maximum

Field Type Description

number of characters that can be stored by
the field. No padding is required for strings
shorter than this width.

date Date fields store date as character strings
with the format YYYYMMDD.

number(<width>,<decimals>) Number fields store single and double pre-
cision floating point values. The width param-
eter is the total number of characters
allocated to the field, including the decimal
point. The decimals parameter controls the
precision of the data and is the number of
digits to the right of the decimal.

logical Logical fields store TRUE/FALSE data. Data
read or written from and to such fields must
always have a value of either true or false.

memo The reader can read dBASE III, IV and Fox-
Pro memo fields.When writing, only dBASE
III format memo fields are supported.

The example below is a DEF line for the trees DBF file that has the attributes name and id_number:

DBF_DEF trees \

name char(30) \
id_number number(11,0)

Workbench Parameter: <WorkbenchParameter>

IDs

Required/Optional: Optional

This optional specification limits the available and defined DBF files read. If no IDs are specified, then all defined and
available DBF files are read.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName> \

<baseName1> … \
<baseNameN>

The basenames must match those used on the DEF lines.

The example below selects only the pipeline DBF file for input during a translation:

DBF_IDs pipeline

ENCODING

Required/Optional: Optional

This optional specification controls which character encoding is used to interpret text attributes from the DBF file. If
the value is not set, then the character encoding will be automatically detected from the source DBF file. If the value is
set, it will take precedence over the automatically detected character encoding.

This directive is useful when the character encoding information stored in the DBF file is missing or incorrect.

Example:

<ReaderKeyword>_ENCODING <character encoding>

Workbench Parameter: Character Encoding

Parameter Description

<character encoding> The character encoding to use when interpreting
text attributes. Must be set to any of the following
values:
ANSI - this means use the “current OS language”
BIG5
EUC
ISO
OEM
SJIS
UTF-8
CP437
CP708
CP720
CP737
CP775
CP850
CP852
CP855
CP857
CP860
CP861
CP862
CP863
CP864
CP865
CP866
CP869
CP932
CP936
CP950
CP1250
CP1251
CP1252
CP1253
CP1254

Parameter Description

CP1255
CP1256
CP1257
CP1258
ISO8859-1
ISO8859-2
ISO8859-3
ISO8859-4
ISO8859-5
ISO8859-6
ISO8859-7
ISO8859-8
ISO8859-9
ISO8859-13
ISO8859-15

TRIM_PRECEDING_SPACES

Required/Optional: Optional

This option specifies whether the reader should trim preceding spaces of attribute values. If the option is set to YES,
then preceding spaces in attribute values will be discarded. If the option is set to NO, then preceding spaces will be
left intact. The default value is YES.

Workbench Parameter: Trim Preceding Spaces

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The DBF Writer writes all attributes of a feature to a DBF file. Features of the different feature types are written to dif-
ferent DBF files.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the DBF writer is DBF.

The DBF writer processes the DATASET and DEF keywords as described in the Reader Keywords section above. How-
ever, it does not make use of the IDs keywords.

Unlike the reader, the writer requires a DEF line for each file being written.

TheENCODING directive is used to specify which character encoding should be used when writing text attributes
into DBF files. If the value of this directive is not set, the current OS language is used. The syntax of theENCODING
writer directive is the same as theENCODING reader directive, as described in the Reader Directives section.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The DBF feature attributes consists of the column name that were in the DBF table. All DBF features contain a dbf_
type attribute, which is always set to dbf_none as there is no geometry to DBF features. This shows that the fea-
ture was generated from a DBF file.

Attribute Name Contents

dbf_type The DBF geometric type of this entity.
Range: dbf_none
Default: dbf_none

Digital Line Graph (DLG) Reader

Format Notes:
This format is not supported by FME Base Edition.

The Digital Line Graph (DLG) reader enables FME to import Level 3 DLG data and export it to any of the FME output for-
mats. DLG is a published ASCII format developed by the United States Geological Survey (USGS) Federal Agency and
is intended to assist in data exchange with the National Digital Cartographic Data Base (NDCDB).

The DLG reader supports all three distinct types of DLG data:

l large-scale DLG data (1:24,000 scale)

l intermediate-scale DLG (1:100,000 scale)

l small-scale DLG data (1:2,000,000 scale)

The three scales of DLG data are physically formatted into files in one of these ways: standard, optional, and graphics
formats. FME supports both the standard and the optional DLG distribution formats. However, the graphics format is
not supported. Most DLG data is distributed in the optional format.

Overview

DLG data files consist of ASCII fixed field records. The records may or may not be stored with embedded carriage
returns or end of line markers. The DLG reader intelligently determines the end of each record, and interprets files
with or without explicit end of record markers.

The DLG file structure was designed to accommodate all categories of spatial data represented on a conventional line
map. Node, line, and area data types are present within the DLG format, along with linkages and attribute codes.

Linkages are references to other features within the same DLG data set, used in a variety of contexts.

DLG files do not explicitly store attribute values but use a feature coding approach in which unique feature codes are
assigned to the different types of features stored within the data set. Each geometric entity present in a DLG file may
be assigned major and minor attribute codes which always appear as a pair. Together these codes often form com-
plex relationships to assign specific attributes for each feature. The attribute coding scheme is designed to accom-
modate basic cartographic data categories such as hypsography, hydrography, or political and cultural features, as
well as additional thematic data categories. The FME supports a maximum of 12 attribute code pairs per feature.

The FME looks for an extension of either .dlg or .opt for the input DLG files, but accepts any DLG file as input regard-
less of file name or extension.

Although mapping files may be created from scratch to work with the features as presented directly by the DLG
reader, starting with an FME generated mapping file provides an easy way to harness the enhanced semantic inter-
pretation of all attribute codes and linkages built into the FME distribution. This section will first outline the features
and attributes produced directly by the DLG reader. These features and attributes produced by using an FME gen-
erated mapping file are presented at the end of this section.

DLG Quick Facts

Format Type Identifier DLG

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Feature category

Typical File Extensions .dlg, .opt

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type dlg_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none no

Reader Overview

The DLG reader simply opens the input file and immediately starts reading features and returning them to the rest of
the FME for processing. The reader doesn’t have any requirement for definition statements as there are no user-
defined attributes.

Each feature returned by the DLG reader has its feature type set to one of the following: dlg_point, dlg_line,
or dlg_area.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the DLG reader is DLG.

DATASET

Required/Optional: Required

The value for this directive is the file containing the DLG dataset to be read.

Example:

SHAPE_DATASET /usr/data/shape/92i080

Workbench Parameter: Source Digital Line Graph (DLG) File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

DLG features consist of geometry, linkages, and attribute code information. All DLG FME features contain the dlg_
type attribute, which identifies the geometric type as well as several other standard attributes and are listed in the
following table.

Attribute Name Contents

dlg_type The DLG geometric type of this entity.
Range:
dlg_point|
dlg_line|
dlg_area
Default: No default

dlg_element_number The element's internal identification
number.
The numbers are unique, positive, and
sequential within each element type.
Range: 1 - 32000

dlg_record_type The character element type of the feature.
Valid values include:
N = Node Element
L = Line Element
A = Area Element

dlg_num_text_characters Number of pairs of text characters attached
to the feature.
Although this field is present within the DLG
format, it is not currently used.
Range: 1 - 32000

Attribute Name Contents

dlg_linkage{#} A list of linkages. These values refer to the
features by their dlg_element_number. These
linkages have different uses depending on
their context. For example, a linkage list on
an area feature refers to the line features
that form the boundary of the area.
Note: For area features, linkages with a
value of zero are not included in this list.
Range: 1 - 32000

dlg_num_attribute_codes Number of attribute codes attached to the
feature.
Range: 1 - 32000

dlg_attribute_code{#}.major A list of major attribute codes. This list will
have a maximum of 12 entries.
Range: 0 - 999

dlg_attribute_code{#}.minor A list of minor attribute codes. This list will
have a maximum of 12 entries.
Range: 0 - 9999

dlg_attribute_code{#}.

padmajor

This list is identical to the dlg_attribute_

code{#}.major list except all values in this
list are padded with zeros to exactly three
character places.
For example, if dlg_attribute_
code{0}.major was 90, dlg_attribute_
code{0}.padmajor would be 090.
Range: 000 - 999

dlg_attribute_code{#}.

padminor

This list is identical to the dlg_attribute_

code{#}.minor list except all values in this
list are padded with zeros to exactly four
character places.
For example, if dlg_attribute_
code{0}.minor was 214, dlg_attribute_
code{0}.padminor would be 0214.
Range: 0000 - 9999

Attribute Name Contents

dlg_attribute_code{#}.

partminor1

This list contains the first character of the
corresponding entry in the dlg_attribute_
code{#}.padminor list.
For example, if dlg_attribute_code{0}-
.padminor was 0214, dlg_attribute_
code{0}.partminor1 would be 0.
Range: 0 - 9

dlg_attribute_code{#}. partminor2 This list contains the second character of
the corresponding entry in the dlg_attrib-

ute_code{#}.padminor list.
For example, if dlg_attribute_code{0}-
.padminor was 0214, dlg_attribute_
code{0}.partminor2 would be 2.
Range: 0 - 9

dlg_attribute_code{#}. partminor34 This list contains the third and fourth char-
acters of the corresponding entry in the
dlg_attribute_code{#}.padminor list.
For example, if dlg_attribute_code{0}-
.padminor was 0214, dlg_attribute_
code{0}.partminor34 would be 14.
Range: 0 - 9

dlg_code_list A text string containing all major and minor
codes assigned to this feature, in the fol-
lowing format:
Range: <null> | <code list>
<code list> = (<major code>-<minor code>
[,<major code>-<minor code>]*)
For example, if the feature had major and
minor code pairs of 180/201, 180/605, and
180/210, the string value of dlg_code_list
attribute would be “(180-201,180-605,180-
210)”

Depending on the geometric type, the feature may contain additional feature coding attributes specific to the geo-
metric type. These are described in subsequent sections.

Points

dlg_type: dlg_point

DLG point features specify a single x and y coordinate. While the DLG format does allow for points to be defined as
degenerate lines—lines containing two identical points—the DLG reader converts these into standard points with a
single set of coordinates.

There is one attribute specific to point features.

Field Name Description

dlg_num_linkage_records The number of linkages associated with this
feature. This number indicates the number of
entries in the dlg_linkage{#} attribute list.
Range: 1 - 32000

Lines

dlg_type: dlg_line

DLG line features represent two-dimensional linear features.

There are several attributes specific to line features.

Field Name Description

dlg_num_coordinates The number of coordinates associated with
this line feature.
Range: 1 - 32000

dlg_starting_node This number refers a node feature which is
located at the initial point of the line. The
value refers to the feature by its dlg_element_
number.
Range: 1 - 32000

dlg_ending_node This number refers a node feature which is
located at the final point of the line. The value
refers to the feature by its dlg_element_number.
Range:1 - 32000

dlg_left_area This number refers an area feature which is
located to the immediate left of the line. The
value refers to the feature by its dlg_element_
number.
Range:1 - 32000

dlg_right_area This number refers an area feature which is
located to the immediate right of the line. The
value refers to the feature by its dlg_element_
number.
Range:1 - 32000

Areas

dlg_type: dlg_area

DLG area features represent polygonal features in 2D. These features are actually point features with one x and one y
coordinate. This coordinate location may have little utility, as the boundary of the area is specified indirectly through
the use of the dlg_linkage{} list attribute. Each entry in this list refers to a dlg_line which, together, form the boundary
of the area. Additional attributes assigned to this area are attached to the original dlg_area feature.

There are several attributes specific to area features.

Field Name Description

dlg_num_islands The number of islands or holes within this
area feature.
Range: 1 - 32000

dlg_num_linkage_records The number of entries in the dlg_linkage{#} list
attribute. This list contains references to the
line features that define the border of the
area.
Note: linkages with a value of zero are not
included in this count.
Range: 1 - 32000

dlg_num_points_area_list The number of coordinates associated with
the linear features necessary to define the
border of this area feature.
Range: 1 - 32000

Features Created by Generated DLG Mapping Files

The attribute and geometric information within DLG data sets are encoded indirectly with major, minor, and linkage
codes. The FME generates mapping files that can interpret all of these codes. The suggested method of creating cus-
tommapping files for reading DLG data is to start with a generated mapping file. This provides an easy way to har-
ness the enhanced semantic interpretation of all attribute codes and linkages built into the FME distribution. The
following information pertains to the features and attributes produced by the mapping files generated to read DLG
data.

Feature Representation

The DLG features produced by the generated mapping file consist of geometry and explicit attribute information.
Each feature that has passed through all of the factories in the generated mapping file has its feature type set to one
of the following: HP, HY, SC, NV, BD, SM, RD, RR,MT,MS, or PL. These features correspond to the category
abbreviations as outlined in the DLG standards – seeDLG Categories. The geometry of each feature is appropriate
to the dlg_type: dlg_point features have a single coordinate pair, dlg_line features contain multiple coor-
dinates, and dlg_area features define closed polygons with holes where appropriate.

DLG Categories

Name in Full Abbreviation

Hypsography HP

Hydrography HY

Vegetative Surface Cover SC

Non-Vegetative Features NV

Boundaries BD

Survey Control and Markers SM

Roads and Trails RD

Railroads RR

Pipelines, Transmission Lines, and
Miscellaneous Transportation Fea-
tures

MT

Man-made Features MS

U.S. Public Land Survey System PL

Wetlands WL

Unrecognized Category UNKNOWN

All features share several attributes however, the feature will contain additional feature coding specific to the feature
type. These are described in subsequent sections. All features tagged with major and minor codes of zero, indicating
an outside area, are deleted.

DLG Attributes

The following table lists the different DLG attributes attached to every feature which has passed through the gen-
erated mapping file.

Field Name Description

dlg_element_number The element's internal identification number.
The numbers are unique, positive, and
sequential within each element type.
Range: 1 - 32000

dlg_type The DLG geometric type of this entity.
Range:
dlg_point|
dlg_line|
dlg_area

Default: No default

dlg_code_list A text string containing all Major and Minor
codes assigned to this feature, in the fol-

Field Name Description

lowing format:
Range:
<null> | <code list>
<code list> = (<major code>-<minor code>
[,<major code>-<minor code>]*)

For example, if the feature had major and
minor code pairs of 180/201, 180/605, and
180/210, the string value of dlg_code_list attrib-
ute would be “(180-201,180-605,180-210)”

category The full length text string of the feature’s cat-
egory, as defined in the DLG standards. See
DLG Categories.

description A text string containing all descriptive terms
assigned to the feature through the Major and
Minor codes. The source of these strings are
the DLG standards documentation. Each
description is separated by a semicolon.
For example, if the feature had major and
minor code pairs of 180/201, 180/605, and
180/210, the string value of description would
be “Railroad; Underpassing; Arbitrary line
extension [Code Deleted 07/95]”

coincidentFeature If not null, this value indicates the other fea-
ture it is coincident with. The value refers to
the coincident feature by its dlg_element_
number.
Range: 1 - 32000

Hypsography

FEATURE_TYPE: HP

This category of data consists of information on topographic relief – primarily contour data – and supplementary spot
elevations.

There is one attribute specific to Hypsography features.

Field Name Description

elevation The elevation of the feature. The description
attribute indicates whether the units are feet
or metres.
Range: -99999999.9 to +99999999.

Hydrography

FEATURE_TYPE: HY

This category of data consists of all flowing water, standing water, and wetlands.

There are several attributes specific to Hydrography features.

Field Name Description

elevation The elevation of the feature. The description
attribute indicates whether the units are feet
or meters.
Range: -99999999.9 - +99999999.9

rotationAngle The angle of clockwise rotation of the fea-
ture.

Vegetative Surface Cover

FEATURE_TYPE: SC

This category of data consists of information about vegetative surface cover such as woods, scrub, orchards, and
vineyards. Vegetative features associated with wetlands, such as marshes and swamps, are collected under Hydrog-
raphy.

There are no attributes specific to Vegetative Surface Cover features.

Non-Vegetative Features

FEATURE_TYPE: NV

This category of data consists of information about the natural surface of the Earth as symbolized on the map such as
lava, sand, and gravel features. This category is not all inclusive, as other non-vegetative surface features, such as
glaciers, are found in the category of Hydrography.

There are no attributes specific to Non-Vegetative Features.

Boundaries

FEATURE_TYPE: BD

This category of data consists of:

l political boundaries that identify States, counties, cities, and other municipalities, and

l administrative boundaries that identify areas such as national and State forests.

Political and administrative boundaries are always collected as a single data set. There are several attributes specific
to Boundaries features.

Field Name Description

state The full name of the American state or the
state equivalent.
Range: “ALABAMA” to “VIRGIN ISLANDS”

county The full name of an American county or a
county equivalent for all states.
Range: “Abbeville” to “Ziebach”

township The full name of an American civil township
or a civil township equivalent for all states.
Range: “Aasu” to “Zwolle”

Field Name Description

population1990 The 1990 complete-count population of the
American county or the county equivalent.

monument The alphanumeric monument number of the
feature.

Survey Control and Markers

FEATURE_TYPE: SM

This category of data consists of information about points of established horizontal position and third order or better
elevations used as fixed references in positioning and correlating map features.

There are several attributes specific to Survey Control and Markers features.

Field Name Description

elevation The elevation of the feature. The description
attribute indicates whether the units are feet
or meters.
Range: -99999999.9 to +99999999.9

state The full name of the American state or the
state equivalent.
Range: “ALABAMA” to “VIRGIN ISLANDS”

county The full name of an American county or a
county equivalent for all states.
Range: “Abbeville” to “Ziebach”

Roads and Trails

FEATURE_TYPE: RD

This category of data includes major transportation systems.

There are several attributes specific to Roads and Trails features.

Field Name Description

numberOfLanes The number of lanes the road or trail has.

routeNumber The alphanumeric route number or the road
or the trail.

routeType This attribute indicates whether the route is
an Interstate, U.S., State, County, Res-
ervation, Park, or Military Route.

Railroads

FEATURE_TYPE: RR

This category of data includes major transportation systems.

There are several attributes specific to Railroads features.

Field Name Description

numberOfTracks The number of tracks the railroad has.

rotationAngle The angle of clockwise rotation of the fea-
ture.

Pipelines, Transmission Lines, and Miscellaneous Transportation Features

FEATURE_TYPE: MT

This category of data includes major transportation systems.

There is one attribute specific to Pipelines, Transmission Lines, and Miscellaneous Transportation Features.

Field Name Description

rotationAngle The angle of clockwise rotation of the fea-
ture.

Man-made Features

FEATURE_TYPE: MS

This category of data includes cultural features not included in the other major data categories, such as buildings
and other related industrial, commercial, and residential features.

There are several attributes specific to Man-made Features.

Field Name Description

featureWidth Width in mils of feature to scale.

rotationAngle The angle of clockwise rotation of the fea-
ture.

Wetlands Features

FEATURE_TYPE: WL

This category of data is not found in DLG files produced by USGS. However, some agencies create DLG data of this
type.

There are no attributes specific to Wetlands Features.

U.S. Public Land Survey System

FEATURE_TYPE: PL

This category of data describes the rectangular system of land surveys which is administered by the U.S. Bureau of
Land Management. Public Land Survey System (PLSS) data exist only for areas falling solely or in part within the
States which were formed from the public domain. The PLSS subdivides the public domain and represents property
boundaries or references to property boundaries. These DLG data are not intended to be official or authoritative. They
are presented as cartographic reference information. The only legal basis for determining land boundaries remains
the original survey.

There are several attributes specific to U.S. Public Land Survey System features.

Field Name Description

section The alphanumeric Section Identifier number.

Field Name Description

township Township Identifier numbers north and south
of baseline, including fractions.
Examples: “101 South”, “23 1/2 North”

range Range Identifier numbers east and west of
principal meridian including fractions, dupli-
cate, and triplicate notification.
Examples: “5 East”, “79 1/2 West”, “47 West,
duplicate to north or east of the original town-
ship”

origin Full text string identifying the origin of the
survey, including township, state, and date.
Examples: “Boise - PM ID 1867”, “Ohio River
- OH OH,IN 1785”

nonsectionID Full text string of the Non-Section Identifier.
Examples: “51”, “W”, “San Ignacio de la
Canoa grant in Arizona”, “Pueblo of Santa Ana
grant in New Mexico”

monument Land grant corner, location, or mineral mon-
ument number.
Range: 0000 - 9999

Unknown Features

FEATURE_TYPE: UNKNOWN

This category is used to catch any DLG features that do not belong to one of the previous categories. This can happen
if the original data was not produced by USGS. The major/minor codes associated with the feature are saved with it,
and should be used in consultation with the producing agency to interpret the feature.

There are no attributes specific to this type of feature.

Dutch Top10 GML Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

Top10 GML (also known as Top10NL) is a GML-based format from the Dutch National Mapping Agency Kadaster. The
Top10 specification is still under development (although nearing completion), so FME’s Reader/Writer is subject to
change as the specification changes.

Of note is that this format supports heterogeneous aggregate geometries. This has some repercussions for manip-
ulating Top10NL data within FME. See the Reader and Writer sections for more details.

Top10 Quick Facts

Format Type Identifier TOP10

Reader/Writer BOTH

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Geometry

Typical File Extensions .xml

Automated Translation Support Yes

User-Defined Attributes No. Attributes that are not part of
the schema are currently ignored

Coordinate System Support No

Generic Color Support n/a

Spatial Index n/a

Schema Required No

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

The Top10NL reader supports reading both geometries and attributes.

Reader Directives

The directive processed by the Top10NL reader are listed below. The suffix shown is prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the Top10NL reader is TOP10.

DATASET

Required/Optional: Required

The value for this keyword is the file name of the Top10NL file to be read. The normal extension for the files is .xml.

An example of the DATASET keyword in use is:

TOP10_DATASET /user/data/top10/Roads.xml

Workbench Parameter: Source Dutch TOP10 File(s)

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

Writer Directives

The directive processed by the Top10NL writer is listed below. The suffix shown is prefixed by the current <Writ-
erKeyword>_ in a mapping file. By default, the <WriterKeyword> for the Top10NL writer is TOP10.

DATASET

Required/Optional: Required

The value for this keyword is the file name of the Top10NL file to be read. The normal extension for the files is .xml.

An example of the DATASET keyword in use is:

TOP10_DATASET /user/data/top10/MainRoads.xml

Workbench Parameter: Destination Dutch TOP10 GML File

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), all features also have the attribute gml_geometry_property. This attribute specifies what role
the feature had in a heterogeneous geometric feature. See the section Known Issues for further information.

Attribute Name Attribute Description

gml_geometry_type This holds the value of the features geometry within the
Top10NL format. The values thus range over the types of
geometry values that feature allows. Example values are
“geometrieVlak”, “geometriePunt”, although other values
are possible as given in the Top10NL specification.

Known Issues

Top10NL is a GML format. For further information, see the section on the GML Reader/writer. There are some
Top10NL-specific factors to be aware of:

Top10NL supports heterogeneous geometries, but not all other formats do. Therefore, when reading Top10NL data,
FME will split up any features with heterogeneous geometries into features that agree in their values for all attributes,
but which have non-heterogeneous geometries. This will result in some multiple features that differ only in their
geometries, as the original features are “spread out” among a set of simpler features.

The Top10NL Writer will then combine those features that agree in their gml_id values back into a single feature
with heterogeneous geometry. This technique of split-and-recombine is currently necessary, but does violate a com-
mon invariant that GML features each have a unique gml_id value. Special care is required when doing trans-
formations on Top10NL data to maintain the relationship between features who agree in their gml_id values. If the
FME features do not have a value for gml_id, a unique value will be assigned.

Since Top10NL allows several geometries per feature, it is not possible to determine automatically what the role of a
particular geometry will be. It is thus necessary to specify what the role of a feature’s geometry will be by setting the
attribute gml_geometry_attribute to the appropriate value. For example, when writing a Wegdeel feature, you might
set gml_geometry_property to ‘geometrieVlak’ or ‘geometriePunt’ depending on it’s role. Much of this can be auto-
mated by the user with the use of a GeometryFilter transformer and AttributeCreator transformer in WorkBench (or
relevant factories in a mapping file). For convenience, if reading from Top10NL, FME will set this property for you.
Thus in most Top10NL-to-Top10NL transformations, no special handling will be required.

The Top10NL Writer requires that the features that it is given are valid Top10NL. For example, the Top10 GML spec-
ification requires that features of type Gebouw have an attribute called hoogteklasse. If the Top10NL Writer is given a
Gebouw feature that does not have such an attribute, the resulting data will not be valid Top10NL (according to their
schema document). In cases such as these, the Top10NL Writer will attempt to fail to write the data rather than allow
non-valid Top10NL GML to be written. The onus is then on the user to ensure that the data is both syntactically and
semantically valid Top10NL.

Users should consult the Top10NL Specification directly from the Dutch National Mapping Agency Kadaster website.

Encapsulated PostScript (EPS) Writer

Format Notes:
This format is not supported by FME Base Edition.

The Encapsulated PostScript® (EPS) Writer allows FME to write Encapsulated PostScript export files.

EPS is typically used for high-quality plots in desktop publishing software.

EPS Quick Facts

Format Type Identifier EPS

Reader/Writer Writer

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Not used

Typical File Extensions .eps

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support Yes

Spatial Index Not applicable

Schema Required Yes

Transaction Support No

Geometry Type eps_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values no

none no

Overview

EPS is a two-dimensional (2D) system with no provision for storing user-defined attributes for the geometric data.

All EPS information is contained within one page, beginning with a version header as well as a bounding box def-
inition. EPS is based upon the PostScript format which provides methods for graphical drawing, simple programming
control structures and the ability to create user-defined variables and functions.

All EPS data is contained in a single file with an .eps extension.

Filename Extension Contents

.eps All vector geometric data.

The EPS writer supports export of lines, polygons, arcs, ellipses (ellipse/circle), and text geometric data.

Some geometric entities may have display properties such as pen and brush width, type, pattern, and color. Color
may be specified in red/green/blue (RGB) as well as cyan/magenta/yellow/black (CMYK).

Writer Overview

The EPS writer creates and writes feature data to an EPS file specified by theDATASET directive. The writer
searches the mapping file for the <WriterKeyword>_DATASET directive in the mapping file. This directive is
required to be in the mapping file. An old EPS file in the directory with the same file name is overwritten with the new
feature data. A typical mapping file fragment specifying the output EPS file looks like:

EPS_DATASET /usr/data/eps/myfile.eps

Writer Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the EPS writer is EPS.

DATASET

Required/Optional: Required

The EPS writer processes theDATASET directive as described in Writer Overview. In addition, the writer scans the
mapping file for <WriterKeyword>_RESOLUTION _X and <WriterKeyword>_RESOLUTION _Y direc-
tives. Both of these are optional directives and they define the bounding box of the EPS output file. The bounding box
extends from the lower left corner of the page (defined as 0,0) and extends out to the values entered. By default, the
X value is set to 612 and the Y value is set to 792. These values map onto an 8.5- by 11-inch piece of paper.

Workbench Parameter: Destination Encapsulated PostScript (EPS) File

FORCE_CMYK

Required/Optional: Optional

This directive specifies whether or not to force all output colors to be in CMYK format and defined as such in the EPS
file. By setting the value following this keyword to YES, then all color usage output to the EPS file is done in CMYK. By
default, this value is NO,meaning that a mix of RGB and CMYK color schemes may be in the output EPS file. However,
despite forcing CMYK color output, some EPS viewers may not support the setcmykcolor call in their library. In
these cases, the actual output of colors is done using a function we define in PostScript which interfaces exactly like
the setcmykcolor call but uses setrgbcolor underneath. This will depend on the EPS viewer you are using.

Value: YES | NO

Default Value: NO

Workbench Parameter: Force CMYK Colors

LINE_JOIN_TYPE

Required/Optional: Optional

This directive specifies the default corner types to be drawn onto paths. The values specify the default shape to be
put at corners of paths painted: 0 specifies a sharp corner, 1 specifies a rounded corner, and 2 specifies a butt-end
corner.

Value: 0, 1, 2

Default Value: 0

Workbench Parameter: Line Join Type

LINE_WIDTH

Required/Optional: Optional

This directive specifies the default line width used to draw lines. This is measured in EPS units.

Value: float >=0

Default Value: 0.0 (the thinnest line that can be rendered at device resolution, i.e. 1 pixel wide)

Workbench Parameter: Line Width

MAINTAIN_ASPECT

Required/Optional: Optional

This directive specifies whether or not the source map dimensions will be kept or stretched to fit to the output bound-
ing box.. A YES indicates that the original map aspect will be maintained to fit within the destination-defined bound-
ing box. This means that the entire destination bounding box defined may not used. Alternatively, the value NO
causes the original map to be stretched onto the destination bounding box defined.

Value: YES | NO

Default Value: YES

Workbench Parameter: Maintain Map Aspect Ratio

MAP_BUFFER

Required/Optional: Optional

This directive specifies the percentage of buffer room between the border of the output EPS map within the specified
bounding box. It should be followed by a percentage value in decimals (for example, 0.20 is 20%). This value is used
to buffer the border of the outputted EPS map within the specified bounding box. This prevents the border of the out-
put map from being precisely on the bounding box border. The default value is 0.05 (5%), which places a 2.5%
buffer between each map border and the bounding box border. This creates a total 5% buffer in the x and y axes.

Value: 0...1

Default Value: 0.05

Workbench Parameter: Buffer Ratio

RESOLUTION_X

This directive specifies the maximum EPS units (1 unit = 1/72 inch) for the x dimension of the output map.

Value: Integer > 0

Default Value: 612

Workbench Parameter:Width (points)

RESOLUTION_Y

This directive specifies the maximum EPS units (1 unit = 1/72 inch) for the y dimension of the output map

Value: Integer > 0

Default Value: 792

Workbench Parameter: Height (points)

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

EPS features consist of geometry but no user-defined attributes, although there are special attributes to hold the type
of the geometric entity and its display parameters. The feature type of features written to EPS is ignored.

All EPS features contain a eps_type attribute, which identifies the geometric type. Each element type also has a color
associated with it. Depending on the geometric type, the feature contains additional attributes specific to the geo-
metric type. These are described in subsequent sections.

Attribute Name Contents

eps_type The EPS geometric type of this entity.
Range:
eps_polyline|
eps_area|
eps_text|
eps_ellipse|
eps_arc

Default: No default

eps_cmyk_color This is a string that represents the color intensities of the ele-
ment. It is formatted as cyan (C), magenta (M), yellow (Y)
and black (K), This color attribute has highest priority. If
present, it will be used in preference over eps_color and
fme_color attributes.
Range: String. (0..1, 0..1, 0..1, 0...1)
Default: String (0,0,0, 1)

eps_color This is a string that represents the color intensities of the ele-
ment. It is formatted as red, green, blue intensities which
range between 0..1 Note that if this attribute is not found,
then fme_color will be used.
Range: String. (0..1, 0..1, 0..1)
Default: String (0,0,0)

Arc

eps_type: eps_arc

The arc definition here handles arcs, including those with different primary and secondary axis values. EPS arc fea-
tures are linear features used to specify elliptical arcs. As such, the feature definition for eps_arc is similar to the
ellipse definition with two additional angles to control the portion of the ellipse boundary drawn. EPS arcs also sup-
port rotation.

Tip: The function @Arc() can be used to convert an arc to a linestring. This is useful for storing
Arcs in systems not supporting them directly.

In addition to the attributes below, arcs also make use of the pen attributes as defined for eps_area since arcs can
also have fills.

Attribute Name Contents

eps_primary_axis The length of the semi-major axis in ground units. (x-
axis)
Range: Any real number > 0
Default: No default

eps_secondary_axis The length of the semi-minor axis in ground units. (y-
axis)
Range: Any real number > 0
Default: No default

eps_start_angle Refer to the @Arc (function) in the FME Functions and Factories
manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

eps_sweep_angle Refer to the @Arc (function) in the FME Functions and Factories
manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

eps_rotation The rotation of the major axis. The rotation is measured
in degrees counter clockwise up from horizontal.
Range: 360.0..360.0
Default: 0

Areas

eps_type: eps_area

EPS polygon features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons that have holes. Each area has a pen style associated with it to control the color,
line weight, line type, and brush pattern used when it’s drawn. If the area contains holes then when the fill pattern is
applied, the holes enclosed by the area will not be filled. If no pen style is defined for a polygon entity, the previous
style is used.

The following table lists the special FME attribute names used to control the EPS polygon settings.

Attribute Name Contents

eps_line_width Defines the line width used to draw the polyline. By
default, the line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0

eps_dash_on The number of pixels to be used as the on part of the
dashed line used to draw the feature. If eps_line_
width is specified, then this value is multiplied by the
size of the pen to determine the number of pixels. If

Attribute Name Contents

both eps_dash_on and eps_dash_off are 0, then a
solid line is used.
Range: Integer > 0
Default: 0

eps_dash_off The number of pixels to be used as the off part of the
dashed line used to draw the feature. If eps_line_
width is specified, then this value is multiplied by the
size of the pen to determine the number of pixels. If
both eps_dash_on and eps_dash_off are 0, then a
solid line is used.
Range: Integer > 0
Default: 0

eps_line_join_type Specify the type of corner that should be drawn onto
this path.
0 = sharp corners, 1 = rounded corners, 2 = butt-end
corners
Range: 0, 1, 2
Default: 0
Optional: Yes

eps_cmyk_fill_color This is a string that represents the fill color intensities
of the element. It is formatted as cyan (C), magenta
(M), yellow (Y) and black (K), This color attribute has
highest priority. If present, it will be used in pref-
erence over eps_fill_color and fme_fill_color attributes.
Range: String. (0..1, 0..1, 0..1, 0...1)
Default: String (0,0,0,1)

eps_fill_color This is a string that represents the color intensities of
the element. It is formatted as red, green, blue inten-
sities which range between 0..1. If this attribute is not
found, then the writer will refer to fme_fill_color.
Range: String. (0..1, 0..1, 0..1)
Default: None

Ellipse

eps_type: eps_ellipse

The eps_ellipse features are point features, and have only a single coordinate. This point serves as the centre of
the ellipse. Additional attributes specify the primary axis (X) and secondary axis (Y) of the ellipse. EPS ellipses also
support rotation.

Tip: The primary ellipse axis is not necessarily the longest axis, but rather the one on the x
axis.

From the EPS ellipse, we also can arrive at circles (since they are just ellipses with both primary and secondary axes
being equal).

In addition to the attributes below, ellipses also make use of the brush and pen attributes as defined by eps_area.

Attribute Name Contents

eps_primary_axis The length of the semi-major axis in ground units. (x-axis)
Range: Any real number > 0
Default: No default

eps_secondary_axis The length of the semi-minor axis in ground units. (y-axis)
Range: Any real number > 0
Default: No default

eps_rotation The rotation of the major axis. The rotation is measured in
degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Polylines

eps_type: eps_polyline

EPS polyline features specify linear features defined by a sequence of x and y coordinates. Polylines encapsulate the
concept of a line since a line is just a sequence of two points. Each polyline has a pen style associated with it that spec-
ifies the color, line weight, and line type used when the line is drawn. If no pen type is defined for a polyline entity, if
line attributes aren’t found, then default parameters are used.

The table below lists the special FME attribute names used to control the EPS polyline settings.

Attribute Name Contents

eps_line_width Defines the line width used to draw the polyline. By default,
the line is drawn one pixel wide.
Range: Float >= 0
Default: 0.0

eps_dash_on The number of pixels to be used as the on part of the
dashed line used to draw the feature. If eps_line_width is
specified, then this value is multiplied by the size of the pen
to determine the number of pixels. If both eps_dash_on
and eps_dash_off are 0, then a solid line is used.
Range: Integer > 0
Default: 0

eps_dash_off The number of pixels to be used as the off part of the
dashed line used to draw the feature. If eps_line_width is
specified, then this value is multiplied by the size of the pen
to determine the number of pixels. If both eps_dash_on
and eps_dash_off are 0, then a solid line is used.
Range: Integer > 0
Default: 0

Attribute Name Contents

eps_line_join_type Specify the type of corner that should be drawn onto this
path.
0 = sharp corners, 1 = rounded corners, 2 = butt-end corn-
ers
Range: 0, 1, 2
Default: 0
Optional: Yes

Text

eps_type: eps_text

EPS text is used for text annotation in EPS. The coordinates specify the lower left coordinates of the text when it is
placed. In addition, the size and angle in which the text is output can be specified.

The table below lists the special FME attribute names used to control the EPS text:

Attribute Name Contents

eps_size The size of the text specified in ground units
Range: float > 0
Default: 0

eps_rotation The text rotation is given in degrees and measured counter-
clockwise up from the horizontal.
Range: -360..360
Default: 0

eps_font The PostScript name of the font. The fonts supported
depend on the destination of the EPS file. Some typical
fonts are Times, Helvetica and Courier.
Range: String
Default: Times

eps_style The style of the font. This attribute must be matched with
the current font since it’s the combination of font and style
that EPS recognizes. Some typical fonts and styles are
Times-(Roman, Italic, Bold, BoldItalic), Helvetica-(Oblique,
Bold, BoldOblique) and Courier-(Oblique, Bold, Bol-
dOblique)
Range: String
Default: Roman

eps_text_string The text to be displayed.
Range: String
Default: No default

Point

eps_type: eps_point

EPS point is used for points in EPS.

The table below lists the special FME attribute names used to control the EPS point:

Attribute Name Contents

eps_size The size of the point specified in ground units
Range: float > 0
Default: 0

eps_rotation The point rotation is given in degrees and measured
counterclockwise up from the horizontal.
Range: -360..360
Default: 0

eps_font The PostScript name of the font. The fonts supported
depend on the destination of the EPS file. Some typical
fonts are Times, Helvetica and Courier.
Range: String
Default: Times

eps_style The style of the font. This attribute must be matched with
the current font since it’s the combination of font and style
that EPS recognizes. Some typical fonts and styles are
Times-(Roman, Italic, Bold, BoldItalic), Helvetica-(Oblique,
Bold, BoldOblique) and Courier-(Oblique, Bold, Bol-
dOblique)
Range: String
Default: Roman

eps_symbol_string The text to be displayed.
Range: String
Default: “.”

ESRI ArcGIS Layer Reader

Format Notes:
To use FME’s ESRI ArcGIS® Layer Reader, you must also install ESRI ArcGIS 9. It is not available with ArcGIS 8.
The ArcGIS Layer reader modules allow FME to read ESRI Layer files and feature classes viewable in ESRI Arc-
Catalog® and ArcMap®.

ArcGIS Layer Quick Facts

Format Type Identifier ARCGIS_LAYER

Reader/Writer Reader

Licensing Level Professional

Dependencies ESRI ArcGIS 9

Dataset Type ESRI Layer/Feature Class

Feature Type ESRI Layer/Feature Class

Typical File Extensions ESRI Layer: .lyr
ESRI Feature Class: none. The
“path” to the feature class is
used.

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Optional

Schema Required N/A

Transaction Support N/A

Enhanced Geometry Yes

Geometry Type geodb_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values yes

none yes

Overview

Since the ArcGIS Layer Reader is based on the same technology as FME’s Geodatabase Reader, any spatial feature
that the Geodatabase Reader supports is also supported by the ArcGIS Layer Reader. The ArcGIS Layer reader does
not read (non-spatial) tables.

With FME’s ArcGIS Extension or the ESRI ArcGIS Data Interoperability Extension installed, it is possible to read FME
feature classes for formats that ESRI does not natively support. An FME feature class is simply an FME feature type,
that, where applicable, has been split geometry type (i.e. point, line, polygon, text, null).

The ArcGIS Layer module provides the following capabilities:

l Fully Automatic Import: The FME’s ArcGIS Layer support provides fully automated import of data through the
FME’s Graphical User Interface (GUI). This is ideal for quick data imports.

l Mapping File/Workspace Customization: The FME’s ability to generate mapping files/workspaces for user cus-
tomization allows greater and more precise control over ArcGIS Layer translations.

l Enhanced Geometry Model Support: This reader supports the enhanced geometry model. The addition of
enhanced geometry model support allows lines and polygons containing arcs to be maintained, rather than
stroked or the geometry split up into multiple segments.

Reader Overview

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. Unless otherwise specified,
the <ReaderKeyword> for the ArcGIS Layer reader is the same as the <ReaderType>.

DATASET

Required/Optional: Required

A single ESRI layer/feature class from which data is to be read. The value for an ESRI layer is simply the layer file. The
value for a feature class is the ESRI path to the file/database containing the feature class plus the name of the feature
class. The ESRI path is displayed in the Location toolbar within ESRI ArcCatalog. The FME Dataset picker has been
enhanced for the ArcGIS Layer reader to use ESRI’s layer/feature class picker. Using this picker will greatly simplify
the process of selecting a dataset.

ESRI Layer Example:

ARCGIS_LAYER_DATASET “C:\data\runways.lyr”

Feature Class within a Personal Geodatabase Example:

ARCGIS_LAYER_DATASET “C:\data\airport.mdb\runways”

Feature Class within an Enterprise Geodatabase Example:

ARCGIS_LAYER_DATASET “Database Connections\esri92.sde\JOE.runways”

FME Feature Class within a MIF/MID file Example (requires ArcGIS to be extended by FME):

ARCGIS_LAYER_DATASET “C:\data\mif\usa.mif\usa Line”

Workspace Parameter: ESRI ArcGIS Layer

DEF

Required/Optional: Optional

Describes feature classes. Normally these lines are automatically generated within a mapping file/workspace using
FME.

Example:

ARCGIS_LAYER_DEF Parcels \
geodb_type geodb_polygon \
OBJECTID_1 integer \
PROPERTY_I double \
LANDUSE_CO char(3) \
ZONING char(6) \
PARCEL_ID integer \
Res smallint \
ZONING_S char(4) \
Shape_Length double \
Shape_Area double

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The ArcGIS Layer modules make use of the following special attribute names.

Attribute Name Contents

geodb_type The type of geometric entity stored within the feature.
The valid values are listed below:

geodb_point
geodb_multipoint
geodb_polyline

Attribute Name Contents

geodb_arc
geodb_ellipse
geodb_polygon
geodb_annotation
geodb_dimension
geodb_simple_junction
geodb_simple_edge
geodb_complex_junction
geodb_complex_edge

For a description of the attributes belonging to each of
the different geodb_type’s, please see the chapter
ESRI Geodatabase Reader/Writer.

geodb_feature_is_simple Indicates whether or not the geometry is simple.

geodb_measures

Available only with classic geome-
try.

This is present for features that have measures. This
is a comma-separated list of floating values that cor-
respond to the vertex measures. The first value is for
the first vertex, second for the second, and so on.

Features read from a dataset also have an attribute for each attribute in the layer/feature class.

#
#
#

ESRI ArcGIS Map (.mxd) Reader

Format Notes: To use FME’s ESRI ArcGIS Map Reader, you must also install ESRI® ArcGIS® 9. It is not available
with ArcGIS 8.

The ESRI ArcGIS Map reader enables FME to retrieve data from ESRI’s ArcMap Document.

ArcGIS Map Quick Facts

Format Type Identifier ARCGISMAP

Reader/Writer Reader

Licensing Level ESRI Edition

Dependencies ESRI ArcGIS 9

Dataset Type File

Feature Type Layer name (Table name for
tables)

Typical File Extensions .mxd

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Always

Schema Required No

Transaction Support N/A

Enhanced Geometry Yes

Geometry Type geodb_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none yes

Overview

Since the ArcGISMap Reader is based on the same technology as FME’s Geodatabase Reader, any feature that the Geo-
database Reader supports is also supported by the ArcGISMap Reader.

With FME’s ArcGIS Extension or the ESRI ArcGIS Data Interoperability Extension installed, it is possible to create an
ArcMap document containing data from formats that are not natively supported by ESRI. This ArcMap document can
then be read using the ArcGISMap Reader.

The ArcGISMap module provides the following capabilities:

l Fully Automatic Import: FME’s Geodatabase support provides fully automated import of data through the FME’s
Graphical User Interface (GUI). This is ideal for quick data imports.

l Mapping File/Workspace Customization: FME’s ability to generate mapping files/workspaces for user cus-
tomization allows greater and more precise control over Geodatabase translations.

l Enhanced Geometry Model Support: This reader supports the enhanced geometry model. The addition of
enhanced geometry model support allows lines and polygons containing arcs to be maintained, rather than
stroked or the geometry split up into multiple segments.

Reader Overview

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. Unless otherwise specified, the
<ReaderKeyword> for the ArcGISMap reader is the same as the <ReaderType>.

DATASET

Required/Optional: Required

The file from which data is to be read.

Workbench Parameter: Source ESRI ArcGIS Map File(s)

IDs

Required/Optional: Optional

Specifies the layers/tables from which features are to be retrieved. This directive is used in conjunction with the DEF
keyword. If both DEF and IDs are specified, then the intersection is taken from both of these directives. The layers
that are read are subject to use of the READ_INVISIBLE_LAYERS keyword. If the layer name is blank for a par-
ticular layer, then the feature class namemust be used instead.

Workbench Parameter: Feature Types to Read

DEF

Required/Optional: Optional

Describes layers/tables. Normally these lines are automatically generated within a mapping file using FME. This direc-
tive is used in conjunction with the IDs directive. If both DEF and IDs are specified, then the intersection is
taken from both of these directives. The layers that are read are subject to use of the READ_INVISIBLE_LAYERS
directive. If the layer name is blank for a particular layer, then the feature class namemust be used instead.

IGNORE_MAP_EXTENTS

Required/Optional: Optional

Specifies whether to read only those features that are within the extents of the ArcMap document, or to ignore the
extents and read all the features in the layer. (This directive does not affect the reading of features from tables.)

Value: YES | NO

Default Value: NO

Workbench Parameter: Ignore Map Extents

READ_INVISIBLE_LAYERS

Required/Optional: Optional

Specifies whether to read features from an invisible layer. (This directive does not affect the reading of features from
tables.)

Value: YES | NO

Default Value: NO

Workbench Parameter: Read Invisible Layers

USE_SELECTION_SET

Required/Optional: Optional

Specifies whether or not to only read the selected features. It is used in conjunction with the directives READ_
INVISIBLE_LAYERS and IGNORE_MAP_EXTENTS since it is possible that some of the selected features are cur-
rently invisible and/or outside the current extents of the map. If set to YES and there are no features in the selection
set, all the features from the specified layers will be read. When the layer name of a layer is blank, the feature type is
set to the feature class name of the layer, rather than using the blank layer name. When using the IDs directive, the
name of the feature class should be specified when setting up to read from the layer with the blank layer name. (This
directive does not affect the reading of features from tables.)

Value: YES | NO

Default Value: NO

Workbench Parameter: Use Selection Set

RESOLVE_DOMAINS

Required/Optional: Optional

This directive specifies whether to resolve attributes that have a default coded value domain (i.e., the domain was not
set up through a subtype) associated with them. This means that when an attribute of a feature has a coded value
domain associated with it, another attribute will also be added that represents the textual description of the coded
attribute. The new attribute will be <attribute-name>_resolved, where <attribute-name> is the name
of the attribute containing the code. This attribute will only be added when <attribute-name> contains a non-
NULL value.

Value: YES | NO

Default Value: NO

Workbench Parameter: Resolve Domains

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The ArcGISMap modules make use of the following special attribute names.

Attribute Name Contents

geodb_type The type of geometric entity stored within the feature.
The valid values are listed below:

geodb_table
geodb_point
geodb_multipoint
geodb_polyline
geodb_arc
geodb_ellipse
geodb_polygon
geodb_annotation
geodb_dimension
geodb_simple_junction
geodb_simple_edge
geodb_complex_junction
geodb_complex_edge

For a description of the attributes belonging to each of
the different geodb_type’s, please see the chapter
ESRI Geodatabase Reader/Writer .

<attribute-name>_resolved When reading, if RESOLVE_DOMAINS is set to YES, then
the description corresponding to the domain code is
stored in this attribute.

fme_color A normalized RGB triplet representing the fill color of
the feature, with the format r,g,b. Currently, both
‘unique value’ and ‘color ramped’ symbologies are sup-
ported for determining the fill color.
Range: 0,0,0 to 1,1,1
Default: No default

geodb_feature_is_simple Indicates whether or not the geometry is simple.

geodb_measures

Available only with classic geome-
try.

This is present for features that have measures. This
is a comma-separated list of floating values that cor-
respond to the vertex measures. The first value is for
the first vertex, second for the second, and so on.

#
#
#

Features read from an ArcMap document also have an attribute for each attribute in a layer.

ESRI ArcInfo Coverage/
ESRI ArcInfo Export (E00) Reader/Writer

Format Notes:
This format is available as a Reader only with FME Base Edition.
Coverage reading and writing is available only with FME ESRI Edition, FME Smallworld Edition and FME Oracle Edi-
tion.

The ESRI® ArcInfo® Coverage and Export (E00) Reader/Writer enables FME to read and write binary coverages, E00
files and Info tables. Full support for compressed E00 files – export option 1 or 2 – is also provided. Safe Software’s
FME ESRI Edition also reads and writes binary ArcInfo coverages directly.

E00 Quick Facts

Format Type Identifier E00 or ARCINFO

Reader/Writer Both

Licensing Level l Reader: Base

l Reader + Writer: FME ESRI Edition,
FME Smallworld Edition and FME
Oracle Edition

Dependencies None

Dataset Type l Directory for ArcInfo Coverage reader

l Directory for ArcInfo Table reader

l File for E00 reader

l Directory for both writers

Feature Type • Subdirectory base name for ArcInfo

• File base name for E00

Typical File Extensions .e00 (.e01, .e02, ...)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type e00_type
Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values n/a

none yes

Overview

A single E00 file describes a complete ArcInfo coverage. The file itself is actually an archive of several smaller files,
referred to here as subfiles. Some of these subfiles have fixed names which do not vary from coverage to coverage,
and follow a predefined data format. These are referred to as the standard subfiles.

The remainder of the subfiles contained within an E00 are the info files. These files may contain user-defined attrib-
utes, and have names which vary from coverage to coverage. The ways in which the names vary are discussed in
Info Files.

Reader Overview

The E00/ArcInfo reader produces FME features for all feature data contained in a single E00 file, binary ArcInfo cov-
erage or ArcInfo table. In order to process multiple E00 files, coverages, you must invoke the FME for each E00 file, or
use the Multi-Reader, described in theMulti-Reader chapter.

Large E00 files are often split into smaller files, named <filename>.e00, <filename>.e01, <file-
name>.e02, etc. The E00 reader automatically detects this and reads the set of files as if they were a single E00
file.

To read ArcInfo coverages, specify the directory that contains the coverage to the E00 reader.

To read just the ArcInfo tables, specify the “info” directory that contains the info tables to the ArcInfo reader. All info
tables will be processed as data with no spatial information attached to it even though they may be part of the cov-
erage.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the E00 writer is E00 or ARCINFO.

DATASET

Required/Optional: Required

The E00 reader processes the directive <ReaderKeyword>_DATASET, where <ReaderKeyword> is the key-
word assigned to the E00 reader. By default, the reader keyword is E00 for E00 files, or ARCINFO when working
with binary ArcInfo coverages.

The <ReaderKeyword>_DATASET directive specifies the data set to be read by the E00 reader. When reading
E00 files, this is the name of the E00 file, including the .e00 suffix. If the E00 reader encounters the end of the E00
file <filename>.e00 while it is expecting more data to process, it will attempt to use the file <filename>.e01
as a continuation of the input. No specific mention of <filename>.e01 is required.

When reading binary ArcInfo coverages directly, the value of <Readerkeyword>_DATASET is the path of the
directory containing the files that make up the coverage. (Note that it is not the directory containing the individual cov-
erage directories, but rather one of the coverage directories itself.) No additional configuration is required to tell the
reader to process a binary coverage instead of an E00 file. If the supplied argument is a directory, the reader will
assume the data set is a binary coverage.

When reading binary ArcInfo tables directly, the value of <Readerkeyword>_DATASET is the path to the “info”
directory which contains info tables.

Workbench Parameter: Source ESRI ArcInfo Export (E00) File(s)

TEXT_CURVE

Required/Optional: Optional

There is an additional directive that tells the E00 reader how to deal with text elements which follow a splined curve in
ArcInfo. In the past, the FME has simply drawn a straight line from the first point of the curve to the last point, and
placed the text along that line. The default behavior now is to space the characters along the original curve, and gen-
erate a separate character for each (non-whitespace) character of the text. The directive <ReaderKeyword>_
TEXT_CURVE allows one to change the FME’s interpretation of curved text features. The default value for the direc-
tive is FOLLOW; a value of IGNORE will revert the FME to its traditional behavior; and a value of FIT will tell FME to
evenly space out the characters of the text along the curve, so that the left edge of the first character is on the first
point of the curve, and the right edge of the last character is on the last point.

Value: FIT | FOLLOW | IGNORE

Default Value: FOLLOW

Workbench Parameter: Text Curves

SINGLE_BYTE_TEXT

Required/Optional: Optional

If the E00 reader is placing the text characters along their curve (i.e., if the <ReaderKeyword>_TEXT_CURVE
was not given a value of FIT or FOLLOW), it normally inspects the text content to try to detect whether any are
multi-byte representations of “international” characters. If it finds a pair of bytes that it thinks define a single char-
acter, it will use those two bytes in a single feature representing that character of text. This behavior might lead to
incorrect representation of some character strings, if they happen to be composed of single-byte characters that look
like multi-byte characters. This automatic detection of multi-byte characters may be disabled by providing the SIN-
GLE_BYTE_TEXT directive a value of YES.

Value: YES | NO

Default Value: NO

Workbench Parameter: Force Single-Byte Text

INCLUDE_BND

Required/Optional: Optional

ArcInfo coverages typically include an info file named BND, which defines the extents of the coverage. FME will nor-
mally ignore the contents of this file. If the <ReaderKeyword>_INCLUDE_BND keyword is specified with a value of YES,
FME will create a single feature representing the coverage extent information.

The extent is defined on the resulting feature with the attributes XMIN, YMIN, XMAX, and YMAX. In FME, the feature
will have a polygon geometry corresponding to these attributes’ values; in FME Objects, the BND feature will have no
geometry.

Value: YES | NO

Default Value: NO

Example:

E00_INCLUDE_BND Yes

INCLUDE_TIC

Required/Optional: Optional

ArcInfo coverages typically include an info file named TIC, which defines the tic points for the coverage. FME will nor-
mally ignore the contents of this file. If the <ReaderKeyword>_INCLUDE_TIC is specified with a value of YES, FME will
create a feature for each TIC point.

The features resulting from reading the TIC file will have the IDTIC, XTIC, and YTIC attributes as defined in the TIC
file, and will have a point geometry corresponding to (XTIC,YTIC).

Value: YES | NO

Default Value: NO

Example:

E00_INCLUDE_TIC Yes

HYPHENS_ARE_VALID

Required/Optional: Optional

When set to “Yes” the reader will not convert hyphens in attribute names to underscores. The one exception to this
rule is that if the attribute name ends in “-ID” – in this case, it will be converted to _ID nomatter what the directive is
set to.

So, for example, if the attribute name is “HYPH-ENS-ID”, then when the directive is set to “Yes”, it will be read as
“HYPH-ENS_ID” and if the directive is set to “No”, it will be read as “HYPH_ENS_ID”.

If this directive is missing, then it will have an implied value of “No”. This is to ensure backwards compatibility, so
workspaces created with a previous version of FME (one that does not yet support this directive) continue to work as
they always have.

Value: YES | NO

Default Value: Yes

Example:

E00_HYPHENS_ARE_VALID Yes

GENERATE_NODE_FEATURES

Required/Optional: Optional

Traditionally the ArcInfo reader reads the NAT table and outputs the NODE attributes as a plain set of attributes. If the
value is YES, the endpoints of the ARC features are turned into NODE features, which are then joined with the NAT
table attributes to provide fully formed point features.

Value: YES | NO

Default Value: NO

Example:

E00_GENERATE_NODE_FEATURES NO

Workbench Parameter: N/A (settings box only)

There are no other directives processed by the E00 reader, meaning there are no DEF lines for reading E00 features.
The features obtained from the specified data set take the form described in the remainder of this chapter.

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The ArcInfo writer provides the ability to generate, in a single invocation of the FME, several E00 files or binary cov-
erage directories. All E00 files or coverages created in a single run of the FME will be placed into a single directory.

Unlike the reader, the writer requires DEF lines to define the attributes of the output E00 files or binary coverage
directories. The writer provides a mechanism to apply a single set of attributes to all geometric features placed into a
file, as well as allowing each specific info file to have a unique set of attributes.

The E00 writer can create compressed or uncompressed E00 files, or, with FME ESRI Edition, binary ArcInfo cov-
erages.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the E00 writer is E00 or ARCINFO.

DATASET

Required/Optional: Required

Unlike the E00 reader, which reads a single E00 file, the writer may create several files. The DATASET keyword for
the E00 writer is the directory into which the created E00 files (or coverages) will be written.

Workbench Parameter: Destination ESRI ArcInfo Export (E00) File

DEF

Required/Optional: Required

Workbench Parameter: <WorkbenchParameter>

An E00 file or coverage must be completely defined before it may be written. The definition specifies the base name of
the file and the names and types of all attributes on all info files within the E00 file. The syntax of an E00 DEF line is:

<ReaderKeyword>_DEF <baseName> \
[E00_FORCE_OUTPUT <subfileName>[,<subfileName>]+] \
[<attrName> <attrType>[,INDEX]]+

The file name of the physical E00 file is constructed by appending the .e00 suffix to its baseName. Binary coverages
are written as a directory named baseName. Coverage names are always truncated to contain thirteen or fewer char-
acters, and converted to lowercase letters, when forming output directory names.

The E00_FORCE_OUTPUT keyword is used to force the named subfiles to appear in the output E00 file or binary cov-
erage, even if no contents are specified for them. The value for subfileName can either be the name of a one of the
standard subfiles LABor TOL, or can be any info file. (The naming of info files follows the same pattern as in the

<infoFile>:<attrName> notation discussed below.) The TOL and LAB files are normally generated by the E00 writer, but
this behavior can be overridden by specifying an E00_FORCE_OUTPUT keyword that does not list the TOL or LAB sub-
file: if a list of files are forced to be output, and no TOL file is specified in the list, then a TOL file will be generated only
if specific tolerances are defined as discussed in the section titled Tolerances; if the LAB subfile is not specified in the
list, a LAB file will be generated only if features are written out to define the contents of the LAB file.

The attribute names for an E00 file must be uppercase, and must not exceed 16 characters in length. One should be
aware that there are a few peculiar character sequences used by the E00 writer, for historical purposes. A trailing
underscore character on an attribute name is replaced by a hash character (“#”), and a trailing sequence of “_ID” is
replaced with “-ID”. Thus, attributes named JOES_ and JOES_ID on the E00_DEF line of a mapping file would be called
JOES# and JOES-ID in the resulting info file.

One can work around this limitation by inserting single quotes around the underscore in the name of the attribute on
the DEF line. For example, an attribute listed as JOES’_’ID on an E00_DEF line would result in an attribute named
JOES_ID appearing in the info file, instead of an attribute named JOES-ID.

The following table shows the attribute types that are supported.

Attribute Type Description

char(<width>) Fixed-length character string. The width parameter
controls the maximum number of characters that can
be stored in the field. When a character field is written,
it is right-padded with blanks, or truncated, to fit the
width.
width must be between 1 and 320, inclusive.

char Character string with a default maximum length (cur-
rently set to 320). This type should be used only for
testing purposes, and not for production mapping files;
for most cases, use the char(<width>) form above.

date Character string representing a date. Attributes of type
datemust have exactly eight characters, and be of the
form YYYYMMDD, where YYYY is the year, MM is the
month (01-12), and DD is the day of the month (01-
31).

int
int(<width>)

Integer field. The optional width parameter specifies
the display width of the field within ArcInfo.
width must be between 1 and 16, inclusive. Rep-
resentable numbers are those in the range of -
999,999,999,999 to 9,999,999,999,999,998, inclusive.

number
(<width>,<dec>)

Numeric data displayed with a field width of width and
dec decimal positions. The value of width must allow
for any minus sign and decimal point in the number,
and must be in the range of 1 to 16, inclusive. The
value of dec must be between 0 and 14, inclusive.

binint

binint(<size>)

binint(<size>,<width>)

Integer value, to be stored in ArcInfo as a binary
number instead of character data. If the optional size
parameter is specified, it specifies the number of bytes
of storage (2 or 4 bytes) ArcInfo will use to store the

Attribute Type Description

value. The optional width parameter specifies the dis-
play width for ArcInfo to use. The size will default to
4bytes, and the display width will default to 5 for a 4-
byte integer, or 4 for a 2-byte integer.
size must be either 2 or four. width may be any
integer between 1 and 6 when size is 2, or between 1
and 11 if size is 4.

float

float(<width>,<prec>)

Floating point number, to be stored in ArcInfo as a
four-byte binary number instead of as character data.
The width and prec parameters define the display
width and number of decimals for ArcInfo to use.
A float field retains up to 9 digits of precision; only
zero and numbers with a magnitude between
1.175494351e-38 and 3.402823466e+38 may be rep-
resented as float values.

double

double(<width>,<prec>)

Floating point number, to be stored in ArcInfo as an
eight-byte binary number instead of as character data.
The width and prec parameters define the display
width and number of decimals for ArcInfo to use.
A double field retains up to 17 digits of precision; only
zero and numbers with a magnitude between
2.225073858507201e-308 and
1.7975931348623158e+308 may be represented as
double values.

redefined(<offset>,
<length>,
<fieldName>)

A redefined field specifies a subfield of another field
within the same info file. The features written to an
info file with redefined fields do not actually have
attributes named for the redefined fields; the resulting
E00 file defines the field in such a way that ArcInfo
interprets the value of the redefined field as byte posi-
tions offset to (offset + length - 1) of the specified field-
Name. Offsets are zero-relative, so an offset value of 1
actually refers to the second character of the named
field.

An attribute’s type parameter may optionally be followed by the literal string ,INDEX, such as in:

E00_DEF ROADS \
NAME char(16) \
.ARC:IDENT binint,INDEX

This indicates that particular field is an index in the ArcInfo info file.

Normally, any attributes provided on the DEF line will be applied to all info files created with the exception of the .BND
and .TIC files, which have a specific format. However, the DEF line supports an attribute naming convention which
allows a particular attribute to be applied to a specific info file. If the attribute name in the DEF line is of the form

<infoFile>:<attrName>, then the attribute attrNamewill be added only to the info file specified by infoFile. There are actu-
ally three ways to specify an infoFile, as outlined by the following table.

infoFile Specification Application

<baseName>.<suffix> Attribute belongs to the precise info file named, and
no others, for example, HYDRO.TATANNO.

.<suffix> Attribute belongs to all info files with the specified suf-
fix, for example, .TATANNO, .PAT.

.TAT Attribute applies to all info files with a suffix that
starts with .TAT. This is a special case provided solely
for text attributes. Since text attribute files have the
suffix .TAT<annoLayer>, with the possibility of having
several annoLayers in a single E00 file, this syntax
allows the definition of attributes to be applied to the
text attribute files for all annotation layers.

If an info file has specific attributes defined on it using the above <infoFile>:<attrName> syntax, then it will not have any
of the attributes listed with the normal syntax, that is, <attrName> only.

Furthermore, the special info files .TIC and .BND always have the same predefined attributes, no matter what the con-
tents of the DEF line for the E00 file are. Each of the special geometry-related attribute files (.AAT, .PAT, and .TAT)
also has a default set of attributes which will always be present in the info file, but in these cases, the set of attributes
will be supplemented with the appropriate attributes specified on the DEF line.

If an attribute name starts with a "-" character, then the specified attribute is removed. For example, if an attribute
named ".TAT:-OFFSETX" is specified on the DEF line, then the specified attribute is not included in the resulting info
file. This allows you to remove default attributes from standard info files.

If an attribute name starts with a "+" character, then its type will override the type of any of the standard attributes
with the same name.

Controlling E00 Output describes what info files will be automatically created when geometric entities are
directed at E00 files, and how to generate custom info files.

TOLERANCES

Required/Optional: Optional

An E00 file or coverage can contain a subfile which defines tolerances used within ArcInfo. There are exactly ten tol-
erances defined in this file. Each tolerance has a value and a state. The FME refers to these tolerances by name or by
number, as described in the Tolerance Values.

The TOLERANCES keyword tells the FME to create a TOL subfile with a specific value or state for a particular tolerance
value. The syntax of a tolerance specification is:

 <WriterKeyword>_TOLERANCES <id>=<val>[,<state>][:<id>=val[,<state>]]+

where id is a valid tolerance number or name from the table in Tolerance Values, val is the specified tolerance’s
new value, and the optional state parameter is either 1 or 2, to specify whether the tolerance has been verified. If the
state is not specified, a default value of 1 is used.

The E00 writer always generates a TOL file in each generated E00 file or binary coverage unless the E00_FORCE_OUT-
PUT option is specified in the coverage’s DEF line, and TOL does not appear in the list of subfiles to force. If a TOL file
is generated, any tolerances not specified by the TOLERANCES keyword will take the following default values and
states:

Tolerance Identifier Default Value Default State

1 (FUZZY) 1.0e-20 1

2 (GENERALIZE) 0 2

3 (NODE_MATCH) 0 2

4 (DANGLE) 0 1

5 (TIC_MATCH) 0 2

6 (EDIT) 1.0e-18 2

7 (NODESNAP) 1.0e-19 2

8 (WEED) 1.0e-19 2

9 (GRAIN) 1.0e-19 2

10 (SNAP) 1.0e-19 2

PRECISION

Required/Optional: Optional

All subfiles in a given E00 file or coverage are written out with either single-precision numbers or double-precision
numbers. The PRECISION keyword takes a value of single or double, and specifies the precision used for all subfiles of
all E00 files written.

Value: SINGLE | DOUBLE

Default Value: DOUBLE

Workbench Parameter: Coverage Precision

COMPRESSION

Required/Optional: Optional

E00 files may be written out uncompressed or they may have one or two levels of compression applied to them. Com-
pressed files take up far less space than uncompressed files but they are impossible to inspect manually and are not
readable by many systems.

TheCOMPRESSION directive allows you to specify how much compression to apply to a file.

Note: FME ESRI Edition will also generate binary ArcInfo coverages directly, if the COMPRESSION keyword is given a
value of BINARY.

Value: NONE | PARTIAL | FULL

Default Value: NONE

Workbench Parameter: Compression

MAX_OUTPUT_SIZE

Required/Optional: Optional

When writing out to an E00 file, the user might want to break the file into an .e00, .e01, .e02, etc., based on the
size of the file being written. This may be done by specifying MAX_OUTPUT_SIZE directive. The argument is the
maximum size of each file produced.

The argument is specified as a number, optionally suffixed with a lower case "b" (bytes), "k" (kilobytes), or "m" (meg-
abytes). If there is no such suffix, "bytes" will be assumed. For example:

E00_MAX_OUTPUT_SIZE 1024k

will produce no file greater than a megabyte.

When expressed in kilobytes or megabytes, the size is measured using base-2 measurements, hence a kilobyte 1024
bytes, and a megabyte is 1024 kilobytes.

The default behaviour is not to limit the size of output E00 files.

Workbench Parameter: Maximum Output File Size

BYPASS_LINEAR_TOPOLOGY

Required/Optional: Optional

Normally, the FME will compute a line-node topology whenever it writes out an E00 file or binary coverage. This can
be a very expensive operation, and is not always needed.

For instances where a fully built linear topology is not needed in the resulting coverage, one may use the BYPASS_LIN-
EAR_TOPOLOGY keyword to disable this feature. A value of YES will disable the topology computation, and a value of
NO will leave it enabled.

For example,

E00_BYPASS_LINEAR_TOPOLOGY Yes

will produce output files with no linear topology.

Note that this affects linear output only. It is not possible to create a coverage of polygons which do not have topology
connecting them to their linear boundaries. (Such representation is not possible in E00 files.).

Value: YES | NO

Default Value: NO (FME will compute a linear topology)

Workbench Parameter: Linear Topology

PRESERVE_CASE

Required/Optional: Optional

When set to “Yes”, the output files will have the same case as the feature types specified on the DEF line. When set to
“No” it will demote the feature type to lowercase. For example, if the feature type is PoInT, it will be output as
PoInT if the directive is set to “Yes” and as point if the directive is set to “No”.

If this directive is missing, then it will have an implied value of “No”. This is to ensure backwards compatibility, so
workspaces created with a previous version of FME (one that does not yet support this directive) continue to work as
they always have.

Example:

E00_PRESERVE_CASE Yes

Value: YES | NO

Default Value: Yes

Feature Representation

This section discusses the way geometry and attributes are defined on features which represent the records in the
various files within an E00 file. There is quite a difference between the features that the E00 reader emits, and those
formed from the generic, automatically-generated mapping file. This discussion focuses primarily on the raw output
from the E00 reader. Generated Mapping Files provides a description of the feature that the generated mapping
file creates.

There is also a difference between the features that the reader emits and those which the writer expects to be given
to write out. Most notably, the reader uses the name of the subfile as the feature type of each FME feature read from

an E00 file, whereas the writer uses the FME feature type to determine the name of the E00 file to which the feature
will be written. In addition, the reader defines certain attributes on features read from E00 files – such as, E00_
FEAT_ROLE and E00_RECORD_NUM – which are unused by the E00 writer.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Geometry Composition

There are essentially four types of geometry defined in E00 files:

l arcs (lines)

l points

l polygons

l text

The geometries are formed by forming relations between certain standard subfiles and certain info files. The reader
itself does not form these relations, but provides the attributes on the features allowing the mapping file to form the
relations. Mapping files which have been automatically generated to read from E00 files form the necessary joins
between the subfiles and the info files, and are a good starting point when creating custommapping files to read E00
data. A description of the features output from automatically generated mapping files is given in the subsection titled
Generated Mapping Files.

The following table summarizes the geometry types and lists the additional attributes required to fully define the
geometry, as is the case for text features.

Geometry Type Description Additional
Attributes Required

e00_arc A string of geographic points that does
not join or cross with itself. Features
read from the ARC subfile contain arcs as
their geometry.

None

e00_poly A solid area, with an outer boundary and
zero or more holes. No features is given
a polygon geometry by the reader. They
must be formed by factories in the map-
ping file.

None

e00_point A simple (x,y) coordinate. The E00
reader creates points for features read
from CNT and LAB standard subfiles.

None

e00_text Defines annotation text at a particular
location, with a rotation measured in
degrees counterclockwise from the hor-
izontal and text height measured in
ground units. The geometry portion of a
text feature is the single (x,y) point that
defines its position.

e00_text_string
e00_rotation
e00_text_height

e00_no_geom Feature has no associated geometry. None

Feature Types

The E00 reader and the E00 writer view feature types somewhat differently. The features emitted from the E00
reader have a feature type dependent on the subfile or the info file from which the feature originated, whereas the
E00 writer uses a feature type based on the name of the E00 file.

The following table summarizes the feature types generated for each subfile. If a subfile name in the table below con-
tains an asterisk, then it is really a pattern to match info file names. This convention is required because the names of
info files vary from coverage to coverage. The + symbol is used for an alternate asterisk for files containing two wild-
card expressions. Therefore, the info file defining text attributes for the ERR annotation layer of the HYDR_SUR cov-
erage is named HYDR_SUR.TATERR, and is referred to as *.TAT+ in the following table. References in the rest of the
table row expand * to HYDR_SUR and + to ERR.

Note that the Reader Feature Type listed in the table applies only when reading E00 data, not when writing it. As dis-
cussed above, the E00 interprets the feature type as the name of the target E00 file. The subsection titled Controlling
E00 Content describes a method for redirecting features to a particular subfile.

Subfile
Name

Reader Feature
Type Geometry Additional Attributes

ARC e00_arcdef e00_arc E00_FEAT_ROLE = “e00_arc_def”
LPOLY = <id of left polygon>
RPOLY = <id of right polygon>
FNODE = <id of start node>
TNODE = <id of end node>
cover_id = <id of arc in coverage>
cover_num = <sequence # of arc in coverage>

CNT e00_centroid e00_point E00_FEAT_ROLE = e00_poly_cnt

LAB e00_label e00_point E00_FEAT_ROLE = “e00_label”

poly_id = <id of polygon containing

label>

boundBoxMin.x = <min x of bounding box>

boundBoxMin.y = <min y of bounding box>

boundBoxMax.x = <max x of bounding

box>boundBoxMax.y = <max y of bounding

box>

LOG e00_log e00_no_geom text = <whole line of text from log

file>

MTD e00_mtd e00_no_geom FME currently skips this subfile

PAL e00_polyarc e00_no_geom E00_FEAT_ROLE = “e00_poly_arc”

arcnum{n} = <record number of ARC rec-

ord for segment #n>

arc{n}.arcnum = <record number of ARC

record for segment #n>

arc{n}.fnode = <start node of ARC record

for segment #n>

arc{n}.lpoly = <left polygon id of ARC

record for segment #n>

boundBox.minX = <min x coordinate of

bounding box>

boundBox.minY = <min y coordinate of

bounding box>

boundBox.maxX = <max x coordinate of

bounding box>

Subfile
Name

Reader Feature
Type Geometry Additional Attributes

boundBox.maxY = <max y coordinate of

bounding box>

PRJ e00_projection e00_no_geom E00_FEAT_ROLE = “e00_proj”

datum = <Name of datum>

projection = <Name of projection>

units = <Unit type>

xshift = <Shift in x coordinate>

yshift = <Shift in y coordinate>

zunits = <YES/NO>

zone = <UTM zone number>

unknown_param{n}.name = <name of non-

standard parameter #n>

unknown_param{n}.value = <value of non-

standard parameter #n>

RPL e00_polyarc e00_no_geom E00_FEAT_ROLE = “e00_region_arc”

arcnum{n} = <record number of ARC

record for segment #n>

arc{n}.arcnum = <record number of ARC

record for segment #n>

arc{n}.fnode = <start node of ARC record

for segment #n>

arc{n}.lpoly = <left polygon id of ARC

record for segment #n>

boundBox.minX = <min x coordinate of

bounding box>

boundBox.minY = <min y coordinate of

bounding box>

boundBox.maxX = <max x coordinate of

bounding box>

boundBox.maxY = <max y coordinate of

bounding box>
e00_region_subclass = <name of region subclass>

(See the subsection titled Region Support
for a description of region-related rec-
ords.)

RXP e00_regionxref e00_no_geom E00_FEAT_ROLE = “e00_region_xref”

name = <name of tolerance type>

id = <numeric id of tolerance type>

state = <state of tolerance>

value = <value of tolerance>

(See the subsection titled Region Support
for a description of region-related rec-
ords.)

TOL e00_tolerance e00_no_geom E00_FEAT_ROLE = “e00_tolerance”

name = <name of tolerance type>

Subfile
Name

Reader Feature
Type Geometry Additional Attributes

id = <numeric id of tolerance type>

state = <state of tolerance>

value = <value of tolerance>

(See the subsection titled Tolerances for a
description of tolerance records.)

TXT e00_text e00_text E00_FEAT_ROLE = “e00_text_def”

e00_anno_name = “”

e00_anno_id = <record number within TXT

file>

<Attributes for text geometry>

(See the Text Representation subsection
for a discussion about text geometry.

TX6 or TX7 e00_text e00_text E00_FEAT_ROLE = “e00_text_def”

e00_anno_name = <name of anno subclass>

e00_anno_id = <position within anno sub-

class>
e00_anno_level = <level number of text
feature>
e00_num_coords = <number of coordinates
defining text position>
parameter{} = <unnamed TX6/TX7 param-

eters>

<Attributes for text geometry>

(See the Text Representation subsection
for a discussion about text geometry.

e00_textarrow e00_arc E00_FEAT_ROLE = “e00_text_arrow”

e00_anno_name = <name of anno section>

e00_anno_id = <position within anno sec-

tion>

LNK LNK e00_point E00_FEAT_ROLE = “LNK”

*.AAT *_arcattr e00_no_geom E00_FEAT_ROLE = “e00_arc_attr”

FNODE_ = <Start node cover#>

TNODE_ = <End node cover#>

LPOLY_ = <Left polygon cover#>

RPOLY_ = <Right polygon cover#>

*_ID = <arc identifier>

*# = <coverage # of arc>

LENGTH = <length of arc>

<User-defined attributes>

Subfile
Name

Reader Feature
Type Geometry Additional Attributes

*.BND *_bounds e00_no_geom E00_FEAT_ROLE = “e00_bounds”

XMIN = <min x of bounding box>

YMIN = <min y of bounding box>

XMAX = <max x of bounding box>

YMAX = <max y of bounding box>

*.PAT *_polyattr e00_no_geom E00_FEAT_ROLE = “e00_poly_attr”

AREA = <area of polygon>

PERIMETER = <perimeter of polygon>

*_ID = <id of polygon>

*# = <coverage # of polygon>

<User-defined attributes>

*_pointattr e00_no_geom E00_FEAT_ROLE = “e00_point_attr”

AREA = 0.0

PERIMETER = 0.0

*_ID = <id of point>

*# = <coverage # of point>

<User-defined attributes>

*.TIC *_tic e00_no_geom E00_FEAT_ROLE = “e00_tic_point”

IDTIC = <TIC point identifier>

XTIC = <TIC point x coordinate>

YTIC = <TIC point y coordinate>

*.TAT+ *_+_textattr e00_no_geom E00_FEAT_ROLE = “e00_text_attr”

e00_anno_name = <name of annotation

layer>

*# = <coverage number for text>

*.XCODE *_textattr e00_no_geom E00_FEAT_ROLE = “e00_text_attr”

e00_anno_name = “”

*# = <coverage number for text>

*.+ *.+ e00_no_geom E00_FEAT_ROLE = “.+”

<User-defined attributes>

In addition to the attributes shown in this table, all features read from an E00 file have an attribute named E00_REC-
ORD_NUM, whose value corresponds to the position within the subfile of the record defining the feature. The record
numbers start at 1 for each file, and are incremented for each record. This number provides the positional infor-
mation required to define the relationships between certain geometries and their attributes.

Note that the numbering of the text features is somewhat special. See Text Representation for further details.
Note that the reader also assigns features of most feature types an E00_FEAT_ROLE attribute, which defines the role
of the feature within the coverage. This is required to make it easier to create a generic mapping file, when different
files processed by that mapping file might have different info file names. For example, the file BART.E00might have
an info file named BART.TIC where JOSIE.E00 has an info file named JOSIE.TIC. The features emitted for these two info
files would have a type of BART_tic and JOSIE_tic, respectively, but the features for both info files would have the value
of e00_tic_point for their E00_FEAT_ROLE attribute. The role is given to features from the standard subfiles, as well as
the info files which have one of the known suffixes – .AAT, .BND, .PAT, .TIC, .TAT+.

If features from a subfile have a particular type of geometry, then they will have an attribute named e00_type, whose
value is the geometry type. For example, features from the ARC subfile will have line geometry attached, and will have
an e00_type attribute with the value e00_arc.

Text Representation

The main geometry for text features are defined from records in the TX6, TX7, or TXT subfiles of the E00 coverage.
This geometry consists of a text string, a location at which to draw the text, and optionally a string of points that form
a curved line along which to place the characters. Additionally, text features from the TX6 or TX7 subfile might have
arrows associated with them1.

When these features are read into the FME, the form changes slightly. If the keyword <ReaderKeyword>_TEXT_CURVE
has been given the IGNORE value, the start and end points of the text line are used to compute the average rotation of
the characters, and the first point in the line becomes the text's position. The text feature's geometry is a point which
defines the position, along with the following attributes to define the rest of the feature.

Attribute Name Description

e00_anno_name Name of annotation layer (subclass) containing text.

e00_anno_id Sequence number of text features within its annotation
layer.

e00_rotation Rotation of text display, measured in degrees counter-
clockwise from horizontal.

e00_text_height Height of one line of text, measured in ground units.

e00_text_width Height of the line of text, measured in ground units.
When features contain multiple lines of text, this will be
the width of the longest line of the text.

e00_tbox_height Height of entire text block, measured in ground units. If
the text contains carriage return characters, and thus
spans multiple lines, this number will be greater than the
value for e00_text_height; otherwise the two will have the
same value.

e00_text_string String of text being displayed.

e00_text_just (Optional) Justification of text feature relative to its base-
line. This is an integer with a value between 1 and 12,
inclusive. The default justification value will be “1”, indi-
cating that the bottom of the text character is aligned
with the first point of its defining arc.

e00_num_coords (Optional) When writing TX6 or TX7 features, this attrib-
ute defines how many coordinates are to be used to
define the text’s position. Its value is an integer between
1 and 3 (inclusive); if no e00_num_coords attribute is
present, three coordinates will be used to represent the
text location.

1Note that the E00 writer does not currently support any form of text arrow associated with text features. This capability may be added in
a later release. Neither does the writer support TXT-style text records; only TX6-style text may be generated.

Attribute Name Description

e00_text_level (Optional) Numeric value representing the level of the
text feature.

e00_text_symbol (Optional) Numeric value representing the symbology
ArcInfo will use to render the text.

If the keyword <ReaderKeyword>_TEXT_CURVEhas been given the FIT value, and the text feature is defined by more
than two coordinates, the FME computes a position and rotation of each character of text, generating a separate fea-
ture for each character. (No features are generated for whitespace characters.) In this case, all features cor-
responding to a given ArcInfo text element will have identical values for the e00_anno_name attribute, and for the e00_
anno_id attribute, and will also contain two additional attributes:

Attribute Name Description

e00_whole_text_string The original text string, from which this feature’s single
character was taken.

e00_pos_in_whole_text The position of this feature’s character within the original
text string. The first character has a position of “1”, the
second has a position of “2”, and so on.

The contents of a TX6 or TX7 subfile within an E00 coverage may contain annotation in several different annotation
layers (subclasses). Each feature belongs to one subclass, and this subclass’ name is contained in the feature's e00_
anno_name attribute. The features within a given subclass are numbered as they are read and the e00_anno_id attrib-
ute is assigned the feature's sequence number, starting at 1, within the layer.

If there are no named annotation subclasses in the coverage – as is always the case with annotation from the TXT
subfile – all text features will have an empty string (“”) as the value for their e00_anno_name attribute.

If the text has an associated arrow, a separate line feature is generated. This feature is type e00_textarrow, and con-
tains the same values for its e00_anno_name and e00_anno_id attributes as the associated e00_text feature.

Every text feature defined in a TX6 or TX7 subfile of an E00 coverage has an associated set of user-defined attrib-
utes from a particular info file. Each record of the info file is returned from the E00 reader as a feature with the attrib-
utes defined on it. The features have an E00_FEAT_ROLE attribute of e00_text_attr and a feature type of <prefix>_<anno_
name>_textattr, where <prefix> is an arbitrary prefix, and <anno_name> is the name of the annotation layer containing
the feature. If the annotation layer is unnamed, the features defining the user attributes simply have a feature type of
<prefix>_textattr.

The text geometries are associated with their user-defined attributes according to their position within the file. In
other words, there is a one-to-one relationship between the text geometries and the features defining the user attrib-
ute. This relationship is formed by joining the text feature's e00_anno_name and e00_anno_id attributes with the attrib-
ute feature's e00_anno_name and E00_RECORD_NUM attributes.

Text features from TXT subfiles do not have named annotation subclasses, and consequently behave like text fea-
tures from TX6 or TX7 files whose e00_anno_name contains an empty string. Note that the user attributes for text
defined in the TXT subfile come from a different info file than those for text from the TX6/TX7 subfile – *.XCODE
rather than the *.TAT+ info file – but the E00 reader forms the features generated from the two info files identically.

Tolerance Values

E00 coverages contain a list of ten tolerance values, which have a specific meaning within ArcInfo. Each tolerance has
a numerical identifier in the range 1..10, a state, and a floating point value.

The E00 reader generates ten features from the TOL subfile. Each feature contains the following attributes:

Attribute Name Description

id Original numerical id given to the tolerance.

name A standard name given to the tolerance record. This
name provides a description of the tolerance in question,
and is really just a textual version of the above ID.
(1=>FUZZY, 2=>GENERALIZE, 3=>NODE_MATCH, 4=>-
DANGLE, 5=>TIC_MATCH, 6=>EDIT, 7=>NODESNAP,
8=>WEED, 9=>GRAIN, 10=>SNAP)

state The state of the tolerance.
(1=>tolerance has been verified, 2=>tolerance has not
been verified)

value The size of the tolerance. This is a floating point number,
typically smaller than 1.0.

Projections

An E00 coverage may contain a subfile named PRJ, that defines the geographic projection of the coordinates within
the coverage. The E00 reader gathers all of the information in this subfile into a single feature of the type e00_
projection. The attributes of this feature are listed above, in the subsection titled Feature Types.

The PRJ subfile contains a list of named parameters, followed by a list of apparently unnamed parameters. Any of the
named parameters, whose names are recognized, are defined as standard attributes – datum, projection, units, etc. on
the e00_projection feature. Named parameters, whose names are not recognized by the reader, are placed into the
attributesunknown_parameter{}.name and unknown_parameter{}.value. Unnamed parameters are placed into the attribute
list param{}.value.

The E00 attempts to interpret the coordinate system information from the projection feature. If the parameters in the
E00 file are from a known coordinate system or projection, the coordinate system information will be passed on the
rest of the FME for normal processing. Otherwise a warning message will be logged in the log file. In either case, a fea-
ture describing thePRJ file will be passed-in to the FME feature stream.

Likewise, the E00 writer attempts to create aPRJ record from the coordinate system information attached to the fea-
tures it is writing. The features must all belong to a single coordinate system for this to work. If no mapping can be
found from the FME coordinate system to an E00 projection record, a warning will be written to the log file.

Region Support

The E00 reader provides complete support for reading ArcInfo regions, while the E00 writer currently has a very lim-
ited form of support for writing ArcInfo regions. An ArcInfo region is essentially a set of non-overlapping polygons
with a logical connection. They are represented in the RPL and RXP subfiles, and their attributes are defined in the
.PAT<subclass> info files.

The RPL file is virtually identical in structure to the PAL file. It defines the polygons which make up the various
regions by listing the arcs that make up the polygons’ boundary and holes. The only real difference in structure
between the PAL and the RPL is that regions may be divided into subclasses, so the contents of the RPL file are like-
wise divided into subclasses, with all polygons belonging to regions of a single subclass appearing together within
the RPL file.

The RXP file defines the actual regions by cross-referencing the polygons defined in the RPL file with region IDs.
Each data line of the RXP file contains a region ID and an RPL polygon ID. The records of the RXP file are grouped by
subclass.

Regions’ attributes are stored in info files named <baseName>.PAT<subclass>, much as the text attributes are stored in
<baseName>.PAT<subclass>. The records of the region attribute tables contain <baseName>-ID attribute that relates
them to the regions defined in the RXP file.

Mapping files generated by FME to read E00 include the necessary factories to fully recreate complete regions and out-
put them as area features.

To write regions out to an E00 file, the mapping file must define FME features that represent the RPL, RXP, and
.PAT<subclass> records as they are to appear in the output file. This means that the every aspect of the regions, from
the topology down to the assignment of IDs, and the ordering of the records with each subfile, must be performed in
the mapping file; the E00 writer will simply write out whatever information it is given. In most cases it will be quite dif-
ficult to define this information in the mapping file. At some point in the future, the E00 writer will actually take care
of computing the various regions and defining the contents of these records, but for the time being it simply provides
a way to format the information computed elsewhere.

Info Files

Unlike the standard subfiles, whose names and formats are common to all E00 files, the info files' names and data
structures vary from one coverage to another. Each info file starts with a header that defines its name and attributes
on each record of the file.

The name of the info file is in the form <prefix>.<extension>, where <prefix> is arbitrary and <extension> defines the role
of the records of the info file. Typically, all info files within a single E00 coverage have the same <prefix>. The <exten-
sion> is usually from a standard set, which includes the AAT (Arc Attribute Table), PAT (Point or Polygon Attribute
Table), and BND (coverage bounding box). The E00 reader uses the extension to determine a role for the content of
this info file.

Each record of the info file is interpreted by the E00 reader as an FME feature with no geometry. The <extension> of the
info file's name is used to define the feature type and the value of the E00_FEAT_ROLE attribute of these features. The
attributes defined on the record as specified in the info file's header are defined verbatim on the output feature.

Generated Mapping Files

Mapping files generated by the FME to read E00 files manipulate and join the features output from the E00 reader to
form fully-formed, fully-attributed features with arc, point, polygon, or text geometry. The following sections explain
each type of output feature and how it is put together.

Each coverage also contains a single polygon feature defining the bounding box of the coverage, and usually a set of
four point features representing the TIC points. These features have polygon and point geometries, respectively, with
the feature types <prefix>_bounds and <prefix>_tic.

Mapping files generated by the FME to write E00 files will only write one type of geometry – point, text, arc, or poly-
gon – to each E00 output file. It will also calculate a bounding box of all features for each E00 file’s BND subfile, and
use the corners of this bounding box to define the TIC points.

Arc Features

In ArcInfo, arcs are simply polyline features with attributes to define a topology, as well as user-defined attributes.
The geometry comes from the e00_arcdef features, originating from the ARC subfile and the attributes come from the
e00_arc_attr features, originating from the <prefix>.AAT info file. Typically, the attributes defining the topology – left
polygon, right polygon, from node, to node – are also defined in the info file, and will appear as attributes on the
resulting arc features.

The arc features have a feature type of <prefix>_arc, where <prefix> is the prefix from the info file name. The attributes
defined on <prefix>_arc features are summarized in the following table.

Attribute Name Attribute Value

e00_type e00_arc

<prefix>-ID Numerical identifier for arc feature.

<prefix>_ Sequence number of arc feature within the E00 file.

LENGTH Length of the line, measured in ground units.

Attribute Name Attribute Value

FNODE_ Sequence number of starting node of the line.

TNODE_ Sequence number of ending node of the line.

LPOLY_ Sequence number of the polygon that lies to the left of
the line when travelling from FNODE to TNODE.

RPOLY_ Sequence number of the polygon that lies to the right of
the line when travelling from FNODE to TNODE.

In addition, any other attributes defined in the <prefix>.AAT info file are defined on the <prefix>_arc features generated
with this mapping file.

Point Features

Point features are generated when the E00 coverage contains a LAB subfile, but no PAL subfile. In this case, the e00_
label features originating from the LAB subfile are joined with the attributes of the e00_point_attr features originating
from the <prefix>.PAT info file. The resulting point features have a type of <prefix>_point and the attributes from the fol-
lowing table.

Attribute Name Attribute Value

e00_type e00_point

<prefix_ID> Numerical identifier for point feature.

<prefix>_ Sequence number of the point feature.

PERIMETER 0.0

In addition, any other attributes defined in the <prefix>.PAT info file are defined on the <prefix>_point features gen-
erated with this mapping file.

Polygon Features

Polygon features are the most complex of the features created by the generated mapping files. The polygon features
result from combining four different types of features output from the E00 reader: e00_arcdef, e00_centroid, e00_poly-
arc, and e00_poly_attr. A combination of these features is performed as follows.

l The polylines defined by the e00_arcdef features in the ARC subfile form the edges of the polygons. They are com-
bined to form each polygon and its holes, according to the contents of the arcnum{} attributes on each e00_polyarc
feature.

l The point geometry from each e00_centroid feature is attached to the corresponding polygon, providing the values
for the attributes e00_centroid_x and e00_centroid_y.

l The attributes from the e00_poly_attr features originating in the <prefix>.PAT info file are added to the formed poly-
gon features.

The resulting polygon features have a type of <prefix>_poly and the attributes from the following table.

Attribute Name Attribute Value

e00_type e00_poly

<prefix_ID> Numerical identifier for polygon feature.

Attribute Name Attribute Value

<prefix>_ Sequence number of the polygon feature within the E00
file.

e00_centroid_x X coordinate of polygon’s centroid.

e00_centroid_y Y coordinate of polygon’s centroid.

PERIMETER Outer perimeter of polygon.

AREA Area of the polygon, measured in square ground units.

In addition, any other attributes defined in the <prefix>.PAT info file are defined on the <prefix>_poly features generated
with this mapping file.

Text and Textarrow Features

There are two ways text features are formed in the automatically generated mapping files. The first, and most com-
mon, is by combining the text geometries from the TX6 or TX7 subfile with the attributes from the <pre-
fix>.TAT<annoLayer> info file. In this case, the resulting text features have a feature type of <prefix>_<annoLayer>_ text,
or <prefix>_text if the annotation layer is unnamed. See Text Representation for an explanation of annotation lay-
ers.

Some E00 coverages have their annotation defined in a TXT subfile rather than in a TX6 or TX7 subfile. These fea-
tures are combined with the attributes of the <prefix>.XCODE info file instead of a <prefix>.TAT<annoLayer> subfile, and
will always be contained in an unnamed annotation layer.

In either case, text features will have a feature type of <prefix>_text or <prefix>_<annoLayer>_text, depending on whether
they are contained in a named annotation layer, and will have the attributes shown in the following table.

Attribute Name Attribute Value

e00_type e00_text

<prefix_ID> Numerical identifier for text feature.

<prefix>_ Sequence number of the text feature within the E00
file.

e00_anno_name Name of annotation layer containing text feature. This
will be “” if it is in an unnamed annotation layer.

e00_anno_id Sequence number of text feature within its annotation
layer. This number starts at 1 for the first feature in
each annotation layer and is incremented for every
other feature.

e00_rotation Rotation at which to display text, measured in degrees
counteclockwise from horizontal.

e00_text_string Textual portion of feature.

e00_text_height Height of text, measured in ground units.

e00_text_level Number indicating level of text.

In addition, any other attributes defined in the <prefix>.TAT<annoLayer> or <prefix>.XCODE info file are defined on the
<prefix>_text features generated with this mapping file.

If the text geometry originates in the TX6 or TX7 subfile – as opposed to the TXT subfile – it might have a separate lin-
ear portion that acts as an arrow pointing from the text to another location. These lines are written out as features
with a feature type of <prefix>_<annoLayer>_textarrow or <prefix>_textarrow, and attributes e00_anno_name and e00_
anno_id which take the same values as the corresponding <prefix>_<annoLayer>_text or <prefix>_text features.

Occasionally, an E00 file will have e00_text features for which there are no corresponding attributes in the info files. In
this case, the feature types of the corresponding text features generated are simply text and textarrow.

The E00 writer is not capable of generating TXT features. Text output from the FME takes place with TX6 or TX7 rec-
ords. SeeControlling E00 Output for a description of how geometry is formed on output E00 files.

Controlling E00 Output

The E00 writer allows easy generation of E00 files, but also provides a high level of customization to the format and
content of the resulting E00 files. In its simplest form, the E00 writer takes FME features defining line, point, text,
and polygon features, and writes them to the appropriate subfiles of the E00 file. This mode of operation makes it
very easy to write a mapping file which creates E00 files:

l Decide on the names of the E00 files.

l For each file, decide on the type of geometry to go into the file, and the names and types of the attributes.

l Create a DEF line to define the attributes.

l Create the correlation line to direct the features at the appropriate files. Features going to an E00 file must contain
an attribute named e00_type, with one of the values e00_point, e00_arc, e00_text, or e00_poly. The writer uses this
attribute to determine how the features’ geometry is written out. Some geometry might require additional attrib-
utes to be defined on the features being written – see the subsection titled Geometry Composition for more infor-
mation.

This will generate all of the ARC, LAB, CNT, PAL, TX6 or TX7, *.BND, *.TIC, *.AAT, *.PAT, and *.TAT+ records needed to
describe the features passed-in. This is normally all one will need to create E00 files. However, the E00 writer also
contains mechanisms to allow the advanced user to:

l Define specific label locations for polygons.

l Explicitly direct a particular feature to a particular subfile.

l Create multiple info files within a single E00 file, each with its own set of attributes.

These mechanisms are described in the following subsections.

Specific Label Positions

When the E00 writer generates a PAL record to define a polygon, it also generates a centroid (CNT) record and a label
(LAB) record. The position of the centroid and the label are normally computed to be some point within the polygon.
(The computed location will always be inside the polygon, but not inside any hole of the polygon.) A specific location
will be used for the location of the CNT and LAB records, instead of the computed location, if the E00 writer is given a
feature with a point-in-polygon (PIP) geometry instead of a polygon or donut geometry. In this case, the point con-
tained in the PIP will define the location of both the label and the centroid.

Explicit Subfile Selection

The E00 writer normally looks for the e00_type attribute to decide how to write out the features. If this attribute is not
present, or has the value of e00_no_geom, the writer will look for an attribute named E00_SUBFILE on the input fea-
ture. This tells the writer the subfile in which to write the record. This can be one of the standard subfiles (ARC, LAB,
TOL, etc.) or any one of the info files.

This provides a powerful tool to the mapping file author. By changing a few attributes on an FME feature, that feature
can be directed to almost any part of the E00 file.

There are two warnings associated with explicit subfile selection:

l The first is that the author of the mapping file must ensure that all of the attributes necessary to write the feature
are present on the FME feature when it is given to the E00 writer. This is generally true in FME mapping files, but
is of particular importance to this option. For the standard files, the attributes defined in the table shown in Fea-
ture Typesmust be present on the features. Features destined for info files must provide values to all attributes
defined on the info file. The following section, Info File Creation, explains how info file attribution works.

l The second is that the mapping filemust not write features directly to a standard subfile or info file that is also
being written to with the normal geometry writing. The writer contains an internal state to keep track of which
geometries have been written to each subfile, and can become easily confused if other features are manually
inserted into the same subfiles.

Info File Creation

The E00 normally assigns all attributes specified on the DEF line to all info files. This is usually not a problem, since
an E00 file will typically just define some geometry of a single type, and associate attributes with each piece of geome-
try.

However, there are instances where the mapping file author will want more control over the format of the info file. For
example, an input file of tabular data can be placed into a specific info file using the explicit subfile selection
described in Explicit Subfile Selection. The normal means of specifying info file attributes on the DEF line will
place the same attributes on every info file in the E00 file. If there is other information to be placed into the same E00
file, such as annotation (text features) and linear geometry (arc features). The other info files have to carry attributes
from the tabular data’s info file and vice-versa.

To overcome this, the DEF line can contain attribute definitions specific to each info file. The forms of syntax for this
are listed in theWriter Keywords section titled DEF.

Suppose the tabular data in the example above is a simple table listing street names, and the minimum and maximum
street numbers for each street. Using the normal DEF line syntax, the DEF line for the E00 file might normally be
something like:

E00_DEF STREET \
STREET_NAME char(32) \
MIN_ADDR binint \
MAX_ADDR binint

If the E00 writer were to write lines and text to the above E00 file, as well as directing tabular data to the
STREETS.TAB info file using the mechanism described in Explicit Subfile Selection, the resulting E00 file would
contain lines, text, and STREETS.TAB records, all with the attributes STREET_NAME,MIN_ADDR, and MAX_ADDR.

In contrast, the following DEF line would apply the STREET_NAME,MIN_ADDR, and MAX_ADDR attributes only to the
STREETS.TAB records, leaving no attribution on the line or text records:

E00_DEF STREET \
STREETS.TAB:STREET_NAME char(32) \
STREETS.TAB:MIN_ADDR binint \
STREETS.TAB:MAX_ADDR binint

This DEF line provides us with a more useful description of the data, but it does not give the line and text features any
attributes which can be used to relate them to the STREETS.TAB attributes. The following DEF line will attach a
STREET_NAME attribute to each line and text feature, as well as generating the same STREETS.TAB file listed above:

E00_DEF STREET \
STREETS.TAB:STREET_NAME char(32) \
STREETS.TAB:MIN_ADDR binint \
STREETS.TAB:MAX_ADDR binint \
STREET_NAME char(32)

If you specify any attributes for a specific info file, then none of the "general" attributes will be added (other than the
and -ID attributes).

Finally, the following DEF line would create the same E00 file, except that the text features would be left with no attri-
bution at all.

E00_DEF STREET \
STREETS.TAB:STREET_NAME char(32) \
STREETS.TAB:MIN_ADDR binint \
STREETS.TAB:MAX_ADDR binint \
.AAT:STREET_NAME char(32)

The E00 writer uses the following heuristic to decide which attributes are defined on a given info file:

1. The .BND and .TIC info files each have a predefined set of attributes and corresponding types which are
always used, and never supplemented.

2. If the info file is one of the geometry-related info files – .AAT, .PAT, or .TAT+ – have a predefined set of attrib-
utes which are always present, but are supplemented by any attributes from 3 or 4 below.

3. If there are any attributes that were specified using the <infoFile>:<attrName> syntax, for this particular info
file, they are appended to the info file definition.

4. If there were no info file-specific attributes in 3, then any attributes which were specified with the normal
<attrName> syntax will be appended to the info file definition.

ESRI ArcInfo Generate Reader/Writer

The ESRI® ArcInfo Generate File Reader and Writer allows FME to read and write the simple ASCII format used by the
ArcInfo Generate command.

There are several types of Generate files, and each has its own syntax. Currently, point, line, and text Generate files
are supported. Both two-dimensional and three-dimensional data can be imported and exported to line and point Gen-
erate files. Three-dimensional (3D) Generate files are often used to input data into ArcInfo’s TINning package. Text
Generate Files are defined to accept only two- dimensional (2D) coordinates.

ARCGEN Quick Facts

Format Type Identifier ARCGEN

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type .gen

Typical File Extensions Yes

Automated Translation Support File base name

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type ARCGEN_GEOMETRY

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none no

Overview

FME considers a Generate dataset to be a collection of Generate files in a single directory. All Generate file names are
required to end with a .gen extension. The type of each Generate file must be defined in the mapping file before it can
be read or written.

Tip: The very simple format of Generate files makes them useful for testing purposes or for
transferring data between FME and other unsupported systems.

Reader Overview

The ARCGEN Reader produces FME features for all feature data held in Generate files residing in a given directory.

The ARCGEN Reader first scans the directory it is given for all Generate files defined in the mapping file. For each Gen-
erate file it finds, it checks to see if that file is requested by looking at the list of IDs specified in the mapping file. If a
match is made or if no IDs were specified in the mapping file, the Generate file is opened for read. The Generate
reader extracts features from the file one at a time and passes them on to the rest of the FME for further processing.
When the file is exhausted, the Generate reader starts on the next file in the directory. Optionally, a single Generate
file can be provided as the dataset. In this case, only that Generate file is read.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the Generate reader is ARCGEN.

DATASET

Required/Optional: Required

Contains the directory name of the input Generate files, or a single Generate file.

Workbench Parameter: Source ESRI ArcInfo Generate File(s)

DEF

Required/Optional: Required

Each Generate file must be defined before it can be read. The definition contains the file’s base name (without the
.gen extension), the type of geometry it contains, and optionally a delimiter between fields. There may be many DEF
lines, one for each file to be read.

The syntax of a GenerateDEF line is:

<ReaderKeyword>_DEF <baseName> \
ARCGEN_GEOMETRY (arcgen_point|arcgen_line| \

 arcgen_text) \
[ARCGEN_DELIMITER “<delimiter char>”]

The file name of the Generate file is the basename plus the .gen extension.

The mapping file fragment below defines two Generate files—one containing point features and the other containing
linear features:

ARCGEN_DEF nodes ARCGEN_GEOMETRY arcgen_point
ARCGEN_DEF boundaries ARCGEN_GEOMETRY arcgen_line

If no delimiter clause is specified, a comma (,) is used as the delimiter.

IDs

Required/Optional: Optional

This directive is used to limit which available and defined Generate files will be read. If no IDs are specified, then all
defined and available Generate files will be read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName1> … \
<baseNameN>

The basenames must match those used in DEF lines.

Example:

The example below selects only the nodes Generate file for input during a translation:

ARCGEN_IDs nodes

Workbench Parameter: Feature Types to Read

CLOSED_LINES_AS_POLYS

Required/Optional: Optional

This directive specifies how to determine the type of closed lines which may be indistinguishable from polygons.

Example:

ARCGEN_CLOSED_LINES_AS_POLYS no

Value: YES | NO

Workbench Parameter: Read closed lines as polygons

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The ARCGEN Writer creates and writes feature data to Generate files in the directory specified by theDATASET
directive.

As with the reader, the directory must exist before the translation occurs. Any old Generate files in the directory are
overwritten with the new feature data. As features are routed to the Generate writer by FME, it determines which file
to write to and outputs them according to the type of the file. Many Generate files can be written during a single FME
session.

Writer Directives

The Generate writer processes theDATASET and DEF directives as described in the Reader Directives section. It
does not make use of the IDs directive.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see the chapter About
Feature Attributes), this format adds the format-specific attributes described in this section.

All Generate features contain a numeric ID field. The numeric ID is stored in the arcgen_id attribute of an FME feature
read from a Generate file or destined to be written to a Generate file.

Tip: Features being written to an ARCGEN file must have an arcgen_id attribute.

FME considers the basename of the Generate file to be the FME feature type of a Generate feature. The feature type of
a Generate feature must match the basename of a Generate file defined by a GenerateDEF line. Each feature read
from a Generate file has an ARCGEN_GEOMETRY attribute added to it that indicates if the feature came from an arc-
gen_point, arcgen_line, or arcgen_text file. The writer can also handle homogeneous aggregate features of points, lines
or text, which also have an ARCGEN_GEOMETRY attribute.

Points

Generate files containing only points consist of a series of lines that follow this syntax:

<idNumber>,<x>,<y>[,<z>]

Tip: By using the idNumber associated with each Generate feature as a key into a comma sep-
arated value file, the @Relate command can be used to attach attributes to Generate features.

The <idNumber> is any numeric value, and need not be unique within a file. As well, the <z> value is optional and, if
it is not specified, the point is considered to be two-dimensional. The file is terminated by a line containing only the
word END. A two-dimensional point Generate file example is shown below:

601,3,7
602,53,21
603,19,20
END

Lines

Generate files containing only linear features consist of a series of lines that follow this syntax:

<idNumber>
<x0>,<y0>[,<z0>]
<x1>,<y1>[,<z1>]
…
<xN>,<yN>[,<zN>]
END

Tip: Polygonal features may also be input and output using linear Generate files. In such
cases, the first point and the last point of the line are identical.

As with point files, the <idNumber> is any numeric value, and need not be unique within a file. As well, the <z>
value is optional and, if it is not specified, the linear feature is considered to be two-dimensional. The end of each lin-
ear feature is marked by a line containing only the word END. A linear Generate file is terminated with two con-
secutive lines containing only the word END. A three-dimensional linear Generate file example, containing two
features, is shown below:

101
32,52,1
33,56,2

36,59,6
31,70,3
END
102
52,32,3
53,56,5
56,29,1
61,73,14
END
END

Text

Generate files containing only text (annotation) features, consist of a series of lines that follow this syntax:

<idNumber>,<x>,<y>,<angle>,<size>,<text>

As with point files, the <idNumber> is any numeric value and need not be unique within a file. A Text generate file is
terminated with the word END. A text Generate file example, containing two features, is shown below:

101,32,52,0,20,Arnet Maves
102,52,32,90,30,Barnie Maves
END

The attributes used by the generate reader and writer are described in the following table.

Attribute Name Value

arcgen_rotation Specifies the rotation of the text in degrees measured
counterclockwise from horizontal.
Range: -360.0 . . . 360.0

arcgen_text_size The size of the annotation in ground units.
Range: Float > 0

arcgen_text_string The text string to be placed at the annotation location.
Range:Any text string

The example below shows an FME mapping file used to translate some points and linear features from the Generate
format into Shape files. The mapping file defines the dataset location and gives the Generate definitions for the two
files to be read. At run time, the Generate reader goes out to the directory, reads the files, and produces an FME fea-
ture for each Generate feature it finds.

Example

Sample Generate to Shape Mapping File:

Define the location of the Generate files
ARCGEN_DATASET /usr/data/generate/92i080

Define the type of each of the Generate files
ARCGEN-_DEF nodes ARCGEN_GEOMETRY arcgen_point

This second file uses a space as the delimiter
ARCGEN-_DEF boundaries ARCGEN_GEOMETRY arcgen_line \

ARCGEN_DELIMITER “ “

Now define the location of the Shape files
which will be created
SHAPE_DATASET /usr/data/shape/92i080

Define each of the Shape files.

SHAPE-_DEF markers SHAPE_GEOMETRY shape_point \
MARKER_ID number(6,0)

SHAPE_DEF edges SHAPE_GEOMETRY shape_polyline \
EDGE_ID number(6,0)

Now define transfer specifications
ARCGEN nodes arcgen_id %nodeNum
SHAPE markers MARK_ID %nodeNum
ARCGEN boundaries arcgen_id %boundNum
SHAPE edges EDGE_ID %boundNum

Tip: Notice the Shape file definitions create a field to store the identifier associated with each
generate feature.

If the /usr/data/generate/92i080 directory contained the following files:

nodes.gen boundaries.gen

601,7,7
602,53,21
603,19,20
END

101
32 52 1
33 56 2
36 59 6
31 70 3
END
102
52 32 3
53 56 5
56 29 1
61 73 14
END
END

...then the FME features shown below would be created by the Generate reader.

Feature Type: nodes

Attribute Name Value

ARCGEN_GEOMETRY arcgen_point

arcgen_id 601

Coordinates: 37,7

Feature Type: nodes

Attribute Name Value

ARCGEN_GEOMETRY arcgen_point

arcgen_id 602

Feature Type: nodes

Attribute Name Value

Coordinates: 53,21

Feature Type: nodes

Attribute Name Value

ARCGEN_GEOMETRY arcgen_point

arcgen_id 603

Coordinates: 19,20

Feature Type: boundaries

Attribute Name Value

ARCGEN_GEOMETRY arcgen_line

arcgen_id 101

Coordinates:
(32,52,1),(33,56,2),(36,59,6),(31,70,3)

Feature Type: boundaries

Attribute Name Value

ARCGEN_GEOMETRY arcgen_line

arcgen_id 102

Coordinates:
(52,32,3),(53,56,5),(56,29,1),(61,73,14)

Feature Type: boundaries

Attribute Name Value

ARCGEN_GEOMETRY arcgen_line

arcgen_id 101

Coordinates:
(32,52,1),(33,56,2),(36,59,6),(31,70,3)

Feature Type: boundaries

Attribute Name Value

ARCGEN_GEOMETRY arcgen_line

arcgen_id 102

Coordinates:
(52,32,3),(53,56,5),(56,29,1),(61,73,14)

These features would then be transformed by the FME and output to their destination Shape files by the Shape writer.

ESRI ArcSDE Reader/Writer

Format Notes:

n This format is not supported by FME Base Edition.

n This chapter describes FME’s ArcSDE 3.x/8.x/9.x support, which is different from SDE 2.1
support. The SDE 2.1 format is deprecated in FME 2009.

n This chapter also applies to ArcGIS 9.x.

n This chapter includes SDE30, SDERASTER (Reader), SDERASTERMAP (Writer), SDER-
ASTERCATALOG (Writer).

ESRI’s Spatial Database Engine (SDE) 3.x/ArcSDE 8.x/9.x1 brings Geographical Information Systems (GIS) into the
realm of Management Information Systems (MIS) by providing a spatial interface to industry-standard Relational Data-
base Management Systems (RDBMS).

SDE enables a Relational Database Management System to store both spatial and non-spatial data by providing a new
“Shape” column type to the underlying RDBMS. FME is an SDE client application capable of connecting to the SDE
regardless of the platform on which it is located.

Overview

The SDE provides a seamless data model into which geographic data is stored. The SDE provides a relational data
model organized around tables. In the FME, an SDE feature type2 is equivalent to an RDBMS table. The FME can be
used to read and write any RDBMS table whether or not it has a layer (vector spatial column) and whether or not it has
a raster column. Spatial geometry in a table can be found in either a layer or a raster column.

A layer (vector spatial column) has the following properties:

1Throughout this chapter, SDE refers to clients using SDE 3.x or ArcSDE 8.x or 9.x, unless otherwise stated. The
same reader/writer is used to access all of these clients.

2The terms “feature type” and “table” are used interchangeably throughout this chapter.

l Each layer has a spatial index that can be tuned specifically for it. The spatial index consists of between one and
three two-dimensional (2D) grids. The sizes of the grid elements are ordered such that:

grid1 size < 4 X grid2 size (except if grid2 is set to zero)
grid2 size < 4 X grid3 size (except if grid3 is set to zero)

Tip: Since the SDE stores all coordinates as 32-bit (or 64-bit since ArcSDE 9.0) integer coor-
dinates with an implied decimal position, it is possible for precision to be lost or for over-
flow to occur when features are stored in the SDE. Care must be taken to ensure that the
SDE dataset system units preserve the data precision and the range.

l A single relational table can only have 1 layer.

l All features in a layer must be either two- or three-dimensional (2D or 3D). Mixed dimensionality is not allowed in a
layer

l Each layer has its own coordinate system, false origin, and scaling factor.

l The layer in a raster catalog is referred to as the ‘footprint’ column, and stores the bounding box of each raster in
the catalog.

A raster column has the following properties:

l A single relational table can only have 1 raster column.

l Each raster column has its own coordinate system. If the coordinate system is not specified, it will be stored as
UNKNOWN.

l A raster column can either be a raster map storing all raster data in the table as a single raster in a single row, or
as a raster catalog storing multiple rasters in multiple rows in the table.

The FME’s SDE reader and writer modules take advantage of the unique capabilities of the SDE. The reader module
retrieves features from the SDE by constructing queries consisting of both spatial and/or non-spatial components. An
SDE database may have a very large number of features, therefore the query building capability is critical to ensure
that the FME reader module is capable of satisfying highly focused data requests. The writer module takes advantage
of the SDE’s transaction model to ease the task of importing data into the SDE. The SDE writer is also able to operate
in either an “Update” mode or an “Insert” mode, enabling the FME to be used as a key component in an SDE-based
solution. The SDE reader is also capable of performing multi-table join queries, thereby exploiting the full power of
the underlying RDBMS.

Note: Version support, spatial constraints, and multi-table joins are not currently supported for raster data.

Tip: See the SDE30QueryFactory in the FME Functions and Factories manual. This factory also
exploits the powerful query capabilities of the SDE 3.0/ArcSDE 8.x/ArcSDE 9.x.

See the @SDEsql function in the FME Functions and Factories manual. This function allows arbitrary Structured
Query Language (SQL) statements to be executed against the SDE’s underlying database.

FME and ESRI ArcSDE (SDE30) Compatibility

This section relates to accessing native ArcSDE with the SDE30 Reader and Writer.

It does not apply to FME's Geodatabase Readers and Writers; these access SDE via ArcObjects and have always
required an appropriately-licensed version of ArcGIS software to be installed.

Does FME work with ArcSDE 9.3?

In order to avoid problems of version incompatibility, as of FME version 2009, FME no longer installs the required
libraries for reading and writing ArcSDE.

You should instead obtain these libraries from an ESRI product to ensure compatibility between FME and your SDE
database.

There are three methods for obtaining the required libraries:

1. Install ArcGIS Desktop 9.3, OR

2. Install the SDE C SDK (available on your ArcGIS Server 9.3 DVD) and set up the environment variable
described below, OR

3. Install ArcEngine and check for the environment variable described below

For options 2 or 3 you will need to set up a system environment variable as follows:

Variable Name - ARCGISHOME

Value - <ArcGIS Directory>\arcsde\

(that is, pointing to the folder that contains the bin folder which contains the SDE .dll files)

Does FME work with ArcSDE 9.2?

Yes - however the same requirements exist as described above for ArcSDE 9.3. Install a 9.2 product and ensure that
the system environment variable ARCGISHOME has been set as described above.

Does FME work with ArcSDE 9.1?

Yes. However you will need to download and install some other ESRI product with newer versions of the dlls than are
available in an ArcGIS 9.1 install. The simplest solution is to download and install ArcGIS Explorer and then add the
ARCGISHOME variable as described above.

Does an ArcGIS 9.x installation make FME compatible with ArcSDE 8.3?

Yes, but for reading features only. An FME installed along with ArcGIS 9.x libraries can, at most, only read features
from ArcSDE 8.3.

For more information see this ESRI knowledge base article.

http://support.esri.com/index.cfm?fa=knowledgebase.techArticles.articleShow&d=28928
http://support.esri.com/index.cfm?fa=knowledgebase.techArticles.articleShow&d=28928
http://support.esri.com/index.cfm?fa=knowledgebase.techArticles.articleShow&d=28928
http://support.esri.com/index.cfm?fa=knowledgebase.techArticles.articleShow&d=28928

ESRI ArcSDE Quick Facts

Format Type Identifier SDE30
SDERASTER (Reader)
SDERASTERMAP (Writer)
SDERASTERCATALOG (Writer)

Reader/Writer Both

Licensing Level l Professional for SDE30 Reader;

l ESRI for SDE30 Writer;

l Professional for SDERASTER;

l ESRI for SDERASTERMAP and
SDERASTERCATALOG

Dependencies ESRI ArcGIS Desktop

Dataset Type Database

Feature Type table name

Typical File Extensions Not applicable

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index No

Schema Required Always

Transaction Support Yes

Geometry Type Yes

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster yes

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

Raster-specific Quick Facts

Band Interpretations Red8, Red16, Green8, Green16,
Blue8, Blue16, Gray8, Gray16,
Int8, UInt8, Int16, UInt16,
Int32, UInt32, Real32, Real64

Palette Key Interpretations UInt8, UInt16

Palette Value Interpretations RGB24, RGBA32

Nodata Value Stored based on location (see
FME SDE Highlights section)

Cell Origin (x, y) 0.5, 0.5

Rotation Support No

GCP Support No

World File Support No

TAB File Support No

Notes:
Only rasters with color palettes can be written with the ArcSDE writer. Other types of palettes must either be con-
verted to color palettes or be removed or resolved to continuous rasters in order to be written.
Raster catalogs must be registered with the Geodatabase via ArcCatalog, in order for them to be viewed properly.
Unregistered raster catalogs will appear as tables.

FME SDE Highlights

The SDE reader and writer modules provide the FME with the ability to store data in and retrieve data from ESRI’s
SDE.

The SDE modules deliver the following capabilities.

l Programmatic Table Creation: Tables need not be created before a data import operation. All table creation
details are handled by the FME.

l Programmatic Index Creation: Non-spatial column indices can be specified within FME mapping files. These
indices are used to enhance the performance of the non-spatial component of searches.

l Programmatic Spatial Column and Attribute Verification: When loading data into an existing spatial data-
base, the FME verifies that the table definitions specified in the mapping file match the existing RDBMS definitions.

l Versioning Support: FME enables data to be read from a particular version of an SDE database, and also allows
data to be written to a specific version of an SDE database.

l Transaction Support: Transactions are fully supported enabling a partially complete load operation to be
resumed later, without the loss of or duplication of data.

l Attribute Query Support: SQLWHERE clauses can be specified to limit the data being exported.

l Multi-Table Query Support: The queries may combine multiple RDBMS tables thereby exploiting the full SQL
capabilities of the underlying RDBMS.

l Multiple SDE Connections: The FME is capable of having multiple SDE connections open to the same or dif-
ferent SDE databases. This may be used for selective replication between different SDE sites, for moving data from
a preparation SDE to a production SDE, or for building result sets of features frommultiple SDE databases.

l Spatial Query Support: FME exploits the spatial query capabilities of the SDE.

l Non-Spatial Table Support: Any table can be read or written to an SDE database with FME whether or not it is
spatially enabled. For example, if your SDE uses Oracle then FME can be used to read, write, or create regular
Oracle tables.

l Rejected Features’ Pipeline: Features whose geometry is rejected by SDE can be sent through an FME Pipeline
and modified so that they can be given a second opportunity to be inserted into SDE.

l Geodatabase Reading/Writing Support: Features can be read from or written to an existing feature class
located on an Enterprise Geodatabase.

l Unicode Support:With SDE 9.2 and later, FME can read from and write to text fields encoded in UTF-16.

l Fully Automatic Import and Export: FME’s SDE support provides fully automated import and export of data
through the FME’s Graphical User Interface (GUI). This is ideal for quick data imports or quick data exports.

Tip: The query support enables the data export operation to be highly focused, thereby
reducing the amount of data that is exported.

l Raster Support: Raster reading and writing can be done through FME, and includes support for multiple bands,
nodata values, mosaicking, compression and pyramiding as well as storage of data in either raster maps or raster
catalogs.

Note: Nodata values in ArcSDE raster tables are stored as locations rather than explicit values. FME maps these
nodata locations in the raster to a single, unused value within the data range using statistics calculated on the
raster band(s). Therefore, in order to retrieve nodata values from a raster table, statistics must be calculated
prior to reading from it. This can be done either through the FME ArcSDE raster writer by setting the statistics
option to ‘AUTO’, or by manually calculating statistics on the raster after it has been written using ArcGIS appli-
cations or command line tools.

The SDE modules within FME are designed to work with other SDE products. For example, a user with a simple GUI
search engine can easily identify all features satisfying a complicated query, then use FME with the SDE reader mod-
ule to process these features.

Connecting to SDE

Connecting to SDE is the same for the reader and the writer. They both use the same directives in the samemanner.
There are two possible ways to connect to SDE:

l connecting to the ArcSDE service, which in turn communicates with the underlying database (a three-tier archi-
tecture), and

l connecting to the underlying database directly (a two-tier architecture).

With a direct connection (the two-tier architecture), ArcSDE does not need to be installed and an ArcSdeServer
license is only needed if writing to the database; reading does not require a license.

Regular Connection

The connection parameters needed for a regular connection are as follows:

DATASET

Required/Optional: Required

This statement identifies the SDE database from which features are retrieved/written. In SDE, this dataset is referred
to as the DATABASE. This is required no matter what the underlying RDBMS of the SDE. Some RDBMSes, such as
Oracle, do not require a value, whereas others, such SQLServer, do. For databases that do not require the value, the
value not_used is specified by convention.

Example:

SDE30_DATASET testdset

Workbench Parameter: Source/Destination ESRI ArcSDE Dataset

SERVER

Required/Optional: Required

This statement identifies the SDE server used to read data from the dataset.

Example:

SDE30_SERVER tuvok

Workbench Parameter: Server

INSTANCE

Required/Optional: Required

The instance to which the FME is to connect. The usual value for systems with a single SDE instance is esri_sde.
The instance can also be of the form port:<port-number>.

Example:

SDE30_INSTANCE esri_sde

Workbench Parameter: Instance Name

USERID

Required/Optional: Optional if connecting in OSA mode

The user name required to access the SDE database.

If the userid and/or password are missing or not set, then the reader will try and connect with Operating System
Authentication.

Example:

SDE30_USERID ronny

Workbench Parameter: User ID

PASSWORD

Required/Optional: Optional if connecting in OSA mode

The password associated with the specified user ID.

If the userid and/or password are missing or not set, then the reader will try and connect with Operating System
Authentication.

Example:

SDE30_PASSWORD ronpassword

Workbench Parameter: Password

VERSION_NAME

Required/Optional: Optional

The SDE version to which FME connects. The version must already exist and the current user must have privileges
set so that it can access the version. If the VERSION_NAME directive is not used, then the FME attempts to connect
to SDE.DEFAULT. If there is no SDE schema, FME then attempts to connect to dbo.DEFAULT. If the name is not pre-
fixed by the owner of the version, then it is assumed that the owner is the current user. This directive is only appli-
cable when dealing with versioned tables. This directive is not available when reading/writing raster data, since
versioning is not currently supported.

Default: SDE.DEFAULT

Example:

SDE30_VERSION_NAME ron.working-version

Workbench Parameter: Version

Direct Connection

The parameters needed to make a direct connection to SDE depend on the underlying database. In order to make a
direct connection, the SDE must be of the samemajor & minor version as the client libraries with which the ArcSDE
reader/writer was built.

For example, a direct connection to an ArcSDE 9.1 instance could only be made with a reader or writer built using 9.1
libraries.

Underlying
Database

Mandatory
Directive Value

Oracle
(option 1)

DATASET Any value can be specified as the value does
not get used; however, a value must be sup-
plied.

INSTANCE sde:oracle
or
sde:oracle9i
(for 9i connections to use the right driver)

USERID <username>

PASSWORD <password>@<Oracle Net Service Name>

Oracle
(option 2)

DATASET Any value can be specified as the value does
not get used; however, a value must be sup-
plied.

INSTANCE sde:oracle:/;local=<sqlnetalias>

USERID <username>

PASSWORD <password>

MS SQL Server DATASET <database_name>

INSTANCE sde:sqlserver:<SQL Server Instance
Name>
or
sde:sqlserver:<SQL Server Instance
Name>\<Named Instance>
(for connecting to a named instance)

USERID <username>

PASSWORD <password>

DB2
(option 1)

DATASET <db alias name specified through DB2 Con-
figuration Assistant>

SERVER remote
(if client application is remote, otherwise do

Underlying
Database

Mandatory
Directive Value

not specify)

INSTANCE sde:db2

USERID <username>

PASSWORD <password>

DB2
(option 2)

DATASET Any value can be specified as the value does
not get used; however, a value must be sup-
plied.

SERVER remote
(if client application is remote, otherwise do
not specify)

INSTANCE sde:db2:<db alias name specified through
DB2 Configuration Assistant>

USERID <username>

PASSWORD <password>

Informix DATASET Any value can be specified as the value does
not get used; however, a value must be sup-
plied.

SERVER remote
(if client application is remote, otherwise do
not specify)

INSTANCE sde:informix:<odbc data source name>

USERID <username>

PASSWORD <password>

The directive VERSION_NAME can also be used to specify the version when making a direct connection.

Please refer to http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_
of_a_direct_connection_to_an_ArcSDE_geodatabase for more information on setting up the direct con-
nect environment and tips on proper usage.

Reader Overview

The SDE reader begins by starting an SDE session with the server upon which the SDE dataset resides. Once con-
nected, the SDE reader queries the SDE and passes the resulting features – that is, rows – on to the FME for proc-
essing.

When reading features from the SDE, the tables from which features are retrieved are specified in the mapping file
using the <ReaderKeyword>_IDs. An optional spatial component and WHERE clause may also be specified. If no
spatial or attribute constraints are specified, then all features from the identified table(s) are read.

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Properties_of_a_direct_connection_to_an_ArcSDE_geodatabase

The SDE reader requires that a <ReaderKeyword>_IDs statement be specified, identifying the tables from which
data is to be retrieved. If no identifiers (IDs) are specified, then no features are read from the database.

The table below summarizes the different feature retrieval modes supported by the SDE reader module for a Spatial
Retrieval search type. The next section contains an in-depth discussion of each of these keywords.

Search Keyword Suffix Description

IDs Specifies the tables from which features are to be
retrieved. If no tables are specified, then no features are
retrieved. Each ID specified may be simple or com-
pound.
A simple ID is an ID that specifies only one table.
A compound ID is one in which several tables are spec-
ified – this is not supported when reading raster data.
When a compound ID is specified, features are con-
structed by joining several tables together during the
query.
A single IDs statement consists of one or more IDs, each
of which may be simple or compound.

SEARCH_ENVELOPE Specifies the spatial extent of the feature retrieval. Only
features that have the relationship specified by SEARCH_
METHOD with the envelope are returned.
The only valid value for SEARCH_METHOD for raster fea-
tures is SDE_ENVELOPE.

SEARCH_FEATURE Specifies a feature with an arbitrary number of coor-
dinates as the search feature.Only features that have the
relationship specified by SEARCH_METHOD with the search
feature are returned.
Currently only valid for vector features.

SEARCH_METHOD_FILTER Specifies if the features returned will or will not satisfy
the spatial constraint. If FALSE is specified, then all fea-
tures returned will not satisfy the spatial constraint. If
TRUE is specified, then the features returned will satisfy
the spatial constraint. Specifying FALSE enables you to
select all features which are not contained by a feature,
for example.
Value: FALSE | TRUE

Default: TRUE

WHERE Specifies the attribute constraint that a feature must have
to be retrieved. Any valid SQLWHERE clause may be
entered here as this value is passed directly to the under-
lying RDBMS for processing.
When compound IDs are used, the WHERE clause specifies
how the tables are joined during the query.
Currently only valid for vector features.

Note: Search feature and multi-table joins are not currently supported for raster tables.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for reading vector data is SDE30, the default for reading raster data is SDERASTER.

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

Specifies whether to retrieve schemas for all the tables in the database. This directive is only applicable when gen-
erating a workspace/mapping file or when calling IFMEUnversalReader::readSchema() through FME
Objects. The type of tables returned depends on whether the SDERASTER or SDE30 reader is being used.When
using the raster reader then the raster tables are returned and when using the vector reader both vector and non-
spatial tables are returned.

Value: YES | NO

Default Value: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

Specifies whether to retrieve all the table names in the database. This directive can only be used within FME Objects
applications through IFMEUnversalReader::readSchema(). Unlike the RETRIEVE_ALL_SCHEMAS direc-
tive, the schema features contain only the feature type which represents the table name from the database. When
using the raster reader then the raster tables are returned and when using the vector reader both vector and non-
spatial tables are returned.

Value: YES | NO

Default Value: NO

PERSISTENT_CONNECTION

Required/Optional: Optional

Specifies whether to create a connection to SDE that persists and can be shared by other SDE Readers, Writers, and
SDE30QueryFactories. When set to YES, the connection will remain open until FME shuts down, even if this reader is
finished using it. Otherwise, the connection will be closed when the reader is shut down (unless another read-
er/writer/queryfactory is still using the connection).

Creating a new connection is an expensive operation. Depending on how FME is being used (that is, if there are mul-
tiple instances of the SDE Reader/Writer being used, or if the SDE30QueryFactory is being used to query/up-
date the same SDE), the performance may improve by setting this directive to YES.

Value: YES | NO

Default Value: NO

Example:

SDE30_PERSISTENT_CONNECTION YES

Workbench Parameter: Make Connection Persistent

WHERE

Required/Optional: Optional

Note: Currently only valid for vector features.

The specifiedWHERE clause is passed to the SDE for processing.WHERE clauses may be arbitrarily complex, lim-
ited only by the underlying RDBMS. TheWHERE clause may specify join operations; for example, when a retrieval
operation is frommultiple tables.

When a join operation is being performed, the FME features have all of the attributes from the various tables com-
bined into each feature. If more than one table has a column with the same name, then the feature attributes for those
columns will be qualified with the table name to ensure that each attribute is unique. If a query operation is per-
formed across multiple tables, the spatial component will only be taken from the primary table. In fact, none of the
secondary tables should have a spatial column (layer or raster column). If the primary table does not have any spatial
component, then the feature will not have any spatial component. See IDs for a description of how compound IDs are
specified.

If a table contains a layer (vector spatial column), then it is also possible to select one particular feature using the fol-
lowing WHERE clause syntax:

SE_ROW_ID = <integer>

where <integer> is some integer value and SE_ROW_ID is a virtual column provided by the SDE. Only the ‘=’
operator can be used when the query involves SE_ROW_ID. A query involving SE_ROW_ID cannot be arbitrarily
complex. It can ONLY be of the form SE_ROW_ID = <integer>.

In the event of an error, the FME will log the entire <WHERE clause>. This clause can then be debugged in the
native RDBMS.

Value: <WHERE clause>

The attribute constraint used to limit the features which are retrieved based on attribution. When theWHERE clause
references multiple tables, these tables must all be specified as a compound SDE30_ID value. See IDs for a com-
plete discussion.

Example 1:

TheWHERE clause specified below instructs the FME to retrieve features from the database for the table(s) iden-
tified by <ReaderKeyword>_IDs, and for those rows in which theNUMLANES column has a value of 2 and the
SURFACE column has a value of ‘GRAVEL’. Notice the use of the double quotes around the compoundWHERE
clause.

SDE30_WHERE “NUMLANES=2 AND SURFACE=’GRAVEL’”

Example 2:

TheWHERE clause below illustrates how to perform a join on 3 different tables named REPLICATION, DIST_
CENTER, and REPLICATION_LAYERS. Each of these tables must be specified in the associated SDE30_IDs
clause for this example to work. Again, notice the use of the double quotes around the compoundWHERE clause.
Also note the use of the continuation characters when building a longWHERE clause.

SDE30_WHERE \
“REPLICATION.REPLICATION_DATE is null AND“ \
“REPLICATION.AREA_CD = DIST_CENTER.AREA_CD AND“ \
“REPLICATION.IDENT = REPLICATION_LAYERS.IDENT AND“ \
“DIST_CENTER.TOWN_CD = ‘$(TOWN)’“

Workbench Parameter:Where Clause

REMOVE_TABLE_QUALIFIER

Required/Optional: Optional

Specifies whether to keep or remove the table name prefix. If the ArcSDE resides on a database (that is, MS SQL
Server) where a specific value for database is set, then the full name for a table is <database_name>.<owner_
name>.<table_name>. If the ArcSDE is located on a database (that is, Oracle) that does not require the database

field, then the full name of a table is <owner_name>.<table_name>. Setting this keyword to YES indicates that
the reader should return the table name without any prefixes. This is useful when:

l creating a workspace that will be passed on to another organization using the same table names,

l performing a translation to another database format but with a different user name, and

l when writing to a file-based format but not wanting the prefix in the name of the feature type.

When this keyword is set to YES during the generation of a mapping file or workspace, the source feature types will
be the table names without any prefix; otherwise, they will contain the owner name as a prefix. It is recommended
that this keyword not be changed in value after generating the mapping file/workspace as it is possible for no fea-
tures to be successfully passed onto the writer (since the writer is expecting feature types with different names).

Note that even when REMOVE_TABLE_QUALIFIER is set to YES, if the table is owned by a user other than the cur-
rent user, the <owner_name> prefix will not be dropped so that the reader will find the correct table; however, the
<database_name> prefix will still be dropped.

Value: YES | NO

Default Value: NO

Example:

SDE30_REMOVE_TABLE_QUALIFIER YES

Workbench Parameter: Remove Schema Qualifier

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

Mapping File Example:

SDERASTER_SEARCH_ENVELOPE 601190 5437839 611110 5447549

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

SEARCH_FEATURE

Required/Optional: Optional

Note: Currently only valid for vector features.

TheSEARCH_FEATURE clause provides a mechanism for specifying an arbitrarily complex search feature. The
SEARCH_FEATURE clause works with theSEARCH_METHOD clause to define the spatial constraint.

Parameter Contents

[<xCoord>

<yCoord>]+

A list of the coordinates defining the geometry of the
query feature.

Example:

The example below defines an equivalent feature to theSDE30_SEARCH_ENVELOPE example shown above
using theSDE30_SEARCH_FEATURE clause.

SDE30_SEARCH_FEATURE 601190 5437839 601190 5447549 \
611110 5447549 611110 5437839 \
601190 5437839

Workbench Parameter: Search Feature

SEARCH_METHOD

Required/Optional: Required when SEARCH_FEATURE is used

This statement specifies the type of spatial relationship the query features must have with theSEARCH_FEA-
TURE or SEARCH_ENVELOPE, whichever is used, in order to be returned.

When SEARCH_ENVELOPE is used, the default value is SDE_ENVELOPE for vector mapping files/workspaces,
SDE_AREA_INTERSECT for vector FME Objects applications, and SDE_ENVELOPE for all raster related translations.
When SEARCH_FEATURE is used, there is no default value and so this keyword must be specified.

When reading rasters,SDE_ENVELOPE is the only valid value and theSEARCH_FEATURE keyword is not sup-
ported.

Value:

The value of the search_method can be one of the following:

Parameter Contents

SDE_ENVELOPE Features must be within the envelope of the feature.

SDE_ENVELOPE_BY_GRID Features must be within the envelope of the feature and
are returned in grid order.

SDE_COMMON_POINT Features must have a point in common with the query fea-
ture.

SDE_LINE_CROSS Features must cross the query feature.

SDE_COMMON_LINE Features must have a common line segment with the
query feature.

SDE_CP_OR_LC Features must have either a common point or a line cross-
ing.

SDE_AI_OR_ET Features must intersect or must share an edge.

SDE_AREA_INTERSECT Features must intersect the query feature. This retrieves
area, linear, and point features contained in or that inter-
sect the area of the query feature.

SDE_AI_NO_ET Features must intersect but must not have any edge
touching with the query feature.

SDE_CONTAINED_IN The returned features contain the query feature. A can-
didate feature that is an area will be returned when it
encloses the query feature. If the candidate feature is a
line, then it is returned if its path is coincident with the
query feature. If the query feature is a point and the can-
didate feature is not an area, then the candidate feature
will be returned if one of its vertices is the same as the
query feature.

SDE_CONTAINS The returned feature is contained by the query feature. If
both the features are linear features, then the returned
feature must lie on the search feature’s path. Point fea-
tures that lie on a search feature vertex are also
returned.

Parameter Contents

SDE_CONTAINED_IN_NO_ET Features must be contained within the query feature and
not have any edge touching.

SDE_CONTAINS_NO_ET Features must contain the query feature but must not
share any edge.

SDE_POINT_IN_POLY Returned feature must be an area feature that contains
the first coordinate of the search feature.

SDE_IDENTICAL The returned feature must be spatially identical to the
query feature.

Example:

SDE30_SEARCH_METHOD SDE_AREA_INTERSECT

Workbench Parameter: Search Method

SEARCH_METHOD_FILTER

Required/Optional: Optional

Specifies if the features returned will or will not satisfy the spatial constraint. If FALSE is specified, then all features
returned will not satisfy the spatial constraint. If TRUE is specified, then the features returned will satisfy the spatial
constraint. Specifying FALSE enables you to select all features which are not contained by a feature.

Value: TRUE | FALSE

Default Value: TRUE

Example:

SDE30_SEARCH_METHOD_FILTER FALSE

Workbench Parameter: Search Method Filter

SEARCH_ORDER

Required/Optional: Optional

Note: Currently only valid for vector features.

Specifies the order that the underlying search is performed by the SDE.

Values:

OPTIMIZE – let SDE decide which to perform first

SPATIAL_FIRST – perform spatial query first

ATTRIBUTE_FIRST – perform tabular query first

Default Value: OPTIMIZE

Example:

SDE30_SEARCH_ORDER ATTRIBUTE_FIRST

Workbench Parameter: Search Method Order

IDs

Required/Optional: Required

This statement specifies the tables from which features are to be retrieved. There may be multipleSDE30_IDs state-
ments within a single FME mapping file, in which case the input set of tables comprises the union of all SDE30_IDs
statements. The SDE reader module only extracts features from the identified tables.

If a read operation is performing a join operation then theSDE30_IDs for the join operation are specified using a
compound ID.

Compound IDs have the following form:

SDE30_IDs A(B,C)

where the primary table in the query is A and the join operation during the read is joining with secondary tables B,
and C. Secondary tables cannot contain layers (vector spatial columns) or raster columns.

The join operation that combines the tables is specified on theSDE30_WHERE clause. See the sectionWHERE,
for a description of theSDE30_WHERE clause. The second example below illustrates how theSDE30_IDs are
specified when the reader performs a multi-table join operation. Joins are not supported when reading rasters.

The general form of SDE_IDs is the name of the tables from which features are retrived, separated with spaces:

<[table name[(sec_table[,sec_table]*)]]+>

Example 1:

For simple single table extracts, theSDE30_IDs is a list of table names as shown below, where features are read
from the tables roads, then streets. No table combine operation occurs here. Each ID is treated as a separate query
to the database.

SDE30_IDs roads streets

Example 2:

For more sophisticated queries in which join operations are desired, theSDE30_IDs has the following form. Note
that there are no spaces between tables associated with a single query – spaces are used to separate different table
identifiers. Each table identifier may be simple, as in Example 1, or compound, as in this example. The following ID
statement is the counterpart to the second example for theSDE30_WHERE clause.

SDE30_IDs REPLICATION(DIST_CENTER,REPLICATION_LAYERS)

Note: Joins are not supported when reading rasters.

ENVELOPE_QUERY_OPTIMIZATION

Required/Optional: Optional

Note: Valid only for vector features.

By default (that is, when this directive is set to NO or is not specified at all), the SDE Reader compares the envelope
query used (if an envelope query is being used) to the largest possible extents for a given layer (vector spatial col-
umn). The largest possible extents are calculated using the X, Y origin of the layer and the X,Y scale of the layer. If
the query envelope completely covers the largest possible extents for the current layer being read, then the envelope
query is ignored for the current layer.

If this directive is specified with a value of YES, then the SDE Reader compares the envelope query used (if an envel-
ope query is being used), to the extents of the layer as indicated by running the SDE administration command:

sdelayer -o describe_long -l <table name, layer name>

However, for this optimization to work, it is important that the extents of the layer are correct before running a trans-
lation. The extents can be updated using the SDE administration command:

sdelayer -o alter -l <table name, layer name> -E calc

If the extents are actually larger than currently set in SDE, running a translation may result in ignoring the query
envelope used and returning erroneous features (i.e., features that would not be within the query envelope). How-
ever, if the extents are correct and if the query envelope completely covers the extents of the current layer, it is okay
to ignore the envelope query for the current layer.

The purpose of this directive is to attempt to reduce the amount of time SDE spends executing a query on a table. One
query is performed on each table being read (a multi-table join is considered one table). The greater the number of
rows in a table, the longer a query may take.

If an envelope query is not being used, then setting this directive to either YES or NO will have no effect.

Value: YES | NO

Default Value: NO

Example:

SDE30_ENVELOPE_QUERY_OPTIMIZATION YES

CHILD_VERSION_NAME

Required/Optional: Optional

Note: This directive is only applicable on releases of ArcSDE that support versioning. It is also only valid for vector
features.

Specifies the name of a child version to create using the version specified by VERSION_NAME as the parent version.
All tables will then be read from this (child) version rather than from the parent version. All the tables read when this
keyword is specified must be multiversioned and have read, insert, update, and delete permissions with the current
user. This is because this keyword is designed to be used when checking out a copy of the data in the parent version,
with the intention that the child version will be modified and possibly reconciled and posted back to the parent ver-
sion. The version will be created as a public version and the description given to the version will be “Safe Software
Created Version”.

If CHILD_VERSION_NAME specifies a version that already exists, an error will be output. The child version will be
owned by the user specified by USERID; therefore, if the owner is specified as part of the value for this directive, the
owner must be the same as USERID. If the translation is aborted, then the child version created will be deleted. By
default, this directive is left empty and therefore no child version is created.

Note: Version names are case-sensitive and hence the value supplied for this directive is also case-sensitive.

Example:

In the example below, jim is the name of the user who will own the child version when it gets created and jim is
also the value that is currently used for the directive USERID. Specifying a different value for the user here than the
one used in USERID will cause an error. Remember that it is not necessary to prefix the child version name with the
user.

SDE30_CHILD_VERSION_NAME jim.field_edits

Workbench Parameter: Child Version Name

MAX_FEATURES

Required/Optional: Optional

When specified, determines the maximum number of features the reader is allowed to read. Setting this keyword to
zero means no limits are imposed on how many features can be read. This can be useful when it is uncertain how
many features satisfy a given query, or when you want to read all the features in a given table unless there are many
more than expected.

Value: positive integer

Default Value: 0

Example:

SDE30_MAX_FEATURES 0

Workbench Parameter: Max features to read

RASTER_PYRAMID_LEVEL_TO_READ

Required/Optional: Optional

When specified, determines the reduced resolution pyramid level to read raster data from. Zero denotes the base, full
resolution pyramid. The raster must have had pyramids built when it was written to ArcSDE, and the pyramid level
specified must be in the range of valid pyramid levels built.

Value: positive integer

Default Value: 0

Example:

SDERASTER_RASTER_PYRAMID_LEVEL_TO_READ 2

USE_UNIFIED_DATE_ATTRS

Required/Optional: Optional

Specifies whether we want to use unified date attributes, where the date and time are read into one attribute, or
whether we want to use split date attributes, where two attributes are produced, one with only the date and another
with both the date and time.

The value of this keyword should not be changed. It is automatically set to YES in new mapping files and workspaces.
To maintain backwards compability, if this keyword is not present, the reader will behave as though the keyword is
set to NO.

Value: YES | NO

Default Value: YES (in new mapping files and workspaces), NO otherwise

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Complete Reader Example

Simple Reader Example

The example below configures an SDE reader to extract features from the dataset testdset located on server
tuvok. Only features located on the table named roads, that fall within the specified envelope and have an attribute

NUMLANES with a value of 2 and an attribute SURFACE with a value of GRAVEL, are read from the SDE.

SDE30_DATASET testdset
SDE30_SERVER tuvok
SDE30_WHERE “NUMLANES=2 AND SURFACE=’GRAVEL’”
SDE30_USERID joe
SDE30_PASSWORD bounce
SDE30_INSTANCE esri_sde
SDE30_VERSION_NAME joe-version
SDE30_SEARCH_ENVELOPE 601190 543783 611110 5447549
SDE30_IDs roads
SDE30_SEARCH_METHOD SDE_AREA_INTERSECT

Multi-table Join Example

The example below shows the specification of a multi-table join being performed during reading from the SDE data-
base. The user specifies the tables upon which the query is to be performed using the SDE30_IDs clause, while the
SDE30_WHERE clause specifies how the tables are to be combined to select the features to read. Once the com-
pound ID is specified along with the WHERE clause, the features are processed as any other feature. The feature type
assigned to the feature is the name of the primary table – in this example, this is REPLICATION.

SDE30_DATASET testdset
SDE30_SERVER tuvok
SDE30_USERID joe
SDE30_PASSWORD bouncy
SDE30_INSTANCE esri_sde
SDE30_VERSION_NAME joe-version

Specify the tables upon which the table join is to be performed.
SDE30_IDs REPLICATION(DIST_CENTER,REPLICATION_LAYERS)

Now specify the WHERE clause which specifies how the three
tables above are to be combined
SDE30_WHERE \
 “REPLICATION.REPLICATION_DATE is null AND “ \
 “REPLICATION.AREA_CD = DIST_CENTER.AREA_CD AND “ \
 “REPLICATION.IDENT = REPLICATION_LAYERS.IDENT AND “ \
 “DIST_CENTER.TOWN_CD = ‘$(TOWN)’ “

Writer Overview

The SDE writer module stores FME features in an SDE database. The SDE writer module provides the following
capabilities.

l Transaction Support: The SDE writer provides transaction support that eases the data loading process. Occa-
sionally, a data load operation terminates prematurely due to data difficulties. The transaction support provides a
mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The SDE writer module uses the information within the FME mapping file/workspace to auto-
matically create SDE tables as needed. If the tables will be storing geometry, then feature classes, raster maps, or
raster catalogs can be created.

l Table Validation: When data is loaded into an existing table, the SDE writer module performs validation oper-
ations between the layer or raster column definition in the mapping file and that within the SDE. All discrepancies
found are logged. All critical discrepancies result in the data load operation being halted.

l Versioning Support: The SDE writer provides versioning support that allows users to modify data to existing
tables without affecting what other viewers see in their own versions of the SDE database. Note: Not currently
supported for raster tables.

l Geometry Demotion: Demotes incorrect polygons to linear shapes if there are data problems, but the data is to
be loaded “as is” into the SDE.

l Non-Homogeneous Aggregate Loading: Provides the ability to load non-homogeneous aggregates into SDE lay-
ers by splitting the aggregates into several homogeneous aggregates.

l Non-spatial Index Creation: The SDE writer module can also define non-spatial indices. Indices are specified
to increase the performance of searches having a non-spatial component.

l Update Capability: The SDE writer module enables features to be updated in SDE through the use of specified
keys and theUPDATE mode of operation. If area replacement of features is desired, this can also be accom-
plished by combining the capabilities of the SDE writer with the SDE30QueryFactory. Note: Updating is the
only way to add data to a raster map table, and is referred to as mosaicking.

l Rejected Features’ Pipeline: Features initially rejected by SDE can be sent through an FME Pipeline where
changes can be made to the feature so that it can be accepted by SDE on its second attempt.

l Geodatabase Writing Support: Features can be written to an existing feature class located on an Enterprise Geo-
database.

Writer Directives

This section describes the keywords the SDE writer module recognizes. Each of the keywords is prefixed by the cur-
rent <WriterKeyword>_ when they are placed in a mapping file. By default, the <WriterKeyword> for writ-
ing vector data is SDE30, the default for writing rastermap data is SDERASTERMAP, and the default for writing
raster catalog data is SDERASTERCATALOG.

RECONCILE_AND_POST

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

This directive determines which changes to reconcile between the child version (i.e., the version specified by the con-
nection-related directive VERSION_NAME) and its parent version. Conflicts must be resolved manually using ESRI
ArcGIS. Valid values are INSERTS, UPDATES, DELETES, and ALL. More than one value can be specified as long as
each value is separated by a space. A post of the child version to its parent will be automatically performed when ALL
is specified, or when INSERTS, UPDATES, and DELETES are all specified. Upon successfully posting the child
version to its parent, whether or not the child version is deleted is dependent upon the value of the DELETE_
CHILD_AFTER_RECONCILE_AND_POST directive. The directive is also used to determine whether the child ver-
sion is deleted when it is identical to its parent version, in which case no reconciliation or posting is needed.

The post will be performed automatically when ALL or INSERTS, UPDATES, and DELETES is specified. If an error
occurs during the post phase, then all changes made during both the reconcile and post phases will be rolled back.

Value: Any combination of INSERTS, UPDATES, DELETES, and ALL. Each value must be separated by a space.

l INSERTS – features inserted in the parent version

l UPDATES – features updated in the parent version

l DELETES – features deleted in the parent version

l ALL – encompasses INSERTS, UPDATES, and DELETES.

Example:

In the example below, all the updates and deletes made to the child version will be reconciled with the parent version.
If a conflict occurs, then none of the reconciled changes will be saved. If INSERTS was also specified, then a post
back to the parent version would also occur, but since neither it nor ALL is specified, only a reconciliation will be per-
formed.

SDE30_RECONCILE_AND_POST UPDATES DELETES

Workbench Parameter: Reconcile and Post

TABLES_TO_RECONCILE

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

This optional statement specifies a list of tables (separated by spaces) which should be reconciled. Using this direc-
tive, it is possible to use an ArcSDE writer just to reconcile and post changes (i.e., not to write features). It is also pos-
sible to specify additional tables to reconcile that were not written to during the current translation. This directive
only gets used if the directive RECONCILE_AND_POST is specified. If no tables are specified (and RECONCILE_
AND_POST is specified), then only the tables written to during the translation will be reconciled. If no tables were
written to during the translation, then no tables will be reconciled.

Value: <[table name]*> separated by spaces. If a table is owned by a different user, then the table namemust be
prefixed by the owner.

Example:

SDE30_TABLES_TO_RECONCILE countries rivers cities

Workbench Parameter: Tables to Reconcile

DELETE_CHILD_AFTER_RECONCILE_AND_POST

Required/Optional: Required

Note: Valid only for vector features. Not supported for raster tables.

This directive determines whether to delete the child version following a reconcile and post, including the case where
the child and parent version are identical. A value of ‘YES’ will delete the child version, while a value of ‘NO’ will leave
it intact. The default value is ‘YES’.

Value: YES or NO.

Example:

In the example below, the child version will not be deleted after the reconcile and post operation completes.

SDE30_DELETE_CHILD_AFTER_RECONCILE_AND_POST NO

Workbench Parameter: Delete child state following reconcile and post

TRANSACTION

Required/Optional: Optional

This statement instructs the SDE writer module to use transactions when loading data into the SDE. The SDE writer
does not write any features to the SDE until the feature is reached that belongs to <last successful trans-
action> + 1. Specifying a value of 0 causes the SDE writer to use transactions and to write every feature to the
SDE. Normally, the value specified is zero – a non-zero value is only specified when a data load operation is being
rerun.

If the SDE30_TRANSACTION statement is not specified, then transactions are not used during the data load oper-
ation.

Value: <last successful transaction>

The transaction number of the last successful transaction. When loading data for the first time, set this value to 0.

Example:

SDE30_TRANSACTION 0

Workbench Parameter: Last Successful Transaction

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs FME about the number of features to be placed in each transaction before a transaction is com-
mitted to the database. When set to VARIABLE the SDE writer checks each feature for the fme_db_trans-
action attribute, for which there are 4 valid values:

l COMMIT_BEFORE - The current transaction is committed before writing the feature.

l COMMIT_AFTER - The current transaction is committed immediately after writing the feature.

l ROLLBACK_AFTER - The current transaction is rolled back immediately after writing the feature.

l IGNORE - The feature is written and no transaction handling occurs.

When the attribute is not found on the feature, then a value of IGNORE is assumed.

If the SDE30_TRANSACTION_INTERVAL statement is not specified, then a value of 100 is used as the trans-
action interval.

Value: <transaction_interval>

Either the number of features in a single transaction, or the value VARIABLE.

Default value: 100

WARNING: If the SDE30_TRANSACTION statement is not specified, then transactions are not used during the data
load operation, even if the SDE30_TRANSACTION_INTERVAL is specified.

Example:

SDE30_TRANSACTION_INTERVAL 50

Workbench Parameter: Features to Write Per Transaction

STRICT_LOAD

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

This statement instructs FME to be very strict when loading spatial data from a feature into the SDE. When FME
encounters a feature whose geometry cannot be converted into an SDE shape allowed by the layer (vector spatial col-
umn) for which it is destined, FME terminates the data load, logs the feature, and aborts the current transaction. In
comparison to the CONTINUE_TRANSLATION_BAD_DATA directive, STRICT_LOAD is very limited in the type of
errors that it can ignore. Use CONTINUE_TRANSLATION_BAD_DATA when it is desirable to ignore the majority
of errors that may occur during a data load.

Value: YES | NO

Default Value: NO

Example:

SDE30_STRICT_LOAD YES

Workbench Parameter: Strict SDE Load

FORCE_IN_AGGREGATES

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

This statement instructs FME to make an extra effort to store multi-part polygon shapes (aggregates of polygons) into
the SDE. When placed in this mode, the FME breaks apart aggregates that, according to the SDE, contain both poly-
gons and lines, and attempt to store them as two feature aggregates. This is designed to assist with the loading of
multi-part polygonal data in which some of the polygons are non-compliant with SDE’s definition of a polygon.

To use this mode effectively, you must ensure that any polygonal layer (vector spatial column) for which this is appli-
cable also allows for the storage of multi-part lines.

Value: YES | NO

Default Value: NO

Workbench Parameter: Force In Aggregates

DEFAULT_Z_VALUE

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

The value to be used for the z coordinate when a 2D feature is forced to become 3D because the layer (vector spatial
column) is defined as being 3D. The z value specified for this directive must be larger than the z origin.

Value: any real number

Default Value: 0

Example:

SDE30_DEFAULT_Z_VALUE 52.3

Workbench Parameter: Default Z Value

LEAVE_LAYER_EXTENTS

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

By default, FME updates the layer (vector spatial column) extents when loading data into the SDE. This directive tells
the FME not to perform this processing, thereby leaving the layer extent untouched.

Value: YES | NO

Default Value: NO

Example:

SDE30_LEAVE_LAYER_EXTENTS NO

Workbench Parameter: Leave Layer Extents

SPLIT_DONUTS

Required/Optional: Optional

Note: Valid only for vector features. Not supported for raster tables.

This directive is used when donut polygons are not to be stored as donuts, but rather simple polygons. When set to
YES donut polygons are not stored in the SDE.

Value: YES | NO

Default Value: NO

Example:

SDE30_SPLIT_DONUTS NO

Workbench Parameter: Store Donuts as Polygons

CONTINUE_TRANSLATION_BAD_DATA

Required/Optional: Optional

This statement instructs the SDE writer to continue a translation even when an error occurs while attempting to load
the data (the error may or may not be related to the data). A warning message will be output for each feature that
could not be written to the SDE. The warning message will explain what went wrong. This directive is useful when try-
ing to load bad data. Many more errors can be ignored using this directive than by using STRICT_LOAD. The
STRICT_LOAD directive pertains only to converting geometry (from a feature) into an SDE shape to be written to a
layer (vector spatial column).

When set to ROLLBACK_THEN_CONTINUE, if a feature fails to be written then the current transaction will be rolled
back rather than committed when it comes time to commit the transaction. This means that none of the features in the
rolled back transaction will be written to SDE. The translation will continue regardless of the error encountered.
Transactions must be used when this value is specified. When used in conjunction with the REJECTED_PIPE-
LINE_DIRECTORY keyword, if a feature returned from a pipeline fails to be written then the current transaction
will be rolled back instead of committed.

If set to YES and transactions are being used, all transactions will be committed; however, failed features will not be
written to SDE.

Value: YES | NO | ROLLBACK_THEN_CONTINUE

Default Value: NO

Example:

SDE30_CONTINUE_TRANSLATION_BAD_DATA ROLLBACK_THEN_CONTINUE

Workbench Parameter: Skip Bad Data

REJECTED_PIPELINE_DIRECTORY

Required/Optional: Optional

This statement instructs the FME where to find the pipeline file(s) to be used. A pipeline is used when a failure occurs
in writing a feature. When this statement is specified and there was an error in writing a feature, the writer first
attempts to open a pipeline specific to the current table. The writer looks for a file called <tableName>_pipe-
line.fmi in the directory specified by this statement. If the file is not found, then the writer looks for a default pipe-
line called default_pipeline.fmi in the same directory. If neither of these files are found, then the translation
is stopped.

If a pipeline file is found, then an FME pipeline is created using all the factories from the file. The pipeline can do
almost anything a regular FME pipeline can do. However, only the first feature from the pipeline is retrieved. If the
pipeline does not return any feature, then the writer does not insert into SDE the row that corresponds to the feature.
At the present time, the feature is recorded as written in the statistics portion of the FME log, whether or not it was
actually inserted into SDE.

If this directive is used with the CONTINUE_TRANSLATION_BAD_DATA directive set to YES or ROLLBACK_
THEN_CONTINUE, and a feature is returned from the pipeline, then if the returned feature causes an error while
being written to the SDE it will not cause the translation to stop. Rather a warning message, explaining why the fea-
ture couldn’t be written, will be logged and the translation will continue. If ROLLBACK_THEN_CONTINUE was spec-
ified, the current transaction will be rolled back instead of committed when it comes time to commit the transaction.

If this statement is not specified, then no pipeline will be created by the writer for features rejected by SDE. A pipe-
line is only created if this statement is specified and a failure occurs in writing a feature

Value: The absolute or relative path of a directory containing pipeline files. If a relative path and the command line
FME are used, then the path is relative to the location where FME is called from. If a relative path and the Universal
Translator are used, then the path is relative to the location of the mapping file. If the path contains spaces in it, the
path should be double-quoted.

Example:

SDE30_REJECTED_PIPELINE_DIRECTORY c:\sde\pipelines

Workbench Parameter: Rejected Pipeline Directory

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This statement instructs the FME as to the type of mode in which it is to operate. If the value specified is INSERT,
then the features being written to the database are not checked to see if duplicate key values are in the database. This
is useful when loading new data into the SDE.

When the WRITER_MODE directive is set to UPDATE, the writer will check to see if the attribute fme_db_operation
exists on the feature. If the attribute is set to INSERT, the feature will be inserted; if the value is UPDATE, the fea-
ture will be updated; and if the value is DELETE, the feature will be deleted. If the attribute is set to any other value,
the translation will be aborted and an error message logged. This functionality is designed to be used on tables that
have an ArcSDE-maintained column, although it will also work on tables containing a spatial column.

If the writer mode is UPDATE and the attribute fme_db_operation is set to UPDATE or is not found on the fea-
ture, then the configuration parameter SDE_UPDATE_FIELDS (specified on a SDE30_DEF line) can be used to
identify which features to update (it is never used for deleting features). It will only be needed if the table does not
contain an ArcSDE-maintained (object ID) column and the table does not have a spatial column; however, if it is spec-
ified, then it will get used. If the configuration parameter SDE_UPDATE_FIELDS is specified, then the selected col-
umns will make up a key. To avoid updating multiple features all at once, the user is responsible for ensuring that the
specified key uniquely identifies a single feature within the SDE database. By using the RDBMS indices appropriately,
the user should also ensure that a table scan of the underlying database will not result from each feature update oper-
ation.

If the SDE30_WRITER_MODE statement is not specified, then INSERTmode is used.

Writing a Raster Map

When writing a raster map to a table in SDE, the writer mode functions in a slightly different manner. INSERTmode
inserts the raster into the table, overwriting any data that already pre-existed. UPDATEmode specifies that the
writer is to mosaic the raster data to the pre-existing data, thereby updating the single row in the table. Raster cat-
alogs may be inserted and updated to in a similar manner as vector data.

In order to perform a successful update, several conditions must be met by all the raster data that is to be mosaicked:
the coordinate systems must be the same, the pixel depth must be the same, and the raster data itself must be either
palette colored or continuous (they cannot be mixed). There is also a requirement for cell size and alignment to be the
same, but the SDE writer will correct for these automatically, so they need not be altered. There is also no need to
alter the writer mode when mosaicking, since the writer will automatically detect and correct this based on whether
or not the data is pre-existing, in order not to overwrite it. The only way to overwrite existing raster data in a raster
map is to set either the SDE_DROP_TABLE or the SDE_TRUNCATE_TABLE flag to YES.

Value: INSERT | UPDATE | DELETE

Default Value: INSERT

Example:

SDE30_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

BUFFERED_WRITES

Required/Optional: Optional

When specified, the buffered writing of the SDE is used which dramatically decreases the load time of data into the
SDE.

Value: YES | NO

Default Value: NO

Example:

SDE30_BUFFERED_WRITES YES

Workbench Parameter: Use Buffered Writes

MAX_OPEN_TABLES

Required/Optional: Optional

Specifies the maximum number of streams that can be open simultaneously. Each stream writes to a particular table
and so this directive determines the maximum number of tables that can be open and written to simultaneously. If
this directive is not specified, or is given the value 0, then the SDE writer will set the maximum number of streams
open simultaneously to 4 less than the number specified by MAXSTREAMS in giomgr.defs.

Value: The maximum number of tables that can be open simultaneously

Example:

SDE30_MAX_OPEN_TABLES 30

Workbench Parameter: Maximum Num of Open Tables

ADD_LAYERS_TO_EXISTING_TABLES

Required/Optional: Optional

Specifies whether and existing business table within ArcSDE should have a layer (vector spatial column) added to it.
To be eligible for this schemamodification, the first feature written to the table must contain vector geometry.

Value: YES | NO

Default Value: YES

Example:

SDE30_ADD_LAYERS_TO_EXISTING_TABLES NO

Workbench Parameter: Add Layers to Existing Tables

INTEGER_OVERRIDE_DEFINITION

Required/Optional: Optional

Specifies a definition to use for all integer column types when creating new tables. Any of the allowed FME attribute
types for the ArcSDE Writer can be used as values for this directive. Additionally, the following can also be used:
number(<width>) or number(<width>, <decimal>). By default, this directive is not set, and so integer
columns are stored using the C language long integer data type.

Values:

l any allowed FME attribute types for the ArcSDE writer

l number(<width>) or number(<width>, <decimal>)

Example:

In the example here, the ArcSDE database will use char(30) instead of integer as the type for all integer col-
umns.

SDE30_INTEGER_OVERRIDE_DEFINITION char(30)

Workbench Parameter: Integer Definition

Writing to an Enterprise Geodatabase

The SDE Writer is capable of writing features to an existing feature class that is located on an Enterprise Geo-
database. However, portions of the SDE30_DEF line must match the definition of the existing feature class. The fol-
lowing configuration parameters must match the existing definition:

1. SDE_LAYER

2. SDE_DIMENSION

3. SDE_CAD

4. SDE_MEASURED

5. SDE_ANNOTATED

All other configuration parameters do not need to be correct, and they will be ignored. Additionally, the non-spatial
columns in the feature class do not need to be defined on the SDE30_DEF line.

FME Raster Features

FME raster features represent raster data and use several concepts that are unlike those used in the handling of vec-
tor data. SeeAbout FME Rasters.

SDE supports rasters with an arbitrary number of bands, provided all bands are the same data type and no band has
a palette. SDE also supports rasters with a single band that has a palette.

SDE Table Representation

When reading from SDE, it is not necessary that the source tables be defined. This is also true when writing to exist-
ing tables. However, if the SDE writer is going to create the tables, then definitions must be supplied. This is true
even when the table already exists but the SDE_DROP_TABLE parameter has been set to Yes. Within FME mapping
files, SDE tables are defined using the <WriterKeyword>_DEF statement, whereas within Workbench they are
defined by adding destination feature types.

When creating new tables, it is important to understand that the decision for which type of table to create is not
based on the DEF line itself but rather the first feature written to the table. This means that if the first feature con-
tains no geometry, then a business table (no spatial columns) will be created; if the first feature contains vector
geometry, then a feature class (business table + layer) will be created; and if the first feature contains raster geome-
try, either a raster map or raster catalog will be created. The purpose of the DEF line is to specify what the table looks
like.

If the table already exists in the database (and the user is not deleting it using the SDE_DROP_TABLE parameter)
then its schema will not be altered. The only exception to this is when the first feature, within a translation, written to
a pre-existing business table contains vector geometry and the directive ADD_LAYERS_TO_EXISTING_TABLES
is set to Yes or is not specified. In this case a layer will be added to the business table. The addition of the layer turns
the business table into a feature class. If the SDERASTERMAP writer is used to write to an existing raster catalog, or
the SDERASTERCATALOG writer is used to write to an existing rastermap, the translation will fail.

To define a simple table with no spatial or raster column using FME, the definition is in this form:

<WriterKeyword>_DEF <tableName> \
[<columnName> <columndef>]*

A more general format of a table definition – in which a spatial column, along with attribute indices can be defined – is
given here.

<WriterKeyword>_DEF <tableName> \
[<columnName> <columndef>] * \
[[SDE_INDEX <indexName> \

SDE_INDEX_CONFIG <configKeyword> \
SDE_COLUMN_NAME <columnName>[,<columnName>]* \
SDE_UNIQUE <TRUE|FALSE|YES|NO> \
SDE_SORT_ORDER ASCEND|DESCEND

] * \
[SDE_UPDATE_FIELDS <columnName> [,<columnName>]* \
[SDE_STORAGE_TYPE <SDE_BINARY|WKB|SQL|NORMALIZED>]
SDE_LAYER <spatialColumnName> \
[SDE_COORD_SYS_ID <coordSysID#>] \
[SDE_COORD_SYS_DESCRIPTION <description>] \

[SDE_PRECISION <32 | 64>] \
SDE_GRID{0} <grid0size> \
[SDE_GRID{1} <grid1size>] \
[SDE_GRID{2} <grid2size>] \
SDE_DIMENSION < 2 | 3 > \
[SDE_CONFIG_KEYWORD <configKeyword>] \
SDE_MEASURED < Yes | No > \
SDE_ANNOTATED < Yes | No > \
SDE_AREA < Yes | No > \
SDE_LINE < Yes | No > \
SDE_POINT < Yes | No > \
SDE_SIMPLE_LINE < Yes | No > \
SDE_NIL < Yes | No > \
SDE_MULTIPART < Yes | No > \
SDE_CAD < Yes | No > \
SDE_DROP_TABLE < Yes | No > \
SDE_TRUNCATE_TABLE < Yes | No > \
SDE_XORIGIN <minimum_x> \
SDE_YORIGIN <minimum_y> \
SDE_SCALE <scale> \
SDE_ZORIGIN <minimum_y> \
SDE_ZSCALE <scale> \
SDE_MEASURED_ORIGIN <minimum_y> \
SDE_MEASURED_SCALE <scale> \
SDE_TOLERANCE <tolerance> \
SDE_MEASURED_TOLERANCE <tolerance> \
SDE_ZTOLERANCE <tolerance> \
[SDE_DESCRIPTION <layer description>] \
[SDE_MINIMUM_FID <minimumFidNumber>]

]

Another form of the general format of a table definition includes the definition of a raster column. An example is given
here for a raster map.

Note: During creation of a new rastermap table, the writer will create a reserved ArcSDE column called NAME. This
additional column will be created and populated with the value ESRI_SDERASTERDATASET. For raster catalogs, this
column is optional, and populated by default with the value of the fme_basename attribute for each row in the
table.

<WriterKeyword>_DEF <tableName> \
[<columnName> <columndef>] * \

[SDE_COORD_SYS_ID <coordSysID#>] \
[SDE_COORD_SYS_DESCRIPTION <description>] \
[SDE_CONFIG_KEYWORD <configKeyword>] \

SDE_RASTER <rasterColumnName> \
[SDE_COMPRESS_TYPE < NONE | LZ77 | JPEG | JPEG2000>] \
[SDE_PYRAMID_INTERPOLATION< NONE | NEAREST_NEIGHBOR |

BILINEAR | BICUBIC >] \
[SDE_PYRAMID_LEVEL_TYPE < NONE | AUTO | CUSTOM >] \
[SDE_PYRAMID_MAX_LEVEL <maxLevel>] \
[SDE_RASTER_STATS_TYPE < NONE | AUTO >] \
[SDE_DESCRIPTION <raster description>] \
[SDE_DROP_TABLE < Yes | No > \] \
[SDE_TRUNCATE_TABLE < Yes | No > \] \
[SDE_COMPRESS_COLORMAP < Yes | No > \] \
[SDE_RASTER_MOSAIC_MODE <NONE | MERGE | DELETE>]

The table definition for a raster catalog includes additional parameters for creating the spatial (footprint) column.

Note: If a table definition is given for a table that does not yet exist and the only column defined in the definition is
the spatial or raster column, then the writer will create an object ID column maintained by ArcSDE called
OBJECTID. This additional column will be created because ArcSDE does not allow tables to contain only a spa-
tial/raster column.

<WriterKeyword>_DEF <tableName> \
[<columnName> <columndef>] * \

[SDE_COORD_SYS_ID <coordSysID#>] \
[SDE_COORD_SYS_DESCRIPTION <description>] \
[SDE_CONFIG_KEYWORD <configKeyword>] \

SDE_RASTER <rasterColumnName> \
[SDE_COMPRESS_TYPE < NONE | LZ77 | JPEG | JPEG2000>] \
[SDE_PYRAMID_INTERPOLATION< NONE | NEAREST_NEIGHBOR |

BILINEAR | BICUBIC >] \
[SDE_PYRAMID_LEVEL_TYPE < NONE | AUTO | CUSTOM >] \
[SDE_PYRAMID_MAX_LEVEL <maxLevel>] \
[SDE_RASTER_STATS_TYPE < NONE | AUTO >] \
[SDE_DESCRIPTION <raster description>] \
[SDE_MINIMUM_FID <minimumFidNumber>] \
[SDE_DROP_TABLE < Yes | No > \] \
[SDE_TRUNCATE_TABLE < Yes | No > \] \
[SDE_XORIGIN <minimum_x>] \
[SDE_YORIGIN <minimum_y>] \
[SDE_SCALE <scale>]

<tableName>

This specifies the name of the SDE table being defined by theSDE30_DEF statement. The namemust conform to
the conventions and restrictions of the underlying RDBMS database.

The following example shows the first portion of the definition for a table named roads.

SDE30_DEF roads . . .

Attribute Definitions

This section of theSDE30_DEF statement defines the attributes for a table. A table must have at least one attribute.

l The <attribute name> specified within the FME mapping file must obey the following rules:

l Attribute Names must be in uppercase.

l Attribute Names must obey all length and character restrictions of the SDE.

l The <attribute definition> defines the type and optionality of the attribute, and has the following form:

<attribute type>,(optional|required)

l The supported attribute types are listed in the following table.

FME Attribute Type

smallint

integer

float

double

char(n)

blob

date

guid

The directive optional or required immediately follows the attribute type and indicates if the attribute is required. If
nothing is specified, then the value defaults to optional.

The following example creates a required attribute called NUMOFLANES which is an integer type.

NUMOFLANES integer,required

smallint

This type is used to represent 16-bit integer values.

integer

This type is used to represent 32-bit integer values.

float

This type is used to represent 32-bit float values.

double

This type is used to represent 64-bit integer values

char(n)

This type is used to represent character values with a length not exceeding n characters. With SDE 9.2 and later, the
char(n) column maps to a unicode column encoded in UTF-16 if the DBTUNE parameter UNICODE_STRING is set to
TRUE or is not present.

blob

This is used to store arbitrary binary data in the SDE. See@Reformat and @File in the FME Functions, Factories and
Transformers manual for a description of the@Reformat and@File functions, and for information on how to load
and retrieve data into a blob attribute.

With the use of blob types coupled with@System and@File it is possible to store any arbitrary data with an SDE
feature. If a feature has sound, video, images, or documents, or all of the above, they can be zipped up to form a com-
pact package using@System. Next,@File can be used to load the zip file into an attribute of the SDE. The contents
are then loaded directly in the database for later retrieval.

date

This is used to store and retrieve date information to the SDE.

When a date field is read by the SDE, two attributes are set in the FME feature. The first attribute has the name of the
database column, and its value is of the formYYYYMMDD. This is compatible with all other FME dates.

The second attribute has a suffix of .full and is of the formYYYYMMDDHHMMSS. It specifies the date and the
time, with the time portion specified using the 24-hour clock.

For example, if a date field called UPDATE_DATE is read, the following attributes will be set in the retrieved FME
feature:

UPDATE_DATE =’19980820’
UPDATE_DATE.full=’19980820201543’

When writing to the SDE, the writer looks for both attributes. Either may be in the formYYYYMMDD or
YYYYMMDDHHMMSS. If both attributes are specified, then the value specified in UPDATE_DATE.full is used.

guid

This type is used to represent Globally Unique Identifiers (GUIDs), which are stored as text strings of length 36
within FME. The format of a GUID is 8 hexadecimal digits followed by a hyphen, then three groups of 4 hexadecimal
digits, each followed by a hyphen, and then 12 hexadecimal digits. Note that { and } braces found at the beginning
and end of the GUID are removed by the Reader and added on by the Writer if not present.

When writing to a required GUID field, the Writer will automatically generate a GUID if no value is supplied for it on
the feature.

Example:

414EF035-DCDF-4DAD-96DA-E86C0DA661B2

SDE_INDEX <indexName>

This section of theSDE30_DEF line defines one or more non-spatial index columns. Non-spatial column indices are
used to increase the performance of the non-spatial component of queries.

Each index definition is identified by a unique name and has the components shown in the following table.

Parameter Contents

SDE_INDEX_CONFIG The configuration keyword that describes the storage
characteristics of the index tables. Example value is
DEFAULTS.

SDE_COLUMN_NAME A comma-separated list of the columns that make up
the index.

SDE_UNIQUE A flag to indicate if the index values are unique or not.
Acceptable values are N or Y.

SDE_SORT_ORDER The sort order of the index. Indicates whether the
index returns the records in ascending or descending
order. Acceptable values are ASCEND or DESCEND.

The following example defines an index called countryCapital. The index is ascending and is not unique. The index is
built on the columns COUNTRY and CAPITAL. The index table storage characteristics are taken from the
dbtune.sde file entries defined byDEFAULTS.

SDE_INDEX countryCapital \
SDE_INDEX_CONFIG DEFAULTS \
SDE_COLUMN_NAME COUNTRY,CAPITAL \
SDE_UNIQUE N \
SDE_SORT_ORDER ASCEND \

Configuration Parameters

There are a number of configuration parameters in theSDE30_DEF line that are used to define spatial column char-
acteristics. They are described in the following table.

Note: The values populated in the settings box set values for configuration parameters.

Parameter Contents

SDE_LAYER This defines the name of the spatial column within the
table being defined. The spatial column is the column that
contains the geometry of the feature.
The following example gives the spatial column a name of
SHAPE.
 SDE_LAYER SHAPE
It is recommended that SHAPE be used as the name.

SDE_PRECISION This optional field specifies whether to set the precision to
32-bit or 64-bit. If not specified in a workspace/mapping
file, then it will be set to 32-bit; however, all newly created
workspaces/mapping files specify this field and set it to 64-
bit. When writing to ArcSDE 8.x or older, 32-bit precision

Parameter Contents

will automatically get used since 64-bit support was added
in ArcSDE 9.0.

SDE_COORD_SYS_ID This optional field specifies the coordinate system of the
spatial column. This is only used during the initial creation
of a spatial column. The value is an integer value that cor-
responds to one of the predefined coordinate systems spec-
ified in ESRI’s Projection Engine documentation which is
shipped with every SDE 30.
Either SDE_COORD_SYS_ID or SDE_COORD_SYS_DESCRIP-
TION can be specified, but not both.
If it is not specified, then the coordinate system will taken
from the first feature written to each table.

SDE_COORD_SYS_
DESCRIPTION

This optional field specifies the coordinate system of the
spatial column. This approach enables the entire projection
to be specified using a description as defined in the ESRI
Projection Engine documentation that is shipped with every
SDE 30.
As mentioned above, you specify either SDE_COORD_SYS_
ID or SDE_COORD_SYS_DESCRIPTION, but not both.
If it is not specified, then the coordinate system will taken
from the first feature written to each table.

SDE_GRID{0} This is specified as part of a spatial column definition. It
gives the size of the spatial index in the coordinate system
of the layer (vector spatial column).
When set to -1, a spatial index will not be created. This is
useful when a valid spatial index is not known. It also
improves the speed of writing features.
After the translation, the “Calculate Default Spatial Grid
Index” tool (from ArcToolbox > Data Management Tools >
Feature Class) can be used to calculate a valid spatial
index. When Grid{0} is set to -1, level 2 & 3 grids do not
get built even though the values for these levels get stored
with the layer information.
The following example defines the grid size of 200:
 SDE_GRID{0} 200

SDE_GRID{1} This optional parameter defines the level 2 grid element
size. This is not needed for the majority of spatial columns.
If specified, this must be at least 3 times the size of SDE_
Grid{0}.
If it is not desired, then either the value should not be spec-
ified or it should be given a value of 0.
The following example defines a grid size of 600 for level 1

Parameter Contents

grid:
 SDE_GRID{1} 600

SDE_GRID{2} This optional parameter defines the level 3 grid element
size. This level grid is rarely required. If specified, this
must be at least 3 times the SDE_GRID{1}.
If it is not desired, then either the value should not be spec-
ified or it should be given a value of 0.
The following example defines a grid size of 4000 for the
level 2 grid:
 SDE_GRID{2} 4000

SDE_DIMENSION The SDE requires that all features within a feature class
have the same dimension. This parameter defines the
dimension of the layer (vector spatial column). Currently,
the dimension can be either 2 or 3.
The example below defines the layer to have a dimension
of 2:
 SDE_DIMENSION 2

SDE_UPDATE_FIELDS The list of field names that are used by the SDE Writer
when it is operating in UPDATE mode. If the table is either
registered as multi-versioned or contains a spatial column,
then this configuration parameter is optional. In general,
this should identify a unique feature but can also be used to
update multiple features if desired.
The following example sets the update fields to be country
and capital:
 SDE_UPDATE_FIELDS COUNTRY,CAPITAL

SDE_XORIGIN The minimum x value of the spatial column being defined.
No coordinate values can be less than the value specified
here.
For raster catalogs, this value should be calculated from
the lower left corner of the lower-leftmost raster to be
added to the catalog. If the value is unspecified, the foot-
print column will not be created; however, the footprint col-
umn will automatically be created when the table is
registered with Geodatabase.
The example below defines the lower extent of a spatial col-
umn to be -180:
 SDE_XORIGIN -180

SDE_YORIGIN The minimum y value of the spatial column being defined.
No coordinate values can be less than the value specified
here.
For raster catalogs, this value should be calculated from

Parameter Contents

the lower left corner of the lower-leftmost raster to be
added to the catalog. If the value is unspecified, the foot-
print column will not be created; however, the footprint col-
umn will automatically be created when the table is
registered with Geodatabase.
The example below defines the lower extent of a spatial col-
umn to be -90:
 SDE_YORIGIN -90

SDE_SCALE The scale of the spatial column. This defines the number of
units per user coordinate stored within the spatial column.
For raster catalogs, if this value is unspecified, the foot-
print column will not be created; however, the footprint col-
umn will automatically be created when the table is
registered with Geodatabase.
The example below defines the scale to be 100:
 SDE_SCALE 100

This is equivalent to 2 decimal places to the right of the dec-
imal in user coordinates.

SDE_ZORIGIN The minimum z value stored within the spatial column.
The example below defines the minimum z value to be 0:
 SDE_ZORIGIN 0

SDE_ZSCALE The scale of the spatial column z coordinate. This defines
the number of units per user coordinate stored within the
spatial column.
The example below defines the z scale to be 100:
 SDE_ZSCALE 100

This is equivalent to 2 decimal places to the right of the dec-
imal in user coordinates.

SDE_MEASURED_ORIGIN The minimum measure value that is stored within the spa-
tial column.
The example below defines the minimum measure value to
be 0:
 SDE_MEASURED_ORIGIN 0

SDE_MEASURED_SCALE The scale of the spatial column measured value. This
defines the number of units per user coordinate that are
stored within the spatial column.
The example below defines the measured scale to be 100:
 SDE_MEASURED_SCALE 100

This is equivalent to 2 decimal places to the right of the dec-
imal in user coordinates.

Parameter Contents

SDE_DESCRIPTION The description of the spatial column, which is just free
text.
 SDE_DESCRIPTION RoadWork

SDE_MINIMUM_FID The minimum feature ID assigned to shapes stored in the
layer (vector spatial column). When the SDE stores shapes
in a table, each shape is given an ID number that is unique
throughout the table. If not specified, then the Feature ID
starts at 1 for each spatial column.
The only time this value needs to be specified is when
tricks are being performed using the underlying RDBMS in
which you want the Feature ID to be unique through a set
of tables rather than throughout a single table.
The example below results in the feature IDs starting at
100000 for the table upon which the statement is specified:
 SDE_MINIMUM_FID 100000

SDE_CONFIG_KEYWORD The SDE configuration keyword specifies the storage
parameters for the layer (vector spatial column) or raster
column.
Note that in releases before ArcGIS 9.3, the configuration
keyword specified must be present in the $SD-
EHOME/etc/dbtune.sde file.
If not specified, the keyword DEFAULTS will be used.

For more information, search parameter name-con-
figuration string pairs in ESRI ArcGIS Server help files.

The example below uses a configuration keyword of TEST:
 SDE_CONFIG_KEYWORD TEST

SDE_MEASURED Y – The spatial column allows measures to be specified on
each coordinate of the features.
N – The spatial column does not allow measures.

SDE_ANNOTATED Y – The spatial column allows annotation to be specified.
N – The spatial column does not allow annotations.

SDE_AREA Y – The spatial column allows area features to be stored.
N – The spatial column does not allow area features to be
stored.

SDE_LINE Y – The spatial column allows linear features to be stored.
Line features are those linear features that may touch or
cross over themselves.
N – The spatial column does not allow linear features to be
stored.

Parameter Contents

SDE_POINT Y – The spatial column allows point features to be stored.
N – The spatial column does not allow points.

SDE_SIMPLE_LINE Y – The spatial column allows simple lines to be stored.
Simple lines are lines that do not touch or cross over them-
selves.
N – The spatial column does not allow simple lines.

SDE_NIL Y – The spatial column allows NIL features to be stored.
NIL features are features that have a shape object with no
coordinates.
N – The spatial column does not allow NIL features.

SDE_MULTIPART Y – The spatial column allows features that have multiple
parts. Multi-part features must be homogeneous. That is,
all parts must be either area, linear, or point within a sin-
gle feature.
N – The spatial column does not allow features which have
multiple parts.

SDE_CAD Y – The layer (vector spatial column) allows CAD data to be
stored with it. This is for CAD client layers. FME is not capa-
ble of storing data in the CAD blob associated with the
layer.
N – The layer does not allow CAD data.

SDE_STORAGE_TYPE SDE_BINARY – the feature geometry for the layer (vector
spatial column) is stored in SDE binary mode. This is the
default and the only type that is supported for SDE 3.x.
WKB – the feature geometry for the layer is stored in SDE
using the OGC Well Known Binary form. ArcSDE 8.x only.
SQL – Stored as SQL or well known text format. ArcSDE 8.x
only.
NORMALIZED – Normalized format (used for Oracle Spatial
Only). ArcSDE8.x only.

SDE_DROP_TABLE Specifies that the SDE writer drop the table before writing,
and create a new one. For raster tables, the associated
raster column and band information tables will be dropped
as well. If the table does not exist, it will be created when
the data is written. The writer expects that the general
table type (i.e. raster, feature class/vector, business/non-
spatial) of the new table will be the same as the table being
deleted, with the exception of business tables where it is
possible to delete a business table but create a feature
class.
The following example sets the drop table flag to false.

Parameter Contents

 SDE_DROP_TABLE NO

Default: NO
Values: YES |NO

SDE_TRUNCATE_TABLE Specifies that the SDE writer truncate the table before writ-
ing. For raster tables, the associated raster column and
band information tables will be truncated as well. If the
table does not exist, it will be created when the data is
written.
The following example sets the truncate table flag to false.
 SDE_TRUNCATE_TABLE NO

Default: NO
Values: YES |NO

SDE_TOLERANCE The cluster tolerance of the XY values in the spatial col-
umn. This value represents an extremely small distance
used to resolve inexact intersection locations of coor-
dinates during clustering operations. The XY tolerance is
the minimum distance allowed between XY coordinates
before they are considered equal. It is used in clustering
operations such as topology validation, buffer generation,
polygon overlay and for some editing operations. Tol-
erance is only valid for ArcSDE 9.2 and newer tables, and
is not used for raster data. If a tolerance value is not spec-
ified, a default value will be used based on a conversion of
0.001 meters in the unit of the source coordinate system.

The example below defines the xy tolerance to be 0.001:
 SDE_TOLERANCE 0.001

SDE_MEASURED_TOLERANCE The cluster tolerance of the measured values in the spatial
column. This value represents an extremely small distance
used to resolve inexact intersection locations of coor-
dinates during clustering operations. The measured tol-
erance is the minimum distance allowed between M values
before they are considered equal. It is used in clustering
operations such as topology validation, buffer generation,
polygon overlay and for some editing operations. Tol-
erance is only valid for ArcSDE 9.2 and newer tables, and
is not used for raster data. If a tolerance value is not spec-
ified, a default value will be used based on a conversion of
0.001 meters in the unit of the source coordinate system.

The example below defines the measured tolerance to be
0.001:
 SDE_MEASURED_TOLERANCE 0.001

Parameter Contents

SDE_ZTOLERANCE The cluster tolerance of the Z values in the spatial column.
This value represents an extremely small distance used to
resolve inexact intersection locations of coordinates during
clustering operations. The Z tolerance is the minimum dis-
tance allowed between Z values before they are considered
equal. It is used in clustering operations such as topology
validation, buffer generation, polygon overlay and for
some editing operations. Tolerance is only valid for ArcSDE
9.2 and newer tables, and is not used for raster data. If a
tolerance value is not specified, a default value will be
used based on a conversion of 0.001 meters in the unit of
the source coordinate system.

The example below defines the Z tolerance to be 0.001:
 SDE_ZTOLERANCE 0.001

SDE_RASTER This defines the name of the raster column within the table
being defined. The raster column is the column that defines
the geometry of the table as raster and contains the geome-
try of the features in the table. If a table definition has both
a spatial and a raster column, the spatial column will be
ignored.
The following example gives the raster column a name of
RASTER.
 SDE_RASTER RASTER

It is recommended that RASTER be used as the name.

SDE_COMPRESS_TYPE This defines the type of compression to for the raster table
being defined.
The following example gives the raster column a com-
pression type of LZ77.
 SDE_COMPRESS_TYPE LZ77

Default: NONE
Values: NONE | LZ77 | JPEG | JPEG2000

Note: LZ77 is the only valid compression option for images
with a colormap. Also, JPEG2000 compression is only avail-
able for servers running SDE version 9.0 or later, and on
rasters with an 8-bit pixel depth and no colormap.

SDE_PYRAMID_INTER-
POLATION

This defines the interpolation type of pyramid creation for
the table being defined.
The following example gives the raster column a pyramid
interpolation type NEAREST_NEIGHBOR.
 SDE_PYRAMID_INTERPOLATION NEAREST_NEIGHBOR

Default: NONE

Parameter Contents

Values: NONE | NEAREST_NEIGHBOR | BILINEAR | BICU-
BIC

Note: A value of NONE disables pyramid creation and dis-
regards the other pyramid settings.Also note that nearest
neighbor is the only valid pyramid setting for classified
raster data.

SDE_PYRAMID_LEVEL_TYPE This defines the way the maximum pyramid level is set for
the raster table being defined.
The following example gives the raster column sets a max-
imum pyramid level to be automatically calculated.
 SDE_PYRAMID_LEVEL_TYPE AUTO

Default: NONE
Values: NONE | AUTO | CUSTOM

Note: A value of NONE disables pyramid creation and dis-
regards the other pyramid settings.

SDE_PYRAMID_MAX_LEVEL This defines the maximum pyramid level to be created for
the table being defined.
The following example gives the raster column sets a max-
imum pyramid level to be automatically calculated.
 SDE_PYRAMID_MAX_LEVEL AUTO

Note: This setting is only used if the pyramid level type is
set to the value CUSTOM.

SDE_RASTER_STATS_TYPE This defines the type of statistics calculation for the raster
table being defined.
The following example gives the user automatic deter-
mination of a statistics calculation function.
 SDE_RASTER_STATS_TYPE AUTO

Default: NONE
Values: NONE | AUTO

Note: A value of NONE turns statistics calculation off for
this table.

SDE_RASTER_MOSAIC_
MODE

Specifies the mosaic mode that will be used when mosaick-
ing data to an SDE rastermap. The default is MERGE. A
value of NONE means that new data will completely replace
existing raster data, and no mosaic is applied. MERGE
causes the data to be mosaicked, replacing existing pixel
values with new pixel values where they overlap, and leav-
ing all other data untouched. The nodata values in the exist-
ing raster are not altered. DELETE mode does not mosaic
any new data, but rather has the sole purpose of deleting
data in the existing raster. This is accomplished by deleting
pixel data where the new raster overlaps the existing
raster and the value for that pixel location in the new

Parameter Contents

raster is nodata. MERGE and DELETE modes are ignored on
insert, and are only valid for a mosaic operation.
The following example sets the mosaic mode to merge.
 SDE_RASTER_MOSAIC_MODE MERGE

Default: MERGE
Values: NONE | MERGE | DELETE
Note: The DELETE mode is only supported by ArcSDE ver-
sion 9.0 and later.

SDE_RASTER_COMPRESS_
COLORMAP

This is used with palette colored rasters written to a raster
map in SDE. It specifies whether the colormap is to be com-
pressed or untouched. Compressing a colormap will
remove any invalid entries, and possibly make future
mosaic operations to the same table faster and less likely
to approximate colors.
The following example sets the compress colormap flag to
true:
 SDE_RASTER_COMPRESS_COLORMAP YES

Default: YES
Values: YES | NO

Example of a Feature Class Definition

A typical SDE30 definition looks like this:

SDE30_DEF WORLD \
SDE_LAYER WORLD_GEOM \
SDE_GRID{0} 1000000 \
SDE_DIMENSION 2 \
SDE_CONFIG_KEYWORD DEFAULTS \
SDE_MEASURED Y \
SDE_ANNOTATED Y \
SDE_AREA Y \
SDE_LINE Y \
SDE_POINT Y \
SDE_SIMPLE_LINE Y \
SDE_NIL Y \
SDE_MULTIPART Y \
SDE_XORIGIN -19000000 \
SDE_YORIGIN -19000000 \
SDE_SCALE 10 \
SDE_ZORIGIN 0 \
SDE_ZSCALE 1 \
SDE_MEASURED_ORIGIN 0 \
SDE_MEASURED_SCALE 1 \
SDE_TOLERANCE 0.0004 \
SDE_MEASURED_TOLERANCE \
SDE_ZTOLERANCE \
SDE_INDEX countryCapital \

SDE_INDEX_CONFIG DEFAULTS \
SDE_COLUMN_NAME COUNTRY,CAPITAL \
SDE_UNIQUE N \
SDE_SORT_ORDER ASCEND \

COUNTRY char(3) \

CAPITAL char(30) \
SDE_UPDATE_FIELDS COUNTRY,CAPITAL

Example of a Raster Column Definition

A typical SDERASTERMAP definition looks like this:

SDERASTERMAP_DEF WORLD
SDE_DROP_TABLE Y \
SDE_TRUNCATE_TABLE N \
SDE_CONFIG_KEYWORD DEFAULTS \
SDE_RASTER RASTER \
SDE_COMPRESS_TYPE LZ77 \
SDE_PYRAMID_INTERPOLATION NONE \
SDE_PYRAMID_LEVEL_TYPE NONE \
SDE_PYRAMID_MAX_LEVEL 0 \
SDE_RASTER_STATS_TYPE AUTO \
SDE_RASTER_COMPRESS_COLORMAP Y \

SDE_RASTER_MOSAIC_MODE MERGE

And an SDERASTERCATALOG definition might look like this:

SDERASTERCATALOG_DEF WORLD \
SDE_DROP_TABLE N \
SDE_TRUNCATE_TABLE N \
SDE_CONFIG_KEYWORD DEFAULTS \
SDE_RASTER RASTER \
SDE_COMPRESS_TYPE LZ77 \
SDE_PYRAMID_INTERPOLATION NONE \
SDE_PYRAMID_LEVEL_TYPE NONE \
SDE_PYRAMID_MAX_LEVEL 0 \
SDE_RASTER_STATS_TYPE AUTO \
SDE_RASTER_COMPRESS_COLORMAP Y \

SDE_XORIGIN -400000 \
SDE_YORIGIN-400000 \
SDE_SCALE 1000000

Using Versioning with the SDE Reader, Writer, and QueryFactory

Database states will be created by FME only when updating/inserting/deleting from a versioned table/feature class.
Therefore, only the SDE writer or an SDE30QueryFactory in DELETE or UPDATEmode is able to create a data-
base state.

The SDE reader and the SDE30QueryFactory in QUERYmode will never create a database state. All changes
made during a single translation to a specific version (on the same SDE), even if they were made by different
SDE30QueryFactories or different SDE writers, are placed into one (and the same) child state. Versioning must
be used when updating/inserting/deleting from a versioned table/feature class. If versioning is not used in these
cases, than an “Insufficient permissions” error will be generated and the translation stopped.

Note: Versioning is not currently supported for raster data.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

sde30_type The type of geometric entity stored within the feature.
The valid values are listed below:
sde30_point

Attribute Name Contents

sde30_nil
sde30_line
sde30_area
sde30_circle
sde30_ellipse
sde30_simple_line
sde30_raster

sde30_measures This is present for features that have measures when
reading. To write measures, you simply build this list
with one value for each vertex in the feature being
written. This is a comma separated list of floating
values which correspond to the vertex measures. The
first value is for the first vertex, second for the second
and so on.

SE_ROW_ID For tables that are spatially enabled with vector data,
this is the value for the internal SDE row number as
defined by SDE.

Features read from, or written to, the SDE also have an attribute for each column in the database table.

Points

sde30_type: sde30_point

Features with this value are point features or a multi-part feature consisting of points. This is used by both the reader
and the writer.

NIL Coordinates

sde30_type: sde30_nil

Features with this value are features or multi-part features consisting of no coordinates. This is used by both the
reader and the writer.

Lines

sde30_type: sde30_line

Features with this value are features or multi-part features consisting of linear features. This type of linear feature is
allowed to touch or cross over itself. This is used by both the reader and the writer.

Simple Lines

sde30_type: sde30_simple_line

Features with this value are features or multi-part features consisting of linear shapes. This type of linear feature is
not allowed to touch or cross over itself. This is used by both the reader and the writer.

Areas

sde30_type: sde30_area

Features with this value are features or multi-part features consisting of area shapes. An area shape is a shape that
forms either a polygon or a donut polygon.

Circles

sde30_type: sde30_circle

Features with this value are point features with the point specifying the centre of the circle. The rest of the circle is
described using the following attributes.

Attribute Name Contents

sde30_radius The radius of the circle.

sde30_num_points The number of points to use when creating the circle.

Features of this type are only used by the writer for reasons of convenience and are stored in the SDE as polygons.
When read, they come out as area features tagged with sde30_type of sde30_area.

Ellipse

sde30_type: sde30_ellipse

Features with this value are point features with the point specifying the centre of the ellipse. An area shape is a shape
that forms either a polygon or a donut polygon.

Attribute Name Contents

sde30_major_axis The major axis of the ellipse.

sde30_minor_axis The minor axis of the ellipse.

sde30_num_points The number of points to use when creating the ellipse.

sde30_rotation The angle of the ellipse given in degrees measured
counterclockwise from horizontal.

Features of this type are only used by the writer for reasons of convenience and are stored in the SDE as polygons.
When read, they come out as area features tagged with sde30_type of sde30_area.

Rasters

sde30_type: sde30_raster

Raster features are stored in SDE as either raster maps or rows in raster catalogs. Raster maps are always read as
one feature, whereas each row in a raster catalog is read as a separate raster feature.

Attribute Name Contents

sde30_raster_compression Overrides the value of the table level parameter SDE_
COMPRESS_TYPE, on a feature-by-feature basis.This
attribute is only used for raster catalogs, and will be
ignored if specified on features to be added to a raster
map.

sde30_raster_pyramid_
interp_type

Overrides the value of the table level parameter SDE_
PYRAMID_INTERPOLATION, on a feature-by-feature
basis.This attribute is only used for raster catalogs,
and will be ignored if specified on features to be added
to a raster map.

Attribute Name Contents

sde30_raster_pyramid_
level_type

Overrides the value of the table level parameter SDE_
PYRAMID_LEVEL_TYPE, on a feature-by-feature
basis.This attribute is only used for raster catalogs,
and will be ignored if specified on features to be added
to a raster map.

sde30_raster_pyramid_max_
level

Overrides the value of the table level parameter SDE_
PYRAMID_MAX_LEVEL, on a feature-by-feature
basis.This attribute is only used for raster catalogs,
and will be ignored if specified on features to be added
to a raster map.

sde30_raster_stats_type Overrides the value of the table level parameter SDE_
RASTER_STATS_TYPE, on a feature-by-feature
basis.This attribute is only used for raster catalogs,
and will be ignored if specified on features to be added
to a raster map.

sde30_raster_mosaic_mode Overrides the value of the table level parameter SDE_
RASTER_MOSAIC_MODE, on a feature-by-feature
basis.This attribute is only used for raster maps, and
will be ignored if specified on features to be added to a
raster catalog.

Annotation

The SDE30 enables annotation information to be attached to any feature within its database. Unlike other systems
where text or annotations are standalone features, in the SDE30 annotation is an optional part of any feature. It
should be noted that annotations can only be stored in spatial columns where annotation is permitted.

The following attributes are used to store the annotation information within an FME feature. If the sde30_text_string
is specified and no location or position information is stipulated, then the text_string is placed at the first coordinate
of the associated feature and given a rotation of 0.

Attribute Name Contents

sde30_text_string The annotation string.

sde30_text_size The size of the text in user units.
Default:1.0

sde30_text_gap_ratio The gap between the characters in the text.
Default0.0

sde30_text_level The annotation level.
Default:1

sde30_text_x_offset The x coordinate of the first point of the annotation off-
set.
Default0.0

Attribute Name Contents

sde30_text_y_offset The y coordinate of the first point of the annotation off-
set.
Default:0.0

sde30_text_symbol The annotation symbol number.
Default:1

sde30_text_x The location of the text when the text is placed with a
single point. This is used in conjunction with sde30_
rotation. If not specified, then the first point of the
associated shape is used.

sde30_text_y The location of the text when the text is placed with a
single point. This is used in conjunction with sde30_
rotation. If not specified, then the first point of the
associated shape is used.

sde30_text_z The location of the text when it is placed with a single
point. This is used in conjunction with sde30_
rotation. If not specified, then the first point of the
associated shape is used.

sde30_text_x_location An array of x coordinates that define the placement
shape for the annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_location, sde30_
text_y_location and sde30_text_z_location
(optional)

sde30_text_y_location An array of y coordinates that defines the placement
shape for the annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_location, sde30_
text_y_location and sde30_text_z_location
(optional)

sde30_text_z_location An array of z coordinates that defines the placement
shape for the annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_location, sde30_
text_y_location and sde30_text_z_location
(optional)

sde30_text_x_leader An array of x coordinates that defines the leader line
for the shape annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_leader, sde30_text_
y_leader and sde30_text_z_leader (optional)

Attribute Name Contents

sde30_text_y_leader An array of y coordinates that defines the leader line
for the shape annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_leader, sde30_text_
y_leader and sde30_text_z_leader (optional)

sde30_text_z_leader An array of z coordinates that defines the leader line
for the shape annotation. The same number of coor-
dinates must be specified in the following comma-sep-
arated arrays: sde30_text_x_leader, sde30_text_
y_leader and sde30_text_z_leader (optional)

sde30_rotation The rotation of the annotation measured from the hor-
izontal in a counterclockwise direction. This is only
used when the annotation location is specified using
sde30_text_x, sde30_text_y, and sde30_text_z.
Default:0

sde30_justification The justification of the text relative to its offset point.
Range:sde30_upper_left |
sde30_upper_center |
sde30_upper_right |
sde30_center_left |
sde30_center_center|
sde30_center_right |
sde30_lower_left |
sde30_lower_center |
sde30_lower_right
Default:sde30_lower_left

Troubleshooting

Connecting to ArcSDE

Problems sometimes arise when attempting to connect to an ArcSDE database. This is almost always due to a mis-
configuration in the user’s environment.

l Ensure you have configured the services file so that the port number specified for the SDE instance you are con-
necting to matches that of the server.

Transactional Version

You cannot browse for Transactional Versions (or Tables) in the Parameters box if:

1. Multiple SDE instances have been installed in the database,

2. The instance you are connecting to is not the default SDE instance,

3. You are not connecting as the user that owns the instance, or

4. You have not manually entered a valid Transactional Version.

In that case, you must manually enter the name of a valid Transactional Version before proceeding. It will normally be
“<owning username>.DEFAULT”.

Miscellaneous
l It is not possible to write to an ArcSDE business table with one column when it is a blob column. The table must
have an additional column as well.

ESRI Geodatabase Reader/Writer

Note: To use FME’s ESRI Geodatabase Reader/Writer, you must also install ArcGIS® Desktop.

The Geodatabase reader and writer modules allow FME to store data in and retrieve data from ESRI’s Geodatabase.
Support is provided for translating several aspects of a Geodatabase, and with the size of ESRI’s ArcObjects, further
expansion of the reader/writer will almost certainly continue to cover more diverse aspects of the format.

Geodatabase Quick Facts

Format Type Identifier l GEODATABASE_SDE (ArcSDE)
l GEODATABASE_MDB (Access)
l GEODATABASE_FILE (File-
based)

l GEODATABASE_SDE_RASTER_
DATASET (ArcSDE)

l GEODATABASE_FILE_RASTER_
DATASET (File-based)

Reader/Writer Both

Licensing Level l File: Base
l File Raster: Professional
l MDB: Base
l SDE: ESRI Edition
l SDE Raster: ESRI Edition

Dependencies ArcGIS Desktop

Dataset Type l Database (ArcSDE)
l File (Access)
l Directory (File-based)

Feature Type Feature Class name

Typical File Extensions l for Personal Geodatabase: .mdb
, .accdb

l for File-based Geodatabase:
.gdb

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Always

Schema Required Yes

Transaction Support Yes

Enhanced Geometry Yes

Geometry Type geodb_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster yes

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none yes

Overview

The Geodatabase reader and writer translates several different types of features:

l table-level metadata

l reading and writing of geometric features such as points, multipoints, polylines, and polygons

l reading and writing of non-spatial table data

l reading and writing of annotations, including leader lines and feature-linked annotations

l reading and writing of dimensions

l reading and writing of geometric network features, including simple junctions, complex junctions (reading only),
simple edges and complex edges

l reading and writing of relationships, including attributed relationships

l reading and writing of raster data

l reading and writing of multipatch features, including textured surfaces

The Geodatabase modules also provide the following capabilities:

l Programmatic Table Creation: Tables need not be created before a data import operation. All table creation details
are handled by the FME.

l Transaction Support: Transactions are fully supported, enabling a partially complete load of operation to be
resumed later, without the loss or duplication of data.

l Update/Delete Support: In addition to appending features, the Geodatabase writer provides the ability to update
and delete existing features in the Geodatabase.

l Attribute Query Support: SQL WHERE clauses can be specified to limit the data being exported.

l Spatial Query Support: FME exploits the spatial query capabilities of Geodatabase using both search envelopes and
search features with a multitude of filtering options. This allows greater control to translate only the relevant spa-
tial data.

l Non-Spatial Table Support: Any table can be read or written to a Geodatabase with FME, whether or not it contains
spatial data. The FME can read, write, and create regular RDBMS tables (such as those in Oracle) in Geodatabase.

l Versioning Support: FME enables data to be read from a particular transactional version or historical marker of an
Enterprise Geodatabase, and also allows data to be written to a specific transactional version of an Enterprise Geo-
database.

l Enhanced Geometry Model Support: Both the Geodatabase Reader and Writer support the enhanced geometry
model. The addition of enhanced geometry model support allows lines and polygons containing arcs to be main-
tained, rather than stroked.

l Fully Automatic Import and Export: The FME’s Geodatabase support provides fully automated import and export of
data through the FME’s Graphical User Interface (GUI). This is ideal for quick data imports and exports.

l Mapping File Customization: The FME’s ability to generate mapping files for user customization allows greater and
more precise control over Geodatabase translations.

l Unicode Support: Geodatabase text columns are stored in the UTF-16 encoding. FME can read and write this data.

l Archiving Support: The Geodatabase reader can retrieve archived data from a table that has archiving enabled,
through the use of a WHERE clause constrained by the gdb_from_date and gdb_to_date attributes.

Conceptual Diagram of Geodatabase

Below is a simplified diagram of some of the objects within Geodatabase. Labels describe the relationship between
objects.

Reader Overview

The Geodatabase reader begins by opening the Geodatabase dataset that resides within a server/file system. Once
opened, the Geodatabase reader queries the Geodatabase and passes the resulting features – that is, rows – on to
the FME for processing. Every feature that is read is tagged with its original integer object ID (this is the object ID
Geodatabase assigns it) under the attribute name geodb_oid.

Unlike other formats supported by FME, the Geodatabase reader has several different reader types to account for file-
and enterprise-based datasets, as well as vector and raster. When reading from an Enterprise Geodatabase, the
<ReaderType> is GEODATABASE_SDE or GEODATABASE_SDE_RASTER_DATASET, when reading from a Personal
Geodatabase (an MS Access file), the <ReaderType> is GEODATABASE_MDB, and when reading from a File-based
Geodatabase (a directory ending in .gdb), the <ReaderType> is GEODATABASE_FILE or GEODATABASE_FILE_
RASTER_DATASET. By default, the <ReaderKeyword> is the same as the <ReaderType>.

When reading features from the Geodatabase, the tables from which features are retrieved are specified in the map-
ping file using the <ReaderKeyword>_IDs.

The Geodatabase reader uses the <ReaderKeyword>_IDs statement to identify the tables from which data is to be
retrieved. If no identifiers (IDs) are specified and no DEF lines are specified and the Enterprise Geodatabase reader is
used, then no features are read from the database. However, if no identifiers (IDs) are specified and no DEF lines are
specified and the Personal Geodatabase or File-based Geodatabase reader is used, then all features are read from the
database.

The table below summarizes the different feature retrieval modes supported by the Geodatabase reader module. The
word table refers to both non-spatial tables and feature classes. However, feature class applies only to feature
classes and not tables. The next section contains a detailed description of each directive.

Search Type Search Directive
Suffix Description

Non-Spatial and
Spatial
Retrieval

IDs Specifies the tables from which features are
to be retrieved. If no tables are specified
and the Personal Geodatabase or File-based
Geodatabase reader is being used then all
features are retrieved. If no tables are spec-
ified and the Enterprise Geodatabase reader
is being used then no features are retrieved.

WHERE Specifies the attribute constraint that a fea-
ture must have to be retrieved. The where
clause follows the SQL syntax of the under-
lying database, except that ORDER BY,
GROUP BY, nested queries, and aggregate
functions (i.e. MAX, COUNT) cannot be used.

Search Type Search Directive
Suffix Description

Spatial
Retrieval

SEARCH_ENVELOPE Specifies the spatial extent of the feature
retrieval. Only features that have the rela-
tionship specified by SEARCH_METHOD with
the envelope are returned. This cannot be
specified at the same time as a SEARCH_
FEATURE is specified.

SEARCH_FEATURE Specifies a feature with an arbitrary number
of coordinates as the search feature.Only fea-
tures that have the relationship specified by
SEARCH_METHOD with the search feature
are returned. This cannot be specified at the
same time as a SEARCH_ENVELOPE is spec-
ified. Also, when specifying the search_fea-
ture, make sure it has a simple geometry. If
it does not have a simple geometry, then its
geometry is always simplified by the Geo-
database reader.

Reader Directives – Geodatabase Feature Classes

This section describes the directives that are recognized by the Core Geodatabase reader module.

Each directive is prefixed by the current <ReaderKeyword>_ when placed in a mapping file. Unless otherwise spec-
ified, the <ReaderKeyword> for the Geodatabase reader is the same as the <ReaderType>.

The following directives are used by all Geodatabase types when reading feature classes, and are not applicable to
raster datasets.

FEATURE_READ_MODE

Required/Optional: Optional

This directive provides the ability to read table-level metadata when set to Metadata. In this mode, the reader outputs
one feature per feature type. The geodb_type of the feature is geodb_metadata and the entire XML metadata doc-
ument belonging to the Geodatabase table is found in the attribute geodb_metadata_string. Where applicable, the fol-
lowing attributes are also supplied: fme_feature_identifier which indicates the name of the object ID field, fme_num_
entries (personal geodb only) which indicates the number of features in the table, fme_contains_spatial_column
which indicates whether the table has a geometry column (i.e. in ESRI ArcGIS terms, whether the table is a feature
class), fme_geometry{0} which indicates the types of geometry the feature class contains, fme_dimension which
indicates whether the feature class is 2D or 3D. If the table is a feature class, the geometry of the metadata feature
returned is a polygon, representing the extents of the feature class and the coordinate system of the feature class
also gets set on the feature. When reading metadata, the IDs and DEF keywords are used to determine which feature
types should have metadata read from them.

When set to Features, the reader outputs features stored within tables.

Parameter: <feature_read_mode>

Values: Features | Metadata

Default Value: Features

Workbench Parameter: Feature Read Mode

Example:

GEODATABASE_SDE_FEATURE_READ_MODE Metadata

WHERE

Required/Optional: Optional

An SQL-like (determined by the underlying database) WHERE clause that selects only certain records for extraction
from the Geodatabase.

The specified WHERE clause is passed to the Geodatabase for processing. The WHERE clause can be almost like an
SQL clause (using the syntax supported by the underlying database) except that ORDER BY, GROUP BY, nested que-
ries, and aggregate functions (i.e. MAX, COUNT) cannot be used.

This WHERE clause applies to all tables retrieved. For more specific queries, see the Reader directive DEF.

Workbench Parameter:Where Clause

Example:

The WHERE clause specified below instructs the FME to retrieve features from the Geodatabase for the tables that are
listed on the <ReaderKeyword>_IDs lines (unless no _IDs lines are specified in which case all tables are examined).
The features retrieved must have for their ObjectID a value greater than 10 and their City attribute must be Vancouver.

GEODATABASE_SDE_WHERE ObjectID > 10 AND \
City =‘Vancouver’

DEF

Required/Optional: Optional

Describes tables. Normally these lines are automatically generated within a mapping file using FME. When reading
from an Enterprise Geodatabase, the table names on the DEF lines may be prefixed by the user ID of the person who
created the table, followed by a period (for example, <userid>.<tablename>). The only table names that must be pre-
fixed by a user ID are those tables that were not created using your own user ID. However, you may still not be able to
access another person’s tables if your user ID doesn't have the correct privileges.

This directive is usually automatically generated while generating a mapping file for a specific Geodatabase, but there
is one way it can be customized. An automatically generated DEF might look like this:

GEODATABASE_MDB_DEF IndexGrid \
geodb_type geodb_polyline \
GEODB_OID integer \
OBJECTID integer \
Entity char(254) \
Handle char(254) \
Layer char(254) \
Color integer \
Linetype char(254) \
Elevation double \
Thickness double \
SHAPE_Length double

Note: The returned feature types will match the table names on the DEFs exactly (including the character case). As
a result, if the DEF’s table name was IndexGrid (with no owner prefix) then the feature type of the returned fea-
tures would also be IndexGrid. If the DEF’s table name was sde.IndexGrid then the feature type would be sde.I-
ndexGrid.

Customizing Reader DEF Lines

With already generated and working DEF lines, a WHERE clause can be added just like a normal attribute on a DEF
line above, except that instead of the type (such as double), the value will be an SQL WHERE clause. This clause
MUST be in double quotation marks ("") and must conform to the same restrictions as the WHERE clause directive
listed above. In addition, the clause cannot be continued on to the next line so a continuation character (\) cannot
appear in the middle of the clause.

Example:

The WHERE clause specified below instructs the FME to retrieve features from the feature class IndexGrid with the
constraint that the Color value must be 5. Note that the WHERE clause is case-sensitive, and can appear on any line.

GEODATABASE_MDB_DEF IndexGrid \
geodb_type geodb_polyline \
GEODB_OID integer \
OBJECTID integer \
Entity char(254) \
Layer char(254) \

Color integer \
Linetype char(254) \
Elevation double \
Thickness double \

WHERE "Color = 5" \
SHAPE_Length double

Workbench Parameter: <WorkbenchParameter>

IDs

Required/Optional: Optional

This statement specifies the tables from which features are to be retrieved. There may be multiple GEODATABASE_
<SDE|MDB|FILE>_IDs statements within a single FME mapping file, in which case the input set of tables comprises
the union of all GEODATABASE_<SDE|MDB|FILE>_IDs statements. The Geodatabase reader module only extracts fea-
tures from the identified tables. If no GEODATABASE_<SDE|MDB|FILE>_IDs lines appear in the mapping file, then all
tables with DEF lines will be used as the input set. If the Personal Geodatabase or File-based Geodatabase reader is
being used and there are no DEF lines and no IDs, then all the tables will be read. If the Enterprise Geodatabase
reader is being used and there are no DEF lines and no IDs, then no tables will be read. (This behavior is different
from reading Personal and File-based Geodatabases.)

The returned feature types will match the IDs exactly (including the character case). As a result, if the IDs was tab-
leOne (with no owner prefix) then the feature type would also be tableOne. If the IDs was sde.tableOne then the fea-
ture type would be sde.tableOne.

Parameter: <[table name]+>

Note: The table namemust be exactly the same as it appears on the DEF line. For Enterprise Geodatabases, the
tables on the DEF line may be prefixed by the user ID and a period (for example, <userid>.). If this is the case,
then corresponding tables on the IDs line must also be prefixed by the username and a period.

Workbench Parameter: Feature Types to Read

Enterprise Geodatabase Example:

As shown below, the GEODATABASE_SDE_IDs is a list of table names. In the example, features are read from the table
roads, and then from the table streets. Both tables are owned by a user named jacob. Each ID is treated as a separate
query to the database. In this example, the assumption is made that the DEF lines for these tables also contain the
user ID and a period. If this was not the case, then no tables would be found because the table names on the IDs line
would not match up with the table names on the DEF lines, even though they may be referring to the same table.

GEODATABASE_SDE_IDs jacob.roads jacob.streets

Personal and File-based Geodatabase Example:

As shown below, the GEODATABASE_<MDB|FILE>_IDs is a list of table names. In the example, features are read from
the table roads, and then from the table streets. Each ID is treated as a separate query to the database. Reading from a
File-based Geodatabase would look exactly the same except that the reader directive GEODATABASE_MDBwould be
replaced with GEODATABASE_FILE.

GEODATABASE_MDB_IDs roads streets

SEARCH_ENVELOPE

Required/Optional: Optional

Specifies a rectangular area to be used in conjunction with the SEARCH_METHOD directive for extraction of spatial fea-
tures. This cannot be specified at the same time as a SEARCH_FEATURE is specified.

Parameters:

<min-x>

The minimum x coordinate in the coordinate system of the feature(s) being retrieved.

<min-y>

The minimum y coordinate in the coordinate system of the feature(s) being retrieved.

<max-x>

The maximum x coordinate in the coordinate system of the feature(s) being retrieved.

<max-y>

The maximum y coordinate in the coordinate system of the feature(s) being retrieved.

Workbench Parameter: Minimum X, Minimum Y, Maximum X, Maximum Y

Example:

GEODATABASE_MDB_SEARCH_ENVELOPE 6190 57239 6310 57549

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

SEARCH_FEATURE

Required/Optional: Optional

The SEARCH_FEATURE clause provides a mechanism for specifying an arbitrarily complex search feature. The
SEARCH_FEATURE clause works with the SEARCH_METHOD clause to define the spatial constraint, but cannot be
specified at the same time as a SEARCH_ENVELOPE is specified.

Note: It is recommended you use a simplified search feature. If you don’t, the reader will simplify the search fea-
ture and this could produce unexpected results.

Parameter: [<xCoord> <yCoord>]+ (A list of the coordinates defining the geometry of the query geometry.)

Workbench Parameter: Search Feature

Example:

The example below defines an equivalent geometry to the GEODATABASE_MDB_SEARCH_ENVELOPE example shown
above using the GEODATABASE_<SDE|MDB|FILE>_SEARCH_FEATURE clause.

GEODATABASE_SDE_SEARCH_FEATURE 6190 57239 6190 57549 \
6310 57549 6310 57239 \
6190 57239

SEARCH_ORDER

Required/Optional: Optional

Specifies the order that the underlying search is performed on the Geodatabase. This directive determines whether
the spatial component or the attribute component of a query is performed first. The benefit of using this directive is
for efficiency. For example, if the attribute component would filter the data more than would the spatial component,
then it would be desirable to use the SEARCH_ORDER directive to force the attribute component to be used first. If the
directive is not used, then by default the spatial component is used first.

Parameter: <search_order>

Value: SPATIAL_FIRST | ATTRIBUTE_FIRST

Workbench Parameter: Search Order

Example:

GEODATABASE_SDE_SEARCH_ORDER SPATIAL_FIRST

SEARCH_METHOD

Required/Optional: Optional

This directive specifies the type of spatial relationship the queried spatial features must have with either the
SEARCH_ENVELOPE or the SEARCH_FEATURE in order to be returned. (Note that only one of SEARCH_ENVELOPE and
SEARCH_FEATURE may be specified at a time.)

Parameter: <search_method>

Values: The values for the search method mostly follow the basic Clementini relationships that are used by ESRI. For
further information on these relationships, see Exploring ArcObjects Vol. II: Geographic Data Management Chapter 8.

The value of the SEARCH_METHOD can be one of the following:

l GEODB_INTERSECTS: Features must intersect with the query geometry.

l GEODB_ENVELOPE_INTERSECTS: The envelopes of the features must intersect with the envelope of the query
geometry.

l GEODB_TOUCHES: Features must touch the query geometry.

l GEODB_OVERLAPS: The query geometry overlaps the features returned.

l GEODB_CROSSES: The query geometry crosses the feature returned.

l GEODB_WITHIN: The query geometry is within the features returned.

l GEODB_CONTAINS: The query geometry contains the features returned.

Default value: GEODB_INTERSECTS

Workbench Parameter: Search Method

Example:

GEODATABASE_MDB_SEARCH_METHOD GEODB_CONTAINS

SPLIT_AT_ARCS (only applicable with classic geometry)

Required/Optional: Optional

This directive specifies whether or not to vectorize arcs. When set to NO arcs that are a piece of paths or polygons are
vectorized - arcs not part of a larger geometry will remain as arcs. When set to YES during workspace/mapping file
generation, all polygon feature classes will indicate that they contain polyline geometry rather than polygon geometry
because it is assumed that the value for this directive will remain as YES for the translation. Changing the value to NO
for the translation may produce unexpected results.

When this directive is set to YES for the translation, arcs are not vectorized and lines/polygons containing arcs are
split up into arcs and lines. Each piece receives all the user-defined attributes, and gets tagged with an additional
two attributes: geodb_segment_index and geodb_original_geometry. The attribute geodb_segment_index is zero-
based (i.e., the first piece has an index of 0) and can be used to piece back together the original geometry. The sec-
ond attribute, geodb_original_geometry, indicates whether the original geometry was a line, polygon, or a donut. A
piece will only be tagged as a donut if it was a hole in a polygon or if it was a shell that contained holes. As a result, an
island that does not contain any holes will have geodb_original_geometry set to polygon. If the piece is an arc or an
ellipse, it will contain additional attributes describing its characteristics.

When this directive is set to NO for the translation, arcs are vectorized. As a result, polygon/polyline features with arc
segments retain their original geometry, rather than being split up into individual pieces. When 3D arcs are vec-
torized, the z values of the arc are linearly interpolated from the start point to the end point.

When features are read using enhanced geometry, this directive will be ignored. To split enhanced geometry paths,
use the PathSplitter transformer.

Note: This directive is not valid when reading relationship classes.

Parameter: <split_at_arcs>

Values: YES | NO

Default: NO

Workbench Parameter: <WorkbenchParameter>

Example:

GEODATABASE_SDE_SPLIT_AT_ARCS YES

TRANSLATE_SPATIAL_DATA_ONLY

Required/Optional: Optional

This directive is used for translating spatial data only. When set to YES, non-spatial tables, relationships, domains,
and subtypes will not be translated. If this directive is specified when generating a workspace or mapping file, then
no schemas will be returned for non-spatial tables.

Parameter: <translate_spatial_data_only>

Values: YES | NO

Default Value: NO

Workbench Parameter: Spatial Data Only

Example:

GEODATABASE_MDB_TRANSLATE_SPATIAL_DATA_ONLY YES

RESOLVE_DOMAINS

Required/Optional: Optional

This directive specifies whether to resolve attributes that have a coded value domain associated with them (either a
default domain, or one set up through a subtype). This means that when an attribute of a feature has a coded value
domain associated with it, another attribute will also be added that represents the textual description of the coded
attribute. The new attribute will be <attribute-name>_resolved, where <attribute-name> is the name of the attribute
containing the code. This attribute will only be added when <attribute-name> contains a non-NULL value.

Parameter: <resolve_domains>

Values: YES | NO

Default Value: NO

Workbench Parameter: Resolve Domains

Example:

GEODATABASE_MDB_RESOLVE_DOMAINS YES

RESOLVE_SUBTYPE_NAMES

Required/Optional: Optional

This directive specifies whether to resolve the subtype field of a feature. A feature that exists in a table that has sub-
types will have an attribute that is the subtype field. The subtype field will hold an integer value that specifies which
subtype the feature belongs to, and this integer value also has a string name equivalent called the description. If YES
is specified for this directive, the corresponding description will be added as an attribute on the feature, and the
attribute will be geodb_subtype_name. When set to YES during the generation of a mapping file/workspace, the
schema for a table with subtypes will contain the attribute geodb_subtype_name.

Parameter: <resolve_subtype_names>

Values: YES | NO

Workbench Parameter: Resolve Subtypes

Example:

GEODATABASE_SDE_RESOLVE_SUBTYPE_NAMES YES

IGNORE_NETWORK_INFO

Required/Optional: Optional

This directive determines whether to read the network information belonging to a network feature. When set to YES,
junctions will be treated as point features, and edges will be treated as polyline features, with the geodb_type being
set to geodb_point and geodb_polyline, respectively. When set to NO, Geodatabase specific attributes describing net-
work information such as network connectivity will be inserted on the feature. The geometry of the feature remains

the same regardless of the value given to this directive. The speed of reading network features is vastly improved if
the network info is ignored.

Parameter: <ignore_network_info>

Values: YES | NO

Default Value: NO

Workbench Parameter: Ignore Network Info

Example:

GEODATABASE_SDE_IGNORE_NETWORK_INFO YES

IGNORE_RELATIONSHIP_INFO

Required/Optional: Optional

This directive determines whether to read relationship features present in a source dataset. When set to YES, feature
types containing simple relationship will be ignored, and feature types containing attributed relationships will be
treated as non-spatial tables. When set to NO, relationships will be read normally as either simple or attributed. The
speed of reading features is vastly improved if relationships are ignored.

Parameter: <ignore_relationship_info>

Values: YES | NO

Default Value: NO

Workbench Parameter: Ignore Relationship Info

Example:

GEODATABASE_SDE_IGNORE_RELATIONSHIP_INFO YES

OMIT_GENERIC_OBJECTID_ATTRIBUTE

This directive is only used when generating a workspace or reading schema features using FME Objects.

This directive determines whether each schema should add an additional integer attribute called geodb_oid, a
generic attribute representing the object id field. Valid values are YES and NO. This attribute can be useful when the
real object id field is unknown because the value for this attribute will be the object id’s of the features read. Regard-
less of the value for this directive, the real object id field will always be supplied on the schema. This directive affects
schema generation only. This means that the attribute will still be on the feature during reading, even if the attribute
wasn't on the schema.

Parameter: <omit_generic_objectid_attr>

Values: YES | NO

Default Value: NO

Example:

GEODATABASE_SDE_OMIT_GENERIC_OBJECTID_ATTRIBUTE YES

SPLIT_COMPLEX_EDGES

This directive determines whether complex edge features should be split. When split, complex edge features are read
at the element level rather than the feature level. The element level represents the logical view of the geometric net-
work. As a result, no network connectivity information is lost. When split, each FME feature stores the following attrib-
utes:

Attribute Name Contents

geodb_element_id The element ID of the logical edge element.

Attribute Name Contents

geodb_element_index An attribute created and assigned by FME. It is
used to order the edge elements within a complex
feature. The index begins at zero, not one.

geodb_from_junction_element_id The junction element ID that corresponds to the
from endpoint. Note: This is the from endpoint of
the edge element, not the edge feature.

geodb_to_junction_element_id The junction element ID that corresponds to the to
endpoint. Note: This is the to endpoint of the edge
element, not the edge feature.

The following complex edge attributes are not present on the FME feature: geodb_junction_feature_count and geodb_
edge_element_count. Even though elements are being read, the geodb_type of each feature is still geodb_complex_
edge.

If an error occurs when retrieving the geometry for an edge element, then the geometry is skipped but the network
attributes are still read.

Note: This directive is not valid when reading relationship classes.

Parameter: <split_complex_edges>

Values: YES | NO

Default Value: NO

Workbench Parameter: Split Complex Edges

Example:

GEODATABASE_MDB_SPLIT_COMPLEX_EDGES YES

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

When set to ‘Yes’, indicates to the reader to return all the schemas of the tables in the database.

If this specification is missing then it is assumed to be ‘No’.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table names
of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then RETRIEVE_ALL_SCHE-
MAS will take precedence. If this value is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

CHECK_SIMPLE_GEOM

Required/Optional: Required

This directive specifies whether a check should be performed on features read from geodatabase to determine
whether they are simple. This is an expensive check and impacts reader performance.

Parameter: <check_simple_geom>

Range: YES | NO

Default: NO

Workbench Parameter: Check for Simple Geometry

Example:

GEODATABASE_MDB_CHECK_SIMPLE_GEOM YES

READ_FEAT_LINKED_ANNOS

Required/Optional: Required

This directive specifies whether feature-linked annotations should have their text, angle and position properties
merged as attributes onto the main feature that they are linked to, when reading. If set to yes, this will produce a list
attribute as detailed in the section on Annotations with all annotation attributes set and the annotation table(s) need
not be read explicitly. If set to no, feature-linked annotations will be read normally as annotations when encountered.

Parameter: <read_feat_linked_annos>

Range: YES | NO

Default: NO

Workbench Parameter: Merge Feature Linked Annotations

Example:

GEODATABASE_MDB_READ_FEAT_LINKED_ANNOS YES

SPLIT_MULTI_PART_ANNOS

Required/Optional: Optional

This directive specifies whether or not to split multi-part annotations into separate features for each ‘element’ when
reading. If set to yes, a single feature for each element (usually a word) in a multi-part annotation will be produced on
reading, resulting in feature-specific attributes such as angle and text position being stored according to the location
of each element. If set to no, multi-part annotations will be read normally, as a single feature storing a single set of
attributes describing the positioning of the text.

Parameter: <split_multi_part_annos>

Values: YES | NO

Default: NO

Workbench Parameter: Split Multi-Part Annotations

Example:

GEODATABASE_SDE_SPLIT_MULTI_PART_ANNOS YES

VALIDATE_FEATURES

Required/Optional: Optional

This directive specifies whether or not to validate features passed to the geodatabase writer. When set to ‘yes’, val-
idation is performed on the subtype, attribute rules, relationship rules, network connectivity rules and any custom
rules present on the feature class. Failed features will be logged with an extended error message describing the rea-
son for the failure. When set to ‘no’, validation is not performed.

Parameter: <validate_features>

Values: YES | NO

Default: NO

Workbench Parameter: <workbench Parameter>

Example:

GEODATABASE_SDE_VALIDATE_FEATURES YES

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Reader Directives – Enterprise Geodatabase

These directives are used when connecting to an Enterprise Geodatabase.

CONNECTION_FILE

Required/Optional: Optional

This statement identifies the pathname of a connection file to be used to connect to an Enterprise Geodatabase. A con-
nection file provides the necessary information to connect to the SDE server, such as the server name or the user-
name. The connection file must be a *.sde file and have the proper format for a connection file as defined by ESRI. If
you specify a connection file, you do not need to specify the directives SERVER, INSTANCE, USER, PASSWORD, VER-
SION, HISTORICAL_VERSION_NAME and HISTORICAL_VERSION_TIMESTAMP. (If, however, a password was not spec-
ified in the connection file, you will be prompted for a password.)

The pathname of the connection file to be used to connect to an Enterprise Geodatabase.

Parameter: <connection_file>

Workbench Parameter: Connection File

Example:

GEODATABASE_SDE_CONNECTION_FILE C:\GeoDB\connect.sde

DATASET

Required/Optional: Required

For Enterprise Geodatabases, this is the name of the dataset from which features are retrieved. In an Enterprise Geo-
database, this dataset is referred to as the DATABASE. Some RDBMS’s, such as Oracle, do not require a value,
whereas others, such SQLServer, do. For databases that do not require the value, the value not_used is specified by
convention.

Workbench Parameter: Source ESRI Geodatabase (ArcSDE) Dataset

Example:

GEODATABASE_SDE_DATASET testdset

SERVER

Required/Optional: Required

The name of the Geodatabase server used to read data from the dataset.

Parameter: <server>

Workbench Parameter: Server

Example:

GEODATABASE_SDE_SERVER dax

INSTANCE

Required/Optional: Required

The Enterprise Geodatabase instance to which FME connects. The usual value for systems with a single ArcSDE
instance is esri_sde8.

Parameter: <instance>

Workbench Parameter: Instance Name

Example:

GEODATABASE_SDE_INSTANCE esri_sde8

USERID

Required/Optional: Optional if connecting in OSAmode

User ID of the Enterprise Geodatabase user.

If the userid and password are missing or not set, then the reader will try and connect with AUTHENTICATION_MODE
set to OSA (Operating System Authentication).

Parameter: <userid>

Workbench Parameter: User ID

Example:

GEODATABASE_SDE_USERID jacob

PASSWORD

Required/Optional: Optional if connecting in OSAmode

Password for the user account.

If the userid and password are missing or not set, then the reader will try and connect with AUTHENTICATION_MODE
set to OSA (Operating System Authentication).

Parameter: <password>

Workbench Parameter: Password

Example:

GEODATABASE_SDE_PASSWORD jacobpassword

REMOVE_TABLE_QUALIFIER

Specifies whether to keep or remove the table name prefix. For instance, the table namemight appear in the form
<owner_name>.<table_name>.

Setting this directive to YES indicates that the reader should return the table name without the owner_name prefix.
This is useful when:

n creating a workspace that will be passed on to another organization using the same table names,

n performing a translation to another database format but with a different user name, and

n writing to a file-based format but not wanting the prefix in the name of the feature type.

When this directive is set to YES during the generation of a mapping file or workspace, the source feature types will
be the table names without any prefix; otherwise, they will contain the owner name as a prefix. It is recommended
that this directive not be changed in value after generating the mapping file/workspace as it is possible for no fea-
tures to be successfully passed onto the writer (since the writer is expecting feature types with different names).

Notes

n Even when REMOVE_TABLE_QUALIFIER is set to YES, if the table is owned by a user other than the current
user, the <owner_name> prefix will not be dropped so that the reader will find the correct table.

n When the underlying database is SQL or DB2, the schema qualifier (<owner_name>) is always dropped, regard-
less of this setting.

Required/Optional

Optional

Values

YES | NO (default)

Mapping File Syntax

REMOVE_TABLE_QUALIFIER YES

Workbench Parameter

Remove Schema Qualifier

SEARCH_ENVELOPE

Required/Optional: Optional

Specifies a rectangular area to be used in conjunction with the SEARCH_METHOD directive for extraction of spatial fea-
tures. This cannot be specified at the same time as a SEARCH_FEATURE is specified.

Parameters:

<min-x>

The minimum x coordinate in the coordinate system of the feature(s) being retrieved.

<min-y>

The minimum y coordinate in the coordinate system of the feature(s) being retrieved.

<max-x>

The maximum x coordinate in the coordinate system of the feature(s) being retrieved.

<max-y>

The maximum y coordinate in the coordinate system of the feature(s) being retrieved.

Workbench Parameter: Minimum X, Minimum Y, Maximum X, Maximum Y

Example:

GEODATABASE_MDB_SEARCH_ENVELOPE 6190 57239 6310 57549

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

VERSION

Required/Optional: Optional, so long as either a transactional or historical version is provided

The version of the dataset to be read (used in multi-versioned databases). The version namemust be prefixed by the
owner of the version and a period. Note that the version name is case-sensitive.

Parameter: <version>

Workbench Parameter: Transactional Version

Example:

GEODATABASE_SDE_VERSION jim.versionone

HISTORICAL_VERSION_NAME

Required/Optional: Optional, so long as either a transactional or historical version is provided

The historical marker name of the dataset to be read (used in multi-versioned databases that have archiving ena-
bled). Note that the version name is case-sensitive, and that historical data is read-only.

Parameter: <historical_version_name>

Workbench Parameter: Historical Marker

Example:

GEODATABASE_SDE_HISTORICAL_VERSION_NAME newmarker

HISTORICAL_VERSION_TIMESTAMP

Required/Optional: Optional, so long as either a transactional or historical version is provided

The specific date and time of the archived dataset to be read (used in multi-versioned databases that have archiving
enabled). Note that the date and time must be provided in the correct format for the underlying database (see ArcGIS
help for more information), and that historical data is read-only.

Parameter: <historical_version_timestamp>

Workbench Parameter: Historical Timestamp

Example:

GEODATABASE_SDE_HISTORICAL_VERSION_TIMESTAMP "1/1/2006 12:00:01 AM"

CHILD_VERSION_NAME

Required/Optional: Optional

This optional directive specifies the name of a child version to create. The new version will be the child of the version
specified by the VERSION directive. If CHILD_VERSION_NAME specifies a version that already exists, an error will be
output. After the child version is created, data is read from the Geodatabase using this version instead of from VER-
SION. No default is provided for this directive, so no child version created in the default case.

Parameter: <child_version_name>

Workbench Parameter: Child Version Name

Example:

GEODATABASE_SDE_CHILD_VERSION_NAME check_out

ARCHIVE_WHERE

Required/Optional: Optional

This optional directive specifies the where clause used to constrain features read from an archived table. The dates
must be in FME date format, and will be converted to the format expected by the underlying database. One or both of
the GDB_FROM_DATE or GDB_TO_DATE column names must be specified in order to form a valid where clause. If the
GDB_FROM_DATE is not specified, the creation date of the archive will be assumed. If the GDB_TO_DATE is note spec-
ified, the current date will be assumed. ArcGIS uses transaction time to record changes to the archive, not valid time.
Also note that the features returned will be simple; no complex feature information such as feature-linked annotations
or network roles are available.

Workbench Parameter: Archive Where Clause

Example of a ‘moment’ query:

The following demonstrates an example of using the archive where clause to perform a ‘moment’ query, which will
return all features existing in the database as of 9:00 am on May 1st, 2007

GEODATABASE_SDE_ARCHIVE_WHERE GDB_FROM_DATE <= 20070501090000 AND GDB_TO_DATE > 20070501090000

Example of a ‘range’ query:

The following demonstrates an example of using the archive where clause to perform a ‘range’ query, which will
return all features inserted after 9:00 am on January 1st, 2007 and updated or deleted before 11:59 pm on
December 31st, 2007

GEODATABASE_SDE_ARCHIVE_WHERE GDB_FROM_DATE > 20070101090000 AND GDB_TO_DATE < 20071231235959

PERSISTENT_CONNECTION

Required/Optional: Optional

Specifies whether to create a connection to SDE that persists and can be shared by other Geodatabase SDE Readers
and Writers. When set to YES, the connection will remain open until FME shuts down, even if this reader is finished
using it. Otherwise, the connection will be closed when the reader is shut down (unless another reader/writer is still
using the connection).

Creating a new connection is an expensive operation. Depending on how FME is being used (that is, if there are mul-
tiple instances of the Geodatabase SDE Reader/Writer being used), the performance may improve by setting this
directive to YES.

Value: YES | NO

Default Value: NO

Workbench Parameter: Make Connection Persistant

Example:

GEODATABASE_SDE_PERSISTENT_CONNECTION YES

SEARCH_ENVELOPE

Required/Optional: Optional

Specifies a rectangular area to be used in conjunction with the SEARCH_METHOD directive for extraction of spatial fea-
tures. This cannot be specified at the same time as a SEARCH_FEATURE is specified.

Parameters:

<min-x>

The minimum x coordinate in the coordinate system of the feature(s) being retrieved.

<min-y>

The minimum y coordinate in the coordinate system of the feature(s) being retrieved.

<max-x>

The maximum x coordinate in the coordinate system of the feature(s) being retrieved.

<max-y>

The maximum y coordinate in the coordinate system of the feature(s) being retrieved.

Workbench Parameter: Minimum X, Minimum Y, Maximum X, Maximum Y

Example:

GEODATABASE_MDB_SEARCH_ENVELOPE 6190 57239 6310 57549

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Reader Directives – Personal and File-based Geodatabase

The directive listed below is used when connecting to a Personal Geodatabase (.mdb or .accdb file) or a File-based
Geodatabase (directory ending in .gdb).

DATASET

Required/Optional: Required

The file (Personal Geodatabase) or directory (File-based Geodatabase) from which data is to be read.

For Personal Geodatabases, an .mdb or .accdb file is specified when connecting to a Personal Geodatabase.

For File-based Geodatabases, a directory ending in .gdb is specified.

Personal Geodatabases Example:

GEODATABASE_MDB_DATASET ”C:\FME\personalGeodb.mdb”

File-based Geodatabases Example:

GEODATABASE_FILE_DATASET ”C:\FME\montgomery.gdb”

Workbench Parameter

Source ESRI Geodatabase (File-based) File

SEARCH_ENVELOPE

Required/Optional: Optional

Specifies a rectangular area to be used in conjunction with the SEARCH_METHOD directive for extraction of spatial fea-
tures. This cannot be specified at the same time as a SEARCH_FEATURE is specified.

Parameters:

<min-x>

The minimum x coordinate in the coordinate system of the feature(s) being retrieved.

<min-y>

The minimum y coordinate in the coordinate system of the feature(s) being retrieved.

<max-x>

The maximum x coordinate in the coordinate system of the feature(s) being retrieved.

<max-y>

The maximum y coordinate in the coordinate system of the feature(s) being retrieved.

Workbench Parameter: Minimum X, Minimum Y, Maximum X, Maximum Y

Example:

GEODATABASE_MDB_SEARCH_ENVELOPE 6190 57239 6310 57549

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Improving the Speed of Translations Using the Geodatabase Reader

You can speed up translations involving the Geodatabase Reader by not resolving subtypes and coded value domains.

These operations add extra processing to each row of tables that contain subtypes or coded value domains.

Simple Reader Example

The example below configures a Geodatabase reader to extract features from the dataset testdset located on server
tuvok. Only features located on the layer named roads that fall within the specified envelope are read from the Geo-
database.

GEODATABASE_SDE_DATASET testdset
GEODATABASE_SDE_SERVER tuvok
GEODATABASE_SDE_USERID joe
GEODATABASE_SDE_PASSWORD bounce
GEODATABASE_SDE_INSTANCE esri_sde8
GEODATABASE_SDE_VERSION sde.DEFAULT
GEODATABASE_SDE_HISTORICAL_VERSION_NAME New Marker
GEODATABASE_SDE_HISTORICAL_VERSION_TIMESTAMP "1/1/2006 12:00:01 AM"
GEODATABASE_SDE_SEARCH_ENVELOPE 601190 543783 611110 5447549
GEODATABASE_SDE_SEARCH_METHOD GEODB_CONTAINS
GEODATABASE_SDE_IDs roads

Writer Overview

The underlying format that the Geodatabase writer module uses to store FME features depends on the <Writ-
erType>:

n GEODATABASE_MDB (Personal Geodatabases)

n GEODATABASE_SDE (Enterprise Geodatabases)

n GEODATABASE_FILE (File-based Geodatabases)

n GEODATABASE_SDE_RASTER_DATASET (Enterprise Geodatabases)

n GEODATABASE_FILE_RASTER_DATASET (File-based Geodatabases)

Note that use of the word table is meant to refer to both non-spatial tables and feature classes.

The Geodatabase writer module provides the following capabilities:

l Versioning Support: The Geodatabase writer provides the ability to write to a specific version of an Enterprise
Geodatabase.

l Update/Delete Support: The Geodatabase writer provides the ability to update and delete existing features in
the Geodatabase.

l Transaction Support: The Geodatabase writer provides transaction support that eases the data loading process.
Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support pro-
vides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The Geodatabase writer module uses the information within the FME mapping file to auto-
matically create tables or feature classes as needed. If a feature class is to be created, then certain parameters,
such as the grid size and whether or not the features will contain Z values, can be specified. Personal Geodatabase
table names are limited to a maximum length of 52 characters.

l Automated Calculation of Extents and Grid 1 Size:When writing to a Personal Geodatabase it is possible to
set the writer in a mode whereby it will determine what the extents and grid 1 size of the dataset are and will use
these values when creating new feature classes. This is not available with the Enterprise Geodatabase or File-
based Geodatabase writer; however, valid grid sizes can be calculated and set when writing to Enterprise Geo-
database and File-based Geodatabase.

l Ignoring Failed Features: The Geodatabase writer allows the user to continue with a translation, even when a
feature would normally cause the translation to fail. The user is given the ability to choose how many failed fea-
tures are allowed to fail before deciding to halt the translation altogether. Additionally, the user can specify a direc-
tory in which to store failed features, which will be stored in the FME Feature Store format.

l Mosaicking: The Geodatabase writer provides the ability to mosaic raster data to an existing raster dataset, by
overlaying new data on top of old data and building a single, seamless data representation. All rasters being
mosaicked must share the same coordinate system, cell size and data type, which is determined by the first raster
written to the Geodatabase.

Writer Directives – all Geodatabase Types

This section describes the directives the Geodatabase writer module recognizes when writing to a Feature Class.

Each directive is prefixed by the current <WriterKeyword>_ when it is placed in a mapping file. By default, the <Writ-
erKeyword> for the Geodatabase writer is the same as the <WriterType>.

These directives are only relevant when writing to feature classes, and are not used for raster datasets.

Tip: Due to the complexity and capabilities of a Geodatabase, writing features to one can be
difficult, particularly when trying to create feature classes. The Personal Geodatabase writer
has a mode whereby it will calculate the extents, scales, and grid sizes on your behalf.

To take advantage of this ability, set the XY_SCALE directive to zero. If a non-zero value for
the directive GRID_1 is specified, then the specified value will be used instead of using the
grid 1 size calculated by the Personal Geodatabase writer. If no z values are found while cal-
culating the extents, the minimum Z value will be default_Z - 20,000 and the Z scale will be
10,000 . The value for default_Z will be taken from the directive DEFAULT_Z_VALUE. Please
note that feature classes that exist before the translation will not have their extents and grid 1
size changed.

Even when the writer calculates the x,y,z origins, scales and grid 1 size, the DEF lines can
override the calculated values by setting the configuration parameter GEODB_XYSCALE to a
non-zero value. See GEODB_XY_SCALE for more information. (This functionality is not avail-
able when using the Enterprise Geodatabase or File-based Geodatabase writer.)

Note: It is important to understand that the initial values assigned to the writer directives, where possible, come
from values in the settings box. The DEF line configuration parameters that correspond to the directives will not be
assigned values. This prevents the problem whereby the values for the directives are changed, but never get used
because they are overridden by the corresponding DEF line configuration parameters. The DEF line configuration

parameters should only be used when the feature classes have differing dimensions (2d or 3d), origins, scales,
grid sizes, and measure support.

The directives listed below are used by all Geodatabases.

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This statement instructs the Geodatabase writer on the type of mode in which it is to operate. When the WRITER_
MODE directive is set to UPDATE or DELETE, the writer will check to see if the attribute fme_db_operation exists on
the feature. A value of INSERT for this attribute means the feature will be inserted with no extra update processing; a
value of UPDATE means the feature will be updated; and a value of DELETE means the feature will be deleted. If the
attribute is set to any other value, the translation will be aborted and an error message logged. If the attribute is not
set, the mode will be that indicated by the writer directive WRITER_MODE.

To update or delete a feature, the object ID must be on the feature passed into the Geodatabase writer. The object ID
must be stored in an attribute with the same name as the object id field in the destination table. For example, if the
destination table has an object ID field called O_ID, then this attribute must exist and be populated with the correct
value on the FME feature.

As with inserting features, updating and deleting features on versioned tables with an ArcSDE requires that the
TRANSACTION_TYPE directive be set to VERSIONING.

Parameter: <writer_mode>

Values: UPDATE | DELETE | INSERT

Default Value: INSERT

l INSERT – All features are inserted;

l UPDATE – By default, the features will be updated;

l DELETE – By default, the features will be deleted

Workbench Parameter:Writer Mode

Example:

GEODATABASE_SDE_WRITER_MODE INSERT

TRANSACTION_TYPE

Required/Optional: Optional

This statement indicates which transaction mechanism the Geodatabase writer should use. Within ArcGIS, there are
currently two transaction mechanisms: edit sessions and (regular) transactions. An edit session corresponds to a
long transaction. During an edit session, edits made by other users do not become visible until the edit session is
ended. If a translation does not complete successfully and the Geodatabase writer is using an edit session, then all
the edits will be discarded.

Values: VERSIONING | EDIT_SESSION | TRANSACTIONS | NONE

l VERSIONING: Starts an edit session and then ends it when the translation is finished. This value should be used
when writing to a versioned table in an Enterprise Geodatabase.

l EDIT_SESSION: Starts an edit session and then ends it when the translation is finished. This value should be used
when edits are made to tables that have custom behavior associated with them.

l TRANSACTIONS: Starts the (regular) transaction mechanism. This can be used only when writing to non-ver-
sioned tables that do not have custom behavior.

l NONE: No transaction mechanism is used. This can be used only when writing to non-versioned tables that do not
have custom behavior.

Default Value: TRANSACTIONS

Note: Currently there is no difference between choosing VERSIONING and EDIT_SESSION.

Workbench Parameter: Transaction Type

Example:

GEODATABASE_MDB_Transaction_TYPE EDIT_SESSION

TRANSACTION

Required/Optional: Optional

Transactions do not get used unless the TRANSACTION_TYPE directive is set to TRANSACTIONS. This statement
instructs the Geodatabase writer when to begin to write features to the Geodatabase. The writer does not write any
features to the Geodatabase until a feature is reached that belongs to <last successful transaction> + 1. Specifying a
value of 0 causes the Geodatabase writer to use transactions and to write every feature to the Geodatabase. Normally,
the value specified is zero – a positive non-zero value is only specified when a data load operation is being rerun.

If the GEODATABASE_<SDE|MDB|FILE>_TRANSACTION statement is not specified and transactions are being used
(TRANSACTION_TYPE is set to TRANSACTIONS) then a default value of 0 is used.

Parameter: <transaction #> This is the transaction number of the last successful transaction. When loading data
for the first time, set this value to 0.

Workbench Parameter: Transaction Number

Example:

GEODATABASE_MDB_TRANSACTION 0

TRANSACTION_INTERVAL

This statement tells FME the number of features to be placed in each transaction before a transaction is committed to
the database.

If the GEODATABASE_<SDE|MDB|FILE>_TRANSACTION_INTERVAL statement is not specified, then a default value of
1000 is used as the transaction interval.

When TRANSACTION_TYPE is set to VERSIONING or EDIT_SESSION, this value is used to determine how many fea-
tures to place in each edit operation within the edit session.

Required/Optional

Optional

Values

Default Value: 1000

Mapping File Syntax

GEODATABASE_MDB_TRANSACTION_INTERVAL 50

Parameter: <transaction_interval> The number of features in each transaction.

Workbench Parameter

Features to Write Per Transaction

Note: The current transaction is committed and a new transaction is started whenever a new table is created or
opened, even if the transaction interval was not reached.

HAS_Z_VALUES

Required/Optional: Optional

This directive determines whether or not the dataset contains z coordinates. The value of this directive may be over-
ridden by the DEF line parameter of GEODB_HAS_Z_VALUES if a value is specified for it. Valid values for this directive
are YES, NO, or AUTO_DETECT. When set to AUTO_DETECT, the writer determines the dimension of the feature class
by checking the dimension of the first feature headed for that feature class.

Parameter: <has_z_values>

Values: YES | NO| AUTO_DETECT

Default Value: AUTO_DETECT

Workbench Parameter: Contains Z Values

Example:

GEODATABASE_MDB_HAS_Z_VALUES yes

DEFAULT_Z_VALUE

Required/Optional: Optional

This directive determines the z value to use when writing a 2D feature to a 3D feature class.

If the GEODATABASE_<SDE|MDB|FILE>_DEFAULT_Z_VALUE statement is not specified, then a default value of 0 is
used.

Parameter: <default_z_value> The value to use for the Z coordinate(s) when writing a 2D feature to a
3D feature class.

Values: real numbers

Default Value: 0

Workbench Parameter: Default Z Value

Example:

GEODATABASE_SDE_DEFAULT_Z_VALUE -11.5

X_ORIGIN

Required/Optional: Optional

The X-coordinate of the origin for all feature classes (individual origins can be set – seeGeodatabase Table Rep-
resentation) and all feature datasets. This is used as an offset because coordinate data is stored as positive
integers, relative to the origin, ranging from 0 to 2147483647 (so if the X origin is set below 0, then the maximum
value will also drop, and vice versa).

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <x_origin>

Value: real number

Default Value: 0

Workbench Parameter: X Origin

Example:

GEODATABASE_MDB_X_ORIGIN -120.29

Y_ORIGIN

Required/Optional: Optional

The Y-coordinate of the origin for all feature classes (individual origins can be set – seeGeodatabase Table Rep-
resentation) and all feature datasets. This is used as an offset because coordinate data is stored as positive
integers, relative to the origin, ranging from 0 to 2147483647 (so if the Y origin is set below 0, then the maximum
value will also drop, and vice versa).

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <y_origin>

Value: real number

Default Value: 0

Workbench Parameter: Y Origin

Example:

GEODATABASE_MDB_Y_ORIGIN -32.55

Z_ORIGIN

Required/Optional: Optional

The Z-coordinate of the origin for all feature classes (individual origins can be set – seeGeodatabase Table Rep-
resentation) and all feature datasets. This is used as an offset because coordinate data is stored as positive
integers, relative to the origin, ranging from 0 to 2147483647 (so if the Z origin is set below 0, then the maximum
value will also drop, and vice versa).

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <z_origin>

Value: real number

Default Value: 0

Workbench Parameter: Z Origin

Example:

GEODATABASE_SDE_Z_ORIGIN 120

XY_SCALE

Required/Optional: Optional

A scaling conversion factor from world units to integer system units for all feature classes (individual scales can be
set – seeGeodatabase Table Representation) and all feature datasets. This is used to specify the level of pre-
cision to keep when storing XY coordinates, since all coordinates are stored as integers. Depending on the scale, it
changes the precision of the coordinates stored. For example, if you have the coordinate (5.354, 566.35) and you set
the XY_SCALE to be 100, then the coordinate stored will be (5.35, 566.35).

When writing to a Personal Geodatabase, if this value is set to 0 then the x,y,z origins and scales will automatically be
calculated. These calculated values will be used instead of the values supplied by the writer directives for the x,y,z
origins and scales. The grid 1 size will also be calculated, but will only be used if the value for the GRID_1 directive is
0. Even when the writer calculates the x,y,z origins, scales and grid 1 size, the DEF lines can override the calculated
values by setting the configuration parameter GEODB_XYSCALE to a non-zero value. See GEODB_XY_SCALE for
more information.

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <xy_scale>

Value: real number greater than 0.

When writing to a Personal Geodatabase, zero can be specified, in which case the writer will calculate the extents and
scales itself. Only used when creating new feature classes.

Default Value: 100 when writing to an Enterprise Geodatabase; 0 when writing to a Personal Geodatabase

Workbench Parameter: Scale

Example:

GEODATABASE_MDB_XY_SCALE 1000

Z_SCALE

Required/Optional: Optional

A scaling conversion factor from world units to integer system units for all feature classes (individual scales can be
set – seeGeodatabase Table Representation) and all feature datasets. This is used to specify the level of pre-
cision to keep when storing Z coordinates, since all coordinates are stored as integers. Depending on the scale, it
changes the precision of the coordinates stored. For example, if you have the z coordinate 5.354 and you set the Z_
SCALE to be 100, then the coordinate stored will be 5.35.

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <z_scale>

Value: real number greater than 0.

Default Value: Enterprise Geodatabase writer: 100; Personal Geodatabase writer: 0

The default value for a Personal Geodatabase is 0 because by default the writer calculates the extents and scales, and
therefore ignores the value assigned to this directive.

Workbench Parameter: Z Scale

Example:

GEODATABASE_SDE_Z_SCALE 10

HAS_MEASURES

Required/Optional: Optional

This directive determines whether or not the dataset contains measures. The value of this directive will be overridden
by the DEF line parameter GEODB_HAS_MEASURES if a value is specified for it.

If the GEODATABASE_<SDE|MDB|FILE>_HAS_MEASURES statement is not specified, then a default value of NO is
used.

This directive is used only when creating new feature classes.

Parameter: <has_measures>

Values: YES | NO

Default Value: NO

Workbench Parameter: Contains Measures

Example:

GEODATABASE_MDB_HAS_MEASURES yes

MEASURES_ORIGIN

Required/Optional: Optional

The minimummeasures value possible. This is used as an offset because measure data is stored as positive integers
(0 to 2147483647) relative to the measures origin. This value is applied to all feature classes and feature datasets,
although individual feature classes can override this value using the DEF line parameter GEODB_MEASURES_ORIGIN.

This directive is used only when creating new feature classes.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <measures_origin>

Values: real number

Default Value: 0

Workbench Parameter: Measures Origin

Example:

GEODATABASE_MDB_MEASURES_ORIGIN -412.98

MEASURES_SCALE

Required/Optional: Optional

A scaling conversion factor from world units to integer system units for all feature classes. Individual feature classes
can override this value using the DEF line parameter GEODB_MEASURES_SCALE. This is used to specify the level of
precision to keep when storing measures, since all measures are stored as integers. Depending on the scale, it
changes the precision of the measures stored. For example, if you have the measure 566.354 and you set the MEAS-
URES_SCALE to be 100, then the measures stored will be 566.35. The value is only used when creating a new feature
class.

Note: This directive is not used by the File-based Geodatabase writer, as default values are used for the domain
and resolution. The default values used are dependent on the coordinate system of the feature class/feature data-
set being created.

Parameter: <measures_scale>

Values: real number greater than 0

Default Value: 100

Workbench Parameter: Measures Scale

Example:

GEODATABASE_MDB_MEASURES_SCALE 10000

GRID_1

Required/Optional: Optional

This sets the global grid 1 size for the whole translation. It may be overridden if the DEF line has the setting for
GRID{1} parameter. Valid values are real numbers greater than zero.

When using the Enterprise or File-based Geodatabase writer, if the value is 0 and no value is specified for the
GRID{1} DEF line parameter (or it is 0) then the grid size will be automatically calculated. The File-based Geo-
database writer will also automatically calculate sizes for grids 2 & 3. This directive is only used when creating new
feature classes.

Parameter: <grid_1_size>

Values: real number greater than 0

Default Value: Personal or File-based Geodatabase writer: 0; Enterprise Geodatabase writer: 1000

Workbench Parameter: Grid 1 Size

Example:

GEODATABASE_MDB_GRID_1 45.6

ANNOTATION_UNITS

This directive allows you to specify which map units should be used when creating a new annotation feature class. Its
value will be applied to all annotation feature classes created by the writer identified by <WriterKeyword>.

A Multi-Writer should be used when annotation feature classes with different map units need to be created. This
directive is not used when opening an existing annotation feature class. If the writer creates an annotation feature
class, and the directive ANNOTATION_UNITS is set to unknown_units (the default value), then the writer tries to
determine what type of unit the spatial reference uses and sets ANNOTATION_UNITS to the closest unit that is
greater than or equal to it (with respect to its meters per unit value). If a local/unknown coordinate system is used,
the units are set to meters.

Required/Optional

Optional

Mapping File Syntax

GEODATABASE_MDB_ANNOTATION_UNITS nautical_miles

Parameter

<annotation_units>

Values

unknown_units (default), decimal_degrees, inches, points, feet, yards, miles, nautical_miles, millimeters, cen-
timeters, meters, kilometers, and decimeters

Workbench Parameter

Annotation Units

SIMPLIFY_GEOM

Note: You can use this directive only if you have installed ArcGIS 9. It will not work with ArcGIS 8.

If it is set to YES, then the geometry being written out is simplified (if it is currently a non-simple geometry).

Required/Optional

Optional

Values

YES | NO (default)

Workbench Parameter

Simplify Geometry

Writer Directives – All Geodatabase Types

This section describes the directives that the Geodatabase writer module recognizes.

Each directive is prefixed by the current <WriterKeyword>_ when it is placed in a mapping file. By default, the <Writ-
erKeyword> for the Geodatabase writer is the same as the <WriterType>.

IGNORE_FAILED_FEATURE_ENTRY

Required/Optional: Optional

This directive tells the Geodatabase writer whether or not it should ignore features that would normally cause the
translation to fail. It allows you to ignore features that are topologically incorrect, are not supported by the Geo-
database writer, or conflict with the definition of the table to which it is to be inserted (that is, they are outside of the
geometry envelope specified by the feature class). Additionally, polygons, donuts, or aggregates of polygons/donuts
that cannot be reoriented will be ignored.

If the GEODATABASE_<SDE|MDB|FILE>_IGNORE_FAILED_FEATURE_ENTRY statement is not specified or given the
value NO, then features are not ignored and will cause the translation to fail when encountered. Additionally, the
three other associated directives described below will now be put into effect.

Parameter: <ignore_failed_features>

Values: YES | NO

Default Value: NO

Workbench Parameter: Ignore Failed Features

Example:

GEODATABASE_SDE_IGNORE_FAILED_FEATURE_ENTRY YES

MAX_NUMBER_FAILED_FEATURES

Required/Optional: Optional

This directive informs the Geodatabase writer of the number of features to ignore before causing a translation to fail
due to a problematic feature. (However, the translation may still fail for other reasons.)

This directive is only applicable if IGNORE_FAILED_FEATURE_ENTRY is set to YES.

Parameter: <max_number_failed_features>

Values: To ignore all failed features: -1; otherwise 0 or a positive integer.

Workbench Parameter: Max Number of Features to Ignore

Example:

GEODATABASE_SDE_MAX_NUMBER_FAILED_FEATURES 100

DUMP_FAILED_FEATURES

Required/Optional: Optional

This directive gives the user the option of storing the failed features to an FFS file so that they can be viewed at a later
time. For this statement to be used, GEODATABASE_<SDE|MDB|FILE>_IGNORE_FAILED_FEATURE_ENTRY must be
specified and have the value YES.

Parameter: <dump_failed_features>

Values: YES | NO

Workbench Parameter: Dump Failed Features to File

Default: NO

FFS_DUMP_FILE

Required/Optional: Optional

This directive allows you to choose where the file containing failed features should be stored. The failed features will
be stored in the FME Feature Store format. The file will be created automatically, but will only get created if there is a
failed feature. If this directive is specified and a failed feature is encountered, then if a file with the same name as
given to this directive already exists, it will be overwritten. This directive must be specified if

GEODATABASE_<SDE|MDB|FILE>_DUMP_FAILED_FEATURES

is specified and has the value YES.

Parameter: <ffs_dump_file>

Values: path and filename

If either the path or the filename contains a space, the value must be enclosed in double quotation marks. The file-
namemust end in the extension .ffs.

Workbench Parameter: Failed Feature Dump Filename

Example:

GEODATABASE_MDB_FFS_DUMP_FILE "c:\user temp\bad features.ffs"

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

Writer Directives – Enterprise Geodatabase

The directives listed below are used when connecting to an Enterprise Geodatabase and writing to either feature
classes or raster datasets.

The CONNECTION_FILE, SERVER, USERID, PASSWORD, and INSTANCE directives operate in the samemanner as they
do for the Geodatabase reader.

The other writer-specific directives are discussed in the following sections.

CONNECTION_FILE

Required/Optional: Optional

The pathname of a connection file for an Enterprise Geodatabase. Having a connection file means that it is not nec-
essary to specify the other directives.

Workbench Parameter: Connection File

DATASET

Required/Optional: Required

The Enterprise Geodatabase dataset from which data is to be written.

Workbench Parameter: Destination ESRI Geodatabase (ArcSDE) Dataset

SERVER

Required/Optional: Optional

The server machine where the dataset resides.

Workbench Parameter: Server

INSTANCE

Required/Optional: Optional

The Enterprise Geodatabase instance to connect to.

Workbench Parameter: Instance Name

USERID

Required/Optional: Optional

User ID of the Enterprise Geodatabase user.

If the userid and password are missing or not set, then the reader will try and connect with AUTHENTICATION_MODE
set to OSA (Operating System Authentication).

Workbench Parameter: User ID

PASSWORD

Required/Optional: Optional

Password for the user account.

If the userid and password are missing or not set, then the reader will try and connect with AUTHENTICATION_MODE
set to OSA (Operating System Authentication).

Workbench Parameter: Password

COMMIT_TRANSACTIONS_AFTER_WRITE

Required/Optional: Optional

Only valid when the versioning type is set to ‘transactions’. Specifies whether to commit transactions at the end of
each write operation. If ‘yes’, transactions will be committed as soon as they are complete. If set to ‘no’, transactions
will be committed at the start of the subsequent transaction. This option has no effect on translations taking place
within an edit session.

Value: YES | NO

Default Value: NO

Workbench Parameter: Commit Transactions at end of Write

Example:

GEODATABASE_SDE_COMMIT_TRANSACTIONS_AFTER_WRITE YES

Writer Directives – Enterprise Geodatabase Feature Classes

The directives listed in this section are used when connecting to an Enterprise Geodatabase Feature Class.

These directives are not applicable for writing to raster datasets in an Enterprise Geodatabase.

VERSION

Required/Optional: Optional

The name of the version to which features should be written (only applicable on multi-versioned data-
bases).

Parameter: <version>

Workbench Parameter: Transactional Version

Example:

GEODATABASE_SDE_VERSION jim.testversion

RECONCILE_AND_POST

Required/Optional: Optional

This optional directive reconciles all the changes between the version specified by the writer directive VERSION and
its parent version, even those edits made outside of the current translation, and then posts the version to its parent.
The reconcile and posting is done at the end of the translation when the Geodatabase writer is being shut down. As a
result, if an error occurs during the reconcile or post, then only the reconcile and post changes are undone; all the
features that were inserted/updated/deleted prior are still saved. The reconcile and post will only be successful if no
conflicts are found. Conflicts must be resolved manually using ESRI’s ArcGIS. Upon a successful post, the child ver-
sion will be deleted or left intact depending on the value of the DELETE_CHILD_AFTER_RECONCILE_AND_POST direc-
tive.

Since reconciling is done for all features including those inserted/updated/deleted outside the current translation,
then this directive can be used in an empty workspace to simply reconcile and post a child version to its parent. Since
this directive reconciles and posts the version specified by VERSION, the value for VERSION must not be SDE.D-
EFAULT because SDE.DEFAULT has no parent version. When reconciling and posting, the TRANSACTION_TYPE direc-
tive must be set to VERSIONING.

Parameter: <reconcile_and_post>

Values: YES | NO

Default Value: NO

Workbench Parameter: Reconcile and Post

Example:

GEODATABASE_SDE_RECONCILE_AND_POST YES

DELETE_CHILD_AFTER_RECONCILE_AND_POST

Required/Optional: Required

This directive determines whether to delete the child version following a reconcile and post, including the case where
the child and parent version are identical. A value of ‘YES’ will delete the child version, while a value of ‘NO’ will leave
it intact. The default value is ‘YES’.

Parameter: <delete_child_after_reconcile_and_post>

Values: YES | NO

Default Value: YES

Example:

In the example below, the child version will not be deleted after the reconcile and post operation completes.

GEODATABASE_SDE__DELETE_CHILD_AFTER_RECONCILE_AND_POST NO

Writer Directives – Personal and File-based Geodatabase

The directives listed in this section are used when connecting to a Personal or File-based Geodatabase.

DATASET

Required/Optional: Required

For Personal Geodatabase, this is the MS Access file to which data is to be written.

For File-based Geodatabase, this is the directory ending in .gdb.

Workbench Parameter: Destination ESRI Geodatabase File

COMPRESS_AT_END

Required/Optional: Optional

This directive determines whether the dataset should be compressed after the writer has finished writing features to
it. This directive applies to both Personal and File Geodatabases.

Values: YES | NO

Default Value: NO

Workbench Parameter: Compress Database at End

Example:

GEODATABASE_MDB_COMPRESS_AT_END YES

OVERWRITE_GEODB

Required/Optional: Optional

If set to YES, deletes the existing database. This directive applies to both Personal and File Geodatabases. Note that a
File Geodatabase cannot be overwritten if it is open in the FME Viewer or by ArcMap/ArcCatalog.

Values: YES | NO

Default Value: NO

Workbench Parameter: Overwrite Geodatabase

Writer Directives – Geodatabase Raster

This section describes the directives the Geodatabase writer module recognizes when writing raster datasets.

COMPRESSION_TYPE

This directive determines the type of compression to use on raster data being mosaicked.

Required/Optional

Required

Values

LZW | JPEG | JPEG2000 | NONE

Default Value

NONE

Mapping File Syntax

GEODATABASE_FILE_RASTER_DATASET_COMPRESSION_TYPE JPEG2000

Workbench Parameter

Compression Type

COMPRESSION_QUALITY

This directive determines the compression quality, with higher values indicating improved quality.

Required/Optional

Required

Mapping File Syntax

GEODATABASE_FILE_RASTER_DATASET_COMPRESSION_QUALITY 95

Values

Positive integer (default value is 0)

Workbench Parameter

Compression Quality

PYRAMID_RESAMPLE_TYPE

This directive determines the resampling type to be used when generating reduced resolution pyramids on the des-
tination raster dataset.

Required/Optional

Required

Mapping File Syntax

GEODATABASE_FILE_RASTER_DATASET_PYRAMID_RESAMPLE_TYPE BILINEAR

Values

NEAREST (default) | BILINEAR | CUBIC

Nearest Neighbor is the default value, which provides the fastest output but the poorest quality. Cubic Convolution
provides the best quality, but can reduce performance when writing.

Workbench Parameter

Pyramid Resample Type

PYRAMID_LEVEL

This directive specifies the number of reduced resolution pyramids to build. More pyramids enable better per-
formance when viewing raster data using FME and ESRI products.

Required/Optional

Required

Values

positive integer

Default Value: 0

Mapping File Syntax

GEODATABASE_FILE_RASTER_DATASET_PYRAMID_LEVEL 10

Workbench Parameter

Pyramid Level

Writing Subtypes and Domains

When writing subtypes, the user has two choices: use the integer code or use the code’s description. If the integer
code is used, then the code is set on an attribute of the same name as the subtype field. For example, if the subtype
field is called road_type, then an attribute called road_type must be populated on the FME feature with the appro-
priate integer code. If the code’s description is used instead, then the description must be supplied on a special attrib-
ute called geodb_subtype_name. The code corresponding to the description will then be looked up and, once found,
will be inserted onto the subtype field.

Similarly, when writing domains, either the integer code may be specified or the code’s description. If the integer
code is used, then the code is set on an attribute of the same name as the domain field. For example, if the domain
field is called road_type, then an attribute called road_type must be populated on the FME feature with the appro-
priate integer code. If the code’s description is used instead, then the description must be supplied on an attribute
called road_type_resolved. The code corresponding to the description will be looked up and inserted onto the domain
field.

The Geodatabase writer goes through the following steps when writing a subtype:

1. Retrieve the subtype (code) attribute from the feature.

a. If the attribute is found but does not contain a valid subtype code (i.e. the code is not one of
the possible subtypes or the code is not an integer) then an error is returned and the feature is
not written.

b. If the attribute was not supplied on the feature, or was supplied but set to the empty string
(i.e. it was set to ""), then go to step 2.

2. Retrieve the geodb_subtype_name attribute.

a. If this attribute is found and not set to the empty string, then the writer attempts to look up the
code corresponding to the supplied description. If no code is found, then the description used
is not valid, resulting in an error being returned and the feature not being written.

b. If this attribute is not supplied or was supplied but set to the empty string (i.e., set to ""), and
we’re inserting a new feature (not updating an existing feature), then the default code gets
written to the subtype field.

Geodatabase Table Representation

The Geodatabase writer requires that every Geodatabase table to which a feature is written be defined within the FME
mapping file if the table does not yet exist. If the table exists when writing, then only the table name needs to be spec-
ified on the DEF line. When reading from the Geodatabase, it is not necessary that the source tables be defined. Geo-
database tables are specified within the FME mapping file using the <WriterKeyword>_DEF statement. It is important to
note that when using FME to define a simple table with no spatial column, the definition is merely in this form:

<WriterKeyword>_DEF <tableName> \
[geodb_type geodb_table] \
[<attribute name> <attribute type>]* \

[GEODB_OBJECT_ID_NAME <column_name>] \
[GEODB_OBJECT_ID_ALIAS <column_name>]

The more general format of a table definition – in which a spatial column can be defined (a feature class in ESRI
terms) – is given here.

<WriterKeyword>_DEF <tableName> \
[geodb_type <geodb_type>] \
[<attribute name> <attribute type>] * \
[GEODB_UPDATE_KEY_COLUMNS <list of column names>] \
[GEODB_DROP_TABLE < YES | NO >] \
[GEODB_TRUNCATE_TABLE < YES | NO >] \
[GEODB_OBJECT_ID_NAME <column_name>] \
[GEODB_OBJECT_ID_ALIAS <column_name>] \
[GEODB_SHAPE_NAME <column_name> \

GEODB_SHAPE_ALIAS <column_name> \
GEODB_FEATURE_DATASET <feature_dataset_name>] \
GEODB_GRID{1} <grid1size> \
[GEODB_GRID{2} <grid2size>] \
[GEODB_GRID{3} <grid3size>] \
[GEODB_GRID{n} <gridnsize>] \
[GEODB_AVG_NUM_POINTS <num_points>] \
[GEODB_XORIGIN <minimum_x>] \
[GEODB_YORIGIN <minimum_y>] \
[GEODB_XYSCALE <scale>] \
[GEODB_HAS_Z_VALUES < YES | NO >] \
[GEODB_ZORIGIN <minimum_z>] \
[GEODB_ZSCALE <scale>] \
[GEODB_HAS_MEASURES < YES | NO >] \
[GEODB_MEASURES_ORIGIN <measures_origin>] \
[GEODB_MEASURES_SCALE <measures_scale>] \
[GEODB_ANNO_REFERENCE_SCALE <anno_ref_scale>] \

]

Note that the OBJECTID column and SHAPE column precede all user-defined columns in a new table or feature class
created by the Geodatabase writer.

<tableName>

This specifies the name of the Geodatabase table being defined by the <WriterKeyword>_DEF statement. The name
must conform to the conventions and restrictions of the underlying RDBMS database. For example, the name cannot
have a hyphen (-) in it. Table name case is always preserved.

The following example shows the first portion of the definition for a table named roads.

GEODATABASE_SDE_DEF roads . . .

geodb_type <geodb_type>

When the Geodatabase writer creates a new table, it looks for the geodb_type specified on the DEF line. For a list of all
the valid geodb_type’s possible, see Feature Representation. If the geodb_type is not valid or is not found on the
DEF line, then the geodb_type attribute will be retrieved from the first feature headed for that table. In the unlikely
occurrence that the feature does not have a valid geodb_type or any geodb_type, then a warning will be logged, the
writer will assume that the geodb_type is geodb_table, and a non-spatial table will be created. As a result, all features of
that feature type will have their geometry ignored.

Attribute Definitions

This section of the <WriterKeyword>_DEF statement defines the attributes for a table.

l The <attribute name> specified within the FME mapping file must obey the following rules:

l Attribute Name case must conform to the conventions and restrictions of the underlying RDBMS database.
When writing to a Personal or File Geodatabase, the case is preserved, but when writing to an Enterprise

Geodatabase whether or not the case is preserved depends on the underlying database (i.e., in Oracle, attrib-
ute names are made uppercase, whereas in Microsoft SQL Server at ArcSDE 9.2 or later, case is preserved).

l Attribute Names must obey all length and character restrictions of the Geodatabase. There is a limit of 30 char-
acters when writing to Geodatabase.

Note: If a table is being created and one of the attribute names conflicts with a Geodatabase system
field (i.e., the object ID or one of the shape fields), then a different name will be selected for the sys-
tem field and a warning message logged.

l The <attribute name>definition defines the type and has the form
<attribute name> <attribute type>

The supported attribute types are listed in the following table.

FME Attribute Type

smallint

smallint (n)

integer

integer(n)

float

float(n,m)

double

double(n,m)

boolean

char(n)

date

subtype

subtype_codes

range_domain

coded_domain

smallint

This type is used to represent 16-bit integer values.

smallint(n)

This type is used to represent small integer values with less than or equal to n digits.

If an invalid width is specified for this data type then FME will correct the value and output a warning saying that it
has done so. A valid value for the width lies between 1 and 5 inclusive.

Note: This only applies to Geodatabase SDE. It will behave like a regular smallint in the other Geodatabases.

integer

This type is used to represent 32-bit integer values.

integer(n)

This type is used to represent integer values with less than or equal to n digits.

If an invalid width is specified for this data type then FME will correct the value and output a warning saying that it
has done so. A valid value for the width lies between 1 and 10 inclusive.

Note: This only applies to Geodatabase SDE. It will behave like a regular integer in the other Geodatabases.

float

This type is used to represent 32-bit float values.

float(n,m)

This type is used to represent float values with a precision not exceeding n and a scale not exceeding m.

If an invalid width and/or decimal is specified for this data type then FME will correct the value(s) and output a warn-
ing saying that it has done so. A valid value for the width lies between 1 and 6 inclusive. A valid value for the decimal
lies between 0 and the value of the width inclusive.

Note: This only applies to Geodatabase SDE. It will behave like a regular float in the other Geodatabases.

double

This type is used to represent 64-bit float values.

double(n,m)

This type is used to represent double values with a precision not exceeding n and a scale not exceeding m.

If an invalid width and/or decimal is specified for this data type then FME will correct the value(s) and output a warn-
ing saying that it has done so. A valid value for the width lies between 1 and 38 inclusive. A valid value for the decimal
lies between 0 and the value of the width inclusive.

Note: This only applies to Geodatabase SDE. It will behave like a regular float in the other Geodatabases.

boolean

This type is used to represent Boolean values. The possible values are true and false.

char(n)

This type is used to represent character values with a length not exceeding n characters. The FME will read from and
write to geodatabases using the UTF-16 encoding.

date

This is used to store and retrieve date information within the Geodatabase.

When a date field is read by the Geodatabase, it is placed in the FME feature with the form HHMMSS, YYYYMMDD, or
YYYYMMDDHHMMSS. The time portion is specified using the 24-hour clock. When writing, the date attribute must
also be in one of these three forms. These forms are compatible with all other FME dates.

Note: When the Geodatabase writer creates a new table, all the fields, except for the object ID field, will be defined
as allowing NULL values.

subtypes

Subtypes allow you to define a subclassification of a table based on a field. For instance, a table named roadmay have
a field called condition which can have values good, bad and miserable. In the Geodatabase, the field must be an integer
type of some sort in order to be able to create subtypes on it.

For the Geodatabase writer, subtypes can be created when creating a new table using the following syntax on DEF
lines

<attribute name> subtype(value1:value2:value3:.....valuen)

or

<attribute name> subtype_codes(code1:val1:code2:val2:....coden:valn)

Note: The argument list (i.e., everything between the parentheses) must be colon-separated and must be encoded
using a special XML-like encoding. Workbench automatically encodes the list properly. To encode the argument list
manually within a mapping file or FME Objects, see Substituting Strings in Mapping Files in the FME Fundamentals
on-line help file. You can also contact Safe Software for assistance.

In the first case, descriptions can be supplied as strings, in which case codes are generated by the Geodatabase
writer starting at zero. In the second case, the input list consists of pairs of codes and corresponding descriptions.

The first code in the list will be used as the default subtype code. In the first case where only descriptions are spec-
ified, the code created for value1 will be used as the default subtype code. For instance, if the DEF line is specified as
follows

subtype_codes(1:a:3:b:4:c:5:d)

then 1 will be used as the default code (which maps to a).

The following restrictions are applied when subtypes are created:

l Each table can have only one subtype.

l All the codes have to be unique and valid integers.

l All the value,description pairs have to be unique.

l You cannot add subtypes to an existing table. If you do, the DEF line definition will be ignored and the table will
use the existing subtype, if one exists. If a subtype does exist on the table, then a comparison will be made
between the DEF line definition and the existing subtype’s definition. A warning message will be logged if they are
different.

When writing features, the subtype attribute must contain the code (which is stored as an integer by Geodatabase).
To supply the description instead of the code for a feature, use the special attribute geodb_subtype_name. If the sub-
type attribute is not specified, then the writer will look for the geodb_subtype_name attribute and will convert the
description to its corresponding code. See the sectionWriting Subtypes and Domains for more information.

Example:

<writerKeyword>_DEF road \
type geodb_polyline \

condition subtype_codes(0:good:1:bad:2:miserable) \

......... \
.........

domains

The domains can be specified at the DEF lines using the following syntax:

<attribute name> range_domain(domain_name:field_type:min_val: max_val)

<attribute name> coded_domain(domain_name:field_type:name_1:value_1: …..

name_n:value_n)

This syntax is used to create new domains along with the new field. The domains defined as above are added to both
the workspace and the field of the table. If the domain name already exists in the workspace, a comparison is made
against the existing definition. A warning is issued if they differ, and the existing domain is used.

Note: The argument list (i.e., everything between the parentheses) must be colon-separated and must be encoded
using a special XML-like encoding. Workbench automatically encodes the list properly. To encode the argument list
manually within a mapping file or FME Objects, see Substituting Strings in Mapping Files in the FME Fundamentals
on-line help file. You can also contact Safe Software for assistance.

Example 1:

To define a domain with the following code and values for a float field type:

Code Values

1.2 val1

3.6 val2,val3

4.5 test “quotes” here

you would use the following format:

coded_domain(floatCodedDom:float:1.2:val1:3.6:val2<comma>val3:4.5:
<quote>test<space><quote><quote>quotes<quote><quote><space>here<quote>)

To use an existing domain, you can use the following short syntax:

range_domain(domain_name)
coded_domain(domain_name)

An error will be generated if the domain does not exist in the workspace or is not defined elsewhere using the long
syntax (i.e., the syntax specified at the beginning of this section) for domains.

Note: If the same new domain is referenced multiple times in the translation, the long syntax form only needs to be
specified on one attribute; all other instances can use the short form. It does not matter on which attribute the long
form is specified within the mapping file or workspace.

To specify the length of a text field while specifying an existing domain, you can use the following variant of the short
syntax:

coded_domain(domain_name:char<openparen><textsize><closeparen>)

Note: The <openparen> and <closeparen> are the result of applying FME’s XML-like way of escaping certain char-
acters. Contact Safe Software if more information is needed, keeping in mind that Workbench automatically per-
forms this encoding when creating new domains and subtypes.

For example,

coded_domain(textDomain:char<openparen>50<closeparen>)

It is important to note:

l The variant of this short syntax is allowed for text fields only.

l Since ArcGIS allows text fields to have only coded value domains, using this field type with range_domain will
result in an error.

l If no text length is specified for a text field, that is, if the syntax used is:

coded_domain(domain_name)

then FME will insert a default length of 254 characters.

Example 2:

A complete DEF line example is shown below:

GEODATABASE_MDB_OUT_DEF Q1_LINE \
geodb_type geodb_polyline \

GEODB_DROP_TABLE YES \
GEODB_TRUNCATE_TABLE NO \
GEODB_OBJECT_ID_NAME Object_ID \
GEODB_OBJECT_ID_NAME Object_ID \

GEODB_OBJECT_ID_ALIAS "Object ID" \
GEODB_SHAPE_NAME Shape \
GEODB_SHAPE_ALIAS Shape \
GEODB_CONFIG_KEYWORD DEFAULTS \

GEODB_FEATURE_DATASET "" \
GEODB_GRID{1} $(_GEODBOutGrid1) \
GEODB_AVG_NUM_POINTS "" \

GEODB_HAS_MEASURES NO \
GEODB_HAS_Z_VALUES $(_GEODBOutDimension) \
GEODB_XORIGIN "" \
GEODB_YORIGIN "" \

GEODB_ZORIGIN "" \
GEODB_XYSCALE "" \
GEODB_ZSCALE "" \
GEODB_ANNO_REFERENCE_SCALE "" \
geodb_oid integer \
igds_class double \
igds_color double \
igds_graphic_group double \
igds_style double \
igds_weight double \
Object_ID integer \
Shape_Length double \
property range_domain(intDomain:integer:0:100) \
testVal range_domain(realDomain:double:0.5:25.5) \
textVal coded_domain(textVal:char<openparen>50<closeparen>:a:all:b:bad) \
floatVal coded_domain(floatCodedDom:float:1.2:val1:3.6:val2<comma>val3:
4.5:<quote>test<space><quote><quote>quotes<quote><quote><space>here<quote>)

Configuration Parameters

There are a number of configuration parameters in the GEODATABASE_<SDE|MDB|FILE>_DEF line that are used to
define characteristics of a feature class. They are described in the following table. The configuration parameters are
only needed when defining a new table. If the table already exists, it is sufficient to have the following line:

<WriterKeyword>_DEF <tableName>

When creating a new table, configuration parameters found on the table definition will override the
equivalent writer directives. However, the parameters related to setting grid sizes and x,y,z origins and scales
will override the writer directives only if the configuration parameter GEODB_XYSCALE is specified and not equal to
zero.

Note: It is important to understand that the values from the settings box are assigned to the writer directives, not
to the configuration parameters described in this section. This was done to prevent the problem whereby the
values for the writer directives get changed in the workspace/mapping file, but never get used because they are
overridden by the corresponding configuration parameters.

Parameter Contents

geodb_type A valid geodb_type must be specified in order to determine what type of
table to create. Please check the section Feature Representation
for valid values of geodb_type. On DEF lines, setting the geodb_type to
geodb_arc is equivalent to geodb_polyline and setting it to geodb_
ellipse is equivalent to geodb_polygon.

GEODB_UPDATE_KEY_COLUMNS The list of field names that are used by the writer when it
is updating or deleting a feature. The value is a comma-
separated list of the fields which are matched against the
corresponding FME attributes’ values to specify which
rows are to be updated using the other attribute values. If
a corresponding attribute is not on the FME feature, then
the value NULL will be used in the query for that particular
column.

In general, this should identify a unique feature but can also be used to
update/delete multiple features if desired. If an update/delete is being
performed and no value is assigned to this parameter, then the writer
will use the object ID column to perform the update and the cor-
responding object ID attribute must be present on the FME feature.

The following example sets the update fields to be COUNTRY and CAP-

Parameter Contents

ITAL:

GEODB_UPDATE_KEY_COLUMNS COUNTRY,CAPITAL

GEODB_DROP_TABLE Specifies that the writer drop the table before writing,
and create a new one. If the table does not exist, it will be
created when the data is written.
The following example sets the drop table flag to false.

 GEODB_DROP_TABLE NO

Default: NO

Values: YES |NO

GEODB_TRUNCATE_TABLE Specifies that the writer truncate the table before writing.
If the table does not exist, it will be created when the data
is written.

The following example sets the truncate table flag to false.

 GEODB_TRUNCATE_TABLE NO

Default: NO

Values: YES |NO

GEODB_OBJECT_ID_NAME The name of the column containing object IDs for the current table. The
name of the column must not contain any spaces. If this parameter is
not found on the DEF line, then the column will be given the name
Object_ID (Universal Translator) or OBJECTID (Workbench). If the value
conflicts with a user attribute, then the writer will change the value for
this field (by appending a numeric suffix) and log a warning.

Note: Due to the way annotation feature classes are created since the
inception of ArcGIS 9.0, this parameter has no effect when run on com-
puters with ArcGIS 9.0 or newer.

The following example defines the column name to hold object IDs to be
OBJECT_IDENT:

GEODB_OBJECT_ID_NAME OBJECT_IDENT

GEODB_OBJECT_ID_ALIAS The alias for the object IDs column for the current table. The alias is
used in ArcMap (and possibly in other ArcGIS products) when viewing
data, the object ID column will be labeled by its alias. If this parameter is
not found on the DEF line, then the alias will be given the value Object ID
(Universal Translator) or OBJECTID (Workbench).

The following example defines the alias for the object ID column name to
be Primary ID. Notice the alias namemust be surrounded by quotation
marks ("").

GEODB_OBJECT_ID_ALIAS “Primary ID”

GEODB_SHAPE_NAME The name of the column containing the shape data for features in the
current feature class. This applies only to feature classes. The name of
the column must not contain any spaces. If this parameter is not found
on the DEF line, then the column will be given the name Shape (Uni-
versal Translator) or SHAPE (Workbench). If the value, or one of its cor-
responding LENGTH or AREA fields, conflicts with a user attribute, then
the writer will change the value for this field (by appending a numeric

Parameter Contents

suffix) and log a warning.

Note: Due to the way annotation feature classes are created since the
inception of ArcGIS 9.0, this parameter has no effect when run on com-
puters with ArcGIS 9.0 or newer.

The following example defines the shape data column
name to be Geometry:

GEODB_SHAPE_NAME Geometry

GEODB_SHAPE_ALIAS The alias for the shape data column. When viewing data
in ArcMap (and possibly in other ArcGIS products), the
shape data column will be labeled by its alias. If this
parameter is not found on the DEF line, then the alias will
be given the value Shape (Universal Translator) or SHAPE
(Workbench).

The following example defines the alias for the shape data column name
to be “Shape Geometry”. (Note that the alias namemust be enclosed in
quotation marks.)

GEODB_SHAPE_ALIAS “Shape Geometry”

GEODB_FEATURE_DATASET The name of the feature dataset to which a feature class belongs. If this
parameter is not specified on the DEF line, then the feature class is
created as a standalone feature class. If this parameter is specified,
then the feature class will be made part of the specified feature dataset,
and if that dataset does not exist then it will be created. If the feature
dataset is created by FME, then the values for the false origin and scale
are taken from the respective writer directives (that is, the X_ORIGIN,
Y_ORIGIN, Z_ORIGIN, XY_SCALE, and Z_SCALE). If a directive is not
specified, then the default value for that directive is used. However,
when writing to a File-based Geodatabase, these directives do not get
used. Instead, default values, based on the coordinate system set, are
used for the origin and resolution.

The following example specifies that the feature class belongs to a fea-
ture dataset named Town:

GEODB_FEATURE_DATASET Town

GEODB_GRID{1} This parameter specifies the size of the spatial index in
the coordinate system of the layer. It is only applicable if
a feature class is being created and is only used if the
GEODB_XYSCALE parameter contains a non-zero value.
The value must be a real number greater than zero.

When using the Enterprise Geodatabase or File-based Geo-
database writer, if the value is 0 or is not specified, and
the value for the GRID_1 directive is 0 then the grid size
will be automatically calculated. The File-based Geo-
database writer will also automatically calculate sizes for
grids 2 & 3.

Parameter Contents

The following example defines a grid size of 200 for the
level 1 grid:

 GEODB_GRID{1} 200

GEODB_GRID{2} This optional parameter defines the level 2 grid size. If it is not desired,
then the value should not be specified or should be set to 0. Before the
level 2 grid size can be specified, the level 1 grid size must be specified.
This parameter must be a real number greater than zero.

The following example defines a grid size of 600 for the level 2 grid:

GEODB_GRID{2} 600

GEODB_GRID{3} This optional parameter defines the level 3 grid element size. If it is not
desired, then the value should not be specified or should be set to 0.
Before the level 3 grid size can be specified, the level 2 grid size must be
specified. This parameter must be a real number greater than zero.

The following example defines a grid size of 1800 for the level 3 grid:

GEODB_GRID{3} 1800

GEODB_AVG_Num_points This optional field specifies the estimated average number of points per
feature. It is used in the creation of the spatial index for the feature
class. If this configuration parameter is not specified, then a default
value will be assigned to the feature class, depending on its geometry
type. If the geometry is a point the default value will be 1; if the geome-
try is a multipoint, the default will be 10; if the geometry is a polyline,
the default value will be 20; if the geometry is a polygon, the default
value will be 40. This parameter must be an integer.

For example, if a new feature class called Roads is to be created and we
believe that the average number of points for a feature from the Roads
feature class will be 3, then on the DEF line for the Roads feature class,
we would find the following:

 GEODB_AVG_NUM_POINTS 3

GEODB_CONFIG_KEYWORD This optional field can be used to specify the configuration parameters
of the table to be written. This directive can be used effectively if the
database is accessed through ArcSDE. It is ignored when writing to Per-
sonal database. For example

 GEODB_CONFIG_KEYWORD TEST_CONFIG

The default value is DEFAULTS.

GEODB_XORIGIN This is the same as the writer directive X_ORIGIN above, except this con-
figuration parameter applies only to the table whose DEF line it is on.
This parameter is only used if the GEODB_XYSCALE parameter contains
a non-zero value and is only used by standalone feature classes. If a fea-
ture class is part of a feature dataset, then this parameter is ignored.
The value must be a real number.

For example:

 GEODB_XORIGIN -53040

Note: This parameter is not used by the File-based Geodatabase writer
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

Parameter Contents

GEODB_YORIGIN This is the same as the writer directive Y_ORIGIN above, except this con-
figuration parameter applies only to the table whose DEF line it is on.
This parameter is only used if the GEODB_XYSCALE parameter contains
a non-zero value and is only used by standalone feature classes. If a fea-
ture class is part of a feature dataset, then this parameter is ignored.
The value must be a real number.

For example:

 GEODB_YORIGIN 1043.89

Note: This parameter is not used by the File-based Geodatabase writer,
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_XYSCALE This is the same as the writer directive XY_SCALE above, except this con-
figuration parameter applies only to the table whose DEF line it is on. If
this parameter does not appear or is set to 0, all the x,y,z origins and
scales and the grid 1 size are taken from the writer directives, even if
some of these values are supplied on the DEF line. If this value is set to a
non-zero value, then all the DEF line parameters for the x,y,z scales and
origins and grid 1 size must be specified. This parameter is only used
by standalone feature classes. If a feature class is part of a feature data-
set, then this parameter is ignored. The value must be a real number
greater than or equal to 0.

For example:

 GEODB_XYSCALE 1000

Note: This parameter is not used by the File-based Geodatabase writer,
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_HAS_Z_VALUES This optional parameter specifies whether or not the features will con-
tain Z values. The only valid values are YES and NO.

For example:

 GEODB_HAS_Z_VALUES YES

Because Geodatabase does not allow mixed 2D and 3D features in the
same feature class, it is best to put a value of YES for this parameter if
you have mixed dimensions. The 2D features will be forced to 3D.

If you get an error message saying your feature class does not support Z
values, you cannot simply add this configuration parameter to your DEF
line and perform the translation again. Since this parameter is only used
when a feature class is created, rather than an existing feature class
being opened, you must either delete the existing feature class or trans-
late to a new Geodatabase.

If this configuration parameter is not specified, then a
default value of NO will be assumed.

GEODB_ZORIGIN This is the same as the writer directive Z_ORIGIN above, except this con-
figuration parameter applies only to the table whose DEF line it is on.
This parameter is only used if the GEODB_XYSCALE parameter contains
a non-zero value and is only used by standalone feature classes. If a fea-
ture class is part of a feature dataset, then this parameter is ignored.

Parameter Contents

The value must be a real number.

For example:

 GEODB_ZORIGIN 0

Note: This parameter is not used by the File-based Geodatabase writer,
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_ZSCALE This is the same as the writer directive Z_SCALE above, except this con-
figuration parameter applies only to the table whose DEF line it is on.
This parameter is only used if the GEODB_XYSCALE parameter contains
a non-zero value and is only used by standalone feature classes. If a fea-
ture class is part of a feature dataset, then this parameter is ignored.
The value must be a real number greater than 0.

For example:

 GEODB_ZSCALE 10

Note: This parameter is not used by the File-based Geodatabase writer,
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_HAS_MEASURES This optional field specifies whether or not the features will contain
measures. The only valid values are YES and NO. If this configuration
parameter is not specified, then a default value of NO will be assumed.
For example:

 GEODB_HAS_MEASURES YES

GEODB_MEASURES_ORIGIN This is the same as the writer directive MEASURES_ORIGIN above,
except this configuration parameter applies only to the table whose DEF
line it is on. If this parameter does not appear, then the value for the
directive MEASURES_ORIGIN is taken. This parameter is only used by
standalone feature classes. If a feature class is part of a feature dataset,
then this parameter is ignored. This parameter must be a real number.

For example:

 GEODB_MEASURES_ORIGIN -232

Note: This parameter is not used by the File-based Geodatabase writer,
as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_MEASURES_SCALE This is the same as the writer directive MEASURES_SCALE above, except
this configuration parameter applies only to the table whose DEF line it is
on. If this parameter does not appear, then the value for the directive
MEASURES_SCALE is taken. This parameter is only used by standalone
feature classes. If a feature class is part of a feature dataset, then this
parameter is ignored. This parameter must be a real number greater
than zero.

For example:

 GEODB_MEASURES_SCALE 5489.6

Note: This parameter is not used by the File-based Geodatabase writer,

Parameter Contents

as default values are used for the domain and resolution. The default
values used are dependent on the coordinate system of the feature class
being created.

GEODB_ANNO_REFERENCE_SCALE This optional field specifies what reference scale to use when creating
an annotation feature class. The reference scale determines the scale at
which the text’s size, on the screen, is the size indicated on each anno-
tation feature. When the scale is larger in value than the reference scale,
then the text appears smaller than that indicated on the annotation fea-
ture and vice versa. If no value is specified for this field, then FME uses
first annotation feature for the annotation feature class. If the feature
contains the attribute geodb_text_ref_scale then the value for the attrib-
ute is used as the reference scale. If the attribute doesn’t exist, then the
default value for the attribute is used, which is 1.

For example:

 GEODB_ANNO_REFERENCE_SCALE 12000

GEODB_COMPRESSION_TYPE This is the same as the writer directive COMPRESSION_TYPE above,
except this configuration parameter applies only to the table whose DEF
line it is on. If this parameter does not appear, then the value for the
directive COMPRESSION_TYPE is taken.

For example:

GEODB_COMPRESSION_TYPE LZ77

Note: This parameter is only applicable when writing to raster datasets.

GEODB_COMPRESSION_QUALITY This is the same as the writer directive COMPRESSION_QUALITY above,
except this configuration parameter applies only to the table whose DEF
line it is on. If this parameter does not appear, then the value for the
directive COMPRESSION_QUALITY is taken.

For example:

GEODB_COMPRESSION_QUALITY LZ77

Note: This parameter is only applicable when writing to raster datasets.

GEODB_PYRAMID_RESAMPLE_TYPE This is the same as the writer directive PYRAMID_RESAMPLE_TYPE
above, except this configuration parameter applies only to the table
whose DEF line it is on. If this parameter does not appear, then the value
for the directive PYRAMID_RESAMPLE_TYPE is taken.

For example:

GEODB_PYRAMID_RESAMPLE_TYPE BILINEAR

Note: This parameter is only applicable when writing to raster datasets.

GEODB_PYRAMID_LEVEL This is the same as the writer directive PYRAMID_LEVEL above, except
this configuration parameter applies only to the table whose DEF line it is
on. If this parameter does not appear, then the value for the directive
PYRAMID_LEVEL is taken.

For example:

GEODB_PYRAMID_LEVEL 5

Note: This parameter is only applicable when writing to raster datasets.

Creating Dimension Feature Classes

Currently, there is no way to specify any dimension-specific settings when using the Geodatabase writer to create a
dimension feature class. As a result, default settings are used. The default dimension style created by the writer is
equivalent to the default one ArcCatalog creates. Likewise, the reference scale and map units are set to the default
values used by ArcCatalog, 1 and decimal degrees, respectively. If the dimension feature class is created within a fea-
ture dataset, it will inherit the units of the feature dataset rather than being set to decimal degrees.

If the default settings are not sufficient, the dimension feature class should be created before the translation using
ArcCatalog. ArcCatalog makes it easy to import dimension styles from existing feature classes and then change them
as required.

Creating Geometric Networks

Currently, FME cannot be used to create geometric networks, or the feature classes participating in them. These
should be created before the translation using ArcCatalog. FME can then be used to either populate these existing fea-
ture classes with point and line data, or alternately to create simple point and line feature classes, with the geometric
network created as a post-processing step.

Creating Relationship Classes

Currently, FME cannot be used to create relationship classes. These should be created before the translation using
ArcCatalog. FME can then be used to populate these existing relationship classes from source origin and destination
features that are related to one another.

Improving the Speed of Translations Using the Geodatabase Writer

You can speed up translations involving the Geodatabase writer by lengthening the interval between committing
transactions. Committing transactions is an expensive operation and therefore it is recommended that you make the
transaction interval as big as possible (or alternatively, if transactions are not needed, then you can turn them off). In
speed tests performed at Safe Software Inc., changing the transaction interval from 500 (the default) to 1000
resulted in a specific translation being 2.5% faster. Changing the transaction interval to 5000 resulted in the same
translation running 5.5% faster. Turning off transactions resulted in an improvement of either 12% or 19%. The per-
formance advantages of changing the transaction interval or of turning transactions off will differ between various
datasets.

Another way in which the speed of writing features can be increased is by creating all the feature datasets, feature
classes, and non-spatial tables ahead of time so that the Geodatabase writer only needs to open them, rather than
create them.

Tips for Using the Geodatabase Writer
l When writing to a Geodatabase, those fields that are not assigned values (i.e., no attribute exists on the feature for
that field) will be assigned a NULL value if the field allows NULL values.

l When writing to Geodatabase, if your translation fails with the ArcObjects message number of -2147216072
(FDO_E_SE_DB_IO_ERROR), there may be several reasons for this, such as:

l The database that you are writing to may be out of space.

l One of the values that you are trying to insert is too large for the underlying database to handle.

l One of the values is too large for the data type specified. Try changing the data types of your columns.

l One of your column names is invalid, possibly due to characters that are not considered capitalized. Try renam-
ing the faulty column.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The Geodatabase modules make use of the following special attribute names.

Attribute Name Contents

geodb_type The type of geometric entity stored within the feature.
The valid values are listed below:
geodb_annotation
geodb_arc
geodb_attributed_relationship
geodb_complex_edge
geodb_complex_junction (read-only)
geodb_dimension
geodb_ellipse
geodb_metadata
geodb_multipatch
geodb_multipoint
geodb_point
geodb_polygon
geodb_polyline
geodb_raster
geodb_relationship
geodb_simple_edge
geodb_simple_junction
geodb_table

geodb_measures This is present for features that have measures when
reading. To write measures, you simply build this list
with one value for each vertex in the feature being
written. This is a comma-separated list of floating
values that correspond to the vertex measures. The
first value is for the first vertex, second for the sec-
ond, and so on.

geodb_feature_is_simple

(Reader only)

Indicates whether or not the geometry is simple. Only
present on spatial features and when ArcGIS 9 is
installed.

geodb_subtype_name When reading, if RESOLVE_SUBTYPE_NAMES is set to
YES, then the value corresponding to the subtype code
is stored in this attribute. When writing to a table with
subtypes and no integer value is supplied for the sub-
type field, then specifying this attribute with an actual
value (i.e. not "") will trigger a look-up for the code
corresponding to the value supplied in this attribute. If
the code is found, it will be written to the subtype
field; otherwise the feature will fail to be written. If
the value specified was the empty string (i.e., "") then
the default value will get used.

Attribute Name Contents

<attribute-name>_resolved When reading, if RESOLVE_DOMAINS is set to YES,
then the description corresponding to the domain code
is stored in this attribute. When writing to a field asso-
ciated with a coded value domain, specifying this attrib-
ute instead of <attribute-name> will trigger a look-up
for the corresponding code. If the code is found, it will
be written to <attribute-name>.

Features read from, or written to, the Geodatabase also have an attribute for each column in the database table.

Tables

geodb_type: geodb_table

Features with this value consist of no coordinates. This value is used by both the reader and the writer.

Points

geodb_type: geodb_point

Features with this value are point features. This value is used by both the reader and the writer.

Polylines

geodb_type: geodb_polyline

Features with this value are features or multi-part features consisting of one or more linear features (that are linked
together). This type of linear feature is allowed to touch or cross over itself. This value is used by both the reader and
the writer.

Multipoints

geodb_type: geodb_multipoint

Features with this value are multi-part features consisting of points. This value is used by both the reader and the
writer.

Note: If a multipoint feature is written to an existing point feature class, then the feature will be split up and each
point written out as a separate feature. Each new feature will have the same attribution as the original feature; the
only difference will be the geometry. If a multipoint feature is written to a point feature class that has not yet been
created, then a multipoint feature class will be created instead of a point feature class.

Arcs

geodb_type: geodb_arc

Features with this value contain either a circular arc or an elliptical arc. Arc features are like ellipse features, except
two additional angles control the portion of the ellipse boundary which is drawn.

Tip: The Function@Arc() can be used to convert an arc to a line. This is useful for representing
arcs in systems that do not support them directly.

Note: During reading, if an arc is encountered that has become a line, FME will create a line feature out of it rather
than creating an arc feature and its geodb_type will be set to geodb_polyline instead of geodb_arc

Attribute Name Contents

geodb_primary_axis The length of the semi-major axis in ground units. If
the arc is circular, this will be the same as the geodb_

Attribute Name Contents

secondary_axis.

geodb_secondary_axis The length of the semi-minor axis in ground units. If
the arc is circular, this will be the same as the geodb_
primary_axis.

geodb_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Default: 0

geodb_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

geodb_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counter clockwise up from horizontal.
Default: 0

geodb_arc_start_x

Available only with classic
geometry.

The x coordinate of the start point of the arc. This
attribute is only present on classic geometry. On
enhanced geometry, this information is stored within
the geometry itself.

geodb_arc_start_y

Available only with classic
geometry.

The y coordinate of the start point of the arc. On
enhanced geometry, this information is stored within
the geometry itself.

geodb_arc_start_z

Available only with classic
geometry.

The z coordinate of the start point of the arc. Only appli-
cable when dealing with 3D arcs. On enhanced geome-
try, this information is stored within the geometry
itself.

geodb_arc_end_x

Available only with classic
geometry.

The x coordinate of the end point of the arc. On
enhanced geometry, this information is stored within
the geometry itself.

geodb_arc_end_y

Available only with classic
geometry.

The y coordinate of the end point of the arc. On
enhanced geometry, this information is stored within
the geometry itself.

geodb_arc_end_z

Available only with classic
geometry.

The z coordinate of the end point of the arc. Only appli-
cable when dealing with 3D arcs. On enhanced geome-
try, this information is stored within the geometry
itself.

Attribute Name Contents

geodb_original_arc_
direction

Available only with classic
geometry.

Always used in conjunction with the start and end
points of the arc. This attribute indicates whether the
arc goes clockwise beginning from the start point, or
counterclockwise.
Default: counterclockwise

Ellipses

geodb_type: geodb_ellipse

Ellipse features are point features used to represent both circles and ellipses. The point serves as the centre of the
ellipse.

Tip: The Function@Arc() can be used to convert an ellipse to a polygon. This is useful for rep-
resenting ellipses in systems that do not support them directly.

Attribute Name Content

geodb_primary_axis The length of the semi-major axis in ground
units.

geodb_secondary_axis The length of the semi-minor axis in ground
units.
Default: the value of geodb_primary_axis

geodb_rotation The rotation of the major axis. The rotation is
measured in degrees counterclockwise up
from horizontal.
Default: 0

Polygon

geodb_type: geodb_polygon

Features with this value are features or multi-part features consisting of polygons and/or donut polygons.

Multipatch

geodb_type: geodb_multipatch

Features with this value consist of a 3D geometry, used to represent the outer surface of features which occupy a dis-
crete area or volume in three-dimensional space. Geodatabases directly support 3D polygonal faces, triangle fans, tri-
angle patches and triangle strips. By definition, the surfaces which compose a multipatch do not need to be
connected. This value is used by both the reader and the writer.

Multipatches support appearances, but only one appearance per surface is supported. For two-sided surfaces, the
writer will favor non-default appearances with textures, with the front side taking precedence over the back side. If
this behavior is not desired, the writer can be forced to choose the front side by using the AppearanceRemover trans-
former in FME Workbench to remove all back appearances.

For writing, all 3D geometry types are supported. Any types of 3D geometry which are not directly supported in a geo-
database (e.g., solids) are decomposed into a set of 3D polygonal faces prior to writing.

Annotation

geodb_type: geodb_annotation

Feature-linked Annotation

Annotations are separate features but can be linked to other features through feature-linked annotations. Feature-link-
ing occurs when there is a relationship between an annotation feature class and some other feature class. The attrib-
ute geodb_linked_feature_id controls which annotations are linked to which features.

Note: Feature-linked annotations can be read and written using FME if the necessary feature classes and rela-
tionships are created and set up before the translation. Currently, it is only possible to read or insert feature-linked
annotations, not update or delete them.

If the feature to be linked to by the annotation has not yet been written, then it is possible for the Geodatabase writer
to write the feature, retrieve the object ID of the new feature, and then write the annotation feature linking to it, sup-
plying the correct value for geodb_linked_feature_id. This is accomplished by supplying attributes (Geodatabase-
specific annotation attributes and user-defined attributes) from the annotation feature on the non-annotation feature;
of the annotation feature attributes, only geodb_text_string must be specified. In addition, the following attributes
must also be specified:

1. geodb_text_feat_class_name – specifies the annotation feature class to which the annotation will be written

2. geodb_text_x_coord & geodb_text_y_coord – specifies the location of the annotation

The result is that the one FME feature contains enough information to write two features: one annotation feature and
one non-annotation feature.

To specify multiple feature-linked annotations, the list attribute geodb_text{i} must be used to group together each
annotation's attributes. There are 4 mandatory annotation attributes that must be present for each annotation in the
list:

1. geodb_text{i}.geodb_text_string - the text string to write

2. geodb_text{i}.geodb_text_feat_class_name - the name of the destination annotation feature class

3. geodb_text{i}.geodb_text_x_coord - the x coordinate of the annotation's location

4. geodb_text{i}.geodb_text_y_coord - the y coordinate of the annotation's location

Other than these 4 attributes, as many or as few annotation attributes can be used. Keep in mind that default values
will be used for attributes that are not specified. A list of all available annotation attributes is given at the end of this
section on annotations.

For example, to insert 3 annotation features, each belonging to a different anno feature class, for the one 'streets' fea-
ture written, a feature like this would be needed:

feature type: streets

fme_geometry = fme_line

fme_type = fme_line

geodb_type = geodb_polyline

user_defined_field_1 = value

user_defined_field_2 = value

user_defined_field_3 = value

...

geodb_text{0}.geodb_text_feat_class_name = street_names

geodb_text{0}.geodb_text_x_coord = 7504799.45082186

geodb_text{0}.geodb_text_y_coord = 731099.587626632

geodb_text{0}.geodb_text_angle = 10

geodb_text{0}.geodb_text_line_spacing = 0

geodb_text{0}.geodb_text_ref_scale = 100

geodb_text{0}.geodb_text_scale = true

geodb_text{0}.geodb_text_size = 8.2

geodb_text{0}.geodb_text_string = "displayed street name"

geodb_text{0}.user_field_1_for_street_names = value

geodb_text{0}.user_field_2_for_street_names = value

...

geodb_text{1}.geodb_font_bold = false

geodb_text{1}.geodb_font_charset = 0

geodb_text{1}.geodb_font_italic = false

geodb_text{1}.geodb_font_name = Arial

geodb_text{1}.geodb_font_size = 20(

geodb_text{1}.geodb_font_strikethrough = false

geodb_text{1}.geodb_font_underline = false

geodb_text{1}.geodb_font_weight = 400

geodb_text{1}.geodb_text_feat_class_name = alternate_street_names

geodb_text{1}.geodb_text_x_coord = 7504783.11300916

geodb_text{1}.geodb_text_y_coord = 731109.158628889

geodb_text{1}.geodb_text_angle = 56.8

geodb_text{1}.geodb_text_size = 4.3

geodb_text{1}.geodb_text_string = "alternate street name"

geodb_text{1}.user_field_1_for_alternate_street_names = value

...

geodb_text{2}.geodb_text_feat_class_name = old_street_names

geodb_text{2}.geodb_text_string = "old street name"

geodb_text{2}.geodb_text_x_coord = 7504788.43294883

geodb_text{2}.geodb_text_y_coord = 731105.044247817

geodb_text{2}.user_field_1_for_old_street_names = value

...

Geometry Type: Line (2)

Number of Coordinates: 4 -- Coordinate Dimension: 2 -- Coordinate System: _FME_0'

(7504779.48166667,731111.522380952)

(7504797.35380952,731098.524285714)

(7504813.13690476,731104.327142857)

(7504805.59357143,731109.201190476)

Lastly, the TRANSACTION_TYPE directive must be set to EDIT_SESSION or VERSIONING whenever writing feature-
linked annotations.

Annotation Attributes

The following attributes are used to store the annotation information within an FME annotation feature. In ArcGIS 9.1,
the schema of annotation feature classes changed and a considerable number of additional fields were added. These
new fields contain information about the annotation such as its font, size, angle, offset, leading, etc. When writing,
these fields should never be set directly; instead the attributes in the table below must be used to control the prop-
erties of the annotation. After the translation, the fields will display the desired values because the attributes below
correspond to some of the fields.

Attribute Name Contents

geodb_text_string The annotation string. It is returned as a UTF-16
encoded string by the reader. The writer converts the
value supplied for this attribute into UTF-16.

geodb_text_size The size of the text in user units. This size gets con-
verted to points, and the text will be displayed at this
size when viewed at the reference scale. If this attrib-
ute is not supplied, then a default text size of 10 points
is used and no conversion is done.
Default: 10.0 points

Attribute Name Contents

geodb_text_feat_class_
name

The name of the destination annotation feature class.
It is only used when writing feature-linked annotations.

geodb_text_x_coord The x coordinate of the annotation's location. It is only
used when writing feature-linked annotations.

geodb_text_y_coord The y coordinate of the annotation's location. It is only
used when writing feature-linked annotations.

geodb_linked_feature_id The ID of the feature to which the annotation is linked.
Only applicable when writing feature-linked annotation
and when the feature being linked to has already been
written. In most cases the non-annotation feature will
not yet have been written and so the feature ID will not
be known. In this case, the Geodatabase writer can pro-
vide the correct value for this attribute. See the section
Feature-Linked Annotation for more information.
Default: -1

geodb_anno_class_id The ID of the Annotation Class to use when writing the
annotation. The ID is an integer: to see what ID an
Annotation Class maps to, view the Subtypes tab of the
Feature Class Properties dialog in ESRI ArcCatalog® for
the annotation feature class. If an invalid ID or -1 was
specified then the annotation will be created using an
inline text symbol; otherwise the annotation will ref-
erence an existing text symbol. Referencing existing
text symbols decreases table size and may improve
performance.

When using an Annotation Class, certain annotation
properties can be overridden and others cannot. The fol-
lowing attributes cannot override the properties of the
Annotation Class:

- geodb_font_strikethrough
- geodb_font_weight
- geodb_font_charset
- geodb_text_scale
- geodb_text_break_char
- geodb_text_clip
- geodb_right_to_left

The following attributes can override the properties of
the Annotation Class:
- geodb_text_size

Attribute Name Contents

- geodb_text_angle
- geodb_font_name
- geodb_font_size
- geodb_font_italic
- geodb_font_underline
- geodb_font_bold
- geodb_text_color
- geodb_color
- geodb_text_x_offset
- geodb_text_y_offset
- geodb_h_align
- geodb_v_align
- geodb_text_line_spacing

Default: -1

geodb_symbol_id The ID of Symbol to use when writing the annotation. The ID is an
integer: to see what ID a Symbol maps to, view the Annotation or Sub-
types tabs of the Feature Class Properties dialog in ESRI ArcCatalog®
for the annotation feature class. If an invalid ID or -1 was specified
then the annotation will be created using an inline text symbol; other-
wise the annotation will reference an existing text symbol.

If geodb_anno_class_id is also specified, geodb_symbol_id takes
precedence. See geodb_anno_class_id for details about overriding
annotation properties.

Default: -1

geodb_font_name The name of the font used to display the text string.
Default: Arial

geodb_font_size The size of the font used to display the text string.
Default: 10

geodb_font_italic Indicates whether the string should be Italicized text.
Allowable values are Yes and No.
Default: No

geodb_font_underline Indicates whether the string should be underlined text.
Allowable values are Yes and No.
Default: No

geodb_font_bold Indicates whether the string should be boldface text.
Allowable values are Yes and No.
Default: No

Attribute Name Contents

geodb_font_strikethrough Indicates whether the string should be "strike-through"
text. Allowable values are Yes and No.
Default: No

geodb_font_weight Indicates the weight of the font being used to display
the string. The value must be an integer greater than
or equal to zero.
Default: 400

geodb_font_charset Indicates the character set being used to display the
string. The value must be the integer value associated
with a specific character set. For example, the ANSI
character set is given the value 0, the default character
set is given the value 1, and the symbol character set
is given the value 2. Some additional character sets,
and their values, are:
BALTIC_CHARSET 186CHINESEBIG5_CHARSET 136
EASTEUROPE_CHARSET 238
GB2312_CHARSET 134
GREEK_CHARSET 161
HANGUL_CHARSET 129MAC_CHARSET 77
OEM_CHARSET 255
RUSSIAN_CHARSET 204
SHIFTJIS_CHARSET 128TURKISH_CHARSET 162
Default: 0 (ANSI character set)

geodb_color The color of the text defined as an RGB string, with
each value separated by a comma. Each value must be
an integer between 0 and 255 (inclusive). Note that the
Geodatabase writer has an internal attribute for color
(geodb_text_color) and so the default for this attribute
is only used when no value is supplied for the geodb_
text_color attribute.
Default: 0,0,0 (black)

geodb_text_angle The rotation of the annotation measured from the hor-
izontal in a counterclockwise direction. It is measured
in degrees.
Default: 0

Attribute Name Contents

geodb_text_ref_scale The reference scale at which the text’s size, on the
screen, is the size indicated by geodb_text_size/fme_
text_size. When the scale is larger in value than the ref-
erence scale, the text appears smaller than that indi-
cated by geodb_text_size/fme_text_size, and vice
versa.
Default: 1

geodb_text_scale Indicates whether the text scales with the map.
Default: TRUE

geodb_text_break_char The ASCII value of the character that should be inter-
preted as the line end.
Default: 10 (the line feed character)

geodb_text_clip Indicates whether the text string will be clipped in
order to fit into an envelope geometry.
Default: No

geodb_text_x_offset The text offset in the x direction, measured in points.
Default: 0

geodb_text_y_offset The text offset in the y direction, measured in points.
Default: 0

geodb_text_leader_line The geometry of the leader line associated with the
annotation, if present. It will be stored in OGC WKT for-
mat.

geodb_text_leader_line_anchor_
point

The geometry of the leader line anchor point asso-
ciated with the annotation, if present. It will be stored
in OGC WKT format.

geodb_h_align The alignment of text horizontally if the text spans mul-
tiple lines.
Options: left, right, center, full
Default: left

geodb_v_align The vertical alignment of text.
Options: baseline, bottom, center, top
Default: bottom

geodb_right_to_left If TRUE, then this indicates that the text is written from
right to left. If FALSE, then this indicates that the text
is written from left to right.
Default: FALSE

geodb_text_char_spacing The amount of character spacing, measured as a per-
centage of the original character’s length. A value of 0

Attribute Name Contents

indicates that the standard amount of character spac-
ing, as set by ESRI, will be used. A value greater than 0
increases the amount of character spacing, whereas a
value less than 0 decreases the amount of character
spacing.
Default: 0

geodb_text_character_width The width added to each character, beyond what is
defined by its character box in its font. Character width
is a percentage of the original character.
Default: 0

geodb_text_line_spacing The amount of line spacing, measured in font points.
The value must be a real number. A value of 0 indi-
cates that the standard amount of line spacing, as set
by ESRI, will be used. A value greater than 0 increases
the amount of line spacing, whereas a value less than
zero decreases the amount of line spacing. If the value
is small enough, the order of lines will get reversed
(that is, the first line becomes the last line, the second
line becomes the second last line, and so on).
Default: 0

Dimensions

geodb_type: geodb_dimension

Dimension features are defined by the following attributes:

Attribute Name Contents

geodb_dim_style_id The numeric ID describing which style this dimen-
sion uses. When writing dimensions this attribute
must be supplied on the feature and be assigned
an ID for an existing style, otherwise an error
will occur.

Attribute Name Contents

Note:When translating from one Geodatabase
dimension feature class to another, make sure
that the destination feature class contains all the
dimension styles used by the input dimension fea-
ture class. This may mean that the destination
dimension feature class has to be created before
the translation using ArcGIS.

geodb_dim_length The length of the dimension. A read-only attrib-
ute.

geodb_dim_custom_length A length specified to be displayed instead of the
actual length in geodb_dim_length. This value
only gets used if geodb_dim_using_custom_length is
set to true.
Default: 0

geodb_dim_using_custom_length Specifies whether or not to use the custom
length specified instead of the actual length. Per-
mitted values are true and false.
Default: false

geodb_dim_type Specifies whether the dimension is linear or
aligned. Please reference ESRI documentation on
dimensions for specific definitions. The numbers
specified follow the ESRI enumeration esriD-
imensionType and the values are:
0 = aligned
1 = linear
Default: 0

geodb_dim_line_display Specifies which dimension parts appear on the
dimension line (that is, if they point inward or
outward, etc.). The integer values for this param-
eter follow the ESRI enumeration esriD-
imensionDisplay and the values are:
0 = Displays both dimension parts.
1 = Displays the beginning dimension part.
2 = Displays the ending dimension part.
3 = Does not display any dimension part.
Setting this attribute overrides the value set by
the dimension style.

geodb_dim_extn_line_display Specifies which dimension parts appear on the
extension line. The valid values are the same as
for geodb_dim_line_display. Setting this attrib-
ute overrides the value set by the dimension

Attribute Name Contents

style.

geodb_dim_marker_display Specifies how arrows are displayed for the
dimension. The values are the same as that of
geodb_dim_line_display, except that they apply
to markers (arrows) instead of dimension parts.
Setting this attribute overrides the value set by
the dimension style.

geodb_dim_text_angle The angle of the text displayed, in radians. From
ESRI’s documentation: "The TextAngle property
will only affect the dimension if the dimension's
style's text alignment property is True in which
case the text is always parallel to the dimension
line."
Default: 0

geodb_dim_extn_line_angle The angle (in degrees) between the dimension
line and the extension line.
Default: 90

geodb_dim_begin_dimension_x The X value for the Begin Dimension Point.

geodb_dim_begin_dimension_y The Y value for the Begin Dimension Point.

geodb_dim_begin_dimension_z The Z value for the Begin Dimension Point.

geodb_dim_end_dimension_x The X value for the End Dimension Point.

geodb_dim_end_dimension_y The Y value for the End Dimension Point.

geodb_dim_end_dimension_z The Z value for the End Dimension Point.

geodb_dim_line_x The X value for the Dimension Line Point. The
Dimension Line Point determines the height of
the dimension line above the baseline. To create
a two-point dimension, the Dimension Line Point
must be the same as the Begin Dimension Point.

geodb_dim_line_y The Y value for the Dimension Line Point. The
Dimension Line Point determines the height of
the dimension line above the baseline. To create
a two-point dimension, the Dimension Line Point
must be the same as the Begin Dimension Point.

geodb_dim_line_z The Z value for the Dimension Line Point. The
Dimension Line Point determines the height of
the dimension line above the baseline. To create
a two-point dimension, the Dimension Line Point
must be the same as the Begin Dimension Point.

Attribute Name Contents

geodb_dim_text_x The X value for the Text Point. If the x,y,z values
for the text point are all zero then the default
text position is used.
Default: 0

geodb_dim_text_y The Y value for the Text Point. If the x,y,z values
for the text point are all zero, then the default
text position is used.
Default: 0

geodb_dim_text_z The Z value for the Text Point. If the x,y,z values
for the text point are all zero, then the default
text position is used.
Default: 0

Simple Junctions

geodb_type: geodb_simple_junction

This type is supported by both the reader and the writer. However, simple junction feature classes must be created
in ArcCatalog prior to running the translation. Simple junction features are defined by the following attributes:

Attribute Name Contents

geodb_edge_feature_count The number of edge features associated with the
junction. Present only on features being read.

geodb_element_id The logical network element ID of the junction.
Present only on features being read.

geodb_ancillary_role The network ancillary role of the junction. Pos-
sible values are: none, source, and sink.

Simple Edges

geodb_type: geodb_simple_edge

This type is supported by both the reader and the writer. However, simple edge feature classes must be created in
ArcCatalog prior to running the translation. Simple edge features are defined by the following attributes:

Attribute Name Contents

geodb_element_id The logical network element ID of the junction.
Present only on features being read.

geodb_from_junction_element_id The junction element ID that corresponds to the
from endpoint. Present only on features being
read.

geodb_to_junction_element_id The junction element ID that corresponds to the
to endpoint. Present only on features being read.

Complex Junctions

geodb_type: geodb_complex_junction

This type is deprecated, and only supported by the Reader. Complex junction features are defined by the following
attributes:

Attribute Name Contents

geodb_junction_element_count The number of junctions associated with the fea-
ture

geodb_edge_feature_count{} The number of edge features associated with the
indexed connection point

geodb_topological_
configuration

The configuration of the feature. Possible values
are: chain, loop, star, and mesh.

geodb_ancillary_role The network ancillary role of the junction. Pos-
sible values are: none, source, and sink.

geodb_edge_element_count The number of edge elements associated with
the feature.

Complex Edges

geodb_type: geodb_complex_edge

This type is supported by both the reader and the writer. However, complex edge feature classes must be created in
ArcCatalog prior to running the translation. The attributes present on an FME feature depend on the value for the
reader directive SPLIT_COMPLEX_EDGES. If the value is NO, the following attributes will be present:

Attribute Name Contents

geodb_edge_element_count The number of edge elements associated with
the feature. Present only on features being read.

geodb_from_junction_element_
id

The junction element ID that corresponds to the
from endpoint Present only on features being
read..

geodb_junction_feature_count The number of connected junction features.
Present only on features being read.

geodb_to_junction_element_id The junction element ID that corresponds to the
to endpoint. Present only on features being read.

If the value is YES, these attributes will be present:

Attribute Name Contents

geodb_element_id The element ID of the logical edge element. Present
only on features being read.

geodb_element_index An attribute created and assigned by FME. It is used to
order the edge elements within a complex feature. The
index begins at zero, not one. Present only on features

Attribute Name Contents

being read.

geodb_from_junction_
element_id

The junction element ID that corresponds to the from
endpoint. Note: This is the from endpoint of the edge
element, not the edge feature. Present only on features
being read.

geodb_to_junction_
element_id

The junction element ID that corresponds to the to end-
point. Note: This is the to endpoint of the edge ele-
ment, not the edge feature. Present only on features
being read.

Relationships

geodb_type: geodb_relationship and geodb_attributed_relationship

Relationship features contain information about a single relationship between an origin and destination feature. They
can be both read and written using FME: attributed relationships can be inserted, updated and deleted, while non-
attributed relationships can only be inserted and deleted. Relationships are not rows in a table or feature class like
other features, but rather implied through the primary and foreign key values of an origin and destination feature.
Attributed relationships have intermediate tables associated with them, which can be updated by providing an RID
(relationship id) as a key field, much as an OBJECTID must be provided when updating a table or feature class.

Relationship classes cannot be created through FME, and must be set up through ArcCatalog prior to running the
translation.

When reading, the following attributes are stored on the feature, and are required for writing relationships; they
must be supplied, if the feature was not read from Geodatabase:

Attribute Name Contents

geodb_rel_origin_oid The OBJECTID of the related origin feature.

geodb_rel_destination_oid The OBJECTID of the related destination feature.

geodb_type geodb_relationship (for non-attributed relationships)

geodb_attributed_relationship (for attributed relationships)

The following attributes are stored on all related origin or destination features, and are required for writing rela-
tionships; they must be supplied if a feature was not read from Geodatabase:

Attribute Name Contents

geodb_feature_has_relationships Whether the feature participates in a relationship as an origin or destination. Values of ‘yes’, ‘y’,
‘true’, and ‘t’ (all case-insensitive) are accepted for features participating in relationships.

geodb_id The temporary OBJECTID of the feature.

In particular, it's possible to write to origin and destination feature classes, as well as associated relationship classes,
all in one pass. This is automatic when reading from one Geodatabase and writing to another, but can be achieved in
other cases with additional care. This applies to attributed and non-attributed relationships. It applies to rela-
tionships that reference the OBJECTID field in the origin and destination tables, as well as relationships that reference
other fields in the origin and destination tables.

When writing origin or destination features that will be referenced by relationship features written during the same
pass, they must have:

geodb_oid = <temporary local object id>

geodb_feature_has_relationships = "yes"

The <temporary local object id> does not become the ultimate OBJECTID in ArcGIS. However, it can be
used to reference origin and destination features when writing relationship features in a single pass.

When writing relationship features, they must have:

geodb_rel_origin_oid = <temporary local object id> OR <true object id>

geodb_rel_destination_oid = <temporary local object id> OR <true object id>

geodb_type = "geodb_relationship" (for non-attributed relationships), or

"geodb_attributed_relationship" (for attributed relationships)

If there is an overlap between true object IDs and temporary local object IDs, FME preferentially assumes the ID is a
temporary local one. This allows the user to ignore the true object IDs if desired.

The destination feature type properties for relationship classes should have

"Allowed Geometries" = "geodb_relationship" or "geodb_attributed_relationship"

as appropriate. (This explanation is for Workbench; mapping file authors should set geodb_type to one of the
above on the DEF line. See Geodatabase Table Representation for more details.)

Note that when writing relationship features with FME, you must always provide object IDs, *not* the values of the
actual origin and destination key fields if they are different than OBJECTID.

Metadata

geodb_type: geodb_metadata

Metadata features contain metadata about the feature type. Metadata can be read and written. The metadata used is
of the same form as when using ESRI’s ArcCatalog to export table metadata to (plain) XML.

When reading, the following attributes are supplied on the feature, where applicable:

Attribute Name Contents

fme_contains_spatial_column yes or no, depending on whether the feature
type is a non-spatial table, attributed rela-
tionship, or a feature class

fme_dimension 2 or 3, depending on the dimension of the fea-
ture class

fme_feature_identifier The name of the object ID field

fme_geometry{0} The geometry of the feature class. This will be
set to fme_no_geom for non-spatial tables and
attributed relationships

fme_num_entries (Personal Geodb only) The total number of features in the table

geodb_metadata_string The geodatabase metadata in XML

If the feature type represents a feature class, the geometry of the metadata feature returned is a polygon, rep-
resenting the extents of the feature class and the coordinate system of the feature class also gets set on the feature.

When writing, the geodb_type of the feature must be geodb_metadata; however, the geodb_type of the destination
feature type must not be geodb_metadata, but rather the type of the table itself.

The metadata within geodb_metadata_string will overwrite any previous metadata that exists in the table. If multiple
metadata features are written to a single table, then the last metadata feature will be used. Viewing the metadata

within ArcCatalog after the translation will automatically update certain fields, such as table name & record count, if
they were set incorrectly in geodb_metadata_string. However, if you use FME to read back the metadata before view-
ing the results in ArcCatalog then the incorrect fields will not have been corrected. None of the other attributes sup-
plied on an FME feature when reading metadata will get used when writing metadata.

Writing metadata features does not increase the number of features in a table.

Raster

Features with this value consist of a raster geometry, and are used to represent a two-dimensional grid of values.
FME supports the writing and reading of both single- and multi-banded numeric rasters, and three-banded color
rasters.

Attribute Name Contents

geodb_raster_compression_type The type of compression algorithm used to store data in the
raster dataset.

geodb_raster_compression_quality The compression quality.

geodb_raster_pyramid_resample_type The resampling method used when building reduced res-
olution pyramids on the raster dataset.

geodb_raster_pyramid_level The number of reduced resolution pyramids built.

ESRI Geodatabase (XML) Reader

Format Notes: To use FME’s ESRI XML Geodatabase Reader, you must also install ESRI’s ArcGIS® 9. It is not avail-
able with ArcGIS 8.

Since the XML Geodatabase Reader is based on the same technology as FME’s ESRI Geodatabase Reader, the two for-
mats are essentially the same. Please see the Reader section of the ESRI Geodatabase Reader/Writer for
information on usage. Only the Geodatabase Reader directives listed in that chapter are currently supported.

The XML Geodatabase Reader allows FME to retrieve data from ESRI’s XML Workspace Document.

Overview

The XML Geodatabase Reader can read both binary and text XML Workspace Documents.

XML Geodatabase Quick Facts

Format Type Identifier GEODATABASE_XML

Reader/Writer Reader

Licensing Level ESRI Edition

Dependencies ArcGIS 9

Dataset Type File

Feature Type Table/Feature Class name

Typical File Extensions .xml or .ZIP or .Z

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Always

Schema Required No

Transaction Support N/A

Enhanced Geometry Yes

Geometry Type geodb_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster yes

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon yes solid no

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none yes

ESRI Shape Reader/Writer

The ESRI® Shape Reader and Writer module allows FME to read and writer ESRI’s Shape format. The Shape format is
the native format of ESRI’s ArcView product and has been made public by ESRI.

Overview

An ESRI shapefile consists of a main file, an index file, and a dBASE table. The main file is a direct access, variable-rec-
ord-length file in which each record describes a shape with a list of its vertices. In the index file, each record contains
the offset of the corresponding main file record from the beginning of the main file. The dBASE table contains feature
attributes with one record per feature. The one-to-one relationship between geometry and attributes is based on rec-
ord number. Attribute records in the dBASE file must be in the same order as records in the main file.

Shapefiles store both geometry and attributes for features. No topological information however is carried in a shape-
file. A single logical shapefile consists of three physical files, each with one of the following file name extensions:

File Name Extension Contents

.shp Geometric data

.shx Index to the geometric data

.dbf Attributes for the geometric data

.sbn and .sbx Spatial index for the geometric data. These two
files will not exist unless you generate them with
an ESRI product.

These extensions are added to the base name of the shapefile, creating separate physical files that must all reside in
the same directory.

Point, multipoint, polyline, polygon, and multipatch geometric data can be stored in .shp files. However, a single .shp
file can contain only one type of geometry. Each entity in a .shp file has a corresponding entry in the .shx index file
and a corresponding row of attributes in the associated .dbf file. The order of the entries in each of these files is syn-
chronized. For example, the third geometric entity in the .shp file is pointed to by the third entry in the .shx index file
and has the attributes held in the third row of the .dbf file.

In the case of multipoint data, there is only one .dbf row for each set of points held in the file. This is in contrast with
a point file where there is one .dbf row for each point. Polyline files contain linear features or aggregates of linear fea-
tures, each having a single attribute entry. Polygon files contain polygons or groups of disjoint or overlapped, in the
case of holes, polygons each having a single attribute entity.

Tips:

Aggregate linear features and aggregate polygonal features may be created using the Aggre-
gateFactory. They may be broken into their component pieces for output to formats that do
not support aggregation using the DeaggregateFactory.

If a polygon containing holes is written to a Shapefile, any adjacent holes will be merged into
a single hole before the polygon is output.

The number and type of attributes associated with each entity is user-definable however, there must be at least one
field in the .dbf file. As well, all features in the same shapefile will have the same number and type of attributes.

Note: Any single DBF (attribute) file can have a maximum file size of 2 GB, a limit imposed by the dBase III spec-
ification. Files larger than 2 GB may be readable, but not officially supported. Files larger than 2 GB are not writ-
able, and will produce an error message.

Shapefiles may hold both two- and three-dimensional geometry, as well as an optional measure value on each vertex.
However, all features within a single shapefile will have the same dimensionality. Note that while older ESRI products
may only support two-dimensional shapefiles, FME can read and write both two- and three-dimensional shapefiles.
FME can also handle measure data associated with features.

Note: Measures are currently not supported when reading or the shape_multipatch geometry type.

In previous FME releases, when a feature with measures went through certain transformers, the measures would
sometimes become out of sync with the feature that they were attached to. The addition of enhanced geometry sup-
port ensures that this will no longer happen, as long as the workspace/mapping file has been set to use enhanced
geometry.

FME considers a Shape dataset to be a collection of shapefiles in a single directory. The geometry type and attribute
definitions of each shapefile must be defined in the mapping file before being read or written.

The following diagram shows a Shape polygon file with three geometric entities in it. The index file has three entries,
each of which refer to the vector data defining each polygon. Notice the second polygon contains a hole and the third
polygon is an aggregate of two disjoint polygons, one of which contains a hole. Each geometric entity in turn cor-
responds with one record in the attribute table.

ESRI Shape Quick Facts

Format Type Identifier SHAPE

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .shp (.shx, .dbf)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Optional

Generic Color Support No

Spatial Index Optional

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Encoding Support Yes

Geometry Type SHAPE_GEOMETRY

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface yes

ellipses no text no

line yes z values yes

none yes

Reader Overview

The Shape reader produces FME features for all feature data held in shapefiles residing in a given directory. The
Shape reader first scans the directory given for the shapefiles which have been defined in the mapping file. For each
shapefile it finds, it checks to see if that file is requested by looking at the list of IDs specified in the mapping file. If a
match is made or no IDs were specified in the mapping file, the shapefile is opened to be read. The Shape reader
extracts features one at a time from the file and passes them on to the rest of the FME for further processing. When
the file is exhausted, the Shape reader starts on the next file in the directory.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the Shape reader is SHAPE.

DATASET

Required/Optional: Required

The value for this directive is the directory containing the shapefiles to be read, or a single shapefile. A typical map-
ping file fragment specifying an input Shape dataset looks like:

SHAPE_DATASET /usr/data/shape/92i080

Workbench Parameter: Source ESRI Shape File(s)

DEF

Required/Optional: Optional

The definition specifies only the base name of the file, the type of geometry it contains, and names and types of all
attributes. The syntax of a ShapeDEF line is:

<ReaderKeyword>_DEF <baseName> \
SHAPE_GEOMETRY shape_point| \

shape_multipoint| \
shape_polyline| \
shape_polygon| \
shape_null| \
shape_pointm| \
shape_polylinem| \
shape_polygonm| \
shape_pointz| \
shape_polylinez| \
shape_polygonz \(
shape_multipatch| \

[<attrName> <attrType>]+

Note: In older versions of FME, shape_polyline was called shape_arc. This has been changed to avoid confusion
with mathematical arcs. However, FME still accepts shape_arc in place of shape_polyline to accommodate back-
wards compatibility.

Shapefiles with geometry of shape_point, shape_multi_point, shape_polyline, and shape_poly-
gon contain two-dimensional features. A geometry of shape_null is used for shape files that contain no geome-
try. If the type of geometry has anm at the end, then each two-dimensional coordinate of a feature may optionally
have an associated measure value. If the type of geometry has a z at the end or is shape_multipatch, the shape-
file contains three-dimensional features, and each coordinate may optionally have an associated measure value.

The file name of the each of the physical shapefiles is constructed by adding their extension to the base name. The
SHAPE_GEOMETRY clause specifies the geometry type for the entire file.

It is also possible to store features having no defined geometry. These features have their SHAPE_GEOMETRY
attribute set to shape_null. These shape_null features may be stored or read from any type of shapefile.

Tip: When creating Shapefiles, no attributes need to be specified on the SHAPE_DEF line.
When no attributes are defined on a Shapefile being written, FME automatically generates an
_ID attribute for the Shapefile. This is useful if the Shapefile is to be imported into ArcInfo. If
the Shapefile contained polygons, an AREA attribute is also generated. In both cases, the
values of these attributes will be NULL for all features.

Shapefiles require at least one attribute be defined. The attribute definition given must match the definition of the file
being read. If it does not, translation is halted and the true definition of the shapefile’s attributes is logged to the log

file. All shapefile attribute names must be uppercase and must not exceed 10 characters in length. The following
table shows the attribute types that are supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The
width parameter controls the maximum characters
that can be stored by the field. When a character
field is written, it is right-padded with blanks, or
truncated, to fit the width. When a character field is
retrieved, any padding blank characters are
stripped away.

date Date fields store dates as character strings with the
format YYYYMMDD.

logical Logical fields store TRUE/FALSE data. Data read to
or written from such fields must always have a
value of either true or false.

number(<width>,<decimals>) Number fields store single and double precision
floating point values. The width parameter is the
total number of characters allocated to the field,
including the decimal point. The decimals parameter
controls the precision of the data and is the number
of digits to the right of the decimal.

The following mapping file fragment defines two shapefiles: one containing polygonal features possibly disjoint and
with holes, and the other containing linear features:

SHAPE_DEF landcover SHAPE_GEOMETRY shape_polygon \
AREA number(12,3) \
TYPE char(11)\
PERIMETER number(12,3)

SHAPE_DEF roads SHAPE_GEOMETRY shape_arc \
NUMOFLANES number(2,0) \
TYPE char(5) \
UNDERCNST logical \
DIVIDED logical \
TRVLDIR char(6)

Workbench Parameter: <WorkbenchParameter>

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined shapefiles read. If no IDs are specified, then all
defined and available shapefiles are read. If more shapefiles were in the directory, they are ignored. The syntax of the
IDs directive is:

<ReaderKeyword>_IDs <baseName1>\
<baseName2> …\
<baseNameN>

The base names must match those used in DEF lines.

The example below selects only the roads shapefile for input during a translation:

SHAPE_IDs roads

Workbench Parameter: Feature Types to Read

MEASURES_AS_Z

Required/Optional: Optional

This optional specification controls how measures data associated with geometric data is treated. If the value is yes,
measures data is treated as elevations.

Workbench Parameter: Treat Measures as Elevation

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

This specification will only be used by the reader for datasets that have an associated spatial index (.sbn and .sbx
file).

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

DISSOLVE HOLES

Required/Optional: Optional

This optional specification controls whether the SHAPE reader dissolves adjacent holes in polygons read from shape-
files. If the value is set to yes or is not set, then the SHAPE reader will dissolve adjacent holes.

Workbench Parameter: Dissolve Adjacent Holes

REPORT BAD GEOMETRY

Required/Optional: Optional

This optional specification controls whether the SHAPE reader reports geometric anomalies in input shapefiles.

By default, the SHAPE reader will perform the following operations to ensure the validity of input features: close
unclosed polygons, remove duplicate points, remove empty elements, dissolve holes (if DISSOLVE_HOLES is set to
YES or is not set).

If REPORT_BAD_GEOMETRY is set to YES, then the shape_geometry_error{} list attribute will be set on
input features, and will contain error messages as geometric anomalies are detected and/or fixed. The error mes-
sages are of the following format:

Closed Polygon at (x,y)

Duplicated Point at (x,y)

Removed Empty Element #n near (x,y)

Removed Duplicate Point at (x,y)

Invalid Polygon/Donut Orientation near (x,y)

Dissolved Holes

Workbench Parameter: Report Geometry Anomalies

ENCODING

Required/Optional: Optional

This optional specification controls which character encoding is used to interpret text attributes from the shapefile. If
the value is not set, then the character encoding will be automatically detected from the source shapefile. If the value
is set, it will take precedence over the automatically detected character encoding.

This directive is useful when the character encoding information stored in the shapefile is missing or incorrect.

Workbench Parameter: Character Encoding

Example:

<ReaderKeyword>_ENCODING <character encoding>

Parameter Description

<character encoding> The character encoding to use when interpreting
text attributes. Must be set to any of the following
values:
ANSI - this means use the “current OS language”
BIG5
EUC
HKBIG5
ISO
OEM
SJIS
UTF-8
CP437
CP708
CP720
CP737
CP775
CP850
CP852
CP855
CP857
CP860
CP861
CP862
CP863
CP864
CP865
CP866
CP869
CP874
CP932
CP936
CP950
CP1250
CP1251
CP1252
CP1253
CP1254
CP1255
CP1256
CP1257
CP1258
ISO8859-1

Parameter Description

ISO8859-2
ISO8859-3
ISO8859-4
ISO8859-5
ISO8859-6
ISO8859-7
ISO8859-8
ISO8859-9
ISO8859-11
ISO8859-13
ISO8859-15
WINDOWS-874

UPPER_CASE_ATTR_NAMES

Required/Optional: Optional

This option specifies whether the reader should upper case attribute names. If no, it will allow mixed case, otherwise
attribute names will be uppercased. The default value is no; however, for backwards compatibility, when this key-
word is not present, a value of yes will be used.

This keyword is used when generating workspaces & mapping files. As a result, it is not editable within workbench
after the workspace has been generated.

Workbench Parameter: NOT APPLICABLE

TRIM_PRECEDING_SPACES

Required/Optional: Optional

This option specifies whether the reader should trim preceding spaces of attribute values. If the option is set to YES,
then preceding spaces in attribute values will be discarded. If the option is set to NO, then preceding spaces will be
left intact. The default value is YES.

Workbench Parameter: Trim Preceding Spaces

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Shape writer creates and writes feature data to shapefiles in the directory specified by theDATASET directive.
As with the reader, the directory must exist before the translation occurs. Any old shapefiles in the directory are over-
written with the new feature data. As features are routed to the Shape writer by the FME, it determines the file they
are to be written to and outputs them according to the type of the file. Many shapefiles can be written during a single
FME session.

Writing to shapefiles of type polygonz or polygonm

Writing to shapefiles of type polygonz or polygonm will result in a measures column, whether measures exist or
not. If they don't, and the Universal Viewer displays in Classic mode, then geometry shows <1.#QNAN> for the M
dimension.

Classic Geometry Handling

shape_measures NaN,NaN,NaN,NaN

1: (4526424.7720003976, 5690159.0588858956, 110.87090000000001)

Enhanced Geometry Handling

0: (4526424.7720003976,5690159.0588858956,110.87090000000001)<1.#QNAN>

Writer Directives

The Shape writer processes theDATASET, DEF, and MEASURES_AS_Z directives as described in the Reader
Directives subsection. It does not make use of the IDs or SEARCH_ENVELOPE directives.

TheENCODING directive is used to specify which character encoding should be used when writing text attributes
into shapefiles. If the value of this directive is not set, the current OS language is used. The syntax of theENCOD-
ING writer directive is the same as theENCODING reader directive, as described in the Reader Directives section.

UPPER_CASE_ATTR_NAMES

Required/Optional: Optional

This option specifies whether the writer should change attribute names to uppercase text. If set to NO, mixed case
attribute names will be allowed. The default value is YES.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

Workbench Parameter: NOT APPLICABLE

SURFACE_AND_SOLID_STORAGE

Required/Optional: Optional

This option specifies whether the writer should write input 3D surfaces and solids as shape_multipatch to preserve
their original structure or as shape_polygonz to break them down into polygon components. The default value is mul-
tipatch.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

Workbench Parameter: NOT APPLICABLE

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Shape features consist of geometry, a special predefined attribute, and a set of user-defined attributes. All shape fea-
tures have one predefined attribute, SHAPE_GEOMETRY, which identifies the type of the features geometry. Geome-
try types can be two-dimensional (2D), 2D plus elevations, 2D plus measures, 2D plus elevations and measures or
3D:

Attribute Name Contents

SHAPE_GEOMETRY The type of the geometry read from the shapefile. This
attribute will contain one of:

shape_point

shape_multipoint

shape_polyline

shape_polygon

shape_null

shape_pointm

shape_multipointm

shape_polylinem

shape_polygonm

shape_pointz

shape_multipointz

shape_polylinez

shape_polygonz

shape_multipatch

Default: No default

shape_measures This is present for features that have measures when
reading only if the reader directive MEASURES_AS_Z is
not specified or is set to no. To write measures using
this attribute, make sure the writer directive MEAS-
URES_AS_Z is not specified or is set to no, and simply
build this list with one value for each vertex in the fea-
ture being written. This is a comma-separated list of
floating values which correspond to the vertex meas-
ures. The first value is for the first vertex, second for
the second, and so on. Not-a-Number values are rep-
resented by the string “NaN”.

However, this will not be present on features if the
FME_GEOMETRY_HANDLING directive is set to YES.

A Shapefile defines a set of features that share the same geometry type and the same list of user-defined attributes.
In other words, all features belonging to the same shapefile have the same value for the SHAPE_GEOMETRY attrib-
ute and the same list of user-defined attributes. The values of the user-defined attributes can vary from feature to fea-
ture within the same Shapefile. The geometry type and the names of the user-defined attributes for an individual

shapefile are specified in the DEF line for that Shapefile. The feature type of a Shape feature is the same as the base-
Name specified in the DEF line.

When reading Shape features, the SHAPE_GEOMETRY attribute will correspond to the geometry type specified in
the DEF line for that for the shapefile. When writing Shape features, the SHAPE_GEOMETRY attribute is not
required and will be ignored if it is present because the geometry type is taken from the DEF line for the shapefile. If
the feature being written out cannot be converted into the geometry type specified on the DEF line, this feature will
not be written out and a warning message will be printed in the logfile. (An example of this would be trying to write an
area feature into a point geometry file.)

There is one exception where the geometry type indicated on the DEF line may not be the type of file that is actually
created. If the DEF line indicates that a point file is to be created, but the first actual feature written to that file is
instead a multipoint, a multipoint file will be created instead. (The same will be true for pointz/multipointz as
well as pointm/multipointm files.)

As of ESRI ArcGIS Desktop 9.3 Shape files of type shape_null are no longer valid. Any DEF lines with SHAPE_
GEOMETRY set to shape_null will be output instead as shape_point.

When reading a polyline feature with multiple parts, the FME representation consists of an aggregate of lines. Sim-
ilarly, when reading a polygon feature with multiple parts, the FME representation consists of an aggregate of poly-
gons. Conversely, when writing aggregates of lines or polygons, the FME will output multi-part polyline and polygon
Shape features.

When providing 3D data to the Shape writer the polygonz or multipatch geometry types can either split or preserve
the 3D geomtries. By default 3D surfaces and solids are mapped to multipatches to preserve their representation as
single objects. If 3D geometries are instead provided to polygonz destination feature types the surfaces and solids
will be converted to individual component polygons.

Facet XDR Reader/Writer

The Facet XDR Reader/Writer allows FME to read and write Facet XDR files. The Facet XDR Format (Facet) is a binary
format used by tools produced by Facet Decision Systems, Inc. Facet datasets may be in either ASCII or binary (XDR)
format. Currently, FME supports only the binary version.

Overview

Facet data sets store objects that are very flexible in nature. Facet XDR files are self-describing and contain two
parts: a signature defining the interpretation of the file’s structure and a second part containing either coordinates,
attribute data, or methods depending on the signature. Facet structures can mix simple data, other structures, and
methods nested to any depth. Therefore, Facet may hold either two-dimensional (2D) or three-dimensional (3D) geo-
metric data.

Facet files store both feature geometry and attributions. A logical Facet file consists of one physical file, with the .xdr
file name extension.

The extension .xdr is added to the basename of the Facet file when written.

Facet XDR Quick Facts

Format Type Identifier FACET

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type • File for Reader
• Directory for Writer

Feature Type File base name

Typical File Extensions .xdr

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type facet_fme_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

Geometry Support

Geometry Supported? Geometry Supported?

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

Reader Overview

The Facet reader opens the input file and immediately starts reading features, returning them to the rest of FME for
processing. The reader doesn't have any requirement for explicit instruction on how to decode Facet files, as it auto-
matically identifies the type of file from the signature it contains.

The feature returned by the Facet reader has its feature type set to its file basename.

FME automatically recognizes nine different Facet file structures and imports the coordinates and attributes in a spe-
cial way. If the Facet file does not conform to any of the following nine known formats, FME will interpret the file as a
“database” type, which retains all information it contains but does not perform any special conversion on any fields.
The table below lists the nine special Facet file formats.

File Format Contents and Interpretation

text Contains text features without attributes.

text and attributes Contains text features with custom attributes.

geometry Contains single precision geometric information; for
example, line, multipoint, polygon.

double geometry Contains double precision geometric information; for
example, line, multipoint, polygon.

geometry and
attributes

Contains single precision geometric information; for
example, line, multipoint, polygon, followed by custom
attributes for each feature.

double geometry and attributes Contains double precision geometric information; for
example, line, multipoint, polygon, followed by custom
attributes for each feature.

interleaved geometry
and attributes

Contains single precision geometric information; for
example, line, multipoint, polygon, interleaved with cus-
tom attributes for each feature.

interleaved double
geometry and
attributes

Contains double precision geometric information; for
example, line, multipoint, polygon interleaved with cus-
tom attributes for each feature.

database Contains attribute information only with no coordinates.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the Facet reader is FACET.

DATASET

Required/Optional: Required

The value for this keyword is the file name of the Facet XDR file to be read.

Example:

FACET_DATASET /usr/data/Canada/roads.xdr

Workbench Parameter: Source Facet XDR File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Facet writer creates and writes feature data to a directory specified by the DATASET keyword. Unlike the reader,
this keyword refers to a directory, not a file name. This directory will be created if it does not exist before the trans-
lation occurs. Many Facet files may be written to in a single FME session (one translation).

The feature type on each FacetDEF line specifies the basename of the output Facet XDR file.

Each FacetDEF line specifies a single Facet output file. The attributes listed on theDEF line appear within the out-
put Facet file. The special DEF line keyword FACET_GEOMETRY assists the FME in determining the format of the out-
put Facet file. The table below outlines how the FME decides what special format the output Facet file will take.

Output File Format Conditions

text The FACET_GEOMETRY on the DEF line is
assigned the value facet_text.
The DEF line specifies no attributes.

text and attributes The FACET_GEOMETRY on the DEF line is
assigned the value facet_text.

Output File Format Conditions

The DEF line specifies at least one attribute.

geometry The COORD_PRECISION keyword is set to Sin-
gle.
The FACET_GEOMETRY on the DEF line is
assigned the value facet_line, facet_polygon, or
facet_multipoint.
The DEF line specifies no attributes.

double geometry The COORD_PRECISION keyword is set to Dou-
ble.
The FACET_GEOMETRY on the DEF line is
assigned the value facet_line, facet_polygon, or
facet_multipoint.
The DEF line specifies no attributes.

interleaved geometry and
attributes

The COORD_PRECISION keyword is set to Sin-
gle.
The FACET_GEOMETRY on the DEF line is
assigned the value facet_line, facet_polygon, or
facet_multipoint.
The DEF line specifies at least one attribute.

interleaved double geometry and attributes The COORD_PRECISION keyword is set to Dou-
ble.
The FACET_GEOMETRY on the DEF line is
assigned the value facet_line, facet_polygon, or
facet_multipoint.
The DEF line specifies at least one attribute.

database The FACET_GEOMETRY on the DEF line is not
assigned any value, or is assigned a value
other than facet_text, facet_line, facet_polygon,
or facet_multipoint.
The DEF line specifies at least one attribute.

Writer Directives

The following table lists the keywords processed by the Facet Writer. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Facet writer is FACET.

DATASET

Required/Optional: Required

The value for this directive is the file name of the Facet XDR file to be written.

Example:

FACET_DATASET /usr/data/Canada/roads_output.xdr

Workbench Parameter: Destination Facet XDR Directory

COORD_PRECISION

Required/Optional: Optional

Specifies the precision by which the coordinates will be stored.

Values: Single | Double

Default Value: Single

Workbench Parameter: Coordinate precision

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Facet features may consist of geometry and attributes. When reading Facet files, several special attributes hold the
data from the file. When writing Facet files, the values in these attributes are written out to the file. If the feature does
not have these special attributes, appropriate default values will be used.

Special supported Facet format types include: text, line, polygon, multipoint, point, or database. Note that multipoint data
may contain a single point. Also note that database features contain attributes but no geometry.

All Facet features produced by the FME reader contain the facet_fme_type attribute, which identifies the geometric
type. Depending on the geometric type, the feature contains additional attributes specific to the geometric type.
These are described in subsequent sections.

Attribute Name Contents

facet_fme_type The Facet geometric type of this entity.
Values:
facet_multipoint
facet_line
facet_polyogn
facet_text
facet_database

Points

facet_fme_type: facet_multipoint

A Facet multipoint feature specifies single or multiple 2D or 3D coordinates. There are no special attributes with this
type of feature.

Lines

facet_fme_type: facet_line

Facet line features contains 2D or 3D linear geometry. There are no special attributes with this type of feature.

Polygons

facet_fme_type: facet_polygon

Facet polygon features contains 2D or 3D geometry. Polygons may be either simple or may contain holes, thereby
being donuts. There are no special attributes with this type of feature.

Text

facet_fme_type: facet_text

Facet text features contain 2D or 3D coordinates and a text string, along with the text alignment, rotation, and size.

Attribute Name Contents

facet_text_string The text string.
Range: any length character string
Default: NULL string

facet_text_alignment A numeric code indicating the feature’s alignment.
Several settings are listed below. These settings may be
ANDED together to form a single numeric code:
TextAlignLeft 1
TextAlignRight 2
TextAlignCenter 4
TextAlignBase 16
TextAlignHalf 32
TextAlignCap 64
TextAlignTop 128
TextAlignBottom 256

Range: 0 - 511
Default: 0

facet_rotation The rotation of the text, measured in degrees counter-
clockwise from the horizon.
Range: any real number
Default: 0.0

facet_text_size The size of the text.
Range: any real number
Default: 1.0

Database

facet_fme_type: facet_database

Facet database features contain no coordinates. These features may contain any number of custom attributes. There
are no special attributes with this type of feature.

FME Feature Store Reader/Writer

This section describes how FME reads and writes FME Feature Store (FFS) files.

Overview

The FFS Reader and Writer modules allow FME to read and write FFS files. This format is a memory dump of FME fea-
tures, and is the same as the format used by the RecorderFactory. See the RecorderFactory in the FME Functions and
Factories manual for more details on this format.

Note: If you do not have a current version of FME and you are using the FFS format for data exchange or storage,
you may receive this error message:
No geometry mapping entry found for 'fme_raster' in metafile 'C:\Program Files\FME_1378\metafile\FFS.fmf'. Pro-
gram Terminating.
FFS files that are created with recent FME builds cannot be read by some very early versions of Workbench (build
1378 and earlier).

A spatial index may also be created and saved with the feature store which the FFS reader uses to quickly extract only
those features within a specified area.

Because the format is a memory dump of FME features, it can hold anything that FME features carry. This makes the
format attractive as a holding spot for data that should persist between FME runs.

A logical FFS dataset consists of one or more files in the same directory with the extension .ffs. This extension is
added to the base name of the FFS files. It is also possible to use the FFS reader and writer to read and write only a sin-
gle file.

When writing a large amount of data to a single FFS file, file size limits may be encountered. If this occurs, the data is
automatically split into multiple files of acceptable sizes. Reading in the first FFS file will automatically read in all files
that were produced when the file was split.

FFS files contain all custom coordinate system definitions used on the features it contains, if any.

Rasters stored to an FFS file will have their data written to a corresponding .frs (FME Raster Store) file. One FRS file
may hold the data for multiple raster features. FRS files hold up to 2GB of raster data; if the file surpasses this size,
the data is automatically split across multiple files. If an FFS file containing raster features is opened and the cor-
responding FRS file cannot be opened, then the raster features will be restored as polygons with attributes indicating
the properties of the raster (e.g., number of rows/columns, spacing, etc.).

FME Feature Store Quick Facts

Format Type Identifier FFS

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type FME Feature Type names

Typical File Extensions .ffs

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Optional

Schema Required No

Transaction Support No

Enhanced Geometry Yes

Encoding Support Yes

Geometry Type fme_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster yes

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none yes

Reader Overview

The FFS reader first reads the input file and passes the resultant features on to the rest of FME for further proc-
essing. If the FFS files have associated spatial indexes, then a spatial query can be used to limit the features
returned.

Note that compressed FFS files may take time to generate, since the whole file is scanned for schema features.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file.

By default, the <ReaderKeyword> for the FFS reader is FFS.

DATASET

The value for this directive is the directory containing the FFS files to be read or a single FFS file.

Required/Optional

Required

Mapping File Syntax

A typical mapping file fragment specifying an input FFS dataset looks like:

FFS_DATASET /usr/data/ffs/92i080

The dataset may also be an actual FFS file. In such a case, that file is read, and the IDs and DEF lines must not be
present.

FFS_DATASET /usr/data/data/92i080.ffs

Workbench Parameter

Source FME Feature Store (FFS) File(s)

DEF

This specification is used to define FFS files read. The syntax of the DEF directive is:

<ReaderKeyword>_DEF <baseName>
[<attrName> <attrType>]+

Note that this directive is not used when the dataset is a file.

Required/Optional

Optional

Mapping File Syntax

The example below defines a roads FFS file for input during a translation:

FFS_IDs roads

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed length strings.
The width parameter controls the maximum
number of characters that can be stored by
the field. No padding is required for strings
shorter than this width.

varchar(<width>) Variable character fields store variable length
strings. The width parameter controls the max-
imum number of characters that can be stored

Field Type Description

by the field. These are often used to optimize
storage.

buffer Buffers store unbounded length character or
byte strings.

date Date fields store dates as character strings
with the format YYYYMMDD.

datetime Datetime fields store dates as character
strings with the format
YYYYMMDDHHMMSS.FFF

time Time fields store times as character strings
with the format HHMMSS.FFF

number(<width>,
<decimals>)

Number fields store single and double pre-
cision floating point values. The width param-
eter is the total number of characters
allocated to the field, including the decimal
point. The decimals parameter controls the pre-
cision of the data and is the number of digits
to the right of the decimal.

real64 Float fields store 64 bit floating point values.
There is no ability to specify the precision and
width of the field.

real32 Float fields store 32 bit floating point values.
There is no ability to specify the precision and
width of the field.

int16 Int16 fields store 16 bit signed integers and
therefore have a range of -32767 to 32767.

int32 Int32 fields store 32 bit signed integers and
therefore have a range of -2147483648 to
2147483647.

logical Logical fields store TRUE/FALSE data. Data
read or written from and to such fields must
always have a value of either true or false.
Another name for this field type is boolean.

IDs

This specification is used to limit the available and defined FFS files read. The syntax of the IDs directive is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> … \
<baseNameN>

The base names must match those used in DEF lines.

Required/Optional

Optional

Mapping File Syntax

The example below selects only the roads FFS file for input during a translation:

FFS_IDs roads

Note that this directive is not used when the dataset was a file. Also note that if IDs are specified, only those files
whose IDs were listed will be read. If no IDs and no DEF lines were present, then all the files in the directory will be
read.

Workbench Parameter

Feature Types to Read

PASSPHRASE

This specification is used to decrypt the source dataset.

This passphrase must exactly match the passphrase that was used to encrypt the dataset when it was created.

Mapping File Syntax

<ReaderKeyword>_PASSPHRASE <character string>

This must only be used if the FFS files being read were encrypted when they were created.

Required/Optional

Required only when input is encrypted

Workbench Parameter

Password

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

Note: This directive can only be used if the FFS files being read were created with spatial indexes.

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

SEARCH_CLOSEST_POINT

This specification is used to restrict the returned features to the closest feature in each FFS file to some search point.
This directive can only be used if the FFS files being read were created with spatial indexes.

Themm parameter indicates the maximum distance a feature can be away from a point before it will be returned. Dis-
tances are calculated to the boundaries of area-based features.

Required/Optional

Optional

Mapping File Syntax

The syntax of this directive is:

<ReaderKeyword>_SEARCH_CLOSEST_POINT <x> <y> <maxdist>

Workbench Parameter

Closest Search Point

ENFORCE_SECONDARY_FILE_NAMES

The FFS writer has the capability to split one output file into multiple segments and store each segment in a “spillover
file”(<filename>_1.ffs, <filename>_2.ffs, etc...). SeeMAX_FILE_SIZE.

However, someone could also have three separate FFS files with the same names as the spillover files. This directive
is used to differentiate between the two situations.

Required/Optional

Optional

Values

YES (default) | NO

If the files are spillover files, then this directive should be set to YES. If the files are individual files, then this directive
should be set to NO. If the files are individual files, but the directive is set to YES, the features in the spillover files
may be read duplicate times.

Mapping File Syntax

<ReaderKeyword>_ENFORCE_SECONDARY_FILE_NAMES YES

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The FFS writer dumps the memory representation of each FME feature to a disk file, optionally creating a spatial index
for the features.

While early versions of the writer wrote to a directory, the current version of the writer will merge all features into a
single FFS file and preserve the feature type internally.

The former occurs when the dataset is a directory and _DEF lines are present, whereas the latter occurs when no DEF
lines are present in the mapping file.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the FFS writer is FFS.

DATASET

The value for this directive is the destination file name for the FFS files.

Required/Optional

Required

Mapping File Syntax

A typical mapping file fragment specifying an output FFS dataset:

<WriterKeyword>_DATASET /usr/data/ffs/new.ffs

Workbench Parameter

Destination FME Feature Store (FFS) File

DEF

The definition lists only the feature type of those features to be written to the file.

Required/Optional

Optional

Mapping File Syntax

The syntax of the DEF directive is:

<WriterKeyword>_DEF <baseName>
[<attrName> <attrType>]+

This fragment defines a feature type in the FFS file for all features whose feature type was roads:

<WriterKeyword>_DEF roads

INDEXED

This flag indicates whether or not a spatial index should be created and saved along with the output FFS file.

The spatial index has the same base name as the FFS file, but it will have an .fsi extension. Spatial indexes are needed
if the FFS file is later used as the source for spatial queries by the FFS reader.

Required/Optional

Optional

Mapping File Syntax

This fragment specifies that a spatial index should be created:

<WriterKeyword>_INDEXED yes

Workbench Parameter

Create Spatial Index

STRICT_SCHEMA

This flag indicates whether or not features should have all user attributes not listed on the DEF line removed before
they are saved.

Strictly adhering to a schema can, in come cases, greatly reduce file size by removing unnecessary attributes.

Values

yes | no (default)

If yes, the unlisted attributes are stripped, forcing the features to strictly conform to the schema specified on the DEF
line.

Required/Optional

Optional

Mapping File Syntax

This fragment specifies that all features strictly adhere to the defined schema:

<WriterKeyword>_STRICT_SCHEMA yes

Workbench Parameter

Enforce Strict Schema

MAX_FILE_SIZE

This directive (which is not generally used) limits the size of each FFS file.

If a file exceeds the specified number of bytes, it will be closed and a new file with a numeric suffix starting at 1 will
be created. A single spatial index is created for the group of files.

Required/Optional

Optional

Mapping File Syntax

<WriterKeyword>_MAX_FILE_SIZE 1000000

Workbench Parameter

Maximum FFS File Size, in Bytes

PASSPHRASE

This specification is used to encrypt the output dataset for additional security. This exact passphrase must be used to
decrypt this dataset when it is read in again.

If this directive is not used when writing the output dataset, it is not necessary to specify it when reading it in again.

Required/Optional

Optional

Mapping File Syntax

<WriterKeyword>_PASSPHRASE <character string>

Workbench Parameter

Password

COMPRESSION

A lower COMPRESSION_LEVEL value will result in faster operation for both reading and writing, while a higher com-
pression level will result in smaller file sizes.

Required/Optional

Optional

Values

0 to 9

Default Value: 0

Mapping File Syntax

<WriterKeyword>_COMPRESSION_LEVEL 0

Workbench Parameter

Compression Level

BYTE_ORDER

The directive BYTE_ORDER indicates whether the resulting file should be optimized for either LITTLE_ENDIAN or
BIG_ENDIAN machines.

For example, the architecture of machines running Microsoft Windows is little endian, while the Solaris architecture is
big endian.

Required/Optional

Optional

Values

Default Value: NATIVE

The BYTE_ORDER of NATIVE means the file should be optimized for the type of machine on which it is currently run-
ning.

Note that all files created can be read back on machines of either byte order; the only issue is that reading back
files optimized for the opposite byte order will take slightly longer.

Mapping File Syntax

<WriterKeyword>_BYTE_ORDER LITTLE_ENDIAN

Workbench Parameter

Byte Order

FILE_DEST_DATASET

This writer directive allows the FFS writer to write to single files instead of directories (early versions of the FFS writer
wrote only to directories).

This directive is supplied by default in all newly generated workspaces.

Note: If you are using this writer through the FMEObjects SDK, the old behavior will still apply and you will need to
use this directive to enable the new behavior. If a directory output is still required, you might consider using Fan-
out Dataset in Workbench.

Required/Optional

Optional

Values

Default Value: YES

Mapping File Syntax

<WriterKeyword>_FILE_DEST_DATASET YES

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The FFS reader and writer just make memory dumps of FME features, therefore no special attributes apply. All attrib-
utes on the feature are read and written.

Genasys GenaMap Reader

Format Notes:
This format is not supported by FME Base Edition.

The GenaMap Reader module enables FME to read GenaMap Type 4, Type 5, and Type 10 maps. Type 4 maps are two-
dimensional (2D) Vector maps containing point, line, and area features, Type 5 maps are the Type 4 (3D) equivalent,
and Type 10 maps are Text maps containing graphical annotation information. This section assumes familiarity with
these formats.

Overview

GenaMap is a Geographic Information System (GIS) with comprehensive functionality for entering, editing, dis-
playing, analyzing and reporting map data.

Information stored by the GenaMap system is organized on the basis of individual maps. Each map has a type number
associated with it to indicate its map type. The following tables indicate the map types that the FME GenaMap reader
module recognizes.

Type 4(2D), Type 5(3D) – Point, Line, and Area Maps

A logical Type 4 or Type 5 map consists of several physical files having the following file name extensions:

File Name Extension Contents

.FH The Map Header contains the metadata of the vector
map.

.FF The Feature File contains information on how to form
tagged point, tagged line, and area features.

.FL The Chain File contains information on which edges are
chained to form the features.

.FE The Edge File contains references to all edges of the
map.

.FN The Node File contains all nodes of the map.

.FC The Coordinate File contains the coordinate records that
make up all edges of the map.

.FT The Tag File contains the tag values for tagged vector
features.

.FQ The Tag/Queue File is built from destroyed features.

.FR The Edge Minimum Bounding Rectangle’s (MBR’s) File
contains the minimum bounding rectangle for each avail-
able edge in the map.

Type 3 – Attribute Table

Note: Type 3 maps are accessed when the input Type 4 or Type 5 maps have their attribute hookup status set.

A logical Type 3 map consists of several physical files with the following file name extensions:

File Name Extension Contents

.FA The Attribute Header file contains the available attribute
types and descriptions for the attribute table.

.FD The Attribute Data file contains the actual values for attrib-
ute table.

Type 10 – Text Maps

A logical Type 10 map consists of several physical files with these file name extensions:

File Name Extension Contents

.FH The Map Header contains the metadata for the text map.

.FF The Feature File contains the text feature records. The text
feature records contain indexes to the .FT, .TG, and .TS
files.

.FT The Tag File contains the tag values for tagged text fea-
tures.

.TG The Text Graphics file contains information—such as text
rotation, justification, and so on—that describes the text
string.

.TS The Text String file contains the actual text string of the
text.

GenaMap Quick Facts

Format Type Identifier GENAMAP

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Map name

Typical File Extensions .fh (. fa, .fc, .fd, .fe, .ff, .fl, .fq,
.fr, .ft, .tg, .ts)

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type genamap_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none no

Reader Overview

The GenaMap reader scans the map header file (.FH file) and uses it to determine if the data contains an arc/node
(Type 4, 5) map or a text map.

When reading Type 4 or Type 5 maps, the GenaMap reader extracts all tagged features. If the tagging status of the
input map is not complete, the reader will also extract the untagged features.

Extraction of user attribution is also supported for the input Type 4 and Type 5 maps. When the attribute hookup
status of the Type 4 map is set, the features are extracted with their associated attributes. The GenaMap reader looks
for the associated attributes in the attribute table, located in the ZF03 directory, referred to in the map header.

When reading Type 10 maps, the GenaMap reader extracts all text features that are contained in the .FF file.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GenaMap reader is GENAMAP.

DATASET

Required/Optional: Required

The value for this directive is the GenaMap .FH file.

Example:

A typical mapping file fragment specifying an input GenaMap Type 4 dataset directory looks like:

GENAMAP_DATASET /usr/data/genamap/ZF04/MAP/MAP.FH

Workbench Parameter: Source Genasys GenaMap File(s)

FORCE_ATTR_HOOKUP

Required/Optional: Optional

Forces the reader to attempt translation of Type 3 maps when reading Type 4 or Type 5 maps even if the arc/node
map header states that the attribute hookup was not complete.

Valid values: YES | NO

Example:

The following forces the reader to attempt reading the Type 3 maps, effectively ignoring the attribute hookup status
flag for the arc/node maps:

GENAMAP_FORCE_ATTR_HOOKUP yes

SCALE_OF_TRUE_DISPLAY

Required/Optional: Optional

This directive allows the user to override the scale of true display found in the GenaMap map header. This may be use-
ful for a more accurate control of the resulting text feature’s text size.

Valid values: positive integers

Example:

GENAMAP_SCALE_OF_TRUE_DISPLAY 1000

ALIGN_TEXT_COORDS_TO_LOWER_LEFT

Required/Optional: Optional

This directive allows the reader to align all text features into a lower-left justification. The original text justification
may be found in the text feature’s genamap_original_justification attribute.

Valid values: YES | NO

If the automatic transformation for all text features into lower-left justification is not desired, then this keyword
should be set to NO.

Default: YES

Example:

The GenaMap justification in this case may also be found in the text feature’s genamap_original_jus-
tification attribute.

GENAMAP_ALIGN_TEXT_COORDS_TO_LOWER_LEFT NO

DATA_IN_BIG_ENDIAN

Required/Optional: Optional

This directive allows the reader to specify that the data is in big endian or little endian.

Valid values: YES | NO

Default: YES

Example:

The following specifies that the data to be read in is little endian:

GENAMAP_DATA_IN_BIG_ENDIAN NO

Workbench Parameter: Data in Big Endian

TEXT_TRANSFORM_AFFINE_COEFF

Required/Optional: Optional

Allows the user to specify the coefficients for a 2D affine transformation that is to be performed on a GenaMap text fea-
ture coordinate. Affine transformations include translations, rotations, scalings, and reflections. One of the uses of
this directive is to allow shifting the position of the text coordinate in any direction on the x or y axis.

Values:

The range of values for this directive are: “a b c d e f” where a,b,c,d,e, and fmust be real numbers,
white-space-separated, and enclosed within double quotation marks. a, b, c, d, e, and f are coefficients for
the equations:

x’ = ax + by + c
y’ = dx + ey + f

Default: NO

The following will shift all of the text coordinates read 5 units down the y-axis:

GENAMAP_TEXT_TRANSFORM_AFFINE_COEFF “1 0 0 0 1 -5.0”

It is possible to apply an affine transformation on the coordinate of a text selectively according to the value of its Gena-
Map alignment. The following nine directives may be used in conjunction with, but will override the affine trans-
formation of, the generic TEXT_TRANSFORM_AFFINE_COEFF directive:

l TEXT_TRANSFORM_COEFF_LL - Applies the specified affine transformation to GenaMap text features having
lower-left justifications.

l TEXT_TRANSFORM_COEFF_LC - Applies the specified affine transformation to GenaMap text features having
lower-center justifications.

l TEXT_TRANSFORM_COEFF_LR - Applies the specified affine transformation to GenaMap text features having
lower-right justifications.

l TEXT_TRANSFORM_COEFF_CL - Applies the specified affine transformation to GenaMap text features having
center-left justifications.

l TEXT_TRANSFORM_COEFF_CM - Applies the specified affine transformation to GenaMap text features having
center-middle justifications.

l TEXT_TRANSFORM_COEFF_CR - Applies the specified affine transformation to GenaMap text features having
center-right justifications.

l TEXT_TRANSFORM_COEFF_UL - Applies the specified affine transformation to GenaMap text features having
upper-left justifications.

l TEXT_TRANSFORM_COEFF_UC - Applies the specified affine transformation to GenaMap text features having
upper-center justifications.

l TEXT_TRANSFORM_COEFF_UR - Applies the specified affine transformation to GenaMap text features having
upper-right justifications.

For example, the following directives shift lower-left justified text 5 units down the y-axis, while text with other jus-
tifications are shifted 10 units up the y-axis:

GENAMAP_TEXT_TRANSFORM_AFFINE_COEFF_LL “1 0 0 0 1 -5.0”
GENAMAP_TEXT_TRANSFORM_AFFINE_COEFF “1 0 0 0 1 10.0”

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Each feature returned by the GenaMap reader has its feature type set to the name of the input map. All GenaMap FME
features contain the genamap_type attribute that identifies the geometric type.

Attribute Name Contents

genamap_type The type of geometric entity stored within the feature. The
valid values are listed below:
genamap_point
genamap_line
genamap_area
genamap_text

General Attributes

All GenaMap FME features contain the following attribute:

Attribute Name Contents

genamap_tag The primary GenaMap attribute.

Type 4 and Type 5 maps carry the additional attribute:

Attribute Name Contents

genamap_symbology_id The GenaMap symbolization pointer value.

Points

genamap_type: genamap_point

GenaMap point features specify point features defined by a single x,y or x,y,z coordinate.

Lines

genamap_type: genamap_line

GenaMap line features specify linear features defined by a sequence of x,y or x,y,z coordinates.

Polygons

genamap_type: genamap_polygon

GenaMap polygon features specify area (polygonal) features. The polygon may contain holes.

Text

genamap_type: genamap_text

The GenaMap text features are extracted from GenaMap Type 10 maps. Each text feature has a single x and y coor-
dinate. The text coordinate point is located at the lower left of the text string. The original GenaMap origin point and
justification are also stored in the text features as the attributes genamap_original_x, genamap_original_y, and genamap_
original_justification. Text features have the following special attributes associated with them.

Attribute Name Contents

genamap_text_string The text string.
Range: Any character string

genamap_rotation The rotation of the text measured in degrees counter-
clockwise from horizontal.
Range: 0...360

genamap_width The width of each text in ground units.
Range: Any real number >= 0

genamap_height The height of each text in ground units.
Range: Any real number >= 0

genamap_original_

justification

The original GenaMap alignment of the text based on the
original GenaMap text origin point.
Range:
upper_left |
upper_center |
upper_right |

Attribute Name Contents

center_left |
center_middle |
center_right |
lower_left |
lower_center |
lower_right

genamap_original_x The original GenaMap text origin point x coordinate.

genamap_original_y The original GenaMap text origin point y coordinate.

genamap_char_
rotation

The rotation of each character in the text string measured
in degrees counterclockwise from the horizontal.
Range: 0...360

genamap_slant The slant for each character in the text string.
A negative angle gives a clockwise slant; a positive angle
gives a counterclockwise slant.
Range: -90...90

genamap_font The GenaMap lettering style.
Range: Any valid GenaMap system font.
integer >= 0

genamap_color The GenaMap color of the text.
Range: GenaMap color index.
integer >= 0

Geographic Data Management System (GDMS) Reader

The Geographic Data Management System (GDMS) Reader allows FME to read files in the GDMS format.

All three VERTICES, CROSSREF, and TEXTDATA input file types are supported for import.

Overview

GDMS is a Wang-based mapping system used by municipalities around the world. GDMS is first generation mapping
system technology, now owned by ESRI and called the Spatial Database Engine (SDE). GDMS supports several geome-
try types, annotation, and only limited attribution.

The GDMS File reader module provides FME with access to the three GDMS file formats known as VERTICES, CROSS-
REF, and TEXTDATA.

The VERTICES and CROSSREF files should be provided as a matching pair, where the VERTICES file holds the
geometry of features and the CROSSREF file holds attribute information. Points, line, polygons, and donuts are con-
tained in these files.

The TEXTDATA file holds both geometry and attributes for text annotation features. These features include text, poly-
line or polygon, circle, and symbol elements.

GDMS data files are binary and hold two-dimensional (2D) features.

While GDMS data sets consist of the three separate files, as described above, the precise format of these files is spec-
ified using DEF lines within the mapping file. There is no default extension that the FME recognizes as a GDMS input
file.

FME does not automatically translate GDMS files, as somemodification to the DEF lines is required. FME does, how-
ever, automatically generate a mapping file that can be used as a good starting point for customized GDMS trans-
lations.

GDMS Quick Facts

Format Type Identifier GDMS

Reader/Writer Reader

Licensing Level Base

Dependencies None

Dataset Type Directory

Feature Type Geometry-based name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type gdms_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none no

Reader Overview

First the GDMS reader parses theDEF lines and keywords to determine the location of the input data sets, as well as
their precise format. The FME then proceeds to the following two steps:

1. If noVERTICES or CROSSREF files are specified or found, this step is ignored.

The GDMS reader opens theVERTICES and CROSSREF input files and immediately starts reading from
both files, using theMap Layer and Unique ID to attach attributes from theCROSSREF file to the

VERTICES appropriate features. The GDMS reader then returns these features to the rest of the FME for
processing.

It is assumed that theVERTICES and CROSSREF files are both sorted byMap Layer and Unique ID
before these files are passed to the FME. Note that features within theVERTICES may have zero, one, or
more corresponding CROSSREF entries.

2. If no TEXTDATA file is specified or found, this step is ignored.

The GDMS reader opens the TEXTDATA input file and immediately starts reading features, returning them
to the rest of the FME for processing.

Each returned feature has its feature type set to the geometric type of the feature, as follows:gdms_point,
gdms_line, gdms_polygon, gdms_text_symbol, gdms_text_line, gdms_text_polygon, gdms_anno-
tation.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GDMS reader is GDMS.

DATASET

Required/Optional: Required

This keyword’s value is the directory containing the GDMS files to be read.

Example:

GDMS_DATASET C:\Data\GDMS\Input

Workbench Parameter: Source Geographic Data Management System (GDMS) Directory

SYSTEM_UNITS

Required/Optional: Optional

This setting determines the scaling factor of coordinates within the GDMS files. All coordinates are multiplied by this
value. The default value is 1.0.

Example:

GDMS_SYSTEM_UNITS 1000.0

X_OFFSET

This setting determines the X offset of coordinates within the GDMS files. This value is added to all X coordinates. The
default value is 0.

Example:

GDMS_X_OFFSET 300.0

Y_OFFSET

This setting determines the Y offset of coordinates within the GDMS files. This value is added to all Y coordinates. The
default value is 0.

Example:

GDMS_Y_OFFSET 300.0

DEF

Required/Optional: Required

The precise format of all three GDMS input file types must be specified on separateDEF lines before these files are
read. These definition lines also provide the file names of each input file. The full path name of each file is determined
by using the directory location from theDATASET keyword and the file name from theDEF line.

The syntax of theDEF lines depends on which file and record type it specifies. The first symbol of theDEF line indi-
cates the further syntax and use of the rest of theDEF line as follows:

GDMS_DEF <definition type> …

Each definition type is given in the following table. Refer to Example Mapping File from GDMS to Shape for
a list of attribute names and definitions for each definition type.

Definition Type Use and Syntax

VERTICES_RECORD_1 This DEF line specifies the VERTICES file location and the
format of the VERTICES record type 1.
The full syntax of this DEF line is:
<ReaderKeyword>_DEF VERTICES_RECORD_1 \
 GDMS_VERTICES_FILENAME <filename> \

 [<attrName> <fieldType>]*

VERTICES_RECORD_N This DEF line specifies the format of the VERTICES record
type 2. The full syntax of this DEF line is:
<ReaderKeyword>_DEF VERTICES_RECORD_N \
 [<attrName> <fieldType>]*

CROSSREF_RECORD This DEF line specifies the CROSSREF file location and the
format of the CROSSREF record. The full syntax of this DEF
line is:
<ReaderKeyword>_DEF CROSSREF_RECORD \
 GDMS_CROSSREF_FILENAME <filename> \
 [<attrName> <fieldType>]*

TEXT_LAYER_HEADER This DEF line specifies the TEXTDATA file location and the
format of the TEXTDATA header record. The size of the
header record is also explicitly given. The full syntax of
this DEF line is:
<ReaderKeyword>_DEF TEXT_LAYER_HEADER \
 GDMS_TEXT_LAYER_FILENAME <filename> \
 GDMS_RECORD_SIZE <number of bytes> \
 [<attrName> <fieldType>]*

TEXT_LAYER_TEXT This DEF line specifies the format of the Text element rec-
ord within the TEXTDATA file. The size of the record is
also explicitly given. The full syntax of this DEF line is:
<ReaderKeyword>_DEF TEXT_LAYER_TEXT \
 GDMS_RECORD_SIZE <number of bytes> \
 [<attrName> <fieldType>]*

TEXT_LAYER_POLY This DEF line specifies the format of the Polyline/Polygon
element record within the TEXTDATA file. The size of the
record is also explicitly given. The full syntax of this DEF
line is:

Definition Type Use and Syntax

<ReaderKeyword>_DEF TEXT_LAYER_POLY \
 GDMS_RECORD_SIZE <number of bytes> \
 [<attrName> <fieldType>]*

TEXT_LAYER_CIRCLE This DEF line specifies the format of the Circle element
record within the TEXTDATA file. The size of the record is
also explicitly given. The full syntax of this DEF line is:
<ReaderKeyword>_DEF TEXT_LAYER_CIRCLE \
 GDMS_RECORD_SIZE <number of bytes> \
 [<attrName> <fieldType>]*

TEXT_LAYER_SYMBOL This DEF line specifies the format of the Symbol element
record within the TEXTDATA file. The size of the record is
also explicitly given. The full syntax of this DEF line is:
<ReaderKeyword>_DEF TEXT_LAYER_SYMBOL \
 GDMS_RECORD_SIZE <number of bytes> \
 [<attrName> <fieldType>]*

<attrName> — The attribute names may be specified as anything, but note that for several of theDEF linetypes
some reserved attribute names are expected somewhere within the line.

<fieldType> — The field types specify the exact length and byte location where each attribute is found within the rec-
ord being defined. The interpretation of the primitive date type for this region of the record is also indicated by the
field type. The following table gives the possible field types.

Tip: These types are the same as the ones available to the CAT type in the Relational Table
Reader.

Field Type Description

Integer(<width>, <position>) Integer fields hold integer values stored in
ASCII format.
The width parameter is the total number of
bytes allocated to the field.
The position parameter is the starting
byte of the field in the GDMS record. The
bytes are numbered starting from 1.

Real(<width>, <position>) Real fields hold floating point values stored
in ASCII format.
The width parameter is the total number of
bytes allocated to the field, including the
decimal point.
The position parameter is the starting
byte of the field in the GDMS record. The
bytes are numbered starting from 1.

String(<width>, <position>) String fields hold fixed length strings.
The width parameter is the number of
bytes that the field holds. When a character

Field Type Description

field is retrieved, any padding blank bytes
are stripped.
The position parameter is the starting
byte of the field in the GDMS record. The
bytes are numbered starting from 1.

BigEndian(<width>,
<position>)

BigEndian fields hold integer values stored
in big-endian binary format.
The width parameter is the total number of
bytes allocated to the field. The only valid
width values are:
1 to interpret the field as an 8 bit integer
2 to interpret the field as a 16 bit integer
4 to interpret the field as a 32 bit integer
The position parameter is the starting byte of
the field in the GDMS record. The bytes are
numbered starting from 1.

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

GDMS features consist of both geometry and attributes. The attributes on the features depend on whether the feature
is a result of input VERTICES and CROSSREF files, or whether it is from a TEXTDATA file. The gdms_feature_
type identifies the entity’s geometric type and has these ranges:

l gdms_line |

l gdms_text_line |

l gdms_point |

l gdms_text_symbol |

l gdms_polygon |

l gdms_text_polygon |

l gdms_annotation

GDMS Feature Types

TheDEF lines specify many attributes for each GDMS record. All features derived from these records have all of
these user-defined attributes. The only exceptions are the coordinate point and flag attributes. These attributes are
used to construct the geometry of the feature and are not kept as attributes.

Refer toDEF for a listing of GDMS attributes.

Lines

gdms_type: gdms_line

GDMS line features represent linear features in 2D. Line features do not have any specific attributes.

gdms_type: gdms_text_line

GDMS line features represent linear features in 2D. Line features do not have any specific attributes.

Points

gdms_type: gdms_point

GDMS point features represent point features in 2D. Point features do not have any specific attributes.

gdms_type: gdms_text_symbol

GDMS text symbols represent point features in 2D and have the following specific attributes:

l gdms_angle

l gdms_length

l gdms_size

l gdms_symbol_number

l gdms_text_layer_number

Polygons

gdms_type: gdms_polygon

GDMS polygon features represent polygon features in 2D. Polygon features do not have any specific attributes.

gdms_type: gdms_text_polygon

GDMS text polygon features represent polygon features in 2D. Polygon features do not have any specific attributes.

Annotations

gdms_type: gdms_annotation

GDMS annotations represent point features in 2D and have the following specific attributes:

l gdms_text

l gdms_angle

l gdms_height

l gdms_text_layer_number

Example Mapping File from GDMS to Shape

The example below shows an FME mapping file used to translate some features from the GDMS format into ESRI
Shape format. The mapping file defines the data set location, and gives the correlation lines between GDMS features
and Shape.

#==

#==
#
Thismapping file wasautomatically generated by the FME
on 08/18/98 14:53:26 for lossless translation betweenGDMSand SHAPE.
#
Youmayedit thismapping file to customize its operation. Comments are
placed throughout to assist you.
#
#Modification History:
#
NameDate Description
===
#
#
#==

#==
The following line defines the title presented to the user when this
#mapping file is run through the FMEGUI. Youmaymodify this
if a moremeaningful title would be appropriate.

GUI TITLEGDMS to SHAPETranslation

#==
The following line names the log file to which useful statistics about
the translation will be written. This line can be uncommented and
updated if you do wish to keep these statistics.

LOG_FILENAME translation.log

#==
The following line instructs the FME to log any features that do not
#match anyof the source feature patterns listed further down in
this file. If you aremodifying thismapping file, thiswill be
useful to describe exactlywhich features you are losing
during translation, if the statistics indicate that featuresare
not being correlated or grouped. Uncorrelated featuresdo not
#match any source specification; ungrouped featuresdo not have
any corresponding _DEF line.

FME_DEBUGUNGROUPEDUNCORRELATED

#==
The following two linesdefine the type of reader and writer to be
used for this translation. If you want to translate your data
back into its original format, youmaymake a copyof this file
and switch the reader and writer types. If you rerun the FME, you
will get your original data backagain (together with anymodifications
youmade in themeantime). Note that several formats are NOT
bi-directional (for example, GIF can only be used asaWRITER)
so a reverse translationmaynot alwaysbe possible.

READER_TYPEGDMS

WRITER_TYPESHAPE

#==
The followingGUI line prompts for a directory to be used as the
source of the GDMS files.
The user input is stored in amacro, which is then used to define
the data set to be read.

GUI DIRNAMESourceDataset OriginalGDMSFile Directory:

#==
The DEF linesbelow are an outline for the VERTICESandCROSSREF file
structures.
Notice that most keywordsand attribute namesmust bemaintained
while their type and/or precise locationmaybe freely altered.

GDMS_DEF VERTICES_RECORD_1 \
GDMS_VERTICES_FILENAMEVERTICES \

gdms_map_layer BigEndianInt(2,1) \
gdms_ID BigEndianInt(4,3) \
gdms_record_number BigEndianInt(2,7) \
gdms_entity_type BigEndianInt(1,9) \
gdms_num_coordsBigEndianInt(2,10) \
gdms_max_xBigEndianInt(4,12) \
gdms_min_xBigEndianInt(4,16) \
gdms_max_yBigEndianInt(4,20) \
gdms_min_yBigEndianInt(4,24) \
gdms_def_anno_xBigEndianInt(4,28) \
gdms_def_anno_yBigEndianInt(4,32) \
gdms_def_anno_angle BigEndianInt(2,36) \
gdms_def_symbol_numBigEndianInt(2,38) \
gdms_point_flag_1 BigEndianInt(1,54) \
gdms_point_flag_2 BigEndianInt(1,55) \
gdms_point_flag_3 BigEndianInt(1,56) \
gdms_point_flag_4 BigEndianInt(1,57) \
gdms_point_flag_5 BigEndianInt(1,58) \
gdms_point_flag_6 BigEndianInt(1,59) \
gdms_point_flag_7 BigEndianInt(1,60) \
gdms_point_flag_8 BigEndianInt(1,61) \
gdms_point_flag_9 BigEndianInt(1,62) \
gdms_point_flag_10 BigEndianInt(1,63) \
gdms_point_flag_11 BigEndianInt(1,64) \
gdms_point_flag_12 BigEndianInt(1,65) \
gdms_point_flag_13 BigEndianInt(1,66) \
gdms_point_flag_14 BigEndianInt(1,67) \
gdms_point_flag_15 BigEndianInt(1,68) \
gdms_point_x_1 BigEndianInt(4,69) \
gdms_point_y_1 BigEndianInt(4,73) \
gdms_point_x_2 BigEndianInt(4,77) \
gdms_point_y_2 BigEndianInt(4,81) \
gdms_point_x_3 BigEndianInt(4,85) \
gdms_point_y_3 BigEndianInt(4,89) \
gdms_point_x_4 BigEndianInt(4,93) \
gdms_point_y_4 BigEndianInt(4,97) \
gdms_point_x_5 BigEndianInt(4,101) \
gdms_point_y_5 BigEndianInt(4,105) \
gdms_point_x_6 BigEndianInt(4,109) \
gdms_point_y_6 BigEndianInt(4,113) \
gdms_point_x_7 BigEndianInt(4,117) \
gdms_point_y_7 BigEndianInt(4,121) \
gdms_point_x_8 BigEndianInt(4,125) \
gdms_point_y_8 BigEndianInt(4,129) \
gdms_point_x_9 BigEndianInt(4,133) \
gdms_point_y_9 BigEndianInt(4,137) \
gdms_point_x_10 BigEndianInt(4,141) \
gdms_point_y_10 BigEndianInt(4,145) \
gdms_point_x_11 BigEndianInt(4,149) \
gdms_point_y_11 BigEndianInt(4,153) \
gdms_point_x_12 BigEndianInt(4,157) \
gdms_point_y_12 BigEndianInt(4,161) \
gdms_point_x_13 BigEndianInt(4,165) \
gdms_point_y_13 BigEndianInt(4,169) \
gdms_point_x_14 BigEndianInt(4,173) \
gdms_point_y_14 BigEndianInt(4,177) \
gdms_point_x_15 BigEndianInt(4,181) \

gdms_point_y_15 BigEndianInt(4,185)

GDMS_DEF VERTICES_RECORD_N \
gdms_map_layer BigEndianInt(2,1) \
gdms_ID BigEndianInt(4,3) \
gdms_record_number BigEndianInt(2,7) \
gdms_point_flag_1 BigEndianInt(1,9) \
gdms_point_flag_2 BigEndianInt(1,10) \
gdms_point_flag_3 BigEndianInt(1,11) \
gdms_point_flag_4 BigEndianInt(1,12) \
gdms_point_flag_5 BigEndianInt(1,13) \
gdms_point_flag_6 BigEndianInt(1,14) \
gdms_point_flag_7 BigEndianInt(1,15) \
gdms_point_flag_8 BigEndianInt(1,16) \
gdms_point_flag_9 BigEndianInt(1,17) \
gdms_point_flag_10 BigEndianInt(1,18) \
gdms_point_flag_11 BigEndianInt(1,19) \
gdms_point_flag_12 BigEndianInt(1,20) \
gdms_point_flag_13 BigEndianInt(1,21) \
gdms_point_flag_14 BigEndianInt(1,22) \
gdms_point_flag_15 BigEndianInt(1,23) \
gdms_point_flag_16 BigEndianInt(1,24) \
gdms_point_flag_17 BigEndianInt(1,25) \
gdms_point_flag_18 BigEndianInt(1,26) \
gdms_point_flag_19 BigEndianInt(1,27) \
gdms_point_flag_20 BigEndianInt(1,28) \
gdms_point_x_1 BigEndianInt(4,29) \
gdms_point_y_1 BigEndianInt(4,33) \
gdms_point_x_2 BigEndianInt(4,37) \
gdms_point_y_2 BigEndianInt(4,41) \
gdms_point_x_3 BigEndianInt(4,45) \
gdms_point_y_3 BigEndianInt(4,49) \
gdms_point_x_4 BigEndianInt(4,53) \
gdms_point_y_4 BigEndianInt(4,57) \
gdms_point_x_5 BigEndianInt(4,61) \
gdms_point_y_5 BigEndianInt(4,65) \
gdms_point_x_6 BigEndianInt(4,69) \
gdms_point_y_6 BigEndianInt(4,73) \
gdms_point_x_7 BigEndianInt(4,77) \
gdms_point_y_7 BigEndianInt(4,81) \
gdms_point_x_8 BigEndianInt(4,85) \
gdms_point_y_8 BigEndianInt(4,89) \
gdms_point_x_9 BigEndianInt(4,93) \
gdms_point_y_9 BigEndianInt(4,97) \
gdms_point_x_10 BigEndianInt(4,101) \
gdms_point_y_10 BigEndianInt(4,105) \
gdms_point_x_11 BigEndianInt(4,109) \
gdms_point_y_11 BigEndianInt(4,113) \
gdms_point_x_12 BigEndianInt(4,117) \
gdms_point_y_12 BigEndianInt(4,121) \
gdms_point_x_13 BigEndianInt(4,125) \
gdms_point_y_13 BigEndianInt(4,129) \
gdms_point_x_14 BigEndianInt(4,133) \
gdms_point_y_14 BigEndianInt(4,137) \
gdms_point_x_15 BigEndianInt(4,141) \
gdms_point_y_15 BigEndianInt(4,145) \
gdms_point_x_16 BigEndianInt(4,149) \

gdms_point_y_16 BigEndianInt(4,153) \
gdms_point_x_17 BigEndianInt(4,157) \
gdms_point_y_17 BigEndianInt(4,161) \
gdms_point_x_18 BigEndianInt(4,165) \
gdms_point_y_18 BigEndianInt(4,169) \
gdms_point_x_19 BigEndianInt(4,173) \
gdms_point_y_19 BigEndianInt(4,177) \
gdms_point_x_20 BigEndianInt(4,181) \
gdms_point_y_20 BigEndianInt(4,185)

GDMS_DEF CROSSREF_RECORD \
GDMS_CROSSREF_FILENAMECROSSREF \
gdms_map_layer BigEndianInt(2,1) \
gdms_ID BigEndianInt(4,3) \
gdms_attr_number BigEndianInt(1,7) \
gdms_map_layer_2 BigEndianInt(2,8) \
gdms_attr_number_2 BigEndianInt(1,10) \
gdms_attr_value String(48,11) \
gdms_hex_date_yymmdd String(3,59)

#==
The DEF linesbelow are an outline for the TEXTDATA file structure.
Notice that most keywordsand attribute namesmust bemaintained
while their type and/or precise locationmaybe freely altered.

GDMS_DEF TEXT_LAYER_HEADER \
GDMS_TEXT_LAYER_FILENAMETEXTDATA \
GDMS_RECORD_SIZE 44 \
gdms_text_layer_number BigEndianInt(2,1) \
gdms_grid_xString(3,3) \
gdms_grid_yString(3,6) \
gdms_ID BigEndianInt(4,9) \
gdms_record_number BigEndianInt(2,13) \
gdms_unique_flag BigEndianInt(1,15) \
gdms_max_xBigEndianInt(4,17) \
gdms_min_xBigEndianInt(4,21) \
gdms_max_yBigEndianInt(4,25) \
gdms_min_yBigEndianInt(4,29) \
gdms_ID_point_xBigEndianInt(4,33) \
gdms_ID_point_yBigEndianInt(4,37) \
gdms_length BigEndianInt(2,41) \
gdms_record_type BigEndianInt(2,43)

GDMS_DEF TEXT_LAYER_TEXT \
GDMS_RECORD_SIZE 44 \
gdms_element_type BigEndianInt(4,1) \
gdms_alligned_length BigEndianInt(2,5) \
gdms_true_length BigEndianInt(2,7) \
gdms_height BigEndianInt(4,9) \
gdms_width BigEndianInt(4,13) \
gdms_spacing BigEndianInt(4,17) \
gdms_angle BigEndianInt(2,21) \
gdms_annotation_xBigEndianInt(4,37) \
gdms_annotation_yBigEndianInt(4,41)

GDMS_DEF TEXT_LAYER_POLY \

GDMS_RECORD_SIZE 12 \
gdms_element_type BigEndianInt(4,1) \
gdms_point_count BigEndianInt(2,5) \
gdms_fill_flag BigEndianInt(1,7)

GDMS_DEF TEXT_LAYER_CIRCLE \
GDMS_RECORD_SIZE 20 \
gdms_element_type BigEndianInt(4,1) \
gdms_center_xBigEndianInt(4,5) \
gdms_center_yBigEndianInt(4,9) \
gdms_radiusBigEndianInt(4,13) \
gdms_fill_flag BigEndianInt(1,17)

GDMS_DEF TEXT_LAYER_SYMBOL \
GDMS_RECORD_SIZE 20 \
gdms_element_type BigEndianInt(4,1) \
gdms_symbol_xBigEndianInt(4,5) \
gdms_symbol_yBigEndianInt(4,9) \
gdms_symbol_number BigEndianInt(2,13) \
gdms_angle BigEndianInt(2,15) \
gdms_size BigEndianInt(4,17)

#==
The linesbelow are used for scaling and shifting the input GDMSdata set.
All featureswill have their coordinates scaled and shifted asoutlined
below, but their attributes (such asa circle radiusor text size) will
not be affected.

GDMS_SYSTEM_UNITS 100.0
GDMS_X_OFFSET 0
GDMS_Y_OFFSET 0

GDMS_DATASET "$(SourceDataset)"

#==
The followingGUI line prompts for a directory to be used as the
the destination for the ESRI SHAPE files.
The user input is stored in amacro, which is then used to define
the data set to be written.

GUI DIRNAMEDestDataset Destination Shape File Directory:

SHAPE_DATASET "$(DestDataset)"

#==
Themain bodyof themapping file starts here. Each of the
_DEF linesdescribes the datamodel of the particular feature
type, and the correlation linesdescribe how the feature is
transformed from the source type to the destination type.
Youmayedit the following lines to add or remove attributes, change
attribute definitions, or invoke other FME functionsas the
featuresare translated.
#==

#==

SHAPE_DEF gdms_points \

SHAPE_GEOMETRYshape_point \
1 char(48) \
2 char(48) \
3 char(48) \
4 char(48) \
5 char(48) \
6 char(48) \
7 char(48) \
8 char(48) \
9 char(48) \
MAP_LAYER number(5,0) \
GDMS_ID number(5,0) \
NUMBER number(5,0) \
TYPEnumber(5,0) \
NUM_COORDSnumber(5,0) \
GDMS_MAX_Xnumber(11,0) \
GDMS_MIN_X number(11,0) \
GDMS_MAX_Ynumber(11,0) \
GDMS_MIN_Y number(11,0) \
DEF_ANNO_Xnumber(11,0) \
DEF_ANNO_Ynumber(11,0) \
ANNO_ANGLEnumber(11,0) \
SYMBOL_NUMnumber(11,0)

GDMSgdms_point \
gdms_type gdms_point \
gdms_attribute_1%gdms_attribute_1 \
gdms_attribute_2%gdms_attribute_2 \
gdms_attribute_3%gdms_attribute_3 \
gdms_attribute_4%gdms_attribute_4 \
gdms_attribute_5%gdms_attribute_5 \
gdms_attribute_6%gdms_attribute_6 \
gdms_attribute_7%gdms_attribute_7 \
gdms_attribute_8%gdms_attribute_8 \
gdms_attribute_9%gdms_attribute_9 \
gdms_map_layer %gdms_map_layer \
gdms_ID%gdms_id \
gdms_record_number %gdms_record_number \
gdms_entity_type%gdms_entity_type \
gdms_num_coords%gdms_num_coords \
gdms_max_x%gdms_max_x \
gdms_min_x%gdms_min_x \
gdms_max_y%gdms_max_y \
gdms_min_y%gdms_min_y \
gdms_def_anno_x%gdms_def_anno_x \
gdms_def_anno_y%gdms_def_anno_y \
gdms_def_anno_angle%gdms_def_anno_angle \
gdms_def_symbol_num%gdms_def_symbol_num

SHAPEgdms_points \
1%gdms_attribute_1 \
2%gdms_attribute_2 \
3%gdms_attribute_3 \
4%gdms_attribute_4 \
5%gdms_attribute_5 \
6%gdms_attribute_6 \
7%gdms_attribute_7 \

8%gdms_attribute_8 \
9%gdms_attribute_9 \
MAP_LAYER%gdms_map_layer \
GDMS_ID%gdms_id \
NUMBER%gdms_record_number \
TYPE%gdms_entity_type \
NUM_COORDS%gdms_num_coords \
GDMS_MAX_X%gdms_max_x \
GDMS_MIN_X%gdms_min_x \
GDMS_MAX_Y%gdms_max_y \
GDMS_MIN_Y%gdms_min_y \
DEF_ANNO_X%gdms_def_anno_x \
DEF_ANNO_Y%gdms_def_anno_y \
ANNO_ANGLE%gdms_def_anno_angle \
SYMBOL_NUM%gdms_def_symbol_num

#==

SHAPE_DEF gdms_lines \
SHAPE_GEOMETRYshape_polyline \
1 char(48) \
2 char(48) \
3 char(48) \
4 char(48) \
5 char(48) \
6 char(48) \
7 char(48) \
8 char(48) \
9 char(48) \
MAP_LAYER number(5,0) \
GDMS_ID number(5,0) \
NUMBER number(5,0) \
TYPEnumber(5,0) \
NUM_COORDSnumber(5,0) \
GDMS_MAX_Xnumber(11,0) \
GDMS_MIN_X number(11,0) \
GDMS_MAX_Ynumber(11,0) \
GDMS_MIN_Y number(11,0) \
DEF_ANNO_Xnumber(11,0) \
DEF_ANNO_Ynumber(11,0) \
ANNO_ANGLEnumber(11,0) \
SYMBOL_NUMnumber(11,0)

GDMSgdms_line \
gdms_type gdms_line \
gdms_attribute_1%gdms_attribute_1 \
gdms_attribute_2%gdms_attribute_2 \
gdms_attribute_3%gdms_attribute_3 \
gdms_attribute_4%gdms_attribute_4 \
gdms_attribute_5%gdms_attribute_5 \
gdms_attribute_6%gdms_attribute_6 \
gdms_attribute_7%gdms_attribute_7 \
gdms_attribute_8%gdms_attribute_8 \
gdms_attribute_9%gdms_attribute_9 \
gdms_map_layer %gdms_map_layer \
gdms_ID%gdms_id \
gdms_record_number %gdms_record_number \

gdms_entity_type%gdms_entity_type \
gdms_num_coords%gdms_num_coords \
gdms_max_x%gdms_max_x \
gdms_min_x%gdms_min_x \
gdms_max_y%gdms_max_y \
gdms_min_y%gdms_min_y \
gdms_def_anno_x%gdms_def_anno_x \
gdms_def_anno_y%gdms_def_anno_y \
gdms_def_anno_angle%gdms_def_anno_angle \
gdms_def_symbol_num%gdms_def_symbol_num

SHAPEgdms_lines \
1%gdms_attribute_1 \
2%gdms_attribute_2 \
3%gdms_attribute_3 \
4%gdms_attribute_4 \
5%gdms_attribute_5 \
6%gdms_attribute_6 \
7%gdms_attribute_7 \
8%gdms_attribute_8 \
9%gdms_attribute_9 \
MAP_LAYER%gdms_map_layer \
GDMS_ID%gdms_id \
NUMBER%gdms_record_number \
TYPE%gdms_entity_type \
NUM_COORDS%gdms_num_coords \
GDMS_MAX_X%gdms_max_x \
GDMS_MIN_X%gdms_min_x \
GDMS_MAX_Y%gdms_max_y \
GDMS_MIN_Y%gdms_min_y \
DEF_ANNO_X%gdms_def_anno_x \
DEF_ANNO_Y%gdms_def_anno_y \
ANNO_ANGLE%gdms_def_anno_angle \
SYMBOL_NUM%gdms_def_symbol_num

#==

SHAPE_DEF gdms_annotations \
SHAPE_GEOMETRYshape_point \
TEXT_ANGLEnumber(14,6) \
TEXT_SIZE number(14,6) \
TEXTSTRINGchar(254) \
GDMS_ID number(10,0) \
ID_POINT_X number(10,0) \
ID_POINT_Y number(10,0) \
LENGTH0 number(5,0) \
TYPE0 number(1,0) \
GRID_X char(3) \
GRID_Y char(3) \
LENGTH number(10,0) \
GDMS_MAX_Xnumber(10,0) \
GDMS_MAX_Ynumber(10,0) \
GDMS_MIN_X number(10,0) \
GDMS_MIN_Y number(10,0) \
NUMBER number(5,0) \
TYPE1 number(5,0) \
SPACINGnumber(10,0) \

NUMBER1 number(5,0) \
LENGTH1 number(5,0) \
FLAGnumber(1,0) \
GDMS_WIDTH number(10,0) \
GDMS_TEXT char(254) \
GDMS_ANGLEnumber(5,0) \
HEIGHT number(10,0)

GDMSgdms_annotation \
gdms_ID%gdms_id \
gdms_ID_point_x%gdms_id_point_x \
gdms_ID_point_y%gdms_id_point_y \
gdms_alligned_length%gdms_alligned_length \
gdms_element_type%gdms_element_type \
gdms_grid_x%gdms_grid_x \
gdms_grid_y%gdms_grid_y \
gdms_length%gdms_length \
gdms_max_x%gdms_max_x \
gdms_max_y%gdms_max_y \
gdms_min_x%gdms_min_x \
gdms_min_y%gdms_min_y \
gdms_record_number %gdms_record_number \
gdms_record_type%gdms_record_type \
gdms_spacing%gdms_spacing \
gdms_text_layer_number %gdms_text_layer_number \
gdms_true_length%gdms_true_length \
gdms_unique_flag%gdms_unique_flag \
gdms_width%gdms_width \
gdms_text%gdms_text \
gdms_angle%gdms_angle \
gdms_height%gdms_height

SHAPEgdms_annotations \
GDMS_ID%gdms_id \
ID_POINT_X%gdms_id_point_x \
ID_POINT_Y%gdms_id_point_y \
LENGTH0%gdms_alligned_length \
TYPE0%gdms_element_type \
GRID_X%gdms_grid_x \
GRID_Y%gdms_grid_y \
LENGTH%gdms_length \
GDMS_MAX_X%gdms_max_x \
GDMS_MAX_Y%gdms_max_y \
GDMS_MIN_X%gdms_min_x \
GDMS_MIN_Y%gdms_min_y \
NUMBER%gdms_record_number \
TYPE1%gdms_record_type \
SPACING%gdms_spacing \
NUMBER1%gdms_text_layer_number \
LENGTH1%gdms_true_length \
FLAG%gdms_unique_flag \
GDMS_WIDTH%gdms_width \
TEXTSTRING%gdms_text \
TEXT_ANGLE%gdms_angle \
TEXT_SIZE%gdms_height

#==

SHAPE_DEF gdms_polygons \
SHAPE_GEOMETRYshape_polygon \
GDMS_ID number(10,0) \
ID_POINT_X number(10,0) \
ID_POINT_Y number(10,0) \
TYPE0 number(1,0) \
FILL_FLAGnumber(1,0) \
GRID_X char(3) \
GRID_Y char(3) \
LENGTH number(10,0) \
GDMS_MAX_Xnumber(10,0) \
GDMS_MAX_Ynumber(10,0) \
GDMS_MIN_X number(10,0) \
GDMS_MIN_Y number(10,0) \
COUNT number(5,0) \
NUMBER number(5,0) \
TYPE1 number(5,0) \
NUMBER1 number(5,0) \
FLAGnumber(1,0)

GDMSgdms_text_polygon \
gdms_ID%gdms_id \
gdms_ID_point_x%gdms_id_point_x \
gdms_ID_point_y%gdms_id_point_y \
gdms_element_type%gdms_element_type \
gdms_fill_flag%gdms_fill_flag \
gdms_grid_x%gdms_grid_x \
gdms_grid_y%gdms_grid_y \
gdms_length%gdms_length \
gdms_max_x%gdms_max_x \
gdms_max_y%gdms_max_y \
gdms_min_x%gdms_min_x \
gdms_min_y%gdms_min_y \
gdms_point_count%gdms_point_count \
gdms_record_number %gdms_record_number \
gdms_record_type%gdms_record_type \
gdms_text_layer_number %gdms_text_layer_number \
gdms_unique_flag%gdms_unique_flag

SHAPEgdms_polygons \
GDMS_ID%gdms_id \
ID_POINT_X%gdms_id_point_x \
ID_POINT_Y%gdms_id_point_y \
TYPE0%gdms_element_type \
FILL_FLAG%gdms_fill_flag \
GRID_X%gdms_grid_x \
GRID_Y%gdms_grid_y \
LENGTH%gdms_length \
GDMS_MAX_X%gdms_max_x \
GDMS_MAX_Y%gdms_max_y \
GDMS_MIN_X%gdms_min_x \
GDMS_MIN_Y%gdms_min_y \
COUNT %gdms_point_count \
NUMBER%gdms_record_number \
TYPE1%gdms_record_type \
NUMBER1%gdms_text_layer_number \

FLAG%gdms_unique_flag

GeoJSON (Geographic JavaScript Object Notation) Read-
er/Writer

Format Notes: This format is not supported by FME Base Edition.

GeoJSON is a standard for encoding spatial data in JSON structured text. FME currently supports the GeoJSON Format
Specification Revision 1.0, which is available at http://geojson.org.

Overview

GeoJSON encodes both geometry and feature information into objects. It also provides support for geometry and fea-
ture collections.

GeoJSON represents geometry with a single JSON object. The type of geometry is identified by the value of the type
key, which must be present in a GeoJSON object. Possible values of the type key are Point, LineString, Polygon, Mul-
tiPoint, MultiLineString, and MultiPolygon. The geometry coordinates are stored in the coordinates key of the geome-
try object.

{
“type”:”LineString”,
“coordinates”:[[100.0, 0.0], [101.0, 1.0]]

}

An aggregate geometry is represented by a GeoJSON object which has a type key with value GeometryCollection. A
GeometryCollection object must contain a geometries key whose value is an array containing GeoJSON geometry
objects.

{
“type”:”GeometryCollection”,
“geometries”: [

{
“type”:”LineString”,
“coordinates”:[[100.0, 0.0], [101.0, 1.0]]

},
{

“type”:”MultiPoint”,
“coordinates”: [[100.0, 0.0], [101.0, 1.0]]

}
]

}

A feature is represented by a GeoJSON object which has a type key with value Feature. A Feature object may contain a
geometry key whose value is a GeoJSON geometry object or a GeoJSON GeometryCollection object. A Feature object
may also contain a properties key whose value is an object containing attribute names and values.

{
“type”:”Feature”,
“geometry”:{

“type”:”MultiPoint”,
“coordinates”: [

[102.0, 2.0],
[103.0, 3.0]

]
}

}

A collection of features is represented by a GeoJSON object which has a type key with value FeatureCollection. A Fea-
tureCollection must contain a features key whose value is any array containing GeoJSON Feature objects.

http://geojson.org/

{
“type”:”FeatureCollection”,
“features”: [

{
“type”:”Feature”,
“geometry”:{

“type”:”MultiPoint”,
“coordinates”: [

[102.0, 2.0],
[103.0, 3.0]

]
}

},
{

“type”:”Feature”,
“geometry”:{

“type”:”GeometryCollection”,
“geometries”: [

{
“type”:”LineString”,
“coordinates”:[[100.0, 0.0], [101.0, 1.0]]

},
{

“type”:”MultiPoint”,
“coordinates”: [[100.0, 0.0], [101.0, 1.0]]

}
]

}
}

]
}

Coordinate systems are supported in GeoJSON through the use of a crs key. If a GeoJSON object has the crs key, it is
assumed to represent the coordinate reference system of the included features or geometries. The value of the crs
key must be an object containing both a type and a properties key. If the crs key is absent, the projection is assumed
to be LL84. If the type key is set to ‘name’ , then the feature(s) will be tagged with an OGC CRS URN. If the type key is
set to ‘link’, it means that the href key is specified as an URL or a file path that contains the CRS info. In this case, the
href parameter will be stored in the json_crs_url attribute, with its corresponding type in the json_crs_url_type
attribute.

Named CRS
{

“type”:”Feature”,
“crs”: {

“type”: “name”,
“properties”: { “name”: “urn:ogc:def:crs:OGC:1.3:CRS84” }

},
“geometry”:{

“type”:”Point”,
“coordinates”: [100.0, 0.0]

}
}

Linked CRS
{

“type”:”Feature”,
“crs”: {

“type”: “link”,
“properties”: {

“href”: “http://spatialreference.org/ref/epsg/2001/proj4/”,
“type”: “proj4”

}
},
“geometry”:{

“type”:”Point”,
“coordinates”: [100.0, 0.0]

}
}

GeoJSON Quick Facts

Format Type Identifier GeoJSON

Reader/Writer Reader/Writer

Licensing Level Professional

Dependencies None

Dataset Type File/URL

Feature Type Varies: schema is dependent on
the source dataset

Typical File Extensions .json

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type json_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The GeoJSON reader is capable of reading several different GeoJSON structures. If the base JSON element is a GeoJ-
SON geometry object, then the reader will return a single FME feature with the given geometry. If the base JSON ele-
ment is a GeoJSON GeometryCollection object, then the reader returns a single FME feature with an aggregate
geometry. In both cases, the FME feature type will be GeoJSON.

If the base JSON element is a GeoJSON Feature object, then the GeoJSON reader will return a single FME feature. The
feature geometry will be taken from the geometry key of the Feature object, and the feature attributes will be taken
from the properties key of the Feature object. If the base JSON element is a GeoJSON FeatureCollection object, then
the GeoJSON reader will return an FME feature for each element of the features array of the FeatureCollection object.
In both cases, the FME feature type for each feature will be GeoJSON.

If the base JSON element is an array, then any GeoJSON objects in the array are converted into FME features as
described above.

If the base JSON element is an object, but not a GeoJSON object, then any value which is a GeoJSON object is con-
verted into FME features as described above, with the exception that the FME feature type is the key name of the cor-
responding GeoJSON object.

Coordinate Systems

The GeoJSON reader currently supports coordinate systems in EPSG, OGC URN, or URL format as described in the
overview.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GeoJSON reader is GEOJSON.

DATASET

Required/Optional: Required

The location of the GeoJSON file to be read. This can be the path to a local or network file, or a URL.

Examples:

GEOJSON_DATASET c:\json_sample.json
GEOJSON_DATASET \\path\to\network\file.json
GEOJSON_DATASET http://geojson.org/sample

Workbench Parameter

Source GeoJSON File or URL

DELETE_DOWNLOAD_FILE

Required/Optional: Optional

If the value of this directive is ‘Yes’, then when the reader has finished reading downloaded GeoJSON text, it will
delete the file that the text was downloaded to. The default value is ‘Yes’. The value of this directive is only meaningful
if the dataset is a URL.

Example:

GEOJSON_DELETE_DOWNLOAD_FILE No

Workbench Parameter: Delete downloaded file

PROXY_URL

Required/Optional: Optional

Specifies a proxy server that the reader will be use when accessing a URL dataset. The port number of the proxy
server can be set in the URL, or by using the PROXY_PORT directive.

Example:

GEOJSON_PROXY_URL www.someproxy.net
GEOJSON_PROXY_URL www.someproxy.net:8080

Workbench Parameter: Http Proxy URL

PROXY_PORT

Required/Optional: Optional

Specifies the port number of the proxy server indicated by the PROXY_URL directive. This directive should only be
used if the port number was not indicated in the PROXY_URL directive. This directive is ignored if the PROXY_URL
directive has no value.

Example:

GEOJSON_PROXY_PORT 8080

Workbench Parameter: Http Proxy Port

PROXY_USERNAME

Required/Optional: Optional

Specifies the username to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_PASSWORD or PROXY_AUTH_METHOD directives have no value.

Example:

GEOJSON_PROXY_USERNAME someusername

Workbench Parameter: Http Proxy Username

PROXY_PASSWORD

Required/Optional: Optional

Specifies the password to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_USERNAME or PROXY_AUTH_METHOD directives have no value.

Example:

GEOJSON_PROXY_PASSWORD password1234

Workbench Parameter: Http Proxy Password

PROXY_AUTH_METHOD

Required/Optional: Optional

Specifies the authentication method to use when accessing a password protected proxy server. This directive is
ignored if any of the PROXY_URL, PROXY_USERNAME or PROXY_PASSWORD directives have no value. Accept-
able values for this directive are ‘Basic’ or ‘Digest’.

Example:

GEOJSON_PROXY_AUTH_METHOD Basic

Workbench Parameter: Http Proxy Authentication Method

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The GeoJSON writer writes out a single object, in which each key is an FME feature type, and the value of each key is a
GeoJSON FeatureCollection object which contains the features of the given type.

Coordinate Systems

The GeoJSON writer currently supports coordinate systems in EPSG, OGC URN, or URL format as described in the
overview. To write a URL coordinate system, ensure that the json_crs_url and json_crs_url_type attributes are com-
plete and that no coordinate system is set on the feature. If a coordinate system is specified which violates the GeoJ-
SON specifications, the coordinate system will be reprojected to LL84. If no coordinate system is available, no
coordinate system will be output. However, it is important to note that the specifications state that GeoJSON objects
not specifically tagged with a coordinate reference system are assumed to be the LL84. If multiple coordinate systems
exist among features, the first feature will be used to determine the coordinate system for the feature collection.

Geometry

FME feature geometry is written out in a GeoJSON geometry object as the value of the geometry key in a Feature type
GeoJSON object. Because GeoJSON only supports linear geometry, arcs will be stroked to lines, and ellipses will be
stroked to polygons. Also, paths are simplified to a single line, and an FME feature with text geometry only has its loca-
tion written; the text value is ignored.

The value of the geometry key for an FME feature with aggregate geometry will be a GeometryCollection object, whose
geometries key will have an array of GeoJSON geometry objects as its value.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the GeoJSON writer is GEOJSON.

DATASET

Required/Optional: Required

The file to which the GeoJSON writer should write to. If the file does not exist it will be created.

Example:

GEOJSON_DATASET c:\geojson_file.json

Workbench Parameter: Destination GeoJSON File

WRITE_NULL_ATTRIBUTE_VALUES

Required/Optional: Optional

This directive specifies whether or not the object containing an FME feature’s attributes should contain a key for
attributes for which the feature has no value. Possible values for this directive are Yes and No. If the value is No, then
the attributes object will only contain keys for which the FME feature has an attribute value. If the value of the direc-
tive is Yes, then the output JSON objects wills contain keys for every attribute in the feature type schema, and keys
for which an FME feature has no attribute value will have a null JSON value. The default value of this directive is No.

Example:

GEOJSON_WRITE_NULL_ATTRIBUTE_VALUES Yes

Workbench Parameter:Write ‘null’ for attributes with no value

STRICT_SPEC

Required/Optional: Optional

This determines whether output will adhere strictly to the GeoJSON grammar. An array will be used as the outermost
element in order to represent multiple layers; a single layer will not be contained by an array. Possible values for this
directive are YES and NO.

Example:

GEJSON STRICT_SPEC YES

Workbench Parameter

Fully conform to GeoJSON grammar

WRITER_CHARSET

Required/Optional: Optional

The character set encoding in which the GeoJSON text will be written. Possible values for this directive are UTF-8,
UTF-16, UTF-16BE, UTF16-LE, UTF-32, UTF-32BE and UTF-32LE. If no character set is specified, the GeoJSON text
will be written in the UTF-8 character set.

Example:

GEOJSON_WRITER_CHARSET UTF-16

Workbench Parameter: Output Character Set

WRITE_BOM

Required/Optional: Optional

The value of this directive specifies whether or not the GeoJSON writer should preface the JSON text with a byte order
marker to indicate the endianness of the Unicode text. Possible values for this directive are Yes and No. The default
value is No.

Example:

GEOJSON_WRITE_BOM Yes

Workbench Parameter: Byte Order Marker

JSONP_FUNC_NAME

Required/Optional: Optional

The value of this directive specifies the JSONP JavaScript function name that the user wants to wrap the GeoJSON file
with. JSONP (JSON with Padding) is developed as a standard for grabbing JSON from external domains, which works
well with AJAX calls.

The default value is null. If no value is set or the default is set, then the GeoJSON writer will output a GeoJSON file
without the JSONP padding.

Example:

JSONP_FUNC_NAME getFeatures

Workbench Parameter

JSONP Function Name

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Geometry

The geometry of GeoJSON features may be identified by the json_type attribute. The valid values for this attribute
are:

json_type Description

json_no_geom FME Feature with no geometry.

json_point Point feature.

json_line Linear feature.

json_polygon Simple polygon or donut feature.

json_collection Feature with multiple geometries.

No Geometry

json_type: json_no_geom

Features with their json_type attribute set to json_no_geom do not contain any geometry data.

Points

json_type: json_point

Features with their json_type set to json_point are single coordinate features or an aggregate of single points.

Lines

json_type: json_line

Features with their json_type set to json_line are polyline features or an aggregate of polylines.

Areas

json_type: json_polygon

Features with their json_type set to json_polygon are polygon features which may or may not have interior
boundaries, or an aggregate of such polygons.

Aggregates

json_type: json_collection

Features with their json_type set to json_collection are a heterogeneous collection of multiple geometries.

GeoRSS/RSS Feed Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

XML feeds are a popular method of publishing information to a set of subscribers. Using GeoRSS, an XML feed can be
extended to include spatial data. The GeoRSS reader/ writer plug-in enables FME to read and write XML feeds and
their spatial data extensions.

Overview

An XML feed can be in one of several different formats, with the most common formats being RSS and Atom. Both of
these formats have a similar structure in that the feed contains metadata and a collection of entries. The spec-
ifications for the current versions of these formats can be found at http://www.rssboard.org/rss-spec-
ification and http://tools.ietf.org/html/rfc4287 respectively.

Currently the GeoRSS reader supports RSS versions 0.91, 0.92 and 2.0, as well as Atom 0.3 and 1.0. The GeoRSS
writer can output feeds in RSS 2.0 or Atom 1.0.

The GeoRSS specification defines a way to add spatial information to an XML feed. The GeoRSS reader and writer both
support each of the three methods used to include spatial information: W3C Geo, GeoRSS Simple, and GML. Spec-
ifications for each of these methods can be found at http://www.georss.org.

GeoRSS Quick Facts

Format Type Identifier GeoRSS

Reader/Writer Reader/Writer

Licensing Level Professional

Dependencies None

Dataset Type File/URL

Feature Type Feed, Entry

Typical File Extensions .atom .rss .xml

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type georss_type

http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://tools.ietf.org/html/rfc4287

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

The GeoRSS reader works by mapping an XML feed and its entries into FME features. A single FME feature is created
for the feed meta-data, and a FME feature is created for each entry in the feed. Because each feed format has a similar
structure, the same schema is used for every feed that the reader processes, regardless of the feed format and ver-
sion. The reader can handle an XML feed from a local or network file, or a remote URL accessible via http or ftp. The
reader can access these URL’s directly, or it can be routed through a proxy server.

Normal Mode and Update Mode

The GeoRSS reader can be run in twomodes: normal and update.

In normal mode, the reader will always return a feature for every feed entry that it processes.

In update mode, which can be enabled by a reader directive, the reader will only return entry features if they are new
or updated. This is accomplished in two ways.

When invoked on a URL in update mode, the reader will save certain key HTTP headers from the response. When the
reader is run again with the same URL, it will return these headers to the server, which will use them to determine if
the feed has changed since the reader last requested it. If the feed has changed, the server will return it and the
reader will proceed as normal. If the feed has not changed, the server will return an HTTP 304 status code, indicating
that the feed has not changed, and the reader will quit without returning any features. Note that this functionality is
only possible when the dataset is a remote URL.

When processing features in update mode, the reader will save the ID and modification date of each feed entry. In an
RSS feed, which does not define an entry modification date, only the entry ID (taken from the <guid> element) will
be saved. In an Atom feed, both the ID (taken from the <id> element) and the modification date (taken from the
<updated> element) will be saved. If the reader is run again with the same dataset, a feed entry will be skipped if
an identical modification date has already been saved for the the entry’s ID. Note that this functionality will work for
both file and URL datasets.

To provide additional control over update mode, a directive (FEEDSTORE_ID) can be set which allows the update
mode to treat different datasets as identical for the purposes of determining updates. For instance, a user might wish
to treat an RSS feed and a locally downloaded cache of a feed as identical for the purposes of determining updates.

The feed headers and entry modification information is stored in a separate database for each feed, which will be dis-
played in the log when the reader is run. Deleting this file will force the reader to treat a feed as if it had never been
read before. The reader also keeps a database which maps feed locations (URLs or file paths) to database files. Delet-
ing this file forces the reader to treat all feeds as if they had never been read before. The location of this file is con-
figurable with a reader directive. The default file is georssfmefeeds.sqlite in the FME temp directory.

Geometry

The GeoRSS reader supports each of the three methods for extending an XML feed with spatial data. The reader also
supports feeds and entries with aggregate geometries, even though these are not explicitly included in the GeoRSS

specification. This includes feeds and entries with multiple instances of the same data format, or combinations of the
three spatial data formats, as in the following examples:

Example 1:

<feed>
<entry>
<georss:point>72.0 43.0</georss:point>
<georss:point>23 -36</georss:point>

</entry>
</feed>

Example 2:

<feed>
<entry>
<georss:point>72.0 43.0</georss:point>
<georss:where>
<gml:LineString>
<gml:posList>5.0 5.0 6.0 6.0 4.3 -5.5</gml:posList>

</gml:LineString>
</georss:where>

</entry>
</feed>

Coordinate Systems

The EPSG:4326 coordinate system is used for all features that contain W3C Geo or GeoRSS Simple geometry exten-
sions. The GML geometry extension allows a different coordinate system to be set for each feature, with EPSG:4326
being the default.

If a feature contains only GML geometry extensions, then the feature’s coordinate system will be set from the first
extension. The lowest level non-default coordinate system from the first extension will be used, or if there are no coor-
dinate systems specified, the default coordinate system will be used. The following examples illustrate the coordinate
system logic used by the GeoRSS reader.

Example 1:

This example uses the default EPSG:4326 coordinate system, because the
entry contains a GeoRSS Simple geometry extension. The EPSG:1234
coordinate system definition on the GML geometry extension is ignored.

<feed>
<entry>
<georss:point>72.0 43.0</georss:point>
<georss:where>
<gml:Point srsName=”EPSG:1234”>

<gml:pos>72.0 43.0</gml:pos>
<gml:Point>

</georss:where>
</entry>

</feed>

Example 2:

This example uses the default EPSG:4326 coordinate system, because the first extension does not define a coordinate
system. The coordinate system defined on the second extension is ignored.

<feed>
<entry>
<georss:where>
<gml:Point>

<gml:pos>72.0 43.0</gml:pos>
<gml:Point>
<gml:Point srsName=”EPSG:1234”>

<gml:pos>72.0 43.0</gml:pos>

<gml:Point>
</georss:where>

</entry>
</feed>

Example 3:

This example uses the EPSG:4321 coordinate system because it is the lowest level non-default coordinate system on
the first extension. The EPSG:1234 and EPSG:6789 coordinate system definitions are ignored.

<feed>
<entry>
<georss:where>
<gml:Point srsName=”1234”>

<gml:pos srsName=”4321”>72.0 43.0</gml:pos>
<gml:Point>
<gml:Point srsName=”6789”>

<gml:pos>72.0 43.0</gml:pos>
<gml:Point>

</georss:where>
</entry>

</feed>

Handling of Unknown XML Elements

The GeoRSS reader will not ignore any XML elements that it encounters. If the reader encounters XML that it cannot
use to populate the predefined GeoRSS feature schema, it will simply add the XML to the feature as a new attribute.

The new attribute will be named based on the prefix and name of the unknown element. If the xml element has a pre-
fix, the new attribute will be named prefix_name. If the element has no prefix, the new attribute name will be _
name.

If the XML element has no attributes and only text content, the value of the new feature attribute will be the text con-
tent of the XML element. If the XML element contains XML attributes or non-text child elements, then the entire XML
element will be the value of the new attribute.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GeoRSS reader is GEORSS.

DATASET

Required/Optional: Required

The location of the XML file containing the feed. This can be the path to a local or network file, or a URL.

Examples:

GEORSS_DATASET c:\atomsample.xml
GEORSS_DATASET \\path\to\network\file.xml
GEORSS_DATASET http://earthquake.usgs.gov/eqcenter/recenteqsww/catalogs/eqs7day-M5.xml
GEORSS_DATASET ftp://192.168.80.2/tests/geometry/gml.atom.geomtest.xml

Workbench Parameter: XML Feed

URL_PARAMETERS

Required/Optional: Optional

The value of this directive is only used if the reader is accessing a dataset which is a URL. The value of the directive
should be a space-separated list of space-separated name-value pairs. The name-value pairs will be added to the
dataset URL. A value must be provided for each parameter name. An empty string (““) can be used to provide an
empty parameter value.

Example:

GEORSS_DATASET http://localhost/trafficdata.xml
GEORSS_URL_PARAMETERS province bc city vancouver

This example will result in the reader accessing the following url:

http://localhost/trafficdata.xml?province=bc&city=vancouver

Workbench Parameter: Additional URL Parameters

READER_MODE

Required/Optional: Optional

Specifies which mode the reader should run in. This directive must be set to UPDATE to make the reader run in
update mode. If it is set to any other value, or if the directive is not present, the reader will run in normal mode.

Example:

GEORSS_READER_MODE UPDATE

Workbench Parameter: Reader Mode

FEEDSTORE_DB_DIR

Required/Optional: Optional

This directive specifies the filesystem directory which contains the databases storing information about the feeds that
the GeoRSS reader has processed. This directive is only read from the mapping file if the reader is running in update
mode. If no value is set, the FME temp directory will be used.

Example:

GEORSS_FEEDSTORE_DB_DIR c:\georss_feeds

Workbench Parameter: Feed Database Location

FEEDSTORE_MAX_ENTRY_AGE

Required/Optional: Optional

This directive specifies the age in days at which entries will be deleted from a feed’s database. When the reader is
run in update mode, the reader will delete any entries from the database for this feed which are older than the spec-
ified value. This ensures the feed database does not become arbitrarily large. If the value of this directive is not spec-
ified, or is 0, no entries will be deleted.

Example:

GEORSS_FEEDSTORE_MAX_ENTRY_AGE 30

Workbench Parameter:Max FeedStore Entry Age

FEEDSTORE_ID

Required/Optional: Optional

This directive allows the user to specify which feeds should be treated as coming from the same source. It only has
an effect if the reader is run in update mode. When this directive is set, the input file/URL is treated as identical to
any other previous read input which has the same feedstore identifier. If no value for this directive is set, it is the
same as setting it equal to the DATASET directive.

Example:

GEORSS_FEEDSTORE_ID http://www.safe.com/company/news/rss/rss.xml

Workbench Parameter: FeedStore key id

PROXY_URL

Required/Optional: Optional

Specifies a proxy server that the reader will be use when accessing a URL dataset. The port number of the proxy
server can be set in the URL, or by using the PROXY_PORT directive.

Example:

GEORSS_PROXY_URL www.someproxy.net
GEORSS_PROXY_URL www.someproxy.net:8080

Workbench Parameter: Http Proxy URL

PROXY_PORT

Required/Optional: Optional

Specifies the port number of the proxy server indicated by the PROXY_URL directive. This directive should only be
used if the port number was not indicated in the PROXY_URL directive. This directive is ignored if the PROXY_URL
directive has no value.

Example:

GEORSS_PROXY_PORT 8080

Workbench Parameter: Http Proxy Port

PROXY_USERNAME

Required/Optional: Optional

Specifies the username to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_PASSWORD or PROXY_AUTH_METHOD directives have no value.

Example:

GEORSS_PROXY_USERNAME someusername

Workbench Parameter: Proxy Username

PROXY_PASSWORD

Required/Optional: Optional

Specifies the password to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_USERNAME or PROXY_AUTH_METHOD directives have no value.

Example:

GEORSS_PROXY_PASSWORD password1234

Workbench Parameter: Http Proxy Password

PROXY_AUTH_METHOD

Required/Optional: Optional

Specifies the authentication method to use when accessing a password protected proxy server. This directive is
ignored if any of the PROXY_URL, PROXY_USERNAME or PROXY_PASSWORD directives have no value. Accept-
able values for this directive are ‘Basic’ or ‘Digest’.

Example:

GEORSS_PROXY_AUTH_METHOD Basic

Workbench Parameter: Http Proxy Authentication Method

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The GeoRSS writer can write any collection of features out as a GeoRSS feed. If no feature is specified to be a Feed
type feature, then the writer will use default values for the metadata it produces. Any feature whose type is not ‘Feed’
will be treated as an ‘Entry’ type feature.

This means that the writer will look at features for the attributes specified by the GeoRSS schema. Any feature attrib-
utes which are not contained in the GeoRSS feature schema will be ignored. Furthermore, if a feature has no value for
certain attributes, the GeoRSS writer will provide default values for these attributes. This ensures that the GeoRSS
writer always tries to produce a valid Atom or RSS feed, regardless of the features that are passed to it.

Coordinate Systems

The W3C Geo and GeoRSS Simple geometry formats use the EPSG:4326 coordinate system. Thus if the GeoRSS writer
is using either of these geometry formats, all features passed to the writer will be reprojected to EPSG:4326 if this
functionality is licensed. Features with no coordinate system are assumed to be in EPSG:4326.

The GML geometry format supports any coordinate system, so if the GeoRSS writer is using this geometry format, fea-
tures passed to the writer will be written in whichever coordinate system they have been tagged with. In the event
that no coordinate system is set on a feature, the coordinate system will be assumed to be EPSG:4326.

Geometry

The three different geometry formats support varying levels of geometry complexity. The GeoRSS writer will attempt
to downgrade unsupported geometry to a supported type, but this is not always possible. Since the GeoRSS spec-
ification does not allow multi-geometries, the GeoRSS writer will always only attempt to write the first item of an aggre-
gate of multi-geometry.

The W3C Geo geometry format only supports point geometry. If a feature with any other type of geometry is passed to
the GeoRSS writer while it is writing in this format, the feature’s geometry will be ignored.

The GeoRSS Simple geometry format supports point, line, polygon geometry. When writing in the format, the GeoRSS
writer will attempt to downgrade more complex geometries to one of these types. For example, a feature with donut
geometry will have it’s geometry written out as a polygon, and the interior of the donut will be ignored. Similarly,
areas and ellipses will also be downgraded to polygon geometry. Arcs, paths and curves will be downgraded to line
geometry.

The GML geometry format supports similar geometries to the ones supported by the GeoRSS simple geometry format.
However the GML format allows donut geometry, so features with donut geometry will not be written out as polygon
geometry.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the GeoRSS writer is GEORSS.

DATASET

Required/Optional: Required

The file to which the GeoRSS writer should output the XML feed. If the file does not exist it will be created.

Example:

GEORSS_DATASET c:\georss\feed.xml

Workbench Parameter: Destination GeoRSS File

WRITER_CHARSET

Required/Optional: Optional

The character set encoding in which the output XML feed should be written. If no character set is specified, the feed
will be written in the UTF-8 character set. If an invalid character set is specified, the translation will fail.

Example:

GEORSS_WRITER_CHARSET UTF-16

Workbench Parameter: Output Character Set

OUTPUT_FORMAT

Required/Optional: Required

This directive specifies the format of the XML feed that the GeoRSS writer will produce. Acceptable values for this
directive are ‘Atom’ and ‘RSS’. If the value of the directive is Atom, the writer will produce an Atom 1.0 feed. If the
value is RSS, the writer will produce an RSS 2.0 feed.

Example:

GEORSS_OUTPUT_FORMAT Atom

Workbench Parameter: Output Format

GEOMETRY_OUTPUT_FORMAT

Required/Optional: Required

This directive specifies the format of the output feed’s geometry extensions. Acceptable values for this directive are
‘W3C’, ‘Simple’ or ‘GML’.

Example:

GEORSS_GEOMETRY_OUTPUT_FORMAT GML

Workbench Parameter: Geometry Format

ESCAPE_HTML

Required/Optional: Optional

This directive determines how the writer handles HTML content. If the directive is set to ‘true’ or ‘yes’, the writer will
escape html content before outputting it. If the directive is set to ‘no’ or ‘false’ the writer will output the content
unchanged. This only applies to feature attributes whose corresponding ‘type’ attribute is set to ‘html’.

Note that if the directive is set to ‘no’ or ‘false’ and unescaped HTML content is passed to the writer, the output may
not be a valid XML. If no value is provided for this directive, the writer will assume any HTML content is already
escaped, and will not escape it.

Example:

GEORSS_ESCAPE_HTML yes

Workbench Parameter: Escape HTML Content

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Geometry

The geometry of GeoRSS features may be identified by the georss_type attribute. The valid values for this attribute
are:

georss_type Description

georss_no_geom FME Feature with no geometry.

georss_point Point feature.

georss_type Description

georss_line Linear feature.

georss_area Simple polygon or donut feature.

georss_box Simple rectangular polygon feature.

No Geometry

georss_type: georss_no_geom

Features with their georss_type attribute set to georss_no_geom do not contain any geometry data.

Points

georss_type: georss_point

Features with their georss_type set to georss_point are single coordinate features.

Lines

georss_type: georss_line

Features with their georss_type set to georss_line are polyline features.

Areas

georss_type: georss_area

Features with their georss_type set to georss_area are polygon features which may or may not have interior bound-
aries.

Boxes

georss_type: georss_box

Features with their georss_type set to georss_box are simple rectangular closed polygons. Features with this type
will not have any interior boundaries.

Schema

The GeoRSS reader returns features with the same schema for each of the different XML formats. The following tables
explain which XML elements are mapped to which feature attributes. When a feature is passed to the GeoRSS writer,
it will be treated as an ‘Entry’ type feature unless it’s feature type is ‘Feed’. This means that the GeoRSS writer will
always treat features as if they were output by the GeoRSS reader. Any attributes that could not have been produced
by the GeoRSS reader will be ignored. If a feature has no value for certain required attributes, the GeoRSS writer will
provide a default value for the attribute.

Feed Type Features

Feature Attribute Description/Source/Destination

Title Atom: <title>
RSS: <title>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

TitleType Atom/RSS: type=”xxx” attribute inside the source XML
element of the Title attribute.
The default value is “text”. This attribute will only be
populated if the Title attribute is populated.

Version This attribute is a string representation of the format
of the XML feed. When reading an Atom feed, it is
based on the XML namespace of the feed, while in RSS
feeds it is based on the version=”xxx” attribute of the
<rss> element.
This attribute is ignored by the GeoRSS writer.

Description Atom 0.3: <tagline>
Atom 1.0: <subtitle>
RSS: <description>

DescriptionType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Description attribute.
The default value is “text”. This attribute will only be
populated if the Description attribute is populated.

Id Atom: <id>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

Copyright Atom 0.3: <copyright>
Atom 1.0: <rights>
RSS: <copyright>

CopyrightType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Copyright attribute.

The default value is “text”. This attribute will only be
populated if the Copyright attribute is populated.

PublishedDate RSS: <pubDate>

The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

LastUpdate Atom 0.3: <modified>
Atom 1.0: <updated>

Feature Attribute Description/Source/Destination

RSS: <lastBuildDate>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

Category Atom 1.0: term=”xxx” attribute inside <category>
RSS: <category>

CategoryDomain Atom 1.0: scheme=”xxx” attribute inside <category>
RSS: domain=”xxx” attribute inside <category>

CategoryLabel Atom 1.0: label=”xxx” attribute inside <category>

Author Atom: <name> inside of <author>

AuthorEmail Atom: <email> inside of <author>

AuthorURI Atom: <uri> inside of <author>

Contributor Atom: <name> inside of <contributor>

ContributorEmail Atom: <email> inside of <contributor>

ContributorURI Atom: <uri> inside of <contributor>

Generator Atom: <generator>
RSS: <generator>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

GeneratorURI Atom 0.3: url=”xxx” attribute inside <generator>
Atom 1.0: uri=”xxx” attribute inside <generator>

The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

GeneratorVersion Atom: version=”xxx” attribute inside <generator>

The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

Icon Atom 1.0: <icon>

Logo Atom 1.0: <logo>

LinkRelation Atom: rel=”xxx” attribute inside <link>

LinkURI Atom: href=”xxx” attribute inside <link>
RSS: <link>

LinkType Atom: type=”xxx” attribute inside <link>

LinkTitle Atom: title=”xxx” attribute inside <link>

Feature Attribute Description/Source/Destination

FeatureType The first ‘featuretypetag’ attribute that is encountered
on an element in the GeoRSS xml namespace.

Relationship The first ‘relationshiptag’ attribute that is encountered
on an element in the GeoRSS xml namespace.

Elevation The first ‘elev’ attribute that is encountered on an ele-
ment in the GeoRSS xml namespace.

FloorNumber The first ‘floor’ attribute that is encountered on an ele-
ment in the GeoRSS xml namespace.

Radius The first ‘radius’ attribute that is encountered on an
element in the GeoRSS xml namespace.

Entry Type Features

Feature Attribute Source

Title Atom: <title>
RSS: <title>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

TitleType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Title attribute.
The default value is “text”. This attribute will only be
populated if the Title attribute is populated.

Summary Atom: <summary>

SummaryType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Summary attribute.
The default value is “text”. This attribute will only be
populated if the Summary attribute is populated.

Id Atom: <id>
RSS: <guid>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

IdIsPermaLink RSS: isPermaLink=”xxx” attribute inside <guid>

Copyright Atom 1.0: <rights>

CopyrightType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Copyright attribute.
The default value is “text”. This attribute will only be
populated if the Copyright attribute is populated.

PublishedDate Atom 0.3: <issued>
Atom 1.0: <published>
RSS: <pubDate>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

LastUpdate Atom 0.3: <modified>
Atom 1.0: <updated>
The GeoRSS writer will provide a default value for this
attribute if a feature has no value.

Category Atom 1.0: term=”xxx” attribute inside <category>
RSS: <category>

CategoryDomain Atom 1.0: scheme=”xxx” attribute inside <category>
RSS: domain=”xxx” attribute inside <category>

Feature Attribute Source

CategoryLabel Atom 1.0: label=”xxx” attribute inside <category>

Author Atom: <name> inside of <author>
RSS: <author>

AuthorEmail Atom: <email> inside of <author>

AuthorURI Atom: <uri> inside of <author>

Contributor Atom: <name> inside of <contributor>

ContributorEmail Atom: <email> inside of <contributor>

ContributorURI Atom: <uri> inside of <contributor>

Content Atom: <content>
RSS: <description>

ContentType Atom/RSS: type=”xxx” attribute inside the source XML
tag of the Content attribute.

The default value is “text”. This attribute will only be
populated if the Content attribute is populated.

ContentIsRemoteURL Atom: This attribute will be set to ‘Yes’ if the value of
the Content attribute came from the src=”xxx” attrib-
ute inside the <content> element.

LinkRelation Atom: rel=”xxx” attribute inside <link> (unless rel=”e-
nclosure”)

LinkURI Atom: href=”xxx” attribute inside <link> (unless
rel=”enclosure”)
RSS: <link>

LinkType Atom: type=”xxx” attribute inside <link> (unless
rel=”enclosure”)

LinkTitle Atom: title=”xxx” attribute inside <link> (unless
rel=”enclosure”)

EnclosureTitle Atom: title=”xxx” attribute inside <link> where
rel=”enclosure”

EnclosureURI Atom: href=”xxx” attribute inside <link> where
rel=”enclosure”
RSS: url=”xxx” attribute inside <enclosure>

EnclosureType Atom: type=”xxx” attribute inside <link> where
rel=”enclosure”
RSS: type=”xxx” attribute inside <enclosure>

Feature Attribute Source

EnclosureLength RSS: length=”xxx” attribute inside <enclosure>

FeatureType The first ‘featuretypetag’ attribute that is encountered
on an element in the GeoRSS xml namespace.

Relationship The first ‘relationshiptag’ attribute that is encountered
on an element in the GeoRSS xml namespace.

Elevation The first ‘elev’ attribute that is encountered on an ele-
ment in the GeoRSS xml namespace.

FloorNumber The first ‘floor’ attribute that is encountered on an ele-
ment in the GeoRSS xml namespace.

Radius The first ‘radius’ attribute that is encountered on an
element in the GeoRSS xml namespace.

GML (Geography Markup Language) Reader/Writer

The GML Reader/Writer allows FME to read and write files in the Geography Markup Language (GML) format.

This chapter assumes familiarity with GML.

Overview

GML is an OpenGIS® Implementation Specification. The GML specification defines an XML encoding for the transport
and storage of geographic information. This specification can be found at the Open GIS Consortium website
www.opengeospatial.org.

GML documents must be instances of a conforming application schema. Conforming application schemas are to be
defined with the W3C’s XML Schema language.

Versions

The reader supports reading GML v2.1.2, v3.1.1, and v3.2.1 files.

The writer supports writing GML v3.1.1 and v3.2.1 files.

Additional GML Formats

Note that the following formats are GML formats, and their documentation is considered part of the GML Read-
er/Writer documentation:

Format Reader/Writer

German AAA GML Exchange format (NAS);
ALKIS

Reader

Interface 2000 (GML) Both

NEN 3610 Reader

U.S. Census Bureau TIGER/GML Reader

http://www.opengeospatial.org/

GML Quick Facts

Format Type Identifier GML

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Varies depending on the GML
application schema

Typical File Extensions .gml, .xml

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

This reader supports GML documents conforming to GML v2.1.2, v3.1.1 and v3.2.1, and application schemas.

Only simple GML geometries, i.e., geometries with linear interpolation, are supported in this release.

Multi-value properties, i.e., declared with a maxOccurs that is greater than 1 or unbounded, are supported and are
mapped into list attributes.

GML properties that are defined as complex types are supported – these complex properties are mapped as struc-
tured list attributes.

This reader supports multiple geometry properties per feature type: see theMAP_GEOMETRY_COLUMNS
reader directive.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GML reader is GML.

DATASET

Required/Optional: Required

This directive specifies the location for the input GML instance document.

Example:

GML_DATASET c:\gml_data\hydro.xml

Workbench Parameter: Source Geography Markup Language (GML) File(s)

SYSTEM_ENCODING

Required/Optional: Optional

Specifies the encoding to use for the GML schema and data features that are read by the reader. If not set, then fea-
tures will be output in the system’s encoding.

Example:

GML_SYSTEM_ENCODING UTF-8

Workbench Parameter: System Encoding

XSD_DOC

Required/Optional: Optional

A GML instance document specifies the namespace and the location of its application schema through its root element
xsi:schemaLocation attribute. This directive allows the GML reader to use a different GML schema document from the
one specified in the xsi:schemaLocation attribute.

The XML Schema specification states that the xsi:schemaLocation attribute value consists of a set of pairs: The first
member each pair is the namespace for which the second member is the hint describing where to find an appropriate
schema document. The presence of this hint does not require the processor to obtain or use the cited schema doc-
ument, however, the processor is free to use other schemas obtained by other suitable means.

The XSD_DOC directive allows the usage of other schema documents on the instance besides the one stated in the
instance’s xsi:schemaLocation attribute.

This directive only takes effect if the target namespace of the dataset is not in the Safe fixed schema namespace
http://www.safe.com/xml/schemas/FMEFeatures. The GML2 writer in FIXED SCHEMA_MODE writes
out documents that belong to that namespace.

Workbench Parameter: Application Schema

READ_PREDEFINED_GML_PROPERTIES

Required/Optional: Optional

This directive specifies if the default and optional GML feature properties, name and description, should be read. The
valid values of this directive are YES and NO, its default value is NO.

Example:

GML_READ_PREDEFINED_GML_PROPERTIES YES

http://www.safe.com/xml/schemas/FMEFeatures

Workbench Parameter: Read Predefined Properties

CONTINUE_ON_GEOM_ERROR

Required/Optional: Optional

Rather than halting the reader, this optional directive allows the reader to continue reading and extracting features
from the input GML document stream upon encountering a geometrical error. The valid values of this directive are
YES and NO, its default value is YES.

Example:

GML_CONTINUE_ON_GEOM_ERROR NO

Workbench Parameter: Continue on Geometry Error

HTTP_PROXY

Required/Optional: Optional

This directive specifies the HTTP proxy to be used for network fetches. The port number may be specified at the end
of the proxy by appending :[port number] or through the HTTP_PROXY_PORT directive.

Example:

GML_HTTP_PROXY www.someproxy.net

or

GML_HTTP_PROXY www.someproxy.net:8082

Note: Users may bypass the HTTP_PROXY and HTTP_PROXY directives and still have http proxy support by
specifying the http_proxy environment variable. The value for this environment variable should be of the form [pro-
tocol://][user:password@]machine[:port], where components within [] are optional. An example value for the http_
proxy environment variable is: http://www.someproxy.net:8885.

Workbench Parameter: Proxy Address

HTTP_PROXY_PORT

Required/Optional: Optional

This directive is used if the HTTP proxy port was not specified in the HTTP_PROXY directive.

Example:

GML_HTTP_PROXY_PORT 8081

Workbench Parameter: Port

CACHE_XSD

Required/Optional: Optional

This directive allows the XML Schema documents that are fetched from the internet to be cached locally, this reduces
the number of network fetches when traversing the GML schema documents. The valid values of this directive are
YES and NO, its default value is YES.

Example:

GML_CACHE_XSD NO

Workbench Parameter: Cache XSD Document

CACHE_XSD_EXPIRY_TIME

Required/Optional: Optional

This directive is optional and takes effect only if the CACHE_XSD directive is set to YES. The valid values for this direc-
tive are positive numbers denoting the number of seconds. The default value for this directive is 300.

Example:

GML_CACHE_XSD_EXPIRY_TIME 600

Workbench Parameter: Cache XSD Expiry Time

CACHE_XSD_DIRECTORY

Required/Optional: Optional

This optional directive takes effect when CACHE_XSD directive is set to YES. The directive specifies the directory
path for the location of the cache xsd directory, the directory name for the cache xsd directory is specified by the
CACHE_XSD_NAME directive below. The default value for this directive is the user’s temporary directory.

Example:

GML_CACHE_XSD_DIRECTORY c:\tmp

Workbench Parameter: <WorkbenchParameter>

CACHE_XSD_NAME

Required/Optional: Optional

This optional directive specifies the xsd cache name. The cache namemust also be a valid directory name, as this
value is used as the sub-directory containing the cached schema documents within the CACHE_XSD_DIRECTORY.
The default value for this directive is GML_XSD_CACHE.

Example:

GML_CACHE_XSD_NAME gml_schema_cache

Workbench Parameter: <WorkbenchParameter>

XFMAP

Required/Optional: Optional

This optional directive is not for general usage.

Rather than having the reader programmatically generate an xfMap from the GML application schema, this directive
directs the reader to use a predefined xfMap on the input GML dataset.

Multiple xfMaps on the same input streammay be used. These can either be specified by using several XFMAP direc-
tives or through a single quoted value XFMAP directive where each xfMap in the quoted string is separated by a sem-
icolon.

Example:

GML_XFMAP C:\tmp\data\features.xmp

or

GML_XFMAP “C:\tmp\drainages.xmp;C:\tmp\pits_pipes.xmp”

or

GML_XFMAP C:\tmp\drainages.xmp
GML_XFMAP C:\tmp\pits_pipes.xmp

Workbench Parameter: <WorkbenchParameter>

XFMAP_SCHEMA

Required/Optional: Optional

This optional directive is not for general usage. When reading schemas, the GML reader construct FME schema fea-
tures after examining the GML application schema corresponding to the input dataset, this directive allows the GML
reader to bypass the GML application schema by constructing FME schema features with a predefined xfMap.

Example:

GML_XFMAP_SCHEMA C:\tmp\data\schema_features.xmp

SRS_AXIS_ORDER

This optional directive overrides the axis order when reading <TocEntry Title="SRS_AXIS_ORDER" Link="/-
Content/gml/SRS_AXIS_ORDER.htm" /> a coordinate tuple in a GML <pos> or <posList> element.

Values

The valid values for this directive are “1,2”, “2,1”, “1,2,3” and “2,1,3”. There is no default value.

For example, if the srsName in the GML document is set to "urn:ogc:def:crs:EPSG:6.6.4326", and the user is sure
that the coordinate order in the GML document is lon-lat and not lat-lon order, then this directive should be set to
"1,2" so that the reader reads the data in lon-lat order.

Mapping File Syntax

GML_SRS_AXIS_ORDER 1,2

Required/Optional

Optional

Workbench Parameter

GML SRS Axis Order

COMPLEX_PROPERTIES_AS_NESTED_LISTS

This directive specifies whether GML properties that are defined as a complex type with complex content (that is,
those that have embedded children elements) should be mapped as nested list attributes within FME features.

Some complex properties, such as those that are recursively defined, cannot be mapped as nested lists. These com-
plex properties will always be mapped as XML fragments, regardless of the value of this directive.

Values

YES (default) | NO

If the value is set to NO, the complex properties are mapped as XML fragments.

Required/Optional

Optional

Mapping File Syntax

GML_COMPLEX_PROPERTIES_AS_NESTED_LISTS NO

Workbench Parameter

Complex Properties as Nested Lists

XML_FRAGMENTS_AS_DOCUMENTS

This directive specifies whether GML properties that are mapped as XML fragments should be converted into XML doc-
uments.

The conversion will add missing namespace declarations to the fragments, it will maintain CDATA sections, and it will
also prefix an XML header declaration to the fragment. Converting the XML fragments into XML documents allows
XML-based parsers, e.g., XSLT and XQuery based processors, to further process the fragments.

Values

YES (default) | NO

Required/Optional

Optional

Mapping File Syntax

GML_XML_FRAGMENTS_AS_DOCUMENTS NO

Workbench Parameter

Map XML Fragments as XML Documents

MAP_GEOMETRY_COLUMNS

This directive specifies whether the GML geometric properties should be represented as individual, and possibly mul-
tiple, geometry columns in FME feature type definitions.

A geometric column in an FME data feature is represented either as a single named geometry, or, if multiple geometry
columns are present, as an aggregate geometry with multiple named geometry components, this aggregate geometry
will also have its “Contains Individual Geometries” interpretation flag set.

A new attribute type has also been introduced for specifying the order and/or position of a geometric column in the
feature type definition. If an attribute X has its type set to “xml_geometry” then this attribute X becomes a place-
holder in the feature type definition. It is a placeholder because actual data features for the feature type definitions
will not have this attribute; instead, the data features will have a geometry named “X”.

Values

YES (default) | NO

Required/Optional

Optional

Mapping File Syntax

GML_MAP_GEOMETRY_COLUMNS NO

Workbench Parameter

Map Geometry Columns

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

This writer outputs GML documents conforming to GML v3.2.1 and v3.1.1. Two XML documents are written, a GML
instance and its corresponding GML application schema. The GML application schema structure is controlled by the
GML writer’s DEF lines.

Currently, only simple GML geometries, i.e., geometries with linear interpolation, are supported in this release.

Multiple geometrical property elements can be written per feature type definition. The name and the position for these
geometric elements can also controlled through the GML writer’s feature type definitions.

Complex non-geometrical properties are supported in this release. These are to be specified in the GML Writer DEF
lines as FME structured attributes. Each component in a structured attribute is separated by a period, “.”, and each
component may also be a list, specified by the “{}” token. Attributes that are lists will be mapped into GML property
declarations having a maxOccurs of unbounded. For example, the structured FME attributes, “change-
History.Date”, and “changeHistory.Reason” are represented in the GML instance as: “<change-
History><Date>...</Date><Reason>...</Reason></changeHistory>”.

Writer Directives

The directives processed by the GML Writer are listed below. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the GML writer is GML.

DATASET

Required/Optional: Required

This directive specifies the location for the output GML instance document.

Example:

GML_DATASET c:\gml\data.xml

Workbench Parameter: Destination Geography Markup Language (GML) File

PROFILE

This directive sets the writer into GML v3.1.1 or GML v3.2.1 writing.

Values

GENERIC 3.1.1 (default) | GENERIC 3.2.1

Mapping File Syntax

GML_PROFILE GENERIC_3.2.1

Required/Optional

Optional

Workbench Parameter

GML Profile

WRITE_ALL_FEATURE_TYPE_DEFNS

Required/Optional: Optional

By default, every GML writer DEF line is translated to the output GML application schema document as an XML
Schema element declaration and a corresponding complex type definition. Setting this directive to NO directs the
writer to ignore those DEF lines that have no corresponding feature instances. The valid values for this directive are
YES and NO. The default is YES.

Example:

GML_WRITE_ALL_FEATURE_TYPE_DEFNS NO

Workbench Parameter:Write All Feature Type Definitions

TARGET_NS_PREFIX

Required/Optional: Optional

The directive specifies the GML application schema target namespace prefix. The default value for this directive is
fme.

Example:

GML_TARGET_NS_PREFIX ns

Workbench Parameter: Target Namespace Prefix

TARGET_NS_URI

Required/Optional: Optional

The directive specifies the GML application schema target namespace URI. The default value for this directive is
http://www.safe.com/gml/fme.

Example:

GML_TARGET_NS_URI http://www.contrivedurl.com/ns

Workbench Parameter: Target Namespace URI

XSD_DOC

Required/Optional: Optional

The file location for the output GML application document. If left blank, then the .xsd file will be created in the same
directory and with the same file basename as the output dataset.

Workbench Parameter: GML Schema Document

OUTPUT_ENCODING

Required/Optional: Optional

The directive specifies the encoding to use for the output XML documents, which include both the GML instance and
the GML application schema. The default value for this directive is UTF-8.

Example:

GML_OUTPUT_ENCODING ISO-8891-1

Workbench Parameter: Output Encoding

http://www.safe.com/gml/fme

SYSTEM_ENCODING

Required/Optional: Optional

This directive specifies the encoding for the incoming schema and data feature. If unspecified, then the writer
assumes that the schema and data features are encoded with the system’s encoding.

Example:

For example, if features fed into the GML writer are encoded in UTF-8, then the following should be set:

GML_SYSTEM_ENCODING UTF-8

Workbench Parameter: System encoding

SUPPRESS_XSD_DOCUMENT

Required/Optional: Optional

This directive suppresses the output of the GML application schema when it is set to YES. The default value for this
directive is NO.

Example:

GML_SUPPRESS_XSD_DOCUMENT YES

Workbench Parameter: Suppress GML Schema Document

SUPPRESS_XSI_SCHEMALOCATION

Required/Optional: Optional

Setting this directive to YES suppresses the output of the xsi:schemaLocation attribute in the GML instance’s root ele-
ment. The xsi:schemaLocation in an XML document instance is not a mandatory attribute – it is merely a hint which an
XML processor may choose to ignore. Setting this keyword to YES suppresses the output of the xsi:sch-
emaLocation attribute in the output GML instance. The default value for this directive is NO.

Example:

GML_SUPPRESS_XSI_SCHEMALOCATION YES

Workbench Parameter: Suppress xsi:schemaLocation attribute

FEATURE_COLLECTION

The target namespace of the root FeatureCollection element is influenced by this directive.

Values

gml (default) | target-namespace | wfs

n gml – FeatureCollection root element for the output GML instance is the predefined <gml:FeatureCollection> ele-
ment.

n wfs – changes the root element in the output document to <wfs:FeatureCollection>; in addition, appropriate XML
namespace declarations and xsi:schemaLocation entries are added to include the WFS schemas.

The wfs value is not currently supported when writing GML v3.2.1 data. This is because the WFS 1.1.0 Fea-
tureCollection is defined for GML 3.1.1. Wrapping the data with a WFS FeatureCollection will be enabled for GML
v3.2.1 writing when WFS 2.0 is supported.

n target-namespace – changes the root element to <[target-ns-prefix]:FeatureCollection> where [target-ns-pre-
fix] is the prefix that is bound to the output document target namespace, e.g., <fme:FeatureCollection>. The out-
put xsd document will also include a custom FeatureCollection declaration and FeatureCollectionType definition.

Mapping File Syntax

GML_FEATURE_COLLECTION target-namespace

Required/Optional

Optional

Workbench Parameter

Feature Collection

FEATURE_COLLECTION_ID

GML v3.2.1 requires an gml:id on every feature and feature collection.

This directive allows you to supply a custom gml:id value to replace UUID that is automatically for the feature col-
lection under GML v3.2.1.

Mapping File Syntax

GML_FEATURE_COLLECTION_ID my-id-001

Required/Optional

Optional

Workbench Parameter

Feature Collection ID

TARGET_XSI_SCHEMALOCATION_URL

Required/Optional: Optional

By default, the URL for the target namespace URI - URL location pair in the instance document’s xsi:schemaLocation
attribute is the GML application schema’s relative filename. This directive allows the user to overwrite the .xsd file-
name by supplying a custom URL. The directive only affects the value of the URL for the target namespace in the
xsi:schemaLocation. It does not affect where the application schema will be written (for this, see the XSD_DOC direc-
tive).

Example:

GML_TARGET_XSI_SCHEMALOCATION_URL http://www.conurl/ns.xsd

Workbench Parameter: Target xsi:schemaLocation URL

SRS_NAME

Required/Optional: Optional

This directive allows the user to overwrite the CRS value that is written in the GML instance’s srsName attributes. By
default, the FME coordinate system name in a feature is transferred directly onto the srsName attribute. This directive
allows users to provide their own URN CRS string for the srsName attributes.

Example:

GML_SRS_NAME urn:ogc:def:crs:EPSG:6.6:4326

Workbench Parameter: GML srsName

SRS_AXIS_ORDER

Required/Optional: Optional

This directive is required when the SRS_NAME directive is used. It specifies the axis order for a coordinate tuple in a
GML <pos> or <posList> element. The valid values for this directive are “1,2”, “2,1”, “1,2,3” and “2,1,3”. There
is no default value.

For example, if SRS_NAME is set to “urn:ogc:def:crs:EPSG:6.6.4326”, then the SRS_AXIS_ORDER should be set
to “2,1” so that the coordinates in the GML <pos> and <posList> elements are written in lat-lon order:

GML_SRS_AXIS_ORDER 2,1

Workbench Parameter: GML SRS Axis Order

MAXIMUM_FRACTION_DIGITS

Required/Optional: Optional

This directive allows the user to specify the maximum number of decimal place to write to the GML file when writing
coordinates. Note that this directive specifies only the maximum number of decimal places to write, not the exact
number of decimal places to write. To specify an exact number of decimal places to write, use this directive in con-
junction with the MINIMUM_FRACTION_DIGITS directive. The value for this directive must be an integer greater
than or equal to 0. The default value is 15 decimal places.

Workbench Parameter: Maximum Decimal Places

MINIMUM_FRACTION_DIGITS

Required/Optional: Optional

This directive allows the user to specify the minimum number of decimal place write to the GML file when writing coor-
dinates. Note that this directive specifies only the minimum number of decimal places to write, not the exact number
of decimal places to write. To specify an exact number of decimal places to write, use this directive in conjunction
with the MAXIMUM_FRACTION_DIGITS directive. The value for this directive must be an integer greater or equal
to 0. The default value is 0 decimal places.

Workbench Parameter: Minimum Decimal Places

APPLY_STYLESHEET

Required/Optional: Optional

This directive allows an XSLT stylesheet to be applied to the final output DATASET document. The STYLESHEET_
RESULT directive may be used in conjunction with this directive to specify the location and filename of the resulting
transformation. There are no default values for this directive.

Example:

GML_APPLY_STYLESHEET c:\data\myTransform.xsl

Workbench Parameter: XSLT Style Sheet to Apply

STYLESHEET_RESULT

Required/Optional: Optional

This directive only takes effect if APPLY_STYLESHEET is specified. When this directive is not present or its value is
the empty string, then the resulting XSLT transformation will have the same location and filename as the output DATA-
SET with the exception that the filename will be prefixed with “transformed_”.

Example:

GML_STYLESHEET_RESULT c:\data\myTransformedDoc.xml

Workbench Parameter: Style Sheet Result

USE_STYLESHEET_RESULT_AS_DATASET

This directive only takes effect if APPLY_STYLESHEET is specified.

This directive takes precedence over STYLESHEET_RESULT. It also suppresses the XML schema .xsd document for
output.

Values

YES | NO (default)

When set to YES, a temporary file is written in the same directory as the one specified for the DATASET, the style-
sheet is applied to the to temporary file, and the result of the transformation is stored in the DATASET file.

Mapping File Syntax

GML_USE_STYLESHEET_RESULT_AS_DATASET Yes

Required/Optional

Optional

Workbench Parameter

Dataset as stylesheet result

VALIDATE_OUTPUT_DATASET

This directive controls validation of the output file against the schemas referenced in that file.

If APPLY_STYLESHEET is specified, the result of applying the sylesheet is validated. Otherwise, the DATASET is
validated.

Values

YES | NO (default)

Mapping File Syntax

GML_VALIDATE_OUTPUT_DATASET Yes

Required/Optional

Required

Workbench Parameter

Validate GML Dataset File

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The xml_type attribute identifies the FME GML geometry. The valid values for this attribute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point feature.

xml_line Linear feature.

xml_arc Arc feature.

xml_area Areal feature, may be a donut.

Other attributes, including the feature’s feature type, are dependent on the GML application schema.

It is possible to control the name and position for the GML geometry properties for a GML feature type, seeDEF
Lines for details.

No Geometry

xml_type: xml_no_geom

Features having their xml_type attribute set to xml_no_geom do not contain any geometry data.

Points

xml_type: xml_point

Features having their xml_type set to xml_point are single coordinate features.

Lines

xml_type: xml_line

Features having their xml_type set to xml_line are polyline features and have at least two coordinates.

Arcs

xml_type: xml_arc

Features having their xml_type set to xml_arc are circular arc segments.

Areas

xml_type: xml_area

Features having their xml_type set to xml_area are either a single closed polyline feature (simple closed poly-
gon), a donut, or an aggregate of donuts (and/or simple polygons). A simple closed polygon contains at least four
coordinates, with the first and last coordinate being equal.

DEF Lines

The DEF lines control the generation of the GML application schema. The syntax of a GML DEF line is:

<WriterKeyword>_DEF <feature type> \
[<attribute name> <attribute type>]*

Where the valid values for <attribute type> are: xml_buffer, xml_char(width), xml_int32, xml_real32, xml_dec-
imal(width,decimal), xml_boolean, xml_real64, and xml_geometry.

The <attribute name> can either be a simple attribute, a list attribute, a structured attribute, or a geometry attribute.

Simple attributes have no embedded period, and they are mapped into simple type properties in the GML application
schema. List attributes end with a “{}” suffix, and are mapped into simple type property declarations whose max-
Occurs are set to unbounded. Structured attributes have embedded periods, each component in a structured attrib-
ute is separated by a period, and each component may also be a list. Structured attributes are mapped into complex
type properties in the GML application schema. For example, the structured FME attributes, “changeHistory.Date”,
and “changeHistory.Reason” are mapped into a changeHistory element whose complex type is defined as a sequence
of Date and Reason elements both of which are defined as simple types.

Geometry attributes are used to control the name and the position of the GML geometry elements. Currently only the
generic xml_geometry type is supported. Therefore, the geometry attribute only specifies the name and the position
for the GML gml geometric property. The type for the GML geometric property is determined via the instances of the
data features. For example, if all instances of a named geometry corresponding to the geometry attribute are points,
then the XSD written will have its geometric element declared as gml:PointPropertyType; if the specific GML
geometry property type cannot be determined via the data features, then the geometric element is declared as
gml:GeometryPropertyType.

For example, the DEF line:

GML_DEF F1 \

code xml_int32 \

changeHistory.Date xml_char(10) \

changeHistory.Reason xml_char(254) \

center_point xml_geometry \

place xml_buffer \

boundary xml_geometry

GML_DEF F1 \
code xml_int32 \
changeHistory.Date xml_char(10) \
changeHistory.Reason xml_char(254) \

If every F1 feature instance given to the writer has an aggregate containing individual geometries, and the com-
ponent of the aggregates are point geometries named “center_point” and area geometries named “boundary”, then
the following complex type definition will be generated:

<complexType name="F1Type">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="code" minOccurs="0" type="integer"/>
<element name="changeHistory" minOccurs="0">

<complexType>
<sequence>

<element name="Date" minOccurs="0">
<simpleType>

<restriction base="string">
<maxLength value="10"/>

</restriction>
</simpleType>

</element>
<element name="Reason" minOccurs="0">

<simpleType>
<restriction base="string">

<maxLength value="254"/>
</restriction>

</simpleType>
</element>

</sequence>
</complexType>

</element>
<element name="center_point" minOccurs="0" type="gml:Po-

intPropertyType"/>
<element name="place" minOccurs="0" type="string"/>
<element name="boundary" minOccurs="0" type="gml:SurfacePropertyType"/>

</sequence>
</extension>

</complexContent>
</complexType>

GML SF-0 (Geography Markup Language Simple Features
Level SF-0 Profile)
Reader/Writer

The GMLSF Reader/Writer allows FME to read and write files in the GML Simple Features Profile format.

This chapter assumes that users are familiar with GML and the GML Simple Features Profile.

Overview

GML is a complex specification declaring a wide number of XML elements for a wide variety of capabilities, including
the ability to encode dynamic features, spatial and temporal topology, coverages, and complex geometric types.

The GML Simple Features Profile restricts the wide-scope of GML by specifying a useful subset of GML, supporting fea-
tures and a limited set of linearly interpolated geometric types, it also simplifies the processing of the XML-Schema by
defining strict XML-Schema usage/coding patterns.

The GML Simple Features Profile specifies three compliance levels: compliance level SF-0, SF-1, and SF-2. Currently,
only compliance level SF-0 is supported for writing.

GMLSF Quick Facts

Format Type Identifier GMLSF

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Varies depending on the GML
simple feature profile appli-
cation schema

Typical File Extensions .gml,.xml

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

This reader supports GML documents conforming to the GML simple features profile.

Multi-value properties, i.e., declared with a maxOccurs that is greater than 1 or unbounded, are supported and are
mapped into list attributes.

GML properties that are defined as complex types are supported – these complex properties are mapped as struc-
tured list attributes.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GMLSF reader is GMLSF.

DATASET

Required/Optional: Required

This directive specifies the location for the input GML instance document.

Example:

GMLSF_DATASET c:\gml_data\hydro.xml

Workbench Parameter: Source GML SF-0 File(s)

SYSTEM_ENCODING

Required/Optional: Optional

Specifies the encoding to use for the GML schema and data features that are read by the reader. If not set, then fea-
tures will be output in the system’s encoding.

Example:

GMLSF_SYSTEM_ENCODING UTF-8

Workbench Parameter: System encoding

XSD_DOC

Required/Optional: Optional

A GML instance document specifies the namespace and the location of its application schema through its root element
xsi:schemaLocation attribute. This directive allows the GML reader to use a different GML schema document from the
one specified in the xsi:schemaLocation attribute.

Example:

GMLSF_XSD_DOC c:\data\gmlsf\myschema.xsd

Workbench Parameter: Application Schema

CONTINUE_ON_GEOM_ERROR

Required/Optional: Optional

Rather than halting the reader, this optional directive allows the reader to continue reading and extracting features
from the input GML document stream upon encountering a geometrical error. The valid values of this directive are
YES and NO, its default value is YES.

Example:

GMLSF_CONTINUE_ON_GEOM_ERROR NO

Workbench Parameter: Continue on Geometry Error

HTTP_PROXY

Required/Optional: Optional

This directive specifies the HTTP proxy to be used for network fetches. The port number may be specified at the end
of the proxy by appending :[port number] or through the HTTP_PROXY_PORT directive.

Example:

GMLSF_HTTP_PROXY www.someproxy.net

or

GMLSF_HTTP_PROXY www.someproxy.net:8082

Note: Users may bypass the HTTP_PROXY and HTTP_PROXY directives and still have http proxy support by spec-
ifying the http_proxy environment variable. The value for this environment variable should be of the form [pro-
tocol://][user:password@]machine[:port], where components within [] are optional. An example value for the
http_proxy environment variable is: http://www.someproxy.net:8885.

Workbench Parameter: Proxy Address

HTTP_PROXY_PORT

Required/Optional: Optional

This directive is used if the HTTP proxy port was not specified in the HTTP_PROXY directive.

Example:

GMLSF_HTTP_PROXY_PORT 8081

Workbench Parameter: Port

CACHE_XSD

Required/Optional: Optional

This directive allows the XML Schema documents that are fetched from the internet to be cached locally, this reduces
the number of network fetches when traversing the GML schema documents. The valid values of this directive are
YES and NO, its default value is YES.

Example:

GMLSF_CACHE_XSD NO

Workbench Parameter: Cache XSD Documents

CACHE_XSD_EXPIRY_TIME

Required/Optional: Optional

This directive is optional and takes effect only if the CACHE_XSD directive is set to YES. The valid values for this direc-
tive are positive numbers denoting the number of seconds. The default value for this directive is 300.

Example:

GMLSF_CACHE_XSD_EXPIRY_TIME 600

Workbench Parameter: Cache XSD Expiry Time

CACHE_XSD_DIRECTORY

Required/Optional: Optional

This optional directive takes effect when CACHE_XSD directive is set to YES. The directive specifies the directory path
for the location of the cache xsd directory, the directory name for the cache xsd directory is specified by the CACHE_
XSD_NAME directive below. The default value for this directive is the user’s temporary directory.

Example:

GMLSF_CACHE_XSD_DIRECTORY c:\tmp

CACHE_XSD_NAME

Required/Optional: Optional

This optional directive specifies the xsd cache name. The cache namemust also be a valid directory name, as this
value is used as the sub-directory containing the cached schema documents within the CACHE_XSD_DIRECTORY.
The default value for this directive is GML_XSD_CACHE.

Example:

GMLSF_CACHE_XSD_NAME gml_schema_cache

SRS_AXIS_ORDER

Required/Optional: Optional

This optional directive allows the user to override the axis order used by the reader when reading a GML document.
The directive specifies axis order to use when reading a coordinate tuple in a GML <pos> or <posList> element.
The valid values for this directive are “1,2”, “2,1”, “1,2,3” and “2,1,3”. There is no default value.

For example, if the GMLSF reader is making a mistake interpreting the coordinates and the user knows that a par-
ticular GML document contains coordinate tuples in lat-lon-height order then this directive should be set to “2,1,3”.

Mapping File Syntax

GML_SRS_AXIS_ORDER 2,1,3

Workbench Parameter: GML SRS Axis Order

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

This writer outputs GML documents conforming to the GML simple features profile. Two XML documents are written:
a GML instance and its corresponding GML application schema. The feature types in the GML simple features appli-
cation schema are controlled by the GMLSF writer’s DEF lines.

Only compliance level SF-0 is supported in this release.

Writer Directives

The directives processed by the GMLSF Writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the GMLSF writer is GMLSF.

DATASET

Required/Optional: Required

This directive specifies the location for the output GML instance document.

Example:

GMLSF_DATASET c:\gml\data.xml

Workbench Parameter: Destination GML Simple Features Level SF-0 Profile File

WRITE_ALL_FEATURE_TYPE_DEFNS

Required/Optional: Optional

By default, every GML writer DEF line is translated to the output GML application schema document as an XML
Schema element declaration and a corresponding complex type definition. Setting this directive to NO directs the
writer to ignore those DEF lines that have no corresponding feature instances. The valid values for this directive are
YES and NO. The default is YES.

Example:

GMLSF_WRITE_ALL_FEATURE_TYPE_DEFNS NO

Workbench Parameter:Write all feature type defintions

TARGET_NS_PREFIX

Required/Optional: Optional

The directive specifies the GML application schema target namespace prefix. The default value for this directive is
fme.

Example:

GMLSF_TARGET_NS_PREFIX ns

Workbench Parameter: Target namespace prefix

TARGET_NS_URI

Required/Optional: Optional

The directive specifies the GML application schema target namespace URI. The default value for this directive is
http://www.safe.com/gml/fme.

Example:

GMLSF_TARGET_NS_URI http://www.contrivedurl.com/gmlsf

Workbench Parameter: Target namespace URI

XSD_DOC

Required/Optional: Optional

The file location for the output GML application document. If left blank, then the .xsd file will be created in the same
directory and with the same file basename as the output dataset.

Workbench Parameter: GML schema document

OUTPUT_ENCODING

Required/Optional: Optional

The directive specifies the encoding to use for the output XML documents, which include both the GML instance and
the GML application schema. The default value for this directive is UTF-8.

Example:

GML_OUTPUT_ENCODING ISO-8891-1

Workbench Parameter: Output encoding

SYSTEM_ENCODING

Required/Optional: Optional

This directive specifies the encoding for the incoming schema and data feature. If unspecified, then the writer
assumes that the schema and data features are encoded with the system’s encoding.

Example:

For example, if features fed into the GMLSF writer are encoded in UTF-8, then the following should be set:

GMLSF_SYSTEM_ENCODING UTF-8

Workbench Parameter: System encoding

SUPPRESS_XSD_DOCUMENT

Required/Optional: Optional

This directive suppresses the output of the GML application schema when it is set to YES. The default value for this
directive is NO.

Example:

GMLSF_SUPPRESS_XSD_DOCUMENT YES

Workbench Parameter: Suppress GML schema document

FEATURE_COLLECTION

Required/Optional: Optional

The valid values for this optional directive are target-namespace and wfs.Setting this directive to wfs changes the root
element in the output document to <wfs:FeatureCollection>. In addition, appropriate XML namespace dec-
larations and xsi:schemaLocation entries are added to include the WFS schemas. The default value for this
directive is target-namespace.

Example:

GML_FEATURE_COLLECTION wfs

Workbench Parameter: Feature Collection

TARGET_XSI_SCHEMALOCATION_URL

Required/Optional: Optional

By default, the URL for the target namespace URI - URL location pair in the instance document’s xsi:schemaLocation
attribute is the GML application schema’s relative filename. This directive allows the user to overwrite the .xsd file-
name by supplying a custom URL. The directive only affects the value of the URL for the target namespace in the
xsi:schemaLocation. It does not affect where the application schema will be written (for this, see the XSD_DOC direc-
tive).

Example:

GMLSF_TARGET_XSI_SCHEMALOCATION_URL http://www.conurl/ns.xsd

Workbench Parameter: Target xsi:schemaLocation URL

COMPLIANCE_LEVEL_SCHEMA_LOCATION

Required/Optional: Optional

This directive allows the user to set the URL location of the GMLSF compliance levels schema. This URL is transferred
to schemaLocation attribute in the <import> element for the “http://www.opengis.net/gmlsf” namespace in the gen-
erated GMLSF .xsd document. The default value for this directive is “http://s-
chemas.opengis.net/gml/3.1.1/profiles/gmlsfProfile/1.0.0/gmlsfLevels.xsd”.

Example:

GMLSF_COMPLIANCE_LEVEL_SCHEMA_LOCATION http://www.example.com/gmlsf/1.0

Workbench Parameter: GMLSF compliance levels schema location

VERSION

Required/Optional: Optional

This directive allows the user to set the version of the GML schema document. The default value is “1.0.0”.

Example:

GMLSF_VERSION 4.1

Workbench Parameter: GMLSF application schema version

SRS_NAME

Required/Optional: Optional

This directive allows the user to overwrite the CRS value that is written in the GML instance’s srsName attributes. By
default, the FME coordinate system name in a feature is transferred directly onto the srsName attribute. This directive
allows users to provide their own URN CRS string for the srsName attributes.

Example:

GMLSF_SRS_NAME urn:ogc:def:crs:EPSG:6.6:4326

Workbench Parameter: GML srsName

SRS_AXIS_ORDER

Required/Optional: Optional (Required if using SRS_NAME)

This directive is required when the SRS_NAME directive is used. It specifies the axis order for a coordinate tuple in a
GML <pos> or <posList> element. The valid values for this directive are “1,2”, “2,1”, “1,2,3” and “2,1,3”. There is
no default value for this directive.

For example, if SRS_NAME is set to “urn:ogc:def:crs:EPSG:6.6.4326”, then the SRS_AXIS_ORDER should be set to
“2,1” so that the coordinates in the GML <pos> and <posList> elements are written in lat-lon order:

GMLSF_SRS_AXIS_ORDER 2,1

Workbench Parameter: GML SRS Axis Order

SUPPRESS_XSI_SCHEMALOCATION

Required/Optional: Optional

Setting this directive to YES suppresses the output of the xsi:schemaLocation attribute in the GML instance’s
root element. The xsi:schemaLocation in an XML document instance is not a mandatory attribute – it is merely
a hint which an XML processor may choose to ignore. Setting this directive to YES suppresses the output of the
xsi:schemaLocation attribute in the output GML instance. The default value for this directive is NO.

Mapping File Syntax

GMLSF_SUPPRESS_XSI_SCHEMALOCATION YES

Workbench Parameter: Suppress xsi:schemaLocation attribute

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The xml_type attribute identifies the FME GML geometry. The valid values for this attribute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point feature.

xml_line Linear feature.

xml_area Areal feature, may be a donut.

Other attributes, including the feature’s feature type, are dependent on the GML application schema.

No Geometry

xml_type: xml_no_geom

Features having their xml_type attribute set to xml_no_geom do not contain any geometry data.

Points

xml_type: xml_point

Features having their xml_type set to xml_point are single coordinate features.

Lines

xml_type: xml_line

Features having their xml_type set to xml_line are polyline features and have at least two coordinates.

Areas

xml_type: xml_area

Features having their xml_type set to xml_area are either a single closed polyline feature (simple closed poly-
gon), a donut, or an aggregate of donuts (and/or simple polygons). A simple closed polygon contains at least four
coordinates, with the first and last coordinate being equal.

DEF Lines

The DEF lines control the generation of the GML application schema. The syntax of a GML DEF line is:

<WriterKeyword>_DEF <feature type> \
[<attribure name> <attribute type>]*

Where the valid values for <attribute type> are: xml_char(width), xml_int32, xml_real32, xml_decimal(width,decimal), xml_bool-
ean, and xml_real64.

The <attribute name> can either be a simple attribute, a list attribute, or a structured attribute. Simple attributes have
no embedded period, and they are mapped into simple type properties in the GML application schema. List attributes
end with a “{}” suffix, and are mapped into simple type property declarations whosemaxOccurs are set to unbounded.
Structured attributes have embedded periods, each component in a structured attribute is separated by a period,
and each component may also be a list. Structured attributes are mapped into complex type properties in the GML
application schema. For example, the structured FME attributes, “changeHistory.Date”, and “changeHistory.Reason” are
mapped into a changeHistory element whose complex type is defined as a sequence of Date and Reason elements both
of which are defined as simple types.

For example, the DEF line:

GML_DEF F1 \
code xml_int32 \
changeHistory.Date xml_char(10) \
changeHistory.Reason xml_char(254)

Generates the following complex type definition:

<complexType name="F1Type">
<complexContent>

<extension base="gml:AbstractFeatureType">
<sequence>

<element name="code" minOccurs="0" type="integer"/>
<element name="changeHistory" minOccurs="0">

<complexType>
<sequence>

<element name="Date" minOccurs="0">
<simpleType>

<restriction base="string">
<maxLength value="10"/>

</restriction>
</simpleType>

</element>
<element name="Reason" minOccurs="0">

<simpleType>
<restriction base="string">

<maxLength value="254"/>
</restriction>

</simpleType>
</element>

</sequence>
</complexType>

</element>
</sequence>

</extension>
</complexContent>

</complexType>

Google Earth KML Reader/Writer

Format Notes:
The KML format is described in detail in the KML Documentation Introduction at
http://code.google.com/apis/kml/documentation/. Users who want to create complex KML should famil-
iarize themselves with the KML 2.2 specification that is available on Google's website:
http://earth.google.com/kml.

The Google Earth KML Reader and Writer allow FME to read and write KML files. This chapter refers to the Reader and
Writer as the KML Reader/Writer.

This KML overview is from the Open Geospatial Consortium (OGC®) KML 2.2 RFC:

“KML is an XML grammar used to encode and transport representations of geographic data for display
in an earth browser. Put simply: KML encodes what to show in an earth browser, and how to show it.
KML uses a tag-based structure with nested elements and attributes and is based on the XML stand-
ard.

The KML community is wide and varied. Casual users create KML Placemarks to identify their homes,
describe journeys, and plan cross-country hikes and cycling adventures. Scientists use KML to pro-
vide detailed mappings of resources, models, and trends such as volcanic eruptions, weather pat-
terns, earthquake activity, and mineral deposits. Real estate professionals, architects, and city
development agencies use KML to propose construction and visualize plans. Students and teachers
use KML to explore people, places, and events, both historic and current. Organizations such as
National Geographic, UNESCO, and the Smithsonian have all used KML to display their rich sets of
global data.

KML documents and their related images (if any) may be compressed using the ZIP format into KMZ
archives. KML documents and KMZ archives may be shared by e-mail, hosted locally for sharing within
a private internet, or hosted on a web server.”

Overview

The KML reader reads KML datasets that conform to the KML 2.0, 2.1, and 2.2 specifications. The KML Writer will
write datasets that conform to the KML 2.2 specification. In addition the KML Writer also support’s writing Google’s
‘gx’ extensions to the KML 2.2 specification.

FME's KML support can be used without knowledge of the KML specification.

Note: Users who want to create complex KML should familiarize themselves with the KML 2.2 specification that is
available on Google's website: http://earth.google.com/kml.

Deprecation Advisory

FME offers two plug-ins capable of reading and writing KML datasets: KML and OGCKML.

The KML plug-in is the original KML plug-in designed to read and write KML 2.0 datasets, and the OGCKML plug-in is
designed to conform to the latest KML 2.2 specification.

The older KML plug-in is now deprecated, and will be removed from FME. Translations using the older KML plug-in
should be migrated to the new plug-in, which has many more features.

http://code.google.com/apis/kml/documentation/
http://earth.google.com/kml
http://earth.google.com/kml

Google Earth (OGCKML) Quick Facts

Format Type Identifier OGCKML

Reader/Writer Reader/Writer

Licensing Level Base

Dependencies None

Dataset Type Reader: File
Writer: Directory/File

Feature Type Varies

Typical File Extensions .kml, .kmz

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type kml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster yes

donut polygon yes solid yes

elliptical arc no surface yes

ellipses no text yes

line yes z values yes

none no

Reader Overview

The KML reader supports reading KML 2.0, 2.1, and 2.2 datasets.

Reader Directives and Workbench Parameters

The KML Reader processes several directives in the mapping file. These are all prefixed by the current <Read-
erKeyword>_. By default, the Reader Keyword is KML21.

DATASET

Required/Optional: Required

This directive specifies the location of the input KML dataset. The input KML dataset can be a kml file, a kmz file, a
folder containing a kml file, or a URL referencing a KML file.

Workbench Parameter: Source OpenGIS KML Encoding Standard File or URL

LOG_VERBOSE

Required/Optional: Optional

Specifies whether or not the reader should increase the logging verbosity. Possible values are Yes and No. The
default is No.

Workbench Parameter: Verbose Logging

FAIL_ON_NETWORK_ERROR

Required/Optional: Optional

Specifies whether or not the reader should terminate the translation if a network error occurs. Possible values are
'yes' or 'no'. The default is 'no'.

Workbench Parameter: Fail on Network Errors

DELETE_DOWNLOADED_FILES

Required/Optional: Optional

Specifies whether or not the reader should delete temporary files downloaded as part of the reading process. Possible
values are 'yes' or 'no'. The default is 'yes'.

Workbench Parameter: Delete Downloaded Files

RASTER_READ_MODE

Required/Optional: Optional

Specifies whether the images files referenced by Overlay elements should be read as raster geometry. Possible values
are 'all', 'groundoverlay', or 'none'. If the option is 'all', all GroundOverlay, PhotoOverlay, and ScreenOverlay images
will be read as raster geometry. If the selected option is 'groundoverlay', then only GroundOverlay images will be
read.

The default is 'groundoverlay'.

Raster's read from GroundOverlay images will be georeferenced using coordinate values from the GroundOverlay.

Workbench Parameter: Read Overlays As Rasters

PROXY_URL

Required/Optional: Optional

Specifies the url of a proxy server that will be used for all href traversal.

Workbench Parameter: Proxy Url

PROXY_PORT

Required/Optional: Optional

Specifies the port number for the proxy server. Not valid if PROXY_URL is not supported.

Workbench Parameter: Proxy Port

PROXY_USERNAME

Required/Optional: Optional

Specifies the username to use to login to the server for the proxy server. Not valid if PROXY_URL is not supported.

Workbench Parameter: Proxy User Name

PROXY_AUTH_METHOD

Required/Optional: Optional

Specifies the authentication method to use to login to the server for the proxy server. Not valid if PROXY_URL and
PROXY_USERNAME are not supported.

Workbench Parameter: Proxy Authentication Method

SCAN_SCHEMA

Required/Optional: Optional

Specifies whether or not the reader should scan the KML files for schema elements. Possible values are 'yes' or 'no'.
The default is 'yes'.

If 'no' is specifed, KML elements will be read using the fixed schema. KML datasets using KML 2.1 schemamay not be
read properly unless this option is set to 'yes'.

Workbench Parameter: Scan Schema

TRAVERSE_NETWORKLINKS

Required/Optional: Optional

Specifies whether or not NetworkLink or schemaUrl references to external KML files should be traversed. I.e. to read
the referenced document.

Possible values are 'all', 'local', or 'none'. If 'local' is specified, then references will only be traversed if they refer to a
file on the local filesystem.

The default value is 'all'.

Workbench Parameter: Traverse NetworkLinks

MAX_NETWORKLINK_TRAVERSAL_DEPTH

Required/Optional: Optional

Specifies the max depth of the traversal tree.

The traversal depth is the number of links that must be traversed to get from the original file to the root file. For exam-
ple, if the dataset root refers to DocB, which refers to DocC, the traversal depth is 2.

The default value is 5'.

Workbench Parameter:Maximum NetworkLinks Traversal Depth

BBOX_WEST, BBOX_SOUTH, BBOX_EAST, BBOX_NORTH

Required/Optional: Optional

These 4 parameters specify the bounding box that will be used to specify the BBOX passed to web services that pro-
vide KML data.

By default, no BBOX is provided, and the web service will provide all data provided.

The reader will not use these values to filter features.

Workbench Parameters: Query Bounding Box Min X, Query Bounding Box Max X, Query Bounding Box Min Y, Query
Bounding Box Max Y

MOVE_TO_KML_WORLD_COORDSYS

Specifies whether or not the location metadata in the KML Placemark will be applied to the model geometry.

Required/Optional

Optional

Values

n yes (default): a custom coordinate system with a Azimuth Equal Distance projection will be applied to the feature.

n no: the feature will be output without any coordinate system.

Workbench Parameter

Move to World Coordinate System

APPLY_MODEL_TRANSFORMS

Specifies whether or not scaling and orientation metadata in the KML Placemark will be applied to the model geometry
prior to being output.

Required/Optional

Optional

Values

n yes: The transformations will be applied.

n no (default)

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Resource Traversal

A resource traversal occurs when the KML reader uses a resource reference to retrieve a file external to the current
KML file. The KML reader is capable of traversing the following types of resource references:

n <NetworkLink><Link><href>

n <GroundOverlay><Icon><href>

n <ScreenOverlay><Icon><href>

n <PhotoOverlay><Icon><href>

n <SchemaData @schemaUrl>

n <Placemark><Model><Link><href>

At this time, <Placemark><styleUrl> is not traversed.

Resource Location

Resources can either be local, or remote. Local resources are located on either the local filesystem, or a mounted net-
work drive. Examples of local resources would be “C: emp\foo.jpg” or \\FILES\data\bar.kml. Remote resources are
resources that are accessed via internet protocols. The KML reader supports the ftp and http protocols.

The value of the reader’s TRAVERSE_NETWORKLINK directive determines how resource references are handled.

All: All resource references are traversed

Local: Only local references to resources are traversed. I.e. a NetworkLink reference to a local file will be traversed,
but a reference to a file on a remote web server will not.

None: No resource references are traversed. This may limit some of the reader’s functionality.

Relative References

Resource references often refer to resources in a location that is relative to the referring resource. An example would
be roads.kml referring to schema.kml via a schemaUrl. The KML reader attempts to resolve relative references into an
absolute reference by maintaining a record of the location from which the referring resource was retrieved. For exam-
ple if roads.kml is retrieved from http://example.com/roads.kml, the KML reader will attempt to load schema.kml
from http://example.com/schema.kml

Remote Resources Downloads

Files downloaded as a result of traversing remote resource references are each stored in unique folders in $(FME_
TEMP). Unique download locations ensure that files with similar filenames do not overwrite each other. Upon the com-
pletion of the translation, all downloaded files will be removed. To override this behaviour, the KML reader's DELETE_
DOWNLOADED_FILES directive can be set to no'.

Resources can also be downloaded from remote web services, for example http:/-
/example.com/mapdata.php?layer=roads, may return KML data. As part of the downloading process, the reader per-
forms two actions:

1. The mime-type of the server’s response is compared against a set of expected mime-types. I.e. to verify that it
is KML data (or image data for Overlays).

2. Any non-alphanumeric characters in the resulting filename are replaced by underscores. The appropriate file
extension is also provided as needed. For example, if the above service responded with KML data, it would be
stored in mapdata_php_layer_roads.kml

Traversal Depth

The KML reader is capable of limiting resource traversal depth. This option allows users to control how much data the
KML reader retrieves in a give translation. For example, if reading a complex dataset from a web-service, it is possible
for a.kml to refer to b.kml, which refers to c.kml, etc. By default, the traversal depth is capped at 5, but can be
increased as necessary using the KML reader’s MAX_NETWORKLINK_TRAVERSAL_DEPTH directive.

There are no restrictions on traversal breadth, i.e. the number of traversals per file.

Network Errors

The KML reader has the option of ignoring, but logging, network errors that are encountered during the translation.
Service provider issues, or temporary network outages may cause such errors. By default, network errors will not
result in a fatal error; the FAIL_ON_NETWORK_ERROR reader directive can be used to change the default behavior.

Writer Overview

The KML writer is capable of creating uncompressed (.kml) and compressed (.kmz) KML documents.

Note: All Z values are interpreted in meters, so you may need to manually convert between feet and meters.

Coordinate System Reprojection

The writer will automatically reproject features to LL-WGS84 if they are tagged with a different coordinate system.

Writer Directives and Workbench Parameters

The KML Writer processes several keywords in the mapping file. These are all prefixed by the current <Writ-
erKeyword>_. By default, the Writer keyword is KML21.

DATASET

Required/Optional: Required

This keyword specifies the location for the output KML dataset. If the dataset name contains the extension “.kml”, a
single KML document will be created, if the dataset name contains ".kmz" a KMZ file will be created. Otherwise, it is
assumed that the dataset is a directory. In the case of either a KMZ, or a directory dataset, the filename of the "root"
document will be doc.kml unless otherwise specified using the DOCUMENT_FILENAME keyword.

Workbench Parameter: Destination OpenGIS KML Encoding Standard File

DOCUMENT_FILENAME

Required/Optional: Optional

This keyword specifies an alternative filename for the root document if the dataset is either a KMZ file or a directory.
Use of this keyword may result in a dataset that is unreadable by Google Earth.

Workbench Parameter: Parent Document Filename

This parameter is specified at the feature-type level. Specifying a filename forces a certain set of features to be seg-
regated in a separate file.

Open the Destination Feature Type Properties dialog and click the Parameters tab.

OUTPUT_SCHEMA

Required/Optional: Optional

Specifies whether or not schema elements should be output. Possible values are Yes, or No. The default is Yes.

Workbench Parameter: Create KML Schema Elements

UPPERCASE_SCHEMA

Note: This directive is deprecated as of FME 2008.

Required/Optional: Optional

Specifies whether or not the metadata names should be converted to uppercase to avoid namespace clashes.

AUTO_CREATE_NETWORK_LINKS

Required/Optional: Optional

Specifies whether or not NetworkLink elements should be automatically generated when documents are referenced.
Possible values are Yes, or No. The default is Yes.

Workbench Parameter: Automatically Create Network Links

ATTR_IN_DESCRIPTION

Required/Optional: Optional

Determines whether or not user-defined attributes will be included in the feature’s description field. The value of the
HTML_DESCRIPTIONS preference will determine if the attributes, and their corresponding values will be displayed
using a HTML table, or a series of colon-separated key-value pairs. Values can be Yes or No. The default is Yes.

Workbench Parameter: Attribute tables in description field

HTML_DESCRIPTIONS

Required/Optional: Optional

Specifies whether or not the description, snippet, and balloon text elements should be wrapped in a CDATA block. Pos-
sible values are Yes, or No. The default is Yes.

Workbench Parameter: Use HTML description fields

DETECT_RASTERS

Required/Optional: Optional

Controls whether or not the writer will examine incoming features to determine if they have raster geometry. If a
raster geometry is detected, the feature will be forced to be a GroundOverlay feature. The value can be Yes or No. The
default is Yes.

Workbench Parameter: Automatically detect raster features

RASTER_MODE

Required/Optional: Optional

Specifies how the writer will handle raster features. This preference only applies if the DETECT_RASTERS preference
is enabled. The possible values, and their corresponding behaviours are detailed below

l write - (Default behavior) Write the raster feature using the FME writer that corresponds to the RASTER_FORMAT
option. This option allows the KML writer to handle raster features irregardless of their origin, as well as to take
advantage of any resampling performed during the transformation process.

l copy - Copy the image file that the raster feature originated in to the directory of the KML dataset. The resulting
<GroundOverlay> element will reference the copy of the image file. Note: This will only work for PNG, JPEG, or
TIFF images.

l relative - Similar to the "copy" option, but leaves the image file in its original location. This option avoids gra-
tuitous file copying.

Workbench Parameter: Raster Handling Mode

RASTER_FORMAT

Required/Optional: Optional

Specifies what file format should be used if the RASTER_MODE preference is "write". The possible values are "tiff"
and "jpeg". The default is "jpeg".

Workbench Parameter: Raster Output Format

RASTER_COMPRESSION_LEVEL

Required/Optional: Optional

Specifies the raster compression level that should be used if the RASTER_MODE preference is "write". See the GEO-
TIFF and JPEG writers for appropriate values.

Workbench Parameter: Not applicable

INFORMATION_POINT_ICON

Required/Optional: Optional

Specifies the icon that should be used for information point icons. The value should be either the full path to the icon,
or the name of an icon in $(FME_HOME)/icons. If no value is specified, the information point icon will not be created.

Workbench Parameter: Information Point Icon

This parameter is specified at the feature-type level, and specifies the information point icons that will be used for cer-
tain features.

Open the Destination Feature Type Properties dialog and click the Parameters tab.Click the Browse button to the right
of the Information Point Icon field.

COPY_ICON

Required/Optional: Optional

Specifies whether icons should be copied from their location to the dataset’s images directory. The possible values
are Yes and No. The default is Yes.

Note: This only applies to icons referenced by the kml_icon attribute, icons referenced by the kml_icon_href will
not be copied. If the kml_icon_href is present, the value of kml_icon will be ignored.

Workbench Parameter: Copy icons to destination dataset

LOG_VERBOSE

Required/Optional: Optional

Specifies whether or not the writer should increase the logging verbosity. Possible values are Yes and No. The default
is No.

Workbench Parameter: Verbose Logging

ORIENTATION

Required/Optional: Optional

Specifies whether @Orient should be used to orient features prior to writing. The possible values are None, Right and
Left. The default is None.

Workbench Parameter: Force Geometry Orientation

REGIONATE_DATA

Required/Optional: Optional

Specifies whether or not features with vector geometry (Placemarks) should be passed through the regionator pipe-
line prior to writing. Possible values are Yes and No. The default is No.

Workbench Parameter: Regionate Vectors (beta)

REGIONATOR_PIPELINE

Required/Optional: Optional

Specifies a specific FME factory pipeline that will be used to pre-process (regionate) vector features prior to being
written by the writer.

The value is either the path to the pipeline file, or the name of a file located in $(FME_HOME)/plugins/kml21.

The default value is fmeregionator.fmi.

Workbench Parameter: Vector Regionation Pipeline

EXEC_GO_PIPELINE

Required/Optional: Optional

Specifies whether or not features with raster geometry (GroundOverlays) should be passed through the GO pyr-
amider pipeline prior to writing. Possible values are yes' or no'. The default is no'.

Workbench Parameter: Pyramid GroundOverlays (beta)

GO_PYRAMIDER_PIPELINE

Required/Optional: Optional

Specifies a specific FME factory pipeline that will be used to pre-process (pyramid) raster features prior to being
written by the writer.

The value is either the path to the pipeline file, or the name of a file located in $(FME_HOME)/plugins/kml21.

The default value is fmegroundoverlaypyramider.fmi.

Workbench Parameter: GroundOverlay Pipeline

EXEC_PO_PIPELINE

Required/Optional: Optional

Specifies whether or not PhotoOverlay features should be passed through the PO pyramider pipeline prior to writing.
Possible values are 'yes' or 'no'. The default is 'no'.

Workbench Parameter: Pyramid PhotoOverlays (beta)

PO_PYRAMIDER_PIPELINE

Required/Optional: Optional

Specifies a specific FME factory pipeline that will be used to pre-process (pyramid) raster features prior to being
written by the writer.

The value is either the path to the pipeline file, or the name of a file located in $(FME_HOME)/plugins/kml21.

No default pipeline is provided.

Workbench Parameter: PhotoOverlay Pipeline

WATERMARK_NAME

Required/Optional: Optional

The name element value of the ScreenOverlay element used to provide the watermark.

Workbench Parameter:Watermark Name

WATERMARK_SNIPPET

Required/Optional: Optional

The snippet element value of the ScreenOverlay element used to provide the watermark.

Workbench Parameter:Watermark Snippet Text

WATERMARK_ICON

Required/Optional: Optional

The icon to use for the ScreenOverlay element used to provide the watermark. The value can be any value allowable
for the kml_icon format attribute.

Workbench Parameter:Watermark Overlay Icon

DATASET_HINT

Required/Optional: Optional

The value of the hint' attribute of the kml element for the dataset.

The default is none. Users wishing to write datasets for Google Sky should use the value "target=sky". See the Google
KML documentation for further information.

Workbench Parameter: KML hint attribute

STYLE_DOC

Required/Optional: Optional

Specifies the filename of an external kml file that will be used to store Style or StyleMap elements. If specifed all Style
and Stylemap elements will be routed to this document.

The value cannot be a path, and must include the ".kml" extension.

Workbench Parameter: External Style Document

SCHEMA_DOC

Required/Optional: Optional

Specifies the filename of an external kml file that will be used to store Schema information for the dataset. If specified,
Schema elements will be written to this file, and the schemaUrl value of each placemark will be updated accordingly.

The value cannot be a path, and must include the ".kml" extension.

Workbench Parameter: External Schema Document

ATOM_AUTHOR_NAME

Required/Optional: Optional

Specifies the value of the <atom:name> element for the dataset.

Workbench Parameter: Author Name

ATOM_AUTHOR_EMAIL

Required/Optional: Optional

Specifies the value of the <atom:email> element for the dataset.

Workbench Parameter: Author Email

ATOM_LINK_HREF

Required/Optional: Optional

Specifies the value of the <atom:link> element for the dataset.

Workbench Parameter: Author URL

OMIT_DOCUMENT_ELEMENT

Required/Optional: Optional

Controls whether a root-level <Document> element is created.

Possible values are Yes and No. The default is No.

Workbench Parameter: Omit Document Element

TARGET_HREF

Required/Optional: Optional

Specifies the URL value of the targetHref for the NetworkLinkControl Updates

Workbench Parameter: Target Href

CREATE_EMPTY_FOLDERS

Required/Optional: Optional

If the value is “no” (default), then the folders for user-defined feature types will only be created if at least one feature
is written with a feature type corresponding to the folder name. If the value is “yes”, then a <Folder> will be created
for each user-defined feature type, regardless of whether or not any features are written with that feature type. Note:
This option does not apply to feature type fannout.

Workbench Parameter: Create Empty Folders

FANOUT_TYPE

Required/Optional: Optional

If the value is “folder”, then a single level of folders will be created, where each folder’s namemaps to the value of the
fanout attribute. If the value is “subfolder”, then a two-level folder hierarchy will be created, where the top-level fol-
der’s name will be the same as the original feature type, and each sub-folder’s namemaps to the value of the fanout
attribute.

Workbench Parameter: Fanout Type

MOVE_TO_KML_LOCAL_COORDSYS

Specifies whether or not features with model geometry should be reprojected such that the model geometry is a local
coordinate system with meter units.

Required/Optional

Optional

Values

n yes (default): The input feature must have a valid coordinate system, and will be reprojected as necessary.

n no: The placement location of the model must be specified via format attributes, and the geometry will be written
to a COLLADA file as-is.

Note: Google Earth requires the geometry to use values with valid COLLADA units.

Workbench Parameter

Move To Local Coordinate System

WRITE_TEXTURES_TXT_FILE

Specifies whether or not a textures.txt file should be generated to map the texture references in the output COLLADA
files to their corresponding texture files.

Required/Optional

Optional

Values

n yes: A single textures.txt file will be generated for the whole dataset.

n no (default): Texture mapping will be performed by adding the required <ResourceMap> elements to the Place-
mark element’s Model geometry.

Note: The OGC KML 2.2 specification has deprecated use of the textures.txt file in favor of ResourceMap elements.

Workbench Parameter

Write texture list to textures.txt

DEF Line Parameters

The following DEF line parameters can be specified for user-defined features. They do not apply to writer-specific fea-
ture type names, such as “Placemark” or “Folder”.

DEF line parameters that affect Placemark styling correspond to a single <Style> element that will be created for each
feature type. All features with that feature type will have their <styleUrl> element set to refer to the feature type
<Style> element. Note: if a given feature already has a kml_style_url attribute, its value will take precedence.

Name Value

KML21_DOCUMENT_FILENAME The name of the file that will be used to store
all the features of the feature type.

KML21_SORT_BY_ATTRIBUTE The name of the attribute that will be used to
sort features within the folder that cor-
responds to the feature type. Only applies to
user-defined feature types. If unspecified, the
order of the features will be in the original
arrival order.

KML21_OPACITY Specifies the opacity of both the fill and pen
colors. Valid values are 0 to 1.

KML21_PEN_OPACITY Specifies the pen opacity. Valid values are 0
to 1.

KML21_FILL_OPACITY Specifies the fill opacity. Valid values are 0 to
1.

KML21_FILL_COLOR Specifies the fill color. Valid values are any
fme color specification.

KML21_PEN_COLOR Specifies the pen color. Valid values are any
fme color specification.

KML21_INFORMATION_POINT_ICON Specifies the information point icon to use for
each feature.

Name Value

KML21_ICON_COLOR Specifies the color for each information point
icon. Valid values are any fme color spec-
ification.

KML21_LABEL_COLOR Specifies the label color. Valid values are any
fme color specification.

In addition, the following defline parameters override the corresponding writer directives for the specified feature
type:

KML21_ATTR_IN_DESCRIPTION
KML21_HTML_DESCRIPTIONS
KML21_RASTER_MODE
KML21_RASTER_FORMAT
KML21_RASTER_COMPRESSION_LEVEL
KML21_INFORMATION_POINT_ICON
KML21_COPY_ICON

Writer Pipelines

Writer factory pipelines provides users with an opportunity to alter the KML writer's feature processing, and reduce
translation complexity. Pipelines are currently used to provide the KML writer's vector regionation and raster image
pyramiding functionality, but could also be used for other purposes.

To use the pipeline functionality first enable the pipeline, and then specify the pipeline file. If no pipeline file is spe-
cificied, a default pipeline file from $(FME_HOME)/plugins/kml21 will be used.

Pipeline files can be located in $(FME_HOME)/plugins/kml21 or $(FME_MF_DIR). In addition, a full path to the pipe-
line file can also be specified.

Vector (Placemark)

The vector pipeline processes features with vector geometry (typically Placemarks). The default pipeline, fmere-
gionator.fmi performs regionation.

Note: The default regionator pipeline requires Python.

Google Earth has difficulty opening and displaying large KML datasets that are contained in a single KML file. Region-
ation provides a mechanism for dividing vector data into many regions, each of which may contain sub-regions. Each
region is contained within a separate kml file; Region and NetworkLink elements are used to instruct Google Earth
when to load each set of vector data.

The basic idea behind regionation is that users should first be presented with the most important features, and as the
user zooms to lower altitudes, less important features are displayed. The regionation pipeline uses relative weights to
determine which features are displayed first.

The following format attributes are used to configure the regionation pipeline. See the sections below for further
explanation.

KML Format Attribute Notes

kml_region_weight A floating point value specifying the relative
weight of the feature. If not present, heu-
ristics will be applied to calculate a weight
for the feature.

KML Format Attribute Notes

kml_region_group The name of a group of features that will be
regionated together. By default, all features
will be regionated together.

kml_features_per_region The number of features to include in each
region. The default value is 16.

kml_minimum_lod The minimum lod for each region. The
default is 256.

Relative Weights

During the regionation process, all input features are sorted according to their weight. Features with the highest
weight are displayed first. It's important to understand the feature weight only determines relative display order; it
does not guarantee that an item will be displayed at a certain altitude.

A feature's weight can be specified using the kml_region_weight format attribute. If no weight is specified, the fol-
lowing heuristic will be used to create a weight for each feature.

Feature Geometry Weight Calculation

Point Constant value of 1.0

Line @Length()*1000

Area (and all others) @Area(1000)

Level Of Detail

Each region is defined as a quadrant. Google Earth decides whether or not each region is displayed by comparing the
number of pixels required to display the region in Google Earth to a particular minimum Level of Detail (LoD) spec-
ification. By default, the regionation pipeline uses a minimum LoD of 256, which can be overridden with the kml_mini-
mum_lod format attribute. It is important to note that the the maximum LoD is always set to -1, which means that the
region will always be turned on once the minimum LoD has been achieved.

Features per Quadrant

Each region can contain a certain number of features. When the region is activated, all features in the region are dis-
played. By default, each region contains at most 16 features, however this can be overridden using the kml_fea-
tures_per_region format attribute.

Region Groups

By default, all vector features written to the writer will be regionated together. By using the kml_region_group format
attribute, features can be assigned to groups for separated regionation.

Note: The regionation pipeline assumes that input features are sorted according to their individual region group.
When the pipeline encounters a feature with a groupname that differs from the current group name, the current
group will be completed, and regionation of a new group will begin.

Raster (GroundOverlay)

The raster pipeline processes features with raster geometry (typically GroundOverlays). The default pipeline, fme-
groundoverlaypyramider.fmi performs imagepyramidding.

Note: The default pipeline requires Python. An alternative pipeline, fmegroundoverlaypyramider_nopython.fmi, is
also available.

Each feature will have a kml_images_directory format attribute added prior to input to the pipeline. This format attrib-
ute contains the location of the dataset's images' directory.

Raster (PhotoOverlay)

The raster pipeline processes features with PhotoOverlay feature types. No default pipeline is provided.

Each feature will have a kml_images_directory format attribute added prior to input to the pipeline. This format attrib-
ute contains the location of the dataset's images' directory.

Watermarks

Watermarks are a simple shortcut for creating a ScreenOverlay in the lower left-hand corner of the Google Earth view
window.

Watermarks require the overlay icon (specified using the WATERMARK_ICON directive). An optional name & snippet,
which is displayed in the Google Earth tree) can also be provided. The WATERMARK_NAME and WATERMARK_SNIP-
PET directives are used to specify the name and snippet.

Atom Metadata

Atommetadata is used to provide data about the author, and point to a related website. This information is used by
Google for inclusion in GeoSearch results. To specify the author name & email, use the ATOM_AUTHOR_NAME and
ATOM_AUTHOR_EMAIL directives. The ATOM_LINK_HREF directive can be used to specify the url of the website that
will contain the KML file.

Style Management and Common Styles

The KML writer maintains a global 'registry' of style definitions. The style registry is used to simplify references to
style elements, as well as to enable routing of style elements to external files.

Common Styles

Common styles provide an FME-twist on providing styling for KML elements that allow arbitrary groups of FME fea-
tures to share the same KML <Style> element. The goal of this feature is two-fold:

l Make it trivially easy for arbitrary groups of features to share styling without having to manually create Style fea-
tures.

l Reduce the size of KML datasets by preventing the creation of inline Style elements.

This feature was primarily designed to support the KMLStyler transformer, but may have other applications.

To enable common styling, each feature in the group of features being styled must satisfy two conditions:

1. They must have a kml_common_style attribute that is unique for the group

2. They must have KML Style element attributes that define the styles for the group.

As each feature is added to its corresponding document, it is checked for the kml_common_style attribute. If the cor-
responding style does not exist yet, it is created from the feature's attributes, otherwise the feature's style attributes
are ignored. It is very important to note that this is a "first feature wins" scenario, and unless you can guarantee the
order in which the KML writer receives the features, you are better off ensuring that all features have the same style
information.

Unique Id Values

The style registry assumes that each style id is unique. Style ids are specified by the kml_id format attribute of fea-
tures with Style and StyleMap feature types. This includes Style elements created as a result of Common Style' ref-
erences; the resulting Style element has an id that is the same as the value of the kml_common_style format
attribute.

Style Element Location

By default, all style elements (Style and StyleMap) are written to the root document. The name of an alternative file
can be specified with the 'STYLE_DOC' writer directive.

In addition, each feature with Style or StyleMap feature type can use the kml_document format attribute to specify the
name of the document that will contain its associated Style or StyleMap element.

Targeting Styles

Previous versions of the KML writer required the use of the kml_style_url attribute to manually reference style ele-
ments. Use of kml_style_url is still supported, but use of the new kml_target_style format attribute is now rec-
ommended.

The value of the kml_target_style format attribute should be the id of a Style or StyleMap element that is also being
written. As the dataset is being written, the writer will resolve each target id into the required style url, irregardless
of what kml file the style element resides in.

Implicit StyleMaps

Implicit StyleMaps make it much easier to create StyleMaps. To create an implicit style map, simply set the values of
the kml_target_style_normal and kml_target_style_highlight format attributes to the ids of style elements for the nor-
mal and highlight states. The writer will take care of creating the required StyleMap element as needed.

Document Element Omission

Although the KML specification permits multiple child elements of the <kml> element, Google Earth, and many other
applications only support a single child element. The most common child element is <Document>, and the default
behavior of the KML writer is to create a <Document> element that contains the rest of the dataset's features.

The KML writer's default behavior is sufficient for most users, however there is occasionally a need for alternative
root-level elements. The KML writer supports requirement via the OMIT_DOCUMENT_ELEMENT directive. If set to
yes', the writer will skip writing the <Document> element, and write the child element of the document as the child of
the <kml> element.

Note: The Document can only have 1 root element, which can be a folder that can in turn contain other elements.

Raw Text

The kml_raw_text format attribute provides a mechanism for users to insert XML snippets directly into the KML doc-
ument. The value of that attribute will be inserted into the contents of the element that corresponds to the feature
being written. This allows users to use features of KML that are not otherwise supported by FME.

Note: It is the user's responsibility to ensure that the value of this attribute is valid XML. Failure to do so may lead to
unreadable KML data

Update Mode

The writer supports writing features to either parent <Document> element, or a <NetworkLinkControl> element that
itself contains <Update> elements. The writer also supports creating <AnimatedUpdate> elements that themselves
contain <Update> elements. Any feature that has a kml_update_mode attribute is designated a “Update” feature,
and will be routed to an <Update> element. If the kml_tour and kml_animated_update format attributes are spec-
ified, the update feature will be routed to the corresponding <Tour> and <AnimatedUpdate> objects, otherwise, the
update feature will be routed to a <NetworkLinkControl>.

Root <Document> Element

It is often desirable for a kml file to either contain a <NetworkLinkControl> element or a <Document> element, as
such, the writer will omit the root <Document> element unless it receives features that lack the specification of an
update mode.

Ancillary <NetworkLinkControl> Elements

Each <kml> element may contain zero or one <NetworkLinkControl> elements and zero or one <Document> ele-
ments. If a <Document> element and <NetworkLinkControl> element are both present, then the <Net-
workLinkControl> element can be used to either update the contents of a document other than it’s sibling
<Document>, or it can be used to change certain parameters of the calling <NetworkLink>, such as refresh time,
link name, or expiration.

Update Item Order

Geo browsers, such as Google Earth, process each child element of the <Update> element in sequential order. As a
result it is important to ensure that dependencies between individual update items are respected. For example, it is
important to ensure that the “Create” for a parent Folder is executed prior to the “Create” for a Placemark. The writer
sorts the contents of <Update> element in the following order:

1. Update items are grouped according to their update mode in the following order: Delete, Create, Change

2. Operations on parent nodes are executed prior to those on child nodes

3. Operations on containers are executed prior to those on non-containers.

4. By order of kml_id, where none of the above apply.

Mixing Update and Non-Update Features

The writer will accept groups of features where some of the features have an update mode specified, and some do
not. In this situation, the writer will create a <NetworkLinkControl> element, and a <Document> element. The inclu-
sion of a <Document> element will replace the result of the previous NetworkLink request, so it is important to
ensure that the update mode and targetHref are appropriately.

In instances where a folder hierarchy contains Folders and Child features with a mix of update and non-update fea-
tures, the entire hierarchy will be assumed to have an update mode of “create”, and will be added to the Net-
workLinkControl accordingly.

Target Href

The <targetHref> sub-element of the <Update> element specifies the url of the document to which the update
should be applied the url can either be a full url or a partial relative url. The url may specify kml documents other than
the url of the NetworkLink service, although the document must be from the same server, and must be the result of a
HTTP request. Specifcation of local files using a file:// will not work.

The writer supports the specification of targetHref either at the writer level via the TARGET_HREF directive, or the
kml_target_href format attribute at the feature level. Using a combination of the kml_document_name, and kml_tar-
get_href format attributes will permit the create of multiple KML documents, each of which contains it’s own <Net-
workLinkControl> and associated update features.

Note: The OGC KML 2.2 schema specifies that each <NetworkLinkControl> element can contain at most one
<Update> element. As such, each kml file can only update a single kml document.

Feature Representation

KML Dataset Structure

KML is a hierarchical data format that can span multiple data files.

A KML dataset can consist of:

l A single KML file

l A directory with multiple KML files

l A KMZ file, which is a compressed directory containing one or more KML files.

In addition to KML files, a KML dataset can also contain icon images, raster images, and model files. Each KML dataset
contains a single KML file that is considered the “root” document for the dataset.

Unless explicitly specified, FME will follow the KML specification, and use "doc.kml" as the filename for the dataset's
root.

KML files can reference other KML files via three mechanisms:

1. NetworkLink elements

2. schemaUrl elements

3. the schemaUrl attribute of SchemaData elements

File Structure

KML, like other XML-based formats, can be visualized as as a tree structure, where each node in the tree corresponds
to an XML element. The root element of a kml file is the <kml> xml element. The <kml> element can contain a <Net-
workLinkControl> element, and one other element that inherits from the kml <Feature> type; for practical purposes,
the KML writer creates a <Document> element to contain all sub-elements. The KML reader makes no assumptions
regarding the contents of the <kml> element.

The <Document> element is a container element that can, in turn contain the following sub-elements:

l <Folder>: Another container element that can contains the same sub-elements as a <Document>.

l <Placemark>: Displays a feature with either Vector or 3D geometry

l <GroundOverlay>: Displays (overlays) a feature with Raster geometry

l <ScreenOverlay>: Draws a image overlay that is fixed to a certain location in the viewspace.

l <PhotoOverlay>: Geographically locates a photograph on the earth

l <NetworkLink>: References a KML file or KMZ archive on a local or remote network.

l <gx:Tour>: Provides a guided tour of the dataset for the user.

In addition, the <Document> element can contain the following elements that provide important display and meta-
information

l <Style>: Defines an addressable style group that can be referenced by Stylemaps and Placemarks.

l <StyleMap>: Defines a mapping between two different styles.

l <Schema>: Defines a schema for embedding custom data within KML

<gx:Tour> elements can contain an arbitrary number of <TourPrimative> elements. These include:

l <gx:AnimatedUpdate>: Uses an <Update> element to create temporary changes to the dataset.

l <gx:FlyTo>: Changes the user’s view to focus on a certain area.

l <gx:SoundCue>: Plays a sound file.

l <gx:TourControl>: Changes tour’s play mode.

l <gx:Wait>: Adds an arbitrary time delay.

With the exception of <Schema> elements, FME maps a fixed schema to each of the aforementioned KML elements;
each of the element names map to a well-defined FME feature type. I.e. a feature with a Placemark feature type maps
to a <Placemark> kml element.

Identifying Elements

Reading and writing KML elements requires that each element is uniquely identified. This unique identity is used by
KML to cross-reference related elements. In addition FME uses the individual element ids to resolve/build a KML hier-
archy from FME features.

FME uses the kml_id format attribute to uniquely identify each feature that corresponds to a KML element. FME will
generate a unique id if one does not already exist.

If the feature has an update mode specified, but lacks a kml_id, a fatal error will occur.

Documents and Folders

KML has two container element types: <Folder> and <Document>, which in many ways are functionally equivalent.
For practical purposes, the KML writer assumes that each KML file has a single <Document> root element, which can-
not contain subsequent <Document> elements. Furthermore, the KML writer also assumes that each <Folder> ele-
ment cannot contain any <Document> elements.

Document Specification

The KML reader and writer are designed to simultaneously handle multiple KML files in the same translation. By
default, the KML writer assumes that each feature sent to the writer should be written to the root file/document. To

write a feature to an alternate document, the feature must have a kml_document attribute that contains the filename
of the destination file/document.

When the KML reader reads a feature from a KML file other than the root file, it will add a kml_document attribute to
the feature specifying the source documents filename. In addition, because it is possible for the reader to read two
files with the same file name, but different file paths, the KML reader will also add the kml_document_path, and kml_
document_href to assist in uniquely identifying the source document for each feature.

Folder Specification

Each feature that is written to the KML writer can also use the kml_parent format attribute to identify the <Folder> ele-
ment that should contain the feature. The value of the kml_parent format attribute should be the same as the id of the
Folder. The KML reader will also add kml_parent attributes as necessary. Note: if kml_parent is not specified, it is
assumed that the container for a given feature is the <Document> element.

The kml_document and kml_parent format attributes are designed to be used in conjunction with each other. I.e. to
add a Placemark feature to the folder "A" in document "other.kml", the feature needs to have the following attribute
values: kml_document="other.kml" and kml_parent="A".

Document and Folder Creation

When Documents and Folders are referenced by the kml_document, and kml_parent format attributes, the KML
writer will implicitly create the appropriate Document and Folder elements to contain the referencing features. Implic-
itly creating those elements ensures that the writer can properly maintain the dataset hierarchy.

The implicitly created Document and Folder elements can be overridden using features that have Document and
Folder feature types. The documents should be uniquely identified using the kml_document format attribute, and the
folders should be uniquely identified using the kml_id attribute. The kml_document and kml_id values should cor-
respond to the values of the kml_document and kml_parent attributes on the referencing feature.

The root document/file is a special case. To override the <Document> element created for the root file, use a Doc-
ument feature that does not have a kml_document attribute specified; the root document will be assumed.

Element Order

The KML writer uses the following criteria to determine the order of the contents of a KML Folder or Document:

1. If the container has a "sort-by" attribute name specified via the kml_sort_by_attribute format attribute, the
value of that attribute on each feature will be used to sort the contents of the container in ascending alpha-
numeric order. The "sort-by" attribute can also be specified using the KML21_SORT_BY_ATTRIBUTE defline
parameter for features with user-defined schema

2. Individual features can over-ride the value of any "sort-by" attribute with the kml_sort_value format attribute;
the value of which will be used for determining the sort order.

3. If neither of the above criteria is met, then the arrival order of each feature is used to determine the order of
the feature in the container. This makes it possible to sort the features prior to being written to the KML
writer.

Tours

Each kml file can contain multiple <Tour> elements. As a sub-type of the abstract <Feature> type, either <Doc-
ument> or <Folder> elements can contain one or more <Tour> elements. As such, the kml_document and kml_par-
ent format attributes can be used to determine the location of each <Tour> element in the overall hierarchy.

Tour Primitives

Tour primitives (<AnimatedUpdate>,<FlyTo>,<SoundCue>,<TourControl>, and <Wait>) are routed to specific
tours via the kml_document, and kml_tour format attributes.

This is very similar to the relationship between Folders and their children.

Update Items

Update items are features that are part of the <Update> element of a specific <AnimatedUpdate>.

A feature is designated as an update item via the kml_update_mode format attribute. To route an update item to a spe-
cific <AnimatedUpdate>, the kml_tour, and kml_animated_update attributes must be present and contain the ID’s of

the corresponding <Tour> and <AnimatedUpdate> elements. The kml_document format attribute can also be spec-
ified.

Tour Generation

The KML writer supports automatically generating KML Tours from input Placemark features.

Tour generation is controlled via kml_tour_stop_* format attributes that are specific to Placemark features. The tour
consists of tour stops that correspond to each feature. The location of the tour stop corresponds to the center point of
the input feature.

In the case of features with line geometry, a series of tour stops will be generated, where each vertex in the line
becomes a tour stop.

Extended Data

KML 2.2 provides the option to store attribute data in individual placemarks using either <Data> or <SchemaData>
elements. For background, please read: http://code.google.com/apis/km-
l/documentation/extendeddata.html.

The key distinction between Data, and SchemaData is that SchemaData elements are associated with formal schema
definitions in <Schema> elements.

The following element attributes are used by the KML reader and writer to read/write KML 2.2 extended data.

The KML reader and writer use a set of kml_data and kml_schema_data structured list attributes to read/write
extended data.

KML Element Attribute KML Element

kml_data{}.name name attribute of <Data>

kml_data{}.value <Data><value>

kml_data{}.display_name <Data><displayName>
Optional.
Note: xml entities will be encoded on writ-
ing.

kml_data{}.display_name_raw_text <Data><displayName>
Optional.
Note: display_name values will written as
raw text, i.e., xml entities will not be
encoded. CDATA blocks should be added as
necessary.

kml_schema_url schemaUrl attribute of <SchemaData>

kml_schema_data{}.name name attribute of <SimpleData>

kml_schema_data{}.value Value of <SimpleData>

Reader

The KML reader will always create the kml_data and kml_schema_data structured list attributes if the corresponding
KML elements are found, irregardless of whether or not the user-defined schema is used.

http://code.google.com/apis/kml/documentation/extendeddata.html
http://code.google.com/apis/kml/documentation/extendeddata.html
http://code.google.com/apis/kml/documentation/extendeddata.html

Writer

If the feature does not have an associated user-defined feature type, i.e. it is using the fixed schema, then the kml_
data and kml_schema_data structured list attributes can be used to write the feature's extended data.

Notes:
The KML writer does not support manually writing <Schema> elements. If <SchemaData> elements are manually
created, the kml_schema_url attribute should be used to specify an external schema definition.

If the feature has an update mode specified, the extended data will not be written.

User Defined Schema

In addition to the fixed schema, and explicit definition of extended data, the KML reader and writer also provide auto-
matic support for user-defined schema.

Reader

The KML reader supports reading KML datasets that use KML 2.0, 2.1, or 2.2 schema declarations.

Upon opening a KML dataset, the KML reader will attempt to scan the dataset's schema by reading all the Schema ele-
ments in the file, and traversing all schemaUrl and NetworkLink references in the file. The default schema scanning
behavior can be disabled with the SCAN_SCHEMA reader directive.

If Schema declarations are found, the associated Placemark elements will be read as user-defined feature types with
the associated set of user-defined attributes. In addition to the user-defined attributes, the kml_data and kml_
schema_data structured list attributes will be created as necessary.

Writer

The KML writer only supports writing KML 2.2 schema elements. Older style schema formats have been deprecated,
and are not well supported by applications other than Google Earth.

The KML writer creates the appropriate <Schema> elements for each user-defined featuretype; each feature is
written as either a Placemark or GroundOverlay depending on the feature's geometry type. This behavior can be dis-
abled using the OUTPUT_SCHEMA writer directive.

When writing large, multi-file datasets, it is useful to be able to store the schema data in an external file. The KML
writer allows the filename of an external schema file to be specified using the SCHEMA_DOC directive.

Note: the value must be a filename including the "kml" extension, and will be overwritten during the translation.
The schemaUrl attributes of each <SchemaData> element will be adjusted to point to the external file.

Layers and Feature Type Fanout

The KML writer uses KML Folder elements to create a quasi-layer for each user-defined feature type. The name of the
folder will correspond to the name of feature type. If Feature Type Fanout is enabled, either a one or two level folder
hierarchy will be created, depending on the value of the FANOUT_TYPE directive.

Feature Attributes

The KML Reader and Writer support the following classes of attributes:

l FME Attributes: Attributes used by the FME core

l KML Element Attributes: Attributes that directly correspond to the value of a KML element.

l KML Format Attributes: Attributes that affect how the KML writer behaves, and/or kml elements that are
written.

l User Defined Schema: Attributes that correspond to the feature’s user-defined schema.

Geometry

Vector

The KML reader and writer provide full support for all KML vector geometry types. Vector features are read/written as
<Placemark> elements.

Raster

KML supports raster images via three types of overlay elements:

l <GroundOverlay>

l <ScreenOverlay>

l <PhotoOverlay>

Reader

The KML reader can read overlays as either null or raster geometry. If the raster is read as null geometry, the location
of the image tile is available in the kml_icon_href attribute.

By default, <GroundOverlay> elements are read with raster geometry, and the other overlay types are read as null
geometry. In addition, the KML reader will use the <GroundOverlay> element's <LatLonBox> values to georeference
the image.

Writer

Features with either null or raster geometry can be used for writing any of the supported overlay elements. If no
raster geometry is provided, it is important to ensure that the feature has the appropriate format or element attrib-
utes specifying the location of the image file.

3D

Reader

Full support for 3D models is provided. Any placemark with a <Model> geometry will result in a feature with a 3D
geometry corresponding to the contents of the referenced COLLADA file.

Writer

Full support for 3D models is provided. If the feature has one or more 3D geometry components, the feature’s entire
geometry will be written to a COLLADA file.

<Model> elements can also be written by placing a set of geometry traits on a Placemark feature with Null geometry.

Fixed Schema

The KML reader and writer support a fixed schema where each of the following FME feature types maps directly to a
corresponding KML element with the same name. The fixed schema types can be arranged in three groups, according
to their parent kml type:

l <Feature> Sub-Types

l Document

l Folder

l Placemark

l GroundOverlay

l ScreenOverlay

l PhotoOverlay

l NetworkLink

l Tour

l <StyleSelector> Sub-Types:

l Style

l StyleMap

l <TourPrimative> Sub-Types:

l AnimatedUpdate

l FlyTo

l SoundCue

l TourControl

l Wait

Common Element Attributes

The following KML element attributes are common to all of the fixed schema feature types that map to kml types that
are sub-types of <Feature>.

KML Element Attribute KML Element

kml_id @id, i.e. the elements id attribute.

kml_name <name>

kml_visibility <visibility>

kml_open <open>

kml_address <address>

kml_phone_number <phoneNumber>

kml_snippet <Snippet>

kml_snippet_raw_text <Snippet>
Element value written without xml
entity encoding.

kml_description <description>

kml_description_text <description>
Completely overrides any text pro-
vided by FME.

kml_description_raw_text <description>
Element value written without xml
entity encoding.

kml_style_url <styleUrl>

kml_atom_author_name <atom:author>

kml_atom_author_email <atom:email>

kml_atom_link_href <atom:link href-"@">

kml_atom_link_rel <atom:link rel="@">

KML Element Attribute KML Element

kml_gx_balloon_visibility <gx:balloonVisibility>

Camera

Defines a "six degrees of freedom" virtual camera for viewing the feature. New in KML 2.2, and can be used in place
of LookAt.

The following attributes are required for creating a Camera: kml_camera_longitude, kml_camera_latitude, and kml_
camera_altitude.

KML Element Attribute KML Element

kml_camera_longitude <Camera><longitude>

kml_camera_latitude <Camera><latitude>

kml_camera_heading <Camera><heading>

kml_camera_altitude <Camera><altitude>

kml_camera_tilt <Camera><tilt>

kml_camera_roll <Camera><roll>

kml_camera_altitude_mode <Camera><altitudeMode>

kml_gx_camera_altitude_mode <Camera><gx:altitudeMode>

LookAt

Defines a simpler virtual camera for viewing the feature.

The following attributes are required for creating a LookAt: kml_lookat_longitude, kml_lookat_atitude, and kml_
lookat_altitude.

KML Element Attribute KML Element

kml_lookat_heading <LookAt><heading>

kml_lookat_tilt <LookAt><tilt>

kml_lookat_altitude <LookAt><altitude>

kml_lookat_range <LookAt><range>

kml_lookat_latitude <LookAt><latitude>

kml_lookat_longitude <LookAt><longitude>

kml_lookat_altitude_mode <LookAt><altitudeMode>

kml_gx_lookat_altitude_mode <LookAt><gx:altitudeMode>

TimeStamp/TimeSpan

Describes either a moment in time (TimeStamp), or a period of time (TimeStamp). Either a TimeStamp or a TimeSpan
may be specified, but not both. The values can be in either the XML Schema time format

(http://www.w3.org/TR/xmlschema-2/#isoformats), or the FME DateTime format (http://www.f-
mepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME).

KML Element Attribute KML Element

kml_timespan_begin <TimeSpan><begin>

kml_timespan_end <TimeSpan><end>

kml_timestamp_when <TimeStamp><when>

kml_gx_timespan_begin <gx:TimeSpan><begin>

kml_gx_timespan_end <gx:TimeSpan><end>

kml_gx_timestamp_when <gx:TimeStamp><when>

Region

<Region> elements can be added to any feature, and describe an area of interest defined by a bounding box, and
either a altitude or a specified Level of Detail (LoD) extent. Regions are either active or inactive depending on whether
or not their constraints are met. If active, the associated feature is displayed within Google Earth.

KML Element Attribute KML Element

kml_latlonaltbox_altitude_mode <LatLonAltBox><altitudeMode>

kml_gx_latlonaltbox_altitude_mode <LatLonAltBox><gx:altitudeMode>

kml_latlonaltbox_min_altitude <LatLonAltBox><minAltitude>

kml_latlonaltbox_max_altitude <LatLonAltBox><maxAltitude>

kml_latlonaltbox_north <LatLonAltBox><north>

kml_latlonaltbox_south <LatLonAltBox><south>

kml_latlonaltbox_east <LatLonAltBox><east>

kml_latlonaltbox_west <LatLonAltBox><west>

kml_lod_min_lod_pixels <Lod><minLodPixels>

kml_lod_max_lod_pixels <Lod><maxLodPixels>

kml_lod_min_fade_extent <Lod><minFadeExtent>

kml_lod_max_fade_extent <Lod><maxFadeExtent>

Common Format Attributes

The following KML format attributes are common to most of the fixed schema feature types.

KML Format Attribute Notes

kml_id A unique string value that will be used
by other elements/features to refer to
this one.

http://www.w3.org/TR/xmlschema-2#isoformats
http://www.w3.org/TR/xmlschema-2#isoformats
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME
http://www.fmepedia.com/index.php/What_is_the_standard_format_for_dates_in_FME

KML Format Attribute Notes

kml_parent The id of the parent Folder element.
Does not apply to Document elements.

kml_document The name of the document to which this
feature belongs. For Document features,
this specifies the filename of the kml file
for the document.

kml_tour The id of the Tour to which the node
belongs.

kml_animated_update The id of the AnimatedUpdate element
to which the node belongs.

kml_document_filename See kml_document.

kml_attr_in_description Overrides ATTR_IN_DESCRIPTION set-
ting for the feature.

kml_html_descriptions Overrides HTML_DESCRIPTIONS setting
for the feature. If enabled, a CDATA
wrapper will be added to the description,
snippet, and balloon text elements.

kml_detect_rasters Overrides DETECT_RASTERS setting for
the feature.

kml_raster_mode Overrides RASTER_MODE setting for the
feature.

kml_raster_compression_level Overrides RASTER_COMPRESSION_
LEVEL setting for the feature.

kml_icon Overrides INFORMATION_POINT_ICON
setting for the feature.

kml_copy_icon Overrides COPY_ICON setting for the fea-
ture.

kml_sort_value Specifes the value to use for ordering
the feature within the parent container.

kml_document_href The href from which the parent doc-
ument was retrieved.

kml_document_path The local path to the parent document.
This path may be in a temporary loca-
tion, and may become invalid upon the
completion of the translation. By default
all temporary files are removed when
the reader closes.

KML Format Attribute Notes

kml_raw_text Raw XML text that can be added to con-
tents of the feature's element.

kml_update_mode Specifies the update mode for the fea-
ture. Values can be “create”, “change”,
or “delete”.

kml_target_href Overides the TARGET_HREF setting.

Writer Notes

Creation of the <name> element

In most cases, the kml_name attribute is used to specify the name of the <Feature>. If the kml_name attribute is not
present, the fme_text_string attribute, or the feature’s id will be used.

Creation of the <description> element

There are several writer operations that affect how the description field is constructed.

If the FME attribute kml_description_text is present, its value will be used for the description field. I.e. no further
processing will take place.

If the FME attribute kml_description is present, its value will be inserted into the description field.

If the “ATTR_IN_DESCRIPTION” preference is enabled, a table of the features user-defined attributes will be added to
the description field.

To add raw HTML to the description, use the kml_description_raw_text format attribute.

If the “HTML_DESCRIPTIONS” preference is enabled, the entire description field will be wrapped in a CDATA block
that facilitates the inclusion of HTML in a XML document.

Reader Notes

None.

NetworkLinkControl

KML Element Attribute

kml_min_refresh_period <minRefreshPeriod>

kml_max_session_length <maxSessionLength>

kml_cookie <cookie>

kml_message <message>

kml_link_name <linkName>

kml_link_description <linkDescription>

kml_link_snippet <linkSnippet>

kml_link_snippet_max_lines @maxLines of <linkSnippet>

kml_expires <expires>

Overview

<NetworkLinkControl> elements are used to control the behavior of files fetched by a <NetworkLink>. The <Net-
workLinkControl> can change the behavior of the <NetworkLink>, update the contents of kml files downloaded prior,
or both.

Writer Notes

None.

Reader Notes

None.

Document

KML Format Attribute Notes

kml_document The name of the document. This
value will also be used for the doc-
ument’s file name; “.kml” will be
appended if necessary.

Overview

A <Document> element is the root-level container element of a KML dataset that extends the abstract <Feature> ele-
ment.

Note: The kml_id attribute does not set the filename of the kml file that contains the document; kml_id is only used
to set the id attribute of the <Document> element.

Writer Notes

None.

Reader Notes

None.

Folder

KML Format Attribute Notes

kml_sort_by_attribute Specifies the name of the attribute
whose value will be used to sort the
contents of the folder. Has the same
behavior as the KML21_SORT_BY_
ATTRIBUTE defline parameter.
The sort order can be overridden or
augmented using the kml_sort_value
format attribue on individual features.

Overview

A <Folder> element can contain any other abstract <Feature> element, including <Folder> elements, but excluding
<Document> elements.

Writer Operations

None.

Reader Operations

None.

Placemark

KML Format Attribute Remarks

kml_common_style A unique string that identifies the com-
mon style. See Writer Operations for
more information.

kml_icon Either a name of an icon, or a path to an
icon. This value is overridden by the
value of the kml_icon_href attribute.

kml_create_info_point Forces the creating of an aggregate con-
taing the original feature geometry, and
a point. Used for creating Placemarks
that are clickable, but styled using an
external <Style> element.

kml_target_style Contains the id of an associated style ele-
ment. Will be used to generate the appro-
priate <styleUrl> element.

kml_target_style_normal Contains the ID of an associated style
element that should be active when the
placemark is not active. If specified,
kml_target_style_highlight must also be
specified.
Will result in the creation of the appro-
priate <StyleMap> element.

kml_target_style_highlight Contains the ID of an associated style
element that should be active when the
placemark is highlighted on mouse-over.
If specified, kml_target_style_normal
must also be specified.
Will result in the creation of the appro-
priate <StyleMap> element.

kml_tour_stop_tour_name The name of the tour for which a tour stop cor-
responding to this placemark should be generated.

kml_tour_stop_tour_duration The total duration for the tour of which the tour
stop corresponding to this placemark is a com-
ponent.

kml_tour_stop_flyto_mode The flyto mode to be used by FlyTo component of
the tour stop associated with this Placemark.

kml_tour_stop_display_balloon Whether or not to display the Placemark’s balloon
when the tour reaches the Placemarks tour stop.

Valid values are yes, and no.

kml_tour_stop_delay_type The type of delay for the tour stop corresponding
to this Placemark.

KML Format Attribute Remarks

Valid values are none, wait, and pause.

kml_tour_stop_delay_duration The duration of the tour stop’s delay if the delay
type is wait.

kml_tour_stop_view_perspective The perspective from which the tour stop (and
Placemark) should be observed.

If the value is First Person, the view will be from
the precise coordinates of the tour stop location.

If the value is Third Person, the view will be from a
point orbiting the tour stop location.

kml_tour_stop_view_range The distance, in meters, from the tour stop’s view
point to the tour stop location in the Third Person
perspective.

If the value is <calculate>, the range value will be
calculated such that view show the tour stop, as
well as a portion of the remaining tour. The cal-
culated range is constant for every tour stop.

kml_tour_stop_view_heading The direction (azimuth) of the tour stop’s view, in
degrees, relative to north. If the value is <cal-
culate>, the heading value will be calculated such
the heading for the current stop is in the direction
of the next stop.

kml_tour_stop_view_tilt The rotation, in degrees, of the tour stop’s view
around the X axis. A value of 0 indicates that the
view is aimed straight down, and a value of 90 indi-
cates that the view is aimed toward the horizon.

Values greater than 90 only apply if the view per-
spective is First Person, and indicate that the view
is pointed up into the sky. If the value is <cal-
culate>, the tilt value will be calculated such the
tilt for the current stop is in the direction of the
next stop.

Overview

Placemark elements contain the vector geometry that is displayed within Google Earth.

Geometry

Placemark elements contain an element that extends the <Geometry> element. The <Geometry> element is either a
vector geometry or a 3D model. FME does not currently support reading 3D models via <Model> elements. <Model>
elements can be written by adding a set of geometry traits to any Null geometry.

KML requires all vector geometry to use the LL84 coordinate system, and to have three dimensions. The KML writer
will reproject input feature geometry to ensure that this constraint is fulfilled. Note: An error will occur if the KML
Writer encounters a feature with no specified coordinate system.

Geometry Mapping

The KML writer only supports “classic” FME geometry. Features with “enhanced” geometry will be converted to clas-
sic geometry prior to output. The following table shows how classic FME Geometry Types are mapped to their cor-
responding KML Geometry elements.

FME Geometry Type KML Geometry Element Remarks

fme_point <Point>

fme_line <LineString>

fme_polygon <Polygon>

fme_donut <Polygon> Holes must have polygon
geometry

fme_aggregate <MultiGeometry>

fme_arc <LineString> FME will stroke the arc.

fme_ellipse <Polygon> FME will stroke the ellipse.

Geometry Attributes

The following FME Attributes can be used to add sub-elements to <Geometry> elements.

Attribute Element

kml_extrude <extrude>

kml_tessellate <tessellate>

kml_altitude_mode <altitudeMode>

kml_gx_altitude_mode <gx:altitudeMode>

Note: The KML reader will create geometry traits for the above attributes. The KMLwriter supports specifying the
above attibutes using either format attributes or geometry traits.

Model Geometry Traits

A <Model> element will be created for each FME Null geometry that contains the following geometry traits.

Trait Child Elements of Model

kml_location_altitude <Location><altitude>

kml_location_latitude <Location><latitude>

kml_location_longitude <Location><longitude>

kml_orientation_heading <Orientation><heading>

kml_orientation_roll <Orientation><roll>

kml_orientation_tilt <Orientation><tilt>

kml_scale_x <Scale><x>

kml_scale_y <Scale><y>

kml_scale_z <Scale><z>

kml_link_href <Link><href>

kml_link_refresh_mode <Link><refreshMode>

kml_link_refresh_interval <Link><refreshInterval>

Trait Child Elements of Model

kml_link_view_refresh_mode <Link><viewRefreshMode>

kml_link_view_refresh_time <Link><viewRefreshTime>

kml_link_view_bound_scale <Link><viewBoundScale>

kml_link_view_format <Link><viewFormat>

kml_link_view_http_query <Link><httpQuery>

Each <Model> element’s <ResourceMap> element contains a series of <Alias> elements that remap the location of
texture files for the model. Each <Alias> element contains a <targetHref>, and a <sourceHref> element.

Two delimited-value geometry traits are used to provide the list of target & source hrefs: kml_resourcemap_sources,
and kml_resourcemap_targets. By default, comma-separated href lists are expected. The writer iterates over the
source and target href lists in parallel to create the <sourceHref> and <targetHref> element pairs for each <Alias>
element.

Writer Notes

Z Values

The KML specification requires all coordinate data to be 3D. Any input 2D features will be forced to 3D with a z-axis
value of 0.0.

Note: All Z values are interpreted in meters, so you may need to manually convert between feet and meters.

Orientation

By default, no changes are made to the orientation of each feature's geometry. The ORIENTATION writer directive can
be used to orient the geometry with either the right hand rule or the left hand rule. The orientation of the geometry
will affect the appearance of extruded features.

Coordinate System Reprojection

The KML specification requires all coordinate data to use the LL84 coordinate system. All features will be reprojected
to LL84 prior to output; if the writer encounters a feature that is not tagged with a coordinate system, the translation
will terminate.

Styling

The writer supports the creation of "inline" styles. I.e. <Style> elements that are contained by the <Placemark> ele-
ment. To add an inline style to a element, merely add any of the KML Element attributes for the Style element.

Information Point Icons

Information Point Icons are a mechanism that allows polygons to be "clickable" within the Google Earth interface. By
default, polygons displayed in Google Earth are only selectable via the left-hand navigation tree. If, however, the poly-
gon is part of an aggregate that in turn contains a point geometry element, Google Earth will display an icon that the
user can select to pop up the description bubble.

The KML writer will create an information point icon if the feature has an icon specified. This can be done one of two
ways:

l The icon name or path can be specified as a defline parameter (Feature Type Properties in Workbench)

l The icon name or path can be specifed using the kml_icon attribute.

The KML writer supports two types of icons:

l Any icon that can be referenced via a path

l Well-known icons that reside in $(FME_HOME)/icons. These icons can be referenced by name only. E.g. A1

Reader Notes

None.

ScreenOverlay

KML Element Attribute KML Element

kml_overlay_color <color>

kml_draw_order <drawOrder>

kml_screenoverlay_rotation <rotation>

Icon

Defines an image that is associated with the overlay. The kml_icon_href element attribute is used to explicitly specify
the final location of the icon image file. As an alternative, the kml_icon format attribute can be used to specify the
name or path of an icon that will copied to the images folder of the KML dataset.

Note: If kml_icon_href is present on the feature, the value of kml_icon will be ignored.

KML Element Attribute

kml_icon_href <Icon><href>

kml_icon_refresh_mode <Icon><refreshMode>

kml_icon_refresh_interval <Icon><refreshInterval>

kml_icon_view_refresh_mode <Icon><viewRefreshMode>

kml_icon_view_bound_scale <Icon><viewBoundScale>

kml_icon_view_format <Icon><viewFormat>

kml_icon_http_query <Icon><httpQuery>

overlayXY

Specifies a point on (or outside of) the overlay image that is mapped to the screen coordinate (screenXY).

FME Attribute overlayXY Attribute

kml_overlayxy_x x

kml_overlayxy_y y

kml_overlayxy_xunits xunits

kml_overlayxy_yunitss yunits

screenXY

Specifies a point relative to the screen origin that the overlay image is mapped to.

FME Attribute screenXY Attribute

kml_screenxy_x x

kml_screenxy_y y

kml_screenxy_xunits xunits

kml_screenxy_yunits yunits

rotationXY

Specifies a point relative to the screen about which the screen overlay is rotated.

FME Attribute rotationXY Attribute

kml_rotationxy_x x

kml_rotationxy_y y

kml_rotationxy_xunits xunits

kml_rotationxy_yunits yunits

size

Specifies the size of the image for the screen overlay.

FME Attribute size Attribute

kml_size_x x

kml_size_y y

kml_size_xunits xunits

kml_size_yunits yunits

Writer Notes

None.

Reader Notes

None.

GroundOverlay

KML Element Attribute KML Element

kml_overlay_color <color>

kml_draw_order <drawOrder>

kml_altitude <altitude>

kml_altitude_mode <altitudeMode>

kml_gx_altitude_mode <gx:altitudeMode>

KML Format Attribute Remarks

kml_raster_compression_level An integer from 1 to 100, indi-
cating the desired compression
level.

kml_raster_format The type of writer to use to write
the raster. Either “tiff” or “jpeg”.
“jpeg” is the default.

FME Attribute Remarks

fme_basename The basename of the raster tile to
write.

LatLonBox

Specifies where the top, bottom, right, and left sides of a bounding box for the ground overlay are aligned. Not
required for writing rasters that are appropriately georeferenced.

KML Element Attribute KML Element

kml_latlonbox_north <LatLonBox><north>

kml_latlonbox_south <LatLonBox><south>

kml_latlonbox_west <LatLonBox><west>

kml_latlonbox_east <LatLonBox><east>

kml_latlonbox_rotation <LatLonBox><rotation>

Icon

Defines an image that is associated with the overlay. The kml_icon_href element attribute is used to explicitly specify
the final location of the icon image file. As an alternative, the kml_icon format attribute can be used to specify the
name or path of an icon that will copied to the images folder of the KML dataset.

Note: If kml_icon_href is present on the feature, the value of kml_icon will be ignored.

Attribute Element

kml_icon_href <Icon><href>

kml_icon_refresh_mode <Icon><refreshMode>

kml_icon_refresh_interval <Icon><refreshInterval>

kml_icon_view_refresh_mode <Icon><viewRefreshMode>

kml_icon_view_bound_scale <Icon><viewBoundScale>

kml_icon_view_format <Icon><viewFormat>

kml_icon_http_query <Icon><httpQuery>

Overview

A <GroundOverlay> element must contain a <LatLonBox> element that defines the bounding box of the overlay. If
the ground overlay feature has a raster geometry, these FME attributes will be automatically populated using the fea-
ture’s bounding box.

Writer Notes

There are two separate and distinct methods to create elements:

Has Raster Geometry Remarks

No If the feature has no geometry,
and has the Icon and LatLonBox

Has Raster Geometry Remarks

element attributes specified, the
writer will directly write the
<GroundOverlay> element with-
out performing any further oper-
ations.

Yes The writer can handle the raster
geometry be either directly writing
the raster geometry using either
the GEOTIFF or JPEG writers, or
the writer can merely copy or ref-
erence the original raster source
file. Directly writing the raster
geometry is preferable, and is the
default behaviour.

Notes

If the “copy” or “reference” modes are used, it is very important to ensure that the associated raster tile has a JPEG or
TIFF format, and uses a LL84 coordinate system.

If the (default) “write” mode is used, the feature will be reprojected to the LL84 coordinate system using a raster
reprojection, and then written using a FME raster writer.

The KML writer does not attempt to pre-process raster tiles so that they are suitable for writing to the selected output
format. It may be necessary to manipulate the raster’s bands or palettes prior to writing.

Reader Notes

None.

PhotoOverlay

KML Element Attribute KML Element

kml_overlay_color <color>

kml_draw_order <drawOrder>

kml_photooverlay_rotation <rotation>

Icon

Defines an image that is associated with the overlay. The kml_icon_href element attribute is used to explicitly specify
the final location of the icon image file. As an alternative, the kml_icon format attribute can be used to specify the
name or path of an icon that will copied to the images folder of the KML dataset. Note: if kml_icon_href is present on
the feature, the value of kml_icon will be ignored.

KML Element Attribute Element

kml_icon_href <Icon><href>

kml_icon_refresh_mode <Icon><refreshMode>

kml_icon_refresh_interval <Icon><refreshInterval>

KML Element Attribute Element

kml_icon_view_refresh_mode <Icon><viewRefreshMode>

kml_icon_view_bound_scale <Icon><viewBoundScale>

kml_icon_view_format <Icon><viewFormat>

kml_icon_http_query <Icon><httpQuery>

ViewVolume

Defines how much of the current scene is visible.

KML Element Attribute Element

kml_viewvolume_leftfov <ViewVolume><leftFov>

kml_viewvolume_rightfov <ViewVolume><rightFov>

kml_viewvolume_bottomfov <ViewVolume><bottomFov>

kml_viewvolume_topfov <ViewVolume><topFov>

kml_viewvolume_near <ViewVolume><near>

ImagePyramid

The image pyramid corresponding to a large original image.

KML Element Attribute Element

kml_imagepyramid_tilesize <ImagePyramid><tileSize>

kml_imagepyramid_maxwidth <ImagePyramid><maxWidth>

kml_imagepyramid_minwidth <ImagePyramid><minWidth>

kml_imagepyramid_gridorigin <ImagePyramid><gridOrigin>

KML Format Attribute Remarks

kml_raster_compression_level An integer from 1 to 100, indicating the
desired compression level.

Overview

The <PhotoOverlay> element allows you to geographically locate a photograph on the Earth and to specify its viewing
parameters.

Writer Notes

None.

Reader Notes

None.

NetworkLink

KML Element Attribute KML Element

kml_refresh_visibility <refreshVisibility>

kml_fly_to_view <flyToView>

Link

Specifies the location and loading parameters of an external resource.

KML Element Attribute KML Element

kml_link_href <Link><href>

kml_link_refresh_mode <Link><refreshMode>

kml_link_refresh_interval <Link><refreshInterval>

kml_link_view_refresh_mode <Link><viewRefreshMode>

kml_link_view_refresh_time <Link><viewRefreshTime>

kml_link_view_bound_scale <Link><viewBoundScale>

kml_link_view_format <Link><viewFormat>

kml_link_http_query <Link><httpQuery>

Writer Operations

None.

Reader Operations

None.

Style

FME Attribute Value Remarks

fme_color An FME color spec-
ification.

Will be converted to a kml_line-
style_color attribute

fme_fill_color An FME color specification Will be converted to a kml_poly-
style_color attribute

fme_pen_opacity A float from 0.0 to 1.0 Will be converted to a kml_line-
style_color attribute, if there is a
corresponding fme_color attribute

fme_fill_opacity A float from 0.0 to 1.0 Will be converted to a kml_poly-
style_color attribute, if there is a
corresponding fme_fill_color attrib-
ute

LabelStyle

Specifies how the <name> element if a feature is drawn in the 3D viewer.

KML Element Attribute KML Element

kml_labelstyle_color <LabelStyle><color>

kml_labelstyle_color_mode <LabelStyle><colorMode>

kml_labelstyle_scale <LabelStyle><scale>

KML Format Attribute Remarks

kml_label_color Specifies the label color using the fme color
spec. Used to generate the RGB portion of
the kml_labelstyle_color attribute.

kml_label _opacity Specifies the label opacity using a float with
a value from 0 to 1.0. Used to generate the
Alpha portion of the kml_labelstyle_color
attribute.

LineStyle

Specifies the drawing style for all line geometry, including polygon outlines.

KML Element Attribute KML Element

kml_linestyle_color <LineStyle><color>

kml_linestyle_color_mode <LineStyle><colorMode>

kml_linestyle_width <LineStyle><width>

FME Attribute Remarks

fme_color Specifies the line colour using the fme color
spec. Used to generate the RGB portion of
the kml_linestyle_color attribute.

fme_pen_opacity Specifies the line opacity using a float with a
value from 0 to 1.0. Used to generate the
Alpha portion of the kml_linestyle_color
attribute.

PolyStyle

Specifies the drawing style for all polygons, included line extrusions.

KML Element Attribute KML Element

kml_polystyle_color <PolyStyle><color>

kml_polystyle_color_mode <PolyStyle><colorMode>

kml_polystyle_fill <PolyStyle><fill>

kml_polystyle_outline <PolyStyle><outline>

FME Attribute Remarks

fme_fill_color Specifies the fill colour using the fme color
spec. Used to generate the RGB portion of
the kml_polystyle_color attribute.

fme_fill_opacity Specifies the fill opacity using a float with a
value from 0 to 1.0. Used to generate the
Alpha portion of the kml_polystyle_color
attribute.

BalloonStyle

Specifies how the description balloon for placemarks is drawn.

KML Element Attribute KML Element

kml_balloonstyle_bgcolor <BalloonStyle><bgColor>

kml_balloonstyle_text_color <BalloonStyle><textColor>

kml_balloonstyle_text <BalloonStyle><text>

kml_balloonstyle_raw_text <BalloonStyle><text>
Element value written without xml entity
encoding.

KML Format Attribute Remarks

kml_balloon_color Specifies the balloon colour using the fme
color spec. Used to generate the RGB portion
of the kml_balloonstyle_bgcolor attribute.

kml_balloon _opacity Specifies the balloon opacity using float with
a value from 0 to 1.0. Used to generate the
Alpha portion of the kml_balloonstyle_bgco-
lor attribute.

kml_balloon_text_color Specifies the balloon text colour using the
fme color spec. Used to generate the RGB
portion of the kml_balloonstyle_text_color
attribute.

kml_balloon _text_opacity Specifies the balloon text opacity using float
with a value from 0 to 1.0. Used to generate
the Alpha portion of the kml_balloonstyle_
text_color attribute.

ListStyle

Specifies how a feature is displayed in the list view.

KML Element Attribute KML Element

kml_liststyle_bgcolor <ListStyle><bgColor>

kml_liststyle_list_item_type <ListStyle><listItemType>

ItemIcon

Specifies the icon used in the list view.

KML Element Attribute KML Element

kml_liststyle_item_icon{}.state <ItemIcon><state>

kml_liststyle_item_icon{}.href <ItemIcon><href>

A <ListStyle> element can contain 0 or more <ItemIcon> elements. The FME kml_liststyle_item_icon{} list, which
has two sub-elements 'state' and 'href', maps to N <ItemIcon> elements.

IconStyle

Specifies how the icons for point placemarks are drawn. This also applies to multi geometry placemarks with a point
component.

KML Element Attribute KML Element

kml_iconstyle_color <IconStyle><color>

kml_iconstyle_color_mode <IconStyle><colorMode>

kml_iconstyle_scale <IconStyle><scale>

kml_iconstyle_heading <IconStyle><heading>

KML Format Attribute Remarks

kml_icon_color Specifies the icon colour using the fme color
spec. Used to generate the RGB portion of
the kml_iconstyle_color attribute.

kml_icon _opacity Specifies the icon opacity using float with a
value from 0 to 1.0. Used to generate the
Alpha portion of the kml_iconstyle_color
attribute.

Icon

Defines an image that is associated with the style. The kml_icon_href element attribute is used to explicitly specify
the final location of the icon image file. As an alternative, the kml_icon format attribute can be used to specify the
name or path of an icon that will copied to the images folder of the KML dataset.

Note: If kml_icon_href is present on the feature, the value of kml_icon will be ignored.

Attribute Element

kml_icon_href <Icon><href>
Required.

Attribute Element

kml_icon_refresh_mode <Icon><refreshMode>

kml_icon_refresh_interval <Icon><refreshInterval>

kml_icon_view_refresh_mode <Icon><viewRefreshMode>

kml_icon_view_bound_scale <Icon><viewBoundScale>

kml_icon_view_format <Icon><viewFormat>

kml_icon_http_query <Icon><httpQuery>

hotspot

Specifies the point within the Icon that is anchored to the "Point" specified within the Placemark.

KML Element Attribute hotspot Element Attribute

kml_hotspot_x <hotSpot @x>

kml_hotspot_y <hotSpot @y>

kml_hotspot_xunits <hotSpot @xunits>

kml_hotspot_yunits <hotSpot @yunits>

Writer Notes

As noted above, FME color & opacity attributes will be converted to KML color attributes.

Reader Notes

None.

StyleMap

KML Element Attribute KML Element

kml_style_url_normal <Pair><styleUrl> where <key> is 'normal'

kml_style_url_highlight <Pair><styleUrl> where <key> is 'high-
light'

Overview

A <StyleMap> element maps between two different styles. Typically used to specify the styling for the normal and
highlighted states of a Placemark.

Writer Notes

None.

Reader Notes

None.

Tour

The Tour element has no specific attributes; the common format and element attributes listed at the beginning of the
section do apply.

Overview

<gx:Tour> elements are used by Google Earth to provide users with a guided tour of a KML dataset. Each Tour has a
playlist of one or more elements that are sub-types <TourPrimative>; these include <AnimatedUpdate>, <FlyTo>,
<SoundCue>, <TourControl>, and <Wait>. Tour primatives are routed to their parent Tour via the kml_tour format
attribute.

Writer Notes

If a tour primitive does not specify the id of a tour, it will be assigned to a ‘default’ tour that has the id ‘fme_default_
tour’, and the name “Tour”.

Reader Notes

None.

AnimatedUpdate

KML Element Attribute KML Element

kml_gx_duration <gx:duration>

Overview

<AnimatedUpdate> elements create temporary changes to a KML dataset via a child <Update>. AnimatedUpdates
work very similarly to the updates within a NetworkLinkControl, with the exception that changes made by a Animat-
edUpdate revert upon completion of the parent tour.

Writer Notes

To route a node to a particular AnimatedUpdate for update purposes, the following three format attributes must be
specified:

l kml_tour: The id of the parent AnimatedUpdate’s tour

l kml_animated_update: The id of the parent AnimatedUpdate

l kml_update_mode: The type of update to create

Reader Notes

The KML reader does not currently support reading <AnimatedUpdate> elements.

FlyTo

KML Element Attribute KML Element

kml_gx_duration <gx:duration>

kml_gx_flyto_mode <gx:flyToMode>

Overview

<FlyTo> elements are used to guide a tour to a particular viewpoint, usually looking at an existing Placemark or some
other geographic feature. The viewpoint is specifiied using an abstract view. I.e. either a <LookAt> or a <Camera>
element. For the element attributes corresponding to <LookAt> and <Camera> please refer to the prior sections.

Writer Notes

None.

Reader Notes

The KML reader does not currently support reading <FlyTo> elements.

SoundCue

KML Element Attribute KML Element

kml_href <href>

Overview

<SoundCue> elements are used to specify a particular sound file that should play during the tour.

Writer Notes

None.

Reader Notes

The KML reader does not currently support reading <SoundCue> elements.

TourControl

KML Element Attribute KML Element

kml_gx_play_mode <gx:playMode>

Overview

<TourControl> elements are used to change the Tour’s play mode. Currently, the only available mode is ‘pause’, but
that may change in the future.

Writer Notes

None.

Reader Notes

The KML reader does not currently support reading <TourControl> elements.

Wait

KML Element Attribute KML Element

kml_gx_duration <gx:duration>

Overview

<Wait> elements introduce an arbitrary delay in the Tour prior to advancing to the next Tour Primative.

Writer Notes

None.

Reader Notes

The KML reader does not currently support reading <Wait> elements.

GPS eXchange Format (GPX) Reader

Format Notes: This format is not supported by FME Base Edition.

Overview

GPX (the GPS Exchange Format) is a lightweight XML data format for the interchange of GPS data (waypoints, routes,
and tracks) between applications and Web services on the Internet. FME is capable of reading both GPX 1.0 and GPX
1.1 and writing GPX 1.1.

When reading GPX 1.0, the reader returns Bounds, Waypoint, Route, Routepoint, Track and Trackpoint features.
When reading GPX 1.1, the reader returns Metadata, Waypoint, Route, and Track features.

Note: If you are using FME 2008, the GPX reader now reads GPX Route and Track elements differently.

For more information, go to:

http://www.topografix.com/gpx.asp

GPX Quick Facts

Format Type Identifier GPX

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Metadata, Waypoint, Route,
Track

Typical File Extensions .gpx .xml

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon no

http://www.topografix.com/gpx.asp

Geometry Support

Geometry Supported? Geometry Supported?

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The GPX reader supports reading GPX 1.0 and 1.1 datasets.

The GPX reader has changed from the official FME 2008 release. The GPX reader now generates FME features from
GPX 1.1 files with the format specified in the "Schema Overview" section below. It returns Metadata, Waypoint, Route,
and Track features.

The GPX 1.1 reader released with FME 2008 generated FME features of types Metadata, Waypoint, Route, Routepoint,
Track, and Trackpoint. The FME 2008 reader is deprecated, but is still available for backward compatibility. To use
the 2008 reader, the source dataset’s settings dialog “Reader Mode” option should be set to “Backward-Com-
patibility(FME2008) .

Coordinate Systems

The GPX reader supports data in decimal degrees (WGS84 datum).

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GPX reader is GPX.

READER_MODE

Required/Optional: Optional

Specifies how GPX elements are read into FME features. Backward compatibility mode will read Trackpoints and Route-
points in as features, as well as Tracks and Routes. Normal mode will only read in Track and Route features, storing
the point information as traits of the features’ geometries, as specified in the schema overview. The default value is
Normal for new workspaces, but backward compatibility mode will be used if the keyword value is not present.

Examples:

GPX_READER_MODE Normal
GPX_READER_MODE Backward-Compatibility(FME2008)

Workbench Parameter: Reader Mode

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Schema Overview

Fixed Schema and Feature Representation

The GPX reader supports a fixed schema.

The reader generates FME features with the same schema that the writer accepts for writing. The GPX elements and
their corresponding FME feature representations are mapped by thereader according to the schemas in the following
sections.

Feature Types

l Metadata

l Waypoint

l Routepoint and Trackpoint

l Route

l Track

Metadata

To write a <metadata> tag, pass a feature of the following form to the writer.

Feature Type: Metadata

<metadata>

feature’s attributes as xml tags

</metadata>

Feature Type: Metadata

Geometry type: any (geometry is ignored by writer)

Feature Attribute GPX XML Entity

name <name>

description <desc>

author_name <author><name>

author_email <author><email>

author_link_text <author><link><text>

author_link_type <author><link><type>

Feature Attribute GPX XML Entity

author_link_href <author><link href="">

copyright_year <copyright><year>

copyright_license <copyright><license>

copyright_author <copyright author="">

link_text <link><text>

link_type <link><type>

link_href <link href="">

creation_time <time>

keywords <keywords>

Waypoint

To write a <wpt> tag, pass a feature of the following form to the writer.

<wpt>

feature's attributes as xml tags

</wpt>

Feature Type: Waypoint

Geometry type: IFMEPoint

Feature Attribute GPX XML Entity

elevation <ele>

creation_time <time>

magnetic_variation <magvar>

geoid_height <geoidheight>

comment <cmt>

description <src>

link_text <link><type>

link_type <copyright><year>

link_href <link href="">

symbol <sym>

type <type>

gps_fix_type <fix>

number_of_satellites <sat>

Feature Attribute GPX XML Entity

hdop <hdop>

vdop <vdop>

pdop <pdop>

age_of_dgps_data <ageofdgpsdata>

dgps_id <dgpsid>

Routepoint and Trackpoint

Routepoints and Trackpoints are not created by the reader as FME features.

Instead, Routes and Tracksegments are constructed as IFMELine features, and their Routepoints and Trackpoints are
represented by x-y paired coordinates in the IFMELine feature's geometry. A point's extra information is stored in the
IFMELine feature's geometry traits as a list trait of the form type{index}.name.

type is either 'Routepoint' or 'Trackpoint'.

index is the numeric index of the point in the IFMELine's geometry.

name is an FME name that corresponds to an XML entity name

The names are the same as Waypoint’s feature attribute names.

Geometry type: (implicit) IFMELine coordinate

Route

Note: GPX writing may not be applicable to your FME license.

Refer to the Routepoint and Trackpoint section for information on writing Routepoints with more than just longitude
and latitude.

<rte>

feature's attributes as xml tags

<rtept lon="" lat="">

feature's geometry traits of name Routepoint{index}.name as xml tags

</rtept>

</rte>

Feature Type: Route

Geometry type: IFMELine

To write an <rte> tag, pass a feature of the following form to the writer:

Feature Attribute GPX XML Entity

name <name>

comment <cmt>

description <desc>

source <src>

Feature Attribute GPX XML Entity

link_text <link><text>

link_type <link><type>

link_href <link href="">

number <number>

type <type>

Track

Note: GPX writing may not be applicable to your FME license.

Refer to the Routepoint and Trackpoint section for information on writing Trackpoints with more than just longitude
and latitude.

<trk>

<trkpt lon="" lat="">

feature's geometry traits of name Trackpoint{index}.name as xml tags

</trkpt>

</trk>

Feature Type: Track

Geometry type: IFMEAggregate of IFMELines

IBM DB2 Reader/Writer

FME’s DB2 Database (Attributes only) reader and writer modules (called DB2 Reader/Writer throughout the rest of
this chapter) provide the Feature Manipulation Engine (FME) with access to attribute data held in IBM’s DB2 database
tables.

Overview

This data may or may not have a spatial component to it. Thus DB2 reader can read from DB2 databases which may or
may not be spatially enabled. The FME provides read and write access to live databases accessible via DB2 CLI.

Tip: See the @SQL function in the Functions and Factories manual. This function allows arbi-
trary Structured Query Language (SQL) statements to be executed against any database.

DB2 Database Quick Facts

Format Type Identifier DB2

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Data source name

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Geometry Type db2_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line no z values n/a

none yes

Reader Overview

FME considers a DB2 dataset to be a collection of relational tables. The tables must be defined in the mapping file
before they can be read. Arbitrary WHERE clauses and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the DB2 reader is DB2.

DATASET

Required/Optional: Required

This is the data source name similar to ODBC data source name.

Example:

DB2_DATASET sample

Workbench Parameter: Source IBM DB2 Non-spatial Dataset

USER_NAME

Required/Optional: Optional

The name of the user who will access the database. By default, USER_NAME will be considered the same as the
schema name. e.g. any table name which explicitly does not have the schema name prefixed will be considered as a
table from the schema for that user.

Example:

DB2_USER_NAME bond007

Workbench Parameter: User Name

PASSWORD

Required/Optional: Optional

The password to access the database.

Example:

DB2_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Optional

Each database table must be defined before it can be read. There are two forms that the definition may take.

The syntax of the first form is:

DB2_DEF <tableName> \
 [SQL_WHERE_CLAUSE <whereClause>] \
 [<fieldName> <fieldType>] +

In this form, the fields and their types are listed. The <fieldType> of each field must be given, but it is not verified
against the database definition for the field. In effect, it is ignored.

The <tableName>must match a table in the database. This will be used as the feature type of all the features read
from the table.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features, unless lim-
ited by a global directive:

<ReaderKeyword>_WHERE_CLAUSE

If a <whereClause> is specified, only those rows that are selected by the clause will be read. Note that the
<whereClause> does not include the word “WHERE.”

In this example, the all records whose ID is less than 5 will be read from the supplier table:

DB2_DEF supplier \
 SQL_WHERE_CLAUSE "id < 5" \
 ID integer \
 NAME char(100) \
 CITY char(50)

The syntax of the second form is:

DB2_DEF <tableName> \
 SQL_STATEMENT <sqlStatement>

In this form, an arbitrary complete <sqlStatement> will be executed. The statement is passed untouched to the
database (and therefore may include non-portable database constructions). The results of the statement will be
returned, one row at a time, as features to FME. This form allows the results of complex joins to be returned to FME.

Note:
If the table has a column of type BIGINT then use the DB2’s CHAR() function to convert it to a string. This also
applies when an arbitrary SQL statement is passed to FME using @SQL() function or the SQLExecutor transformer
in Workbench. For example,

SELECT CHAR(myBigIntColumn), myID FROM myTable
All features will be given the feature type <tableName>, even though they may not necessarily have come from that
particular table. Indeed, with this form, the <tableName> need not exist as a separate table in the database.

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

DB2_DEF complex \
SQL_STATEMENT \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has noSQL_
WHERE_CLAUSE or SQL_STATEMENT specified in its DEF line, the global <ReaderKeyword>_WHERE_
CLAUSE value, if present, will be applied as the WHERE specifier of the query used to generate the results. If a tab-
le’s DEF line does contain its own SQL_WHERE_CLAUSE or SQL_STATEMENT, it will override the global
WHERE clause.

The syntax for this clause is:

DB2_WHERE_CLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

DB2_WHERE_CLAUSE LENGTH > 2000

Workbench Parameter:WHERE Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database table files that will be read. If no IDs are
specified, then all defined and available tables are read. The syntax of the IDs keyword is:

DB2_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

DB2_IDs HISTORY

Workbench Parameter: Feature Types to Read

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

This optional directive is used to tell the reader to retrieve the names and the schemas of all the tables in the source
database. If this value is not specified, it is assumed to be “No”.

The syntax of theRETRIEVE_ALL_SCHEMAS directive is:

DB2_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this value is not specified, it is assumed to be “No”.

The syntax of theRETRIEVE_ALL_TABLE_NAMES directive is:

DB2_RETRIEVE_ALL_TABLE_NAMES Yes

PERSISTENT_CONNECTION

A user may want to keep a connection to a database for reuse during a particular FME session. For example, when run-
ning a batch of 100 mapping files on the same database connection, it may be desirable to keep a connection open
and save the processing time required to make and break a database connection.

A database connection will be determined to be the same when the database name, the username, the password, and
the transaction interval are the same.

Values: YES | NO

Default value: NO

Example:

DB2_PERSISTENT_CONNECTION YES

Workbench Parameter: Persistent Connection

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Database writer module stores attribute records into a live relational database. The Database writer provides the
following capabilities:

l Transaction Support: The Database writer provides transaction support that eases the data loading process.
Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support pro-
vides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The Database writer uses the information within the FME mapping file to automatically create
database tables as needed.

l Bulk Loading: The Database writer uses a bulk loading technique to ensure speedy data load only when there are
no LOB (BLOBs or CLOBs) columns in the table. The performance vastly exceeds a one-insert-at-a-time approach.

Writer Directives

The directives processed by the DB2 Writer are listed below. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the DB2 writer is DB2.

DATASET, USER_NAME, PASSWORD

TheDATASET, USER_NAME, and PASSWORD directives operate in the samemanner as they do for the DB2
reader. The remaining writer-specific directives are discussed in the following sections.

ABORT_ON_BAD_DATA

Required/Optional: Optional

Some features may contain out-of-range or invalid attribute values. These features will be rejected and cannot be
written to the database. If the value of this directive is YES then the translation will be aborted immediately after
encountering such a problem. If this directive is set to NO then the translation will continue but the features with
rejected feature will not be written to the database.

Values: YES | NO

Default: NO

Example:

DB2_ABORT_ON_BAD_DATA YES

Workbench Parameter: Abort Translation on Bad Data

DEF

Required/Optional: Optional

Each database table must be defined before it can be written. For the DB2 writer, only one form of theDEF line is
used:

DB2_DEF <tableName> \
 [db2_overwrite_table (YES|NO|TRUNCATE)] \
 [<fieldName> <fieldType>] +

In this form, the fields and their types are listed. If the table already exists in the database, and db2_overwrite_table is
not specified with a parameter of YES, FME will append its information the existing database table. In this case, it is
not necessary to list the fields and their types – FME will use the schema information in the database to determine
this. If the fields and types are listed, they must match those in the database. However, not all fields must be listed.

If the table does not exist, or db2_overwrite_table is specified with a value of YES, then the field names and types are
used to first create the table. In any case, if a <fieldType> is given, it may be any field type supported by the tar-
get database.

This example defines theSUPPLIER table for the FME. If the table did not exist, it will be created just before the
first SUPPLIER row is written. If the table already exists, the data will be appended to the existing table.

DB2_DEF SUPPLIER \
 ID integer \
 NAME char(100) \
 CITY char(50)

The following example is exactly the same, except that it replaces any existing table named SUPPLIER with a new
table having the specified definition. If the table SUPPLIER does not exist in the database, then a new table is simply
created.

DB2_DEF SUPPLIER \
 db2_overwrite_table YES \
 ID integer \
 NAME char(100) \
 CITY char(50)

In the following example, the definition line only make the pre-existing EMPLOYEE table known to FME:

DB2_DEF EMPLOYEE

Features may later be routed to this table.

PERSISTENT_CONNECTION

A user may want to keep a connection to a database for reuse during a particular FME session. For example, when run-
ning a batch of 100 mapping files on the same database connection, it may be desirable to keep a connection open
and save the processing time required to make and break a database connection.

A database connection will be determined to be the same when the database name, the username, the password, and
the transaction interval are the same.

Values: YES | NO

Default value: NO

Example:

DB2_PERSISTENT_CONNECTION YES

Workbench Parameter: Persistent Connection

TRANSACTION_INTERVAL

This statement informs FME about the number of features to be placed in each transaction before a transaction is com-
mitted to the database.

If the DB2_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used as the transaction inter-
val.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Example:

DB2_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction Interval

Feature Representation

Features read from a DB2 database consist of a series of attribute values. They have no geometry. The attribute
names are as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line
was used, then the attribute names are as they are returned by the query, and as such may have their original table
names as qualifiers. The feature type of each DB2 feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

DATE, TIME and DATETIME Fields

When aDATE,TIME or TIMESTAMP field is read by the DB2 reader, two attributes are set in the FME feature. The
first attribute is has the name of the database column, and its value is of the formYYYYMMDD or HHMMSS. This
is compatible with all other FME date and time values.

The second attribute has a suffix of .full and is of the formYYYYMMDDHHMMSS. It specifies the date and the
time, with the time portion specified using the 24-hour clock.

For example, if a date field called UPDATE_DATE is read, the following attributes will be set in the retrieved FME
feature:

UPDATE_DATE =’19980820’
UPDATE_DATE.full=’19980820000000’

The DB2 writer looks for both attributes when a date or datetime column is being output. Either may be spec-
ified. If both attributes are specified, then the value specified in UPDATE_DATE.full is used to populate the
DATE or DATETIME portion of the date; otherwise, this portion is set to 0.

Using DEF Lines to Read from an ODBC Datasource

This example illustrates how the two forms of theDEF lines can be used to read from an ODBC database source,
which is named rogers.

READER_TYPE DB2
DB2_DATASET sampledb
DB2_USER_NAME <userName>
DB2_PASSWORD <password>

Form 1 of the DEF line is used like this -- it reads just

the two fields we list and applies the where clause

DB2_DEF supplier \
 db2_where_clause "id < 5" \
 ID integer \
 CITY char(50)

Form 2 of the DEF line is used like this -- we let SQL
figure out what fields we want and do a complex join
involving 3 tables. The FME features will have whatever
fields are relevant. The "feature type" as far as
FME is concerned is whatever was put on the DEF line.
In this case "complex" is the feature type, even though no
table named "complex" is present in the database.

DB2_DEF complex \
 db2_sql "SELECT CUSTOMER.NAME, CUSTOMER.ID,
 VIDEOS.ID, VIDEOS.TITLE FROM RENTALS, CUSTOMER,
 VIDEOS WHERE RENTALS.customerID = CUSTOMER.ID AND
 VIDEOS.ID = RENTALS.videoID AND CUSTOMER.ID = 1"

Finally, define the NULL writer as our output -- we will
just log everything we read to the log file for inspection.

WRITER_TYPE NULL
NULL_DATASET null

FACTORY_DEF * SamplingFactory \
INPUT FEATURE_TYPE * @Log()

IBM DB2 Spatial Reader/Writer

This format is not supported by FME Base Edition.
Object writing is available only with FME DB2 Edition.
DB2 7.2 and 8.1 are currently supported.
DB2 Spatial currently provides support for 2D geometries only. For 3D and 3D with Measures support, please con-
tact Safe Software.

FME’s DB2 Spatial Reader/Writer module(referred to as DB2 Spatial in this chapter) enables FME to read spatial and
attribute data from IBM’s DB2 database, and write spatial and attribute data to the existing database.

Overview

DB2 Spatial can read from databases which are spatially enabled but the tables may or may not have spatial infor-
mation stored. This module communicates directly with DB2 using CLI for maximum throughput.

Note: DB2 7.2 and 8.1 are currently supported. DB2 Spatial currently provides support for 2D geometries only. For
3D and 3D with Measures support, please contact Safe Software.

This section assumes familiarity with IBM DB2 Spatial Extender, the geometry types it supports, and its indexing
mechanisms.

Tip:

See the QueryFactory in the FME Functions and Factories manual. This factory also exploits
the powerful query capabilities of DB2 Spatial.

See the @SQL function, also in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any DB2 data-
base.

DB2 Spatial Quick Facts

Format Type Identifier DB2

Reader/Writer Both

Licensing Level Reading: Professional
Object Writing: DB2 Edition

Dependencies None

Dataset Type Data source name

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Geometry Type db2_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values n/a

none yes

Reader Overview

The FME considers a DB2 Spatial dataset to be a database containing a collection of relational tables together with
their geometry. The tables to be read may be defined in the mapping file. If no tables are specified, then all tables are
read. Arbitrary WHERE clauses and joins are fully supported. An entire arbitrary SQL SELECT statement may also
be used as a source of results.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the DB2 Spatial reader is DB2SPATIAL.

DATASET

Required/Optional: Required

This specifies the data source name for the DB2 Spatial database. The data source namemust have been set up in the
Client Configuration Assistant or on the command line.

Example:

DB2SPATIAL_DATASET citySource

Workbench Parameter: Source IBM DB2 Spatial Dataset

USER_NAME

Required/Optional: Required

The name of the user who will access the database.

Example:

DB2SPATIAL_USER_NAME shadow

Workbench Parameter: User Name

PASSWORD

Required/Optional: Required

The password to access the database.

Example:

DB2SPATIAL_PASSWORD puppy

Workbench Parameter: Password

DEF

Required/Optional: Optional

The syntax of the definition is:

DB2SPATIAL_DEF <tableName> \
[db2_type <type>] \
[db2_envelope_minx <xmin>] \
[db2_envelope_miny <ymax>] \
[db2_envelope_maxx <xmin>] \
[db2_envelope_maxy <ymax>] \
[db2_spatial_predicate <spatialPredicate>] \
[db2_predicate_result <predicateResult>] \
[db2_where_clause <whereClause>] \
[db2_sql <sqlQuery>] \
[<fieldName> <fieldType>] +

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The column(s) which has geometry should not be specified on the DEF line. In case a feature type has more than one
registered geometry column or layer, than DB2 Spatial Reader module will arbitrarily choose one as the primary
geometry column and consider the other(s) as attribute columns.

The <tableName> can be either fully qualified or not. A fully qualified table name consist of two parts separated by
a period (.). The first part is the <schema name> and second part is the <table name>. The <table name>
part must match a table in the schema specified by the <schema name> part of the <tableName>. If a schema
name is not provided as part of the table name, then the username will be considered the schema name. This will be
used as the feature type of all the features read from the table. For example, if a user wants to read a table from its
own schema then only the table name can be provided, but if the user wants to read from a different user’s schema,
then table name should be qualified with schema name.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader directives
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

db2_type This specifies the type of geometry the features to be
read from the layer will have.

db2_geometry_column This specifies the spatial layer or geometry column to
use for reading spatial data in case the table has mul-
tiple geometry/spatial columns.

db2_envelope_minx db2_envelope_
miny db2_envelope_maxx db2_
envelope_maxy

These specify the spatial extent of the features to be
read from the layer. If these are not all specified, the
values from the <ReaderKeyword>_SEARCH_ENVELOPE
directive are used.

db2_spatial_predicate This specifies the spatial predicate to be tested for this
layer. Its default value is set to INTERSECTS.
Note: This DEF line option is valid only if there is a
valid spatial envelope specified by db2_envelope_minx,
db2_envelope_miny, db2_envelope_maxx and db2_envelope_
maxy.

db2_predicate_result This specifies the result to be used for the Spatial pred-
icate specified in db2_spatial_predicate option.

db2_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of fea-
tures returned. If this is not specified, the value of the
<ReaderKeyword>_WHERE_CLAUSE directive is used.

db2_sql This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the DB2 Spa-
tial reader will execute the query, and use the resulting
rows as the features instead of reading from the table
<layerName>. All returned features will have a feature
type of <layerName>, and attributes for all columns
selected by the query.
The db2_where_clause and all parameters which spec-
ify a spatial constraint – db2_envelope_minx, db2_

interaction, and so on – are ignored if db2_sql is
supplied.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the word “where”.

The db2_sql parameter allows a user to specify an arbitrary SQL SELECT query. If this is specified, FME will
execute the query, and use each row of data returned from the query to define a feature. Each of these features will
be given the feature type named in theDEF line, and will contain attributes for every column returned by the
SELECT. In this case, all DEF line parameters regarding aWHERE clause or spatial querying is ignored, as it is
possible to embed this information directly in the text of the <sqlQuery>.

The following example joins the tables ROADS and ROADNAMES, placing the resulting data into FME features with a
feature type of MYROADS. Imagine that ROADS defines the geometry for the roads, and has a numeric field named ID,
and that ROADNAMES joins the numeric field ID with character arrays with the roads’ names.

DB2SPATIAL_DEF MYROADS \
db2_sql “SELECT * FROM ROADS, \

 ROADNAMES WHERE ROADS.ID = ROADNAMES.ID”

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then all defined and available tables are read. The syntax of the IDs directive is:

DB2SPATIAL_IDs <featureType1> \
<featureType2> \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

DB2SPATIAL_IDs ROADS

Workbench Parameter: Feature Types to Read

SIMPLIFY_AGGREGATES

Required/Optional: Optional

This directive specifies whether multi-geometry or aggregate features with one member are read as stored or sim-
plified and read as single member. e.g. an aggregate of points or multipoint features with only one point will be
returned as a simple point if the value of this directive is YES.

Values: YES | NO

Default value: NO

Example:

The syntax of the DB2SPATIAL_SIMPLIFY_AGGREGATES directive is:

DB2SPATIAL_SIMPLIFY_AGGREGATES YES

Workbench Parameter: Simplify Aggregate Geometry

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

SPATIAL_PREDICATE

Required/Optional: Optional

This specifies the type of spatial relationship which must exist between the search envelope and the geometry in the
target layer. Any supported relationship, in combination with the SPATIAL_PREDICATE_RESULT directive, can
be used to filter the features being read.

Values: CONTAINS, CROSSES, DISJOINT, EQUALS, INTERSECTS, ORDERINGEQUALS, OVERLAPS, TOUCHES, WITHIN

Default value: INTERSECTS

For example,

DB2SPATIAL_SPATIAL_PREDICATE INTERSECTS
DB2SPATIAL_SPATIAL_PREDICATE_RESULT FALSE

This would result in a spatial filter using DB2 Spatial’s native spatial function

DB2GSE.ST_Intersects(g1 geometry, g2 geometry) = 0

where g1 is the search envelope and g2 is the target feature. This will cause FME to return only those features that
satisfy the spatial predicate above.

The following table lists the valid spatial predicate relationships.

Search Method Description

CONTAINS Determines whether the search envelope is com-

Search Method Description

pletely contained by the target feature.

CROSSES Determines whether the intersection of search envel-
ope and the target feature results in a geometry
object whose dimension is one less than the max-
imum dimension of the source geometries. Also deter-
mines if the intersection object contains points that
are interior to both source geometries and are not
equal to either of the source objects.

DISJOINT Determines whether the intersection of search envel-
ope with the target feature is an empty set.

EQUALS Determines whether the search envelope and target
feature are of the same type and have identical x,y
coordinate values.

INTERSECTS Determines whether the intersection of search envel-
ope and target feature does not result in an empty
set. This is the exact opposite of DISJOINT.

ORDERINGEQUALS Determines whether the search envelope and target
feature are equal and the coordinates are in the same
order.

OVERLAPS Determines whether the search envelope and target
feature overlap each other.

TOUCHES Determines whether any of the points common to
search envelope and target feature intersect the inte-
riors of both geometries. At least one geometry must
be a linestring, polygon, multilinestring, mul-
tipolygon.

WITHIN Determines whether the target feature is completely
within the search envelope.
This is exactly opposite to CONTAINS.

For more details on Spatial predicate, please refer to the IBM DB2 Spatial Extender User’s Guide and Reference.

Workbench Parameter: Spatial Relationship to Search Envelope

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

WHERECLAUSE

Required/Optional: Optional

This specifies an SQLWHERE clause, which is applied to the table’s columns to limit the resulting features. This fea-
ture is currently limited to apply only to the attributes of the target table, and does not allow for joining multiple tables
together. The effect of table joins can be achieved using the object model, by specifying the entire queries in the
DEF line with a db2_sql parameter.

By default, there is noWHERE clause applied to the results, so all features in the layer are returned.

Example:

DB2SPATIAL_WHERECLAUSE “se_row_id > 45”

Workbench Parameter:WHERE Clause

TRANSACTION_INTERVAL

Required/Optional: Optional

The features can be read from the DB2 Spatial database using a bulk reading technique to maximize performance.
Normally 1000 rows of data are read from the database at a time. However, when we are reading LOB (BLOBs or
CLOBs) data , we are restricted to a transaction interval of size 1. Since geometry columns are normally BLOB types,
reading of spatial features will not be affected by this directive.

This directive allows users to tune the performance of the reader. It specifies how many rows are read from the data-
base at a time.

Example:

DB2SPATIAL_TRANSACTION_INTERVAL “se_row_id > 45”

Workbench Parameter: Transaction Buffer Size

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

PERSISTENT_CONNECTION

A user may want to keep a connection to a database for reuse during a particular FME session. For example, when run-
ning a batch of 100 mapping files on the same database connection, it may be desirable to keep a connection open
and save the processing time required to make and break a database connection.

A database connection will be determined to be the same when the database name, the username, the password, and
the transaction interval are the same.

Values: YES | NO

Default value: NO

Example:

DB2SPATIAL_PERSISTENT_CONNECTION YES

Workbench Parameter: Persistent Connection

RETRIEVE_ALL_SCHEMAS

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

This optional specification is used to tell the reader to retrieve the names and the schemas of all the tables in the
source database. If this value is not specified, it is assumed to be “No”.

The syntax of the RETRIEVE_ALL_SCHEMAS directive is:

DB2SPATIAL_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar toRETRIEVE_ALL_SCHEMAS; this optional specification is used to tell the reader to only retrieve the
table names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes,” then
RETRIEVE_ALL_SCHEMAS is chosen. If this value is not specified, it is assumed to be “No”.

The syntax of the RETRIEVE_ALL_TABLE_NAMES directive is:

DB2SPATIAL_RETRIEVE_ALL_TABLE_NAMES Yes

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The DB2 Spatial writer module stores both geometry and attributes into DB2 Spatially enabled databases. The DB2
Spatial writer provides the following capabilities:

l Table Creation: Uses the information within the FME mapping file to automatically create database tables as
needed.

l Coordinate System: Checks for a coordinate system and if a matching one is not found then it will create one
automatically. The matching criteria is the OGCWKT definition of the coordinate system.

Note: When writing to DB2 V7.2, the exact coordinate system definition of the incoming features should exist in
the database; otherwise FME will not be able to create a new coordinate system if the user does not have enough
privileges to write to the DB2GSE.GSE_COORD_REF metadata table. User need to have either DBADB authority or
at least have INSERT privileges for the coordinate systemmetadata table DB2GSE.GSE_COORD_REF for the
translation to succeed.

l Spatial Reference System: Uses an existing Spatial reference system with matching parameters or create new
one as required when registering spatial layer(column).

l Spatial Grid Index Creation: Creates spatial indexes only if valid values are specified for different levels of grid.

l ESRI’s ArcExplorer 3.0 JDBC Edition: In order to view spatial data written by DB2 Spatial writer in ArcExplorer
3.0 each spatial table must have a column named “SE_ROW_ID” of type integer. It does not really matter
whether the column is populated or not. Also note that ArcExplorer expects users to at least have execute priv-
ileges on certain functions in DB2GSE schema or have DBADM authority.

Note: Bulk Loading: The DB2 Spatial writer does not use a bulk loading technique due to certain limitations in
DB2.

Writer Directives

The directives processed by the DB2 Spatial writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the DB2 Spatial writer is DB2SP-
ATIALwhen using the object model.

DATASET, USER_NAME, PASSWORD, PERSISTENT_CONNECTION, TRANSACTION_INTERVAL, BEGIN_
SQL{}, and END_SQL{}

The DATASET, USER_NAME, PASSWORD, PERSISTENT_CONNECTION, TRANSACTION_INTERVAL, BEGIN_SQL{}, and
END_SQL{} directives operate in the samemanner as they do for the DB2 Spatial reader. The remaining writer-spe-
cific directives are discussed in the following sections.

DEF

Required/Optional: Optional

Each DB2 Spatial table must be defined before it can be written. The general form of a DB2 Spatial definition state-
ment is:

DB2SPATIAL_DEF <tableName> \
 [db2_overwrite_table <YES|NO|TRUNCATE>] \
 [db2_multi_geometry <YES|NO|FIRST_FEATURE>] \
 [db2_geometry_column <geometry>] \

[db2_offset_x <x offset value>] \
[db2_offset_y <y offset value>] \

 [db2_scale_x <x scale value>] \
[db2_scale_y <y scale value>] \
[db2_grid_0 <finest grid size>] \

 [db2_grid_1 <middle grid size>] \
[db2_grid_2 <coarsest grid size>] \
[db2_sql <sql statement>] \
[db2_update_key_columns <column>[,<column>]...] \

[db2_delete_key_columns <column>[,<column>]...] \
[<fieldName> <fieldType>]*

The table definition allows complete control of the layer that will be created. If the layer already exists, the majority of
the DEF line parameters will be ignored and need not be given. As well, if the table already exists in the database,
then it is not necessary to list the fields and their types – FME will use the schema information in the database to deter-
mine this. FME will ignore the field names and types specified on the DEF line, except for the one with type geometry.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The DB2 Spatial writer will use db2_geometry_column parameter to set the name of geometry column for the
new table. If the db2_geometry_column parameter is not specified then a default name “geometr” will be
used for the geometry column.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

db2_overwrite_table This parameter can have one of <YES|NO|TRUNCATE> option.
If YES, then the table will be dropped and created again. If
TRUNCATE, then all the rows from the table will be deleted.
If NO, then data will be appended to the existing table.

db2_multi_geometry This specifies whether the db2 types for point, linestring and
polygon should be written as multi-geometries or single
geometries. If YES, the table created has multi-geometries
(that is, the geometry column type will be ST_MULTIPOINT,
and the features are coerced into multi-geometries if they
are not already). If NO, the geometry column of the created
table is singular (that is, ST_POINT), and multi-geometries
are split. FIRST_FEATURE allows this setting to be based on
the first feature in the table.

This setting is used for DB2SPATIAL-to-DB2SPATIAL trans-
lations.

db2_geometry_column This parameter can be used to specify name of the spatial
layer (geometry column name). If it is not specified db2 spa-
tial writer module will use default name “geometry” for the
spatial layer.

db2_offset_x The x offset value for the dataset, defaults to 0. If this param-
eter is non-zero, then it overrides the global OFFSET_X direc-
tive.

db2_offset_y The y offset value for the dataset, defaults to 0. If this param-
eter is non-zero, then it overrides the global OFFSET_Y direc-
tive.

db2_scale_x The x scale value for the dataset, defaults to 1. If this param-
eter is not equal to 1, then it overrides the global SCALE_X
directive

db2_scale_x The y scale value for the dataset, defaults to 1. If this param-
eter is not equal to 1, then it overrides the global SCALE_Y
directive.

db2_grid_0 This parameter specifies the finest spatial index grid size. If
0, then a spatial index is not created.

db2_grid_1 This parameter specifies the middle spatial index grid size. If
0, then a spatial index is not created.

db2_grid_2 This parameter specifies the coarsest spatial index grid size.
If 0, then a spatial index is not created.

db2_sql This specifies an SQL INSERT or UPDATE query to be used to

Parameter Contents

define the results. If this is specified, the DB2 Spatial writer
will execute the query, defining one row for each feature
from FME. The values in the query are specified by embed-
ding “?attrName” in the query itself, where attrName is the
name of the FME feature’s attribute.
For example:
INSERT INTO MyTable VALUES(?ID,?NAME,?DESC)

In this example, the attributes named ID, NAME and DESC will
be taken from each feature written to <tableName>.
or
INSERT INTO MyTable (ID,NAME)
VALUES(?ID,?NAME)

In this example, the attributes named ID and NAMEwill be
taken from each feature written to <tableName>. If not all
attributes are to be written, then a column list should be spec-
ified as shown in the second example statement where 2 out
of 3 columns are being written.
It is also very important that the attributes named in the
query must be listed on the DEF line so that FME knows what
type to use. There is no necessary or implied correlation
between the FME attribute name and the db2 column name.

db2_update_key_
columns

This instructs the DB2 Spatial writer to perform an UPDATE
operation on the table, rather than performing an INSERT.
The argument is a comma-separated list of the columns
which are matched against the corresponding FME attributes’
values to specify which rows are to be updated with the other
attribute values.
For example:
db2_update_key_columns ID,NAME

In this case the FME attribute is always matched against the
db2 column with the same name. Also, the target table is
always the feature type specified in the DEF line. Each col-
umn listed with the db2_update_key_columns directive must be
defined with a type on the DEF line, in addition to the col-
umns whose values will be updated by the operation. This
cannot be used with db2_delete_key_columns. Also, the keys
cannot be of type BLOB, CLOB, or LONG_VARCHAR.

db2_delete_key_
columns

This instructs the DB2 Spatial writer to perform a DELETE
operation on the table, rather than performing an INSERT.
The argument is a comma-separated list of the columns
which are matched against the corresponding FME attributes’
values to specify which rows are to be deleted when their
values match the other attribute values.
For example:

Parameter Contents

db2_delete_key_columns ID,NAME

would delete those rows in the table whose values match the
attribute values passed in through this DEF line. The FME
attribute is always matched against the DB2 Spatial column
with the same name. Also, the target table is always the fea-
ture type specified in the DEF line. Each column listed with
the db2_delete_key_columns directive must be defined with a
type on the DEF line, in addition to the columns whose values
will be updated by the operation. This cannot be used with
db2_update_key_columns. Also, the keys cannot be of type
BLOB, CLOB, or LONG_VARCHAR.

TRANSACTION_INTERVAL

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If the DB2SPATIAL_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used as the trans-
action interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Default: 1000

Example:

DB2SPATIAL_TRANSACTION_INTERVAL 2500

Workbench Parameter: Transaction Interval

PERSISTENT_CONNECTION

Required/Optional: Optional

A user may want to keep a connection to a database for reuse during a particular FME session. For example, when run-
ning a batch of 100 mapping files on the same database connection, it may be desirable to keep a connection open
and save the processing time required to make and break a database connection.

A database connection will be determined to be the same when the database name, the username, the password, and
the transaction interval are the same.

Values: YES | NO

Default: NO

Example:

DB2SPATIAL_PERSISTENT_CONNECTION YES

Workbench Parameter: Persistent Connection

ABORT_ON_BAD_DATA

Required/Optional: Optional

Some features’ geometries may fail DB2 Spatial Extender’s check constraints based on the offset, scale, and coor-
dinate system values. These features, as well as others with out-of-range or invalid attribute values, will be rejected
and cannot be written to the database. If the value of this directive is YES then the translation will be aborted imme-
diately after encountering such a problem. If this directive is set to NO then the translation will continue but the
rejected features will not be written to the database.

Values: YES | NO

Default: YES

Example:

DB2SPATIAL_ABORT_ON_BAD_DATA YES

Workbench Parameter: Abort Translation On Bad Data

OFFSET_X

Required/Optional: Optional

This directive can be used to set the global x offset for the entire translation. If a dataset contains many different
tables but the same x offset applies to all of them, then this is a convenient way of setting the x offset. This value can
be overridden by DEF line parameter db2_offset_x.

Default: 0

Example:

DB2SPATIAL_OFFSET_X -12456

Workbench Parameter: Offset X

OFFSET_Y

Required/Optional: Optional

This directive can be used to set the global y offset for the entire translation. If a dataset contains many different
tables but the same y offset applies to all of them, then this is a convenient way of setting the y offset. This value can
be overridden by DEF line parameter db2_offset_y.

Default: 0

Example:

DB2SPATIAL_OFFSET_Y -1245

Workbench Parameter: Offset Y

SCALE_X

Required/Optional: Optional

This directive can be used to set the global x scale value for the entire translation. If a dataset may contains many dif-
ferent tables but the same x scale applies to all of them, then this is a convenient way of setting the x scale value.
This value can be overridden by DEF line parameter db2_scale_x.

Default: 1

Example:

DB2SPATIAL_SCALE_X 1000

Workbench Parameter: Scale X

SCALE_Y

Required/Optional: Optional

This directive can be used to set the global y scale value for the entire translation. If a dataset contain many different
tables but the same y scale applies to all of them, then this is a convenient way of setting the y scale value. This value
can be overridden by DEF line parameter db2_scale_y.

Default: 1

Example:

DB2SPATIAL_SCALE_Y 1000

Workbench Parameter: Scale Y

GRID_0

Required/Optional: Optional

This directive can be used to set the global finest grid size for the spatial grid index . If a dataset contains many dif-
ferent tables but the same finest grid size applies to all of them, then this is a convenient way of setting the finest grid
size value. This value can be overridden by DEF line parameter db2_grid_0.

Default: 0

Example:

DB2SPATIAL_GRID_0 10

Workbench Parameter: Finest Spatial Grid Index Size

GRID_1

Required/Optional: Optional

This directive can be used to set the global middle grid size for the spatial grid index. If a dataset contains many dif-
ferent tables but the samemiddle grid size applies to all of them, then this is a convenient way of setting the middle
grid size value. This value can be overridden by DEF line parameter db2_grid_1.

Default: 0

Example:

DB2SPATIAL_GRID_1 100

Workbench Parameter: Middle Spatial Grid Index Size

GRID_2

Required/Optional: Optional

This directive can be used to set the global coarsest grid size for the spatial grid index. If a dataset contains many dif-
ferent tables but the same coarsest grid size applies to all of them, then this is a convenient way of setting the
coarsest grid size value. This value can be overridden by DEF line parameter db2_grid_2.

Default: 0

Example:

DB2SPATIAL_GRID_2 1000

Workbench Parameter: Coarsest Spatial Grid Size

Feature Representation

Features read from DB2 Spatial consist of a series of attribute values and geometry. The feature type of each Data-
base feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined by on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), the DB2 Spatial module adds the format-specific attributes described below:

Attribute Name Contents

db2_type The type of geometric entity stored within the feature. The valid
values for the object model are listed below:
db2_nil
db2_point
db2_linestring
db2_polygon

Features read from, or written to, DB2 Spatial also have an attribute for each column in the database table. The fea-
ture attribute name will be the same as the source or destination column name. The attribute and column names are
not case-sensitive.

No Coordinates

db2_type: db2_nil

Features with no coordinates are tagged with this value when reading or writing to or from db2 Spatial.

Points
db2_type: db2_point

All DB2 Spatial point and multipoint features are read as db2_point. The only difference being the geometry type
of feature, which will be set to fme_aggregate if it is a multipoint and fme_point if it is a point.

Lines
db2_type: db2_line

All DB2 Spatial linestring and Multilinestring features are read as db2_line. The only difference is the geometry
type of feature, which will be set to fme_aggregate if it is a multilinestring and fme_line if it is a linestring.

Polygons

db2_type: db2_polygon

All DB2 Spatial polygon and Multipolygon features are read as db2_polygon. The only difference is the geometry
type of feature, which will be set to fme_aggregate if it is a multipolygon and fme_polygon if it is a polygon.
Polygon features include donut polygons with one or more holes.

Aggregates are written out as “multipolygon” geometry containing several polygonal elements, just as if the feature
had been tagged with db2_multiline. Any non-polygonal elements contained in the aggregate are discarded.

The following table summarizes all of the db2_type values that are possible with DB2 Spatial geometry, and provides a
description of each representation.

db2_type DB2 Spatial type Representation

db2_nil N/A No geometry

db2_point POINT Single point geometry.
fme_geometry = fme_point
fme_type = fme_point

MULTIPOINT Aggregate containing one or more points.
fme_geometry = fme_aggregate
fme_type = fme_point

db2_type DB2 Spatial type Representation

db2_line LINESTRING Single line geometry.
fme_geometry = fme_line
fme_type = fme_line

MULTILINESTRING An aggregate of linestrings.
fme_geometry = fme_aggregate
fme_type = fme_line

db2_polygon POLYGON A single polygon or donut geometry.
fme_geometry = fme_polygon or fme_
donut
fme_type = fme_polygon

MULTIPOLYGON An aggregate of simple polygons or donut
polygons.
fme_geometry = fme_aggregate
fme_type = fme_polygon

Troubleshooting

Problems sometimes arise when attempting to connect to an DB2 Spatial database. This is almost always due to a mis-
configuration in the user’s environment. The following suggestions can often help detect and overcome such prob-
lems.

l Ensure you can connect to the database with the data source name, username, and password using DB2 Com-
mand Line processor.

l Ensure that you have the correct version of the DB2 client software installed.

l Ensure that the appropriate version of DB2 Spatial Extender is installed and the database is ‘Spatially enabled’. If
you get an error which says something like “DB2GSE.*.. is an undefined name”, then it is most likely
that the database is not enabled for spatial operations. For enabling a DB2 database for spatial operations, please
refer to IBM DB2 Spatial Extender User’s Guide and Reference.

l Ensure that you have the appropriate privileges to perform the operations like creating, dropping, inserting into,
and deleting from tables when writing. DBADM privileges may be required to create indexes. Please check the DB2
database manuals for more information.

l When reading/writing large volumes of data, please ensure that the database configuration parameters are set for
large data processing. For example, when reading/writing large volumes of data, failure may occur due to “app_
ctl_heap_sz” and/or “logprimary” parameters not set to appropriate values. Most database errors will be
logged as obtained from the database. Some error messages may not immediately imply the actual problem. For
such messages, please refer to DB2 database manuals.

l If offset and scale values are not chosen appropriately for the dataset, some or all geometries may be rejected.
Error messages may not indicate the actual problem. For example, not choosing an appropriate scale may result in
duplicate coordinates and the error message may be “not enough points” or “polygon intersects itself”. Please
refer to the IBM DB2 Spatial Extender User’s Guide and Referencemanual for the resolution of such errors.

IBM Informix Reader/Writer

The IBM Informix Reader/Writer (called Informix Reader/Writer throughout the rest of this chapter) provides FME
with access to attribute data held in IBM’s Informix database tables.

Overview

This data may or may not have a spatial component to it. Thus the Informix reader can read from Informix databases
which may or may not be spatially enabled. The FME provides read and write access to live databases accessible via
the Informix Connect driver.

Informix Database Quick Facts

Format Type Identifier INFX

Reader/Writer Both

Licensing Level Professional

Dependencies Informix Connect software

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type db_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values N/A

none yes

Reader Overview

FME considers an Informix dataset to be a collection of relational tables. The tables must be defined in the mapping
file before they can be read. Arbitrary WHERE clauses and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the Informix reader is INFX.

DATASET

Required/Optional: Required

This is the data source name. On Windows, it is an ODBC data source name.

Example:

INFX_DATASET sample

Workbench Parameter: Source IBM Informix Dataset

USER_NAME

Required/Optional: Optional

The name of the user who will access the database. By default, USER_NAME will be considered the same as the
schema name. For example, any table name which explicitly does not have the schema name prefixed will be con-
sidered as a table from the schema for that user.

Example:

INFX_USER_NAME bond007

Workbench Parameter: User ID

PASSWORD

Required/Optional: Optional

The password to access the database.

Example:

INFX_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Optional

Each database table must be defined before it can be read. There are two forms that the definition may take.

The syntax of the first form is:

INFX_DEF <tableName> \
 [SQL_WHERE_CLAUSE <whereClause>] \
 [<fieldName> <fieldType>] +

In this form, the fields and their types are listed. The <fieldType> of each field must be given, but it is not verified
against the database definition for the field. In effect, it is ignored.

The <tableName>must match a table in the database. This will be used as the feature type of all the features read
from the table.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features, unless lim-
ited by a global directive:

<ReaderKeyword>_WHERE_CLAUSE

If a <whereClause> is specified, only those rows that are selected by the clause will be read. Note that the
<whereClause> does not include the word “WHERE.”

In this example, the all records whose ID is less than 5 will be read from the supplier table:

INFX_DEF supplier \
 INFX_WHERE_CLAUSE "id < 5" \
 ID integer \
 NAME char(100) \
 CITY char(50)

The syntax of the second form is:

INFX_DEF <tableName> \
 INFX_SQL <sqlStatement>

In this form, an arbitrary complete <sqlStatement> will be executed. The statement is passed untouched to the
database (and therefore may include non-portable database constructions). The results of the statement will be
returned, one row at a time, as features to FME. This form allows the results of complex joins to be returned to FME.

In this example, the results of joining the employee and city tables are returned. All attributes from the two
tables will be present on each returned feature. The feature type will be set to complex.

INFX_DEF complex \
SQL_STATEMENT \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERECLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has no INFX_
WHERE_CLAUSE or INFX_SQL specified in its DEF line, the global <ReaderKeyword>_WHERECLAUSE value, if
present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF line does
contain its own SQL_WHERE_CLAUSE or SQL_STATEMENT, it will override the global WHERE clause.

The syntax for this clause is:

INFX_WHERECLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

INFX_WHERECLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then all defined and available tables are read. The syntax of the IDs keyword is:

INFX_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only the HISTORY table for input during a translation:

INFX_IDs HISTORY

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

This optional directive is used to tell the reader to retrieve the names and the schemas of all the tables in the source
database. If this value is not specified, it is assumed to be “No”.

The syntax of the RETRIEVE_ALL_SCHEMAS directive is:

INFX_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this value is not specified, it is assumed to be “No”.

The syntax of the RETRIEVE_ALL_TABLE_NAMES directive is:

INFX_RETRIEVE_ALL_TABLE_NAMES Yes

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Informix writer module stores attribute records into a live relational database. The writer provides the following
capabilities:

l Table Creation: The Database writer uses the information within the FME mapping file to automatically create
database tables as needed.

Writer Directives

The directives processed by the Informix Writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Informix writer is INFX.

DATASET, USER_NAME, PASSWORD, BEGIN_SQL{n}, END_SQL{n}

The DATASET, USER_NAME, PASSWORD, BEGIN_SQL{n}, and END_SQL{n} directives operate in the same
manner as they do for the Informix reader. The remaining writer-specific directives are discussed in the following sec-
tions.

ABORT_ON_BAD_DATA

Required/Optional: Optional

Some features may contain out-of-range or invalid attribute values. These features will be rejected and cannot be
written to the database. If the value of this directive is YES then the translation will be aborted immediately after
encountering such a problem. If this directive is set to NO then the translation will continue but the features with
rejected feature will not be written to the database.

Values: YES | NO

Default: NO

Example:

INFX_ABORT_ON_BAD_DATA YES

Workbench Parameter: Abort Translation on Bad Data

DEF

Required/Optional: Required

Each database table must be defined before it can be written. For the Informix writer, the DEF line is specified in one
of three forms. The first one is used for inserting data:

INFX_DEF <tableName> \
 [infx_overwrite_table (YES|NO|TRUNCATE)] \
 [<fieldName> <fieldType>] +

In this form, the fields and their types are listed. If the table already exists in the database, and infx_overwrite_table is
not specified with a parameter of YES, FME will append its information the existing database table. In this case, the
fields and their types must still be listed, but a subset may be used. IF a subset is used, NULL values will be written
into the unspecified columns.

If the table does not exist, or infx_overwrite_table is specified with a value of YES, then the field names and types are
used to first create the table. In any case, if a <fieldType> is given, it may be any field type supported by the tar-
get database.

This example defines the SUPPLIER table for the FME. If the table did not exist, it will be created just before the first
SUPPLIER row is written. If the table already exists, the data will be appended to the existing table.

INFX_DEF SUPPLIER \
 ID integer \
 NAME char(100) \
 CITY char(50)

The following example is exactly the same, except that it replaces any existing table named SUPPLIER with a new
table having the specified definition. If the table SUPPLIER does not exist in the database, then a new table is simply
created.

INFX_DEF SUPPLIER \
 infx_overwrite_table YES \
 ID integer \
 NAME char(100) \
 CITY char(50)

The second form is used for updating data:

INFX_DEF <tableName> \
 [infx_overwrite_table (YES|NO|TRUNCATE)] \
 [infx_update_key_columns <columns>] \
 [<fieldName> <fieldType>] +

The set of key columns to use (shown <columns> as above) is specified as a comma-separated list. The infx_over-
write_table parameter should always be set to YES in this mode.

The third form is used for deleting data:

INFX_DEF <tableName> \
 [infx_overwrite_table (YES|NO|TRUNCATE)] \
 [infx_delete_key_columns <columns>] \
 [<fieldName> <fieldType>] +

The set of key columns to use (shown <columns> as above) is specified as a comma-separated list. The infx_over-
write_table parameter should always be set to YES in this mode.

TRANSACTION_INTERVAL

This statement informs FME about the number of features to be placed in each transaction before a transaction is com-
mitted to the database.

If the INFX_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used as the transaction
interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Default: 1000

Example:

INFX_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction Interval

Feature Representation

Features read from an Informix database consist of a series of attribute values. They have no geometry. The attribute
names are as defined in the DEF line if the first form of the DEF line was used. If the second form of the DEF line was
used, then the attribute names are as they are returned by the query, and as such may have their original table
names as qualifiers. The feature type of each Informix feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the DEF
line.

DATE and DATETIME Fields

When a DATE field is read by the Informix reader, two attributes are set in the FME feature. The first attribute has the
name of the database column, and its value is of the form YYYYMMDD. This is compatible with all other FME date and
time values.

The second attribute has a suffix of .full and is of the form YYYYMMDDHHMMSS. It specifies the date and the
time, with the time portion specified using the 24-hour clock.

For example, if a date field called UPDATE_DATE is read, the following attributes will be set in the retrieved FME fea-
ture:

UPDATE_DATE =’19980820’
UPDATE_DATE.full=’19980820000000’

The Informix writer looks for both attributes when a DATE or DATETIME column is being output. Either may be spec-
ified. If both attributes are specified, then the value specified in the <name>.full attribute takes precedence.

IBM Informix Spatial Reader/Writer

FME’s Informix Spatial Reader/Writer module (referred to as Informix Spatial in this chapter) enables FME to read and
write spatial and attribute data inside Informix databases.

Overview

Informix Spatial can read from databases which are spatially enabled but the tables may or may not have spatial infor-
mation stored.

Informix Spatial Quick Facts

Format Type Identifier INFXSPATIAL

Reader/Writer Both

Licensing Level Reading: Professional
Writing: DB2, Oracle, or SQL
Server Edition

Dependencies Informix Connect Software

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type infx_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The FME considers an Informix Spatial dataset to be a database containing a collection of relational tables together
with their geometry. The tables to be read are defined in the mapping file. Arbitrary WHERE clauses are supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the Informix Spatial reader is INFXSPATIAL.

DATASET

Required/Optional: Required

This is the data source name. On Windows, it is an ODBC data source name.

Example:

INFXSPATIAL_DATASET sample

Workbench Parameter: Source IBM Informix Spatial Dataset

USER_NAME

Required/Optional: Required

The name of the user who will access the database. By default, USER_NAME will be considered the same as the
schema name. For example, any table name which explicitly does not have the schema name prefixed will be con-
sidered as a table from the schema for that user.

Example:

INFXSPATIAL_USER_NAME bond007

Workbench Parameter: User ID

PASSWORD

Required/Optional: Required

The password to access the database.

Example:

INFXSPATIAL_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Optional

The syntax of the definition is:

INFXSPATIAL_DEF <tableName> \
[infx_geometry_column <geometryColumn>] \
[infx_where_clause <whereClause>] \
[<fieldName> <fieldType>] +

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The geometry column or columns should not be specified as attributes on the DEF line. Rather, the desired geometry
column may be specified in the infx_geometry_column parameter. In the case that infx_geometry_column is not specified
and a feature type has more than one registered geometry column or layer, the Informix Spatial Reader will arbitrarily
choose one as the primary geometry column.

The <tableName> can be either fully qualified or not. A fully qualified table name consist of two parts separated by
a period (.). The first part is the <schema name> and second part is the <table name>. The <table name>
part must match a table in the schema specified by the <schema name> part of the <tableName>. If a schema
name is not provided as part of the table name, then the username will be considered the schema name. This will be
used as the feature type of all the features read from the table. For example, if a user wants to read a table from its
own schema then only the table name can be provided, but if the user wants to read from a different user’s schema,
then table name should be qualified with schema name.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader directives
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

infx_geometry_column This specifies the spatial layer or geometry column to
use for reading spatial data in case the table has mul-
tiple geometry/spatial columns.

infx_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of fea-
tures returned. If this is not specified, the value of the
<ReaderKeyword>_WHERE_CLAUSE directive is used.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the word “where”.

WHERECLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has no INFX_
WHERE_CLAUSE specified in its DEF line, the global <ReaderKeyword>_WHERECLAUSE value, if present, will
be applied as the WHERE specifier of the query used to generate the results.

The syntax for this clause is:

INFX_WHERECLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

INFX_WHERECLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

INFXSPATIAL Mapping File Example

The example below selects a small area for extraction:

INFXSPATIAL_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

SIMPLIFY_AGGREGATES

Required/Optional: Optional

This directive specifies whether multi-geometry or aggregate features with one member are read as stored or sim-
plified and read as single member. e.g. an aggregate of points or multipoint features with only one point will be
returned as a simple point if the value of this directive is YES.

Values: YES | NO

Default value: NO

Example:

The syntax of the SIMPLIFY_AGGREGATES directive is:

INFXSPATIAL_SIMPLIFY_AGGREGATES YES

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then all defined and available tables are read. The syntax of the IDs directive is:

INFXSPATIAL_IDs <featureType1> \
<featureType2> \
... \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

INFXSPATIAL_IDs ROADS

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

This optional directive is used to tell the reader to retrieve the names and the schemas of all the tables in the source
database. If this value is not specified, it is assumed to be “No”.

The syntax of theRETRIEVE_ALL_SCHEMAS directive is:

INFXSPATIAL_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this value is not specified, it is assumed to be “No”.

The syntax of theRETRIEVE_ALL_TABLE_NAMES directive is:

INFXSPATIAL_RETRIEVE_ALL_TABLE_NAMES Yes

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Informix Spatial writer module stores both geometry and attributes into spatially-enabled Informix databases.
The Informix Spatial writer provides the following capabilities:

l Table Creation: The Database writer uses the information within the FME mapping file to automatically create
database tables as needed.

l Coordinate System: Checks for a coordinate system and if a matching one is not found then it will create one
automatically. The matching criteria is the OGCWKT definition of the coordinate system.

Writer Directives

The directives processed by the Informix Spatial writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Informix Spatial writer is
INFXSPATIAL.

DATASET, USER_NAME, PASSWORD, BEGIN_SQL{n}, and END_SQL{n}

TheDATASET, USER_NAME, PASSWORD, BEGIN_SQL{n}, and END_SQL{n} directives operate in the
samemanner as they do for the Informix Spatial reader. The remaining writer-specific directives are discussed in the
following sections.

DEF

Required/Optional: Required

Each Informix Spatial table must be defined before it can be written. The general form of an Informix Spatial definition
statement is:

INFXSPATIAL_DEF <tableName> \
 [infx_type <type>] \
 [infx_overwrite_table <YES|NO|TRUNCATE>] \
 [infx_update_key_columns <column>[,<column>]...] \
 [infx_delete_key_columns <column>[,<column>]...] \
 [infx_geometry_column <geometry>] \
 [infx_multi_geometry <YES|NO|FIRST_FEATURE>] \
 [infx_offset_x <x offset value>] \
 [infx_offset_y <y offset value>] \
 [infx_scale_x <x/y scale value>] \
 [<fieldName> <fieldType>]*

The table definition allows complete control of the layer that will be created. If the layer already exists, the majority of
the DEF line parameters will be ignored and need not be given.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The Informix Spatial writer will use the infx_geometry_column parameter to set the name of geometry column
for the new table. If the infx_geometry_column parameter is not specified then a default name of “geome-
try” will be used for the geometry column.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

infx_type This specifies the type of geometry the features to be written
to the layer will have.

infx_overwrite_table This parameter can be set to one of <YES|NO|TRUNCATE>. If
YES, then the table will be dropped and created again. If
TRUNCATE, then all the rows from the table will be deleted.
If NO, then data will be appended to the existing table.

infx_update_key_
columns

This instructs the Informix Spatial writer to perform an
UPDATE operation on the table, rather than performing an
INSERT. The argument is a comma-separated list of the col-
umns which are matched against the corresponding FME
attributes’ values to specify which rows are to be updated
with the other attribute values.
For example:
infx_update_key_columns ID,NAME

In this case the FME attribute is always matched against the
Informix column with the same name. Also, the target table
is always the feature type specified in the DEF line. Each col-
umn listed with the infx_update_key_columns directive must be
defined with a type on the DEF line, in addition to the col-
umns whose values will be updated by the operation. This
cannot be used with infx_delete_key_columns. Also, the keys
cannot be of type BLOB, CLOB, or LONG_VARCHAR.

infx_delete_key_
columns

This instructs the Informix Spatial writer to perform a
DELETE operation on the table, rather than performing an
INSERT. The argument is a comma-separated list of the col-
umns which are matched against the corresponding FME
attributes’ values to specify which rows are to be deleted
when their values match the other attribute values.
For example:
infx_delete_key_columns ID,NAME

would delete those rows in the table whose values match the
attribute values passed in through this DEF line. The FME
attribute is always matched against the Informix Spatial col-
umn with the same name. Also, the target table is always the
feature type specified in the DEF line. Each column listed
with the infx_delete_key_columns directive must be defined
with a type on the DEF line, in addition to the columns whose
values will be updated by the operation. This cannot be used
with infx_update_key_columns. Also, the keys cannot be of type

Parameter Contents

BLOB, CLOB, or LONG_VARCHAR.

infx_geometry_column This parameter can be used to specify the name of the spa-
tial layer (geometry column name). If it is not specified the
default name of “geometry” will be used for the spatial layer.

infx_multi_geometry This specifies whether the Informix types for point, linestring
and polygon should be written as multi-geometries or single
geometries. If YES, the table created has multi-geometries
(that is, the geometry column type will be e.g. ST_MUL-
TIPOINT, and the features are coerced into multi-geometries
if they are not already). If NO, the geometry column of the
created table is singular (that is, ST_POINT), and multi-geom-
etries are split. FIRST_FEATURE allows this setting to be
based on the first feature in the table.

infx_offset_x The x-offset value for the dataset; defaults to 0.

infx_offset_y The y-offset value for the dataset; defaults to 0.

infx_scale_x The x and y scale value for the dataset; defaults to 1.

TRANSACTION_INTERVAL

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If the INFXSPATIAL_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used as the
transaction interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Default: 1000

Example:

INFXSPATIAL_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction Interval

ABORT_ON_BAD_DATA

Required/Optional: Optional

Some features’ geometries may fail Informix Spatial’s check constraints based on the offset, scale, and coordinate sys-
tem values. These features, as well as others with out-of-range or invalid attribute values, will be rejected and cannot
be written to the database. If the value of this directive is YES then the translation will be aborted immediately after
encountering such a problem. If this directive is set to NO then the translation will continue but the features with
rejected geometry will not be written to the database.

Values: YES | NO

Default: NO

Example:

INFXSPATIAL_ABORT_ON_BAD_DATA YES

Workbench Parameter: Abort Translation on Bad Data

Feature Representation

Features read from Informix Spatial consist of a series of attribute values and geometry. The feature type of each Data-
base feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined by on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), the Informix Spatial module adds the format-specific attributes described below:

Attribute Name Contents

infx_type The type of geometric entity stored within the feature. The valid
values for the object model are listed below:

infx_null

infx_point

infx_linestring

infx_polygon

infx_geometry

Features read from, or written to, Informix Spatial also have an attribute for each column in the database table. The
feature attribute name will be the same as the source or destination column name. The attribute and column names
are not case-sensitive.

No Coordinates

infx_type: infx_null

Features with no coordinates are tagged with this value when reading from or writing to Informix Spatial.

Points
infx_type: infx_point

All Informix Spatial point and multipoint features are read as infx_point. The only difference being the geometry
type of feature, which will be set to fme_aggregate if it is a multipoint and fme_point if it is a point.

Lines
infx_type: infx_line

All Informix Spatial linestring and multilinestring features are read as infx_line. The only difference is the geome-
try type of feature, which will be set to fme_aggregate if it is a multilinestring and fme_line if it is a linestring.

Polygons

infx_type: infx_polygon

All Informix Spatial polygon and multipolygon features are read as infx_polygon. The only difference is the
geometry type of feature, which will be set to fme_aggregate if it is a multipolygon and fme_polygon if it is a
polygon. Polygon features include donut polygons with one or more holes.

The following table summarizes all of the infx_type values that are possible with Informix Spatial geometry, and pro-
vides a description of each representation.

infx_type Informix Spatial
type Representation

infx_null N/A No geometry

infx_point POINT Single point geometry.
fme_geometry = fme_point
fme_type = fme_point

MULTIPOINT Aggregate containing one or more points.
fme_geometry = fme_aggregate
fme_type = fme_point

infx_line LINESTRING Single line geometry.
fme_geometry = fme_line
fme_type = fme_line

MULTILINESTRING An aggregate of linestrings.
fme_geometry = fme_aggregate
fme_type = fme_line

infx_polygon POLYGON A single polygon or donut geometry.
fme_geometry = fme_polygon or fme_
donut
fme_type = fme_polygon

MULTIPOLYGON An aggregate of simple polygons or donut
polygons.
fme_geometry = fme_aggregate
fme_type = fme_polygon

infx_geometry GEOMETRY An arbitrary geometry.

IDRISI Vector Format Reader/Writer

The IDRISI Vector Format Reader and Writer modules allow the Feature Manipulation Engine (FME) to read and write
IDRISI vector files. IDRISI files use a published binary format. The IDRISI data and the documentation file structure
are described in the IDRISI Guide to GIS and Image Processing, Volume 1.

Overview

IDRISI is a geographic information and image processing software system that is widely used by universities world-
wide. It is a two-dimensional (2D) system which allows user-defined attributes stored in an Access database to be
linked to its data file.

IDRISI features contain a feature geometry and an id number. An IDRISI file consists of at least two physical files, hav-
ing the following filename extensions:

Filename Extension Contents

.vct Vector data file

.vdc Vector documentation file

If an Access database is available, the following files should also be available:

Filename Extension Contents

.vlx Vector link information file

.mdb, .accdb Access database file

.adc Attribute documentation file

These extensions are added to the basename of the IDRISI file.

The IDRISI reader and writer support the storage of point, line, area (polygon), and text geometric data in the .vct
files.

The FME considers an IDRISI dataset to be a collection of IDRISI files in a single directory.

IDRISI Quick Facts

Format Type Identifier IDRISI

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .vlx, .vct, .vdc (.mdb, .accdb,
.adc)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type idrisi_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none no

Reader Overview

The IDRISI reader first scans the directory it is given for the IDRISI files defined in the mapping file.

For each IDRISI file that it finds, it checks to see if that file is requested by looking at the list of IDs specified in the
mapping file. If a match is made or no IDs were specified in the mapping file, the IDRISI file is opened. The IDRISI
reader then extracts features from the file one at a time, and passes them on to the rest of the FME for further proc-
essing. If an additional Access database is available, the user-defined attributes will also be passed to the FME. When
the file is exhausted, the IDRISI reader move on to the next file in the directory.

Optionally, a single IDRISI file can be specified in the mapping file. If this is the case, only that IDRISI file is read.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the IDRISI reader is IDRISI.

DATASET

Required/Optional: Required

The value for this directive is the directory containing the IDRISI files to be read, or a single IDRISI file. A typical map-
ping file fragment specifying an input IDRISI dataset looks like:

IDRISI_DATASET /usr/data/idrisi/input

Workbench Parameter: Source IDRISI Vector Format File(s)

DEF

Required/Optional: Required

Each IDRISI file must be defined before it can be read. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of an IDRISIDEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed-length strings. The
width parameter controls the maximum number of
characters that can be stored by the field. No pad-
ding is required for strings shorter than this
width.
For the IDRISI database, the width is limited to a
maximum of 255.

date Date fields store date as character strings with
the format YYYYMMDD.

double Float fields store 64-bit floating point values.
There is no ability to specify the precision and
width of the field.

integer Integer fields store 32-bit signed integers.

logical Logical fields store TRUE/FALSE data. Data read
or written from and to such fields must always
have a value of either true or false.

IDs

Required/Optional: Optional

This optional specification limits the available and defined IDRISI files read. If no IDs are specified, then all defined
and available IDRISI files are read.

The syntax of the IDs directive is:

<ReaderKeyword>_IDs <baseName> \

<baseName1> … \
<baseNameN>

The basenames must match those used in DEF lines.

The example below selects only the roads IDRISI file for input during a translation:

IDRISI_IDs roads

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The IDRISI writer creates and writes feature data to IDRISI files in the directory specified by the DATASET directive.
As with the reader, the directory must exist before the translation occurs. Any old IDRISI files in the directory having
the same name as files being written are overwritten with the new feature data. As features are routed to the IDRISI
writer, the IDRISI writer determines the file into which the features are written to and outputs them accordingly.
Many IDRISI files can be written during a single FME session.

In IDRISI, each vector file can have only one type of feature. Any feature not matching the feature type as specified in
the mapping file will not be written to file. In addition, any user-defined attributes are written to the database only if
an Access database is available.

Writer Directives

The directives processed by the IDRISI writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the IDRISI writer is IDRISI.

DATASET

Required/Optional: Required

The value for this directive is the directory containing the IDRISI files to be written to. A typical mapping file fragment
specifying an output IDRISI dataset looks like:

IDRISI_DATASET /usr/data/idrisi/output
IDEX_DATASET c:\idex\map.idx

Workbench Parameter: Destination IDRISI Vector Format Directory

DEF

Required/Optional: Required

Each IDRISI file must be defined before it can be written. The definition specifies the base name of the file, and the
names and the types of all attributes. The syntax of a IDRISI DEF line is:

<WriterKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The attribute types supported are the same as those listed under the reader section.

The following table shows the DEF line directives that are supported by IDRISI. They are prefixed by the keyword
“IDRISI_”.

Keyword Suffix Value Required/Optional

TYPE The feature type of the file. In IDRISI, each
file can contain only one feature type. The
allowable types are idrisi_point, idrisi_
line, idrisi_area and idrisi_text.

Required

FILE_TITLE Contains the descriptive name of the file. It
is the name which is displayed at the top of
the data file. If not specified, this defaults
to “unknown”.

Optional

REF_SYSTEM The name of the geographic reference sys-
tem used with the file. This may be Plane,
or Lat/Long and so forth. If not specified,
this defaults to “unknown”.

Optional

REF_UNITS The unit of measure used by the reference
system. The recognized units are meters,
feet, miles, kilometers, degrees and radi-
ans. This defaults to “meters” if not spec-
ified.

Optional

UNIT_DIST The scaling factor of the map in relation to
the ground. This should be 1 in most cases
and this defaults to 1 if not specified.

Optional

POSN_ERROR The degree of accuracy of the position of
the feature in the vector file. If not spec-
ified, this defaults to “unknown”.

Optional

RESOLUTION The typical distance between points of a fea-
ture in the vector file. If not specified, this
defaults to “unknown”.

Optional

VALUE_UNITS The unit of measure of the values used in
the vector file. If not specified, this defaults
to “unspecified”.

Optional

VALUE_ERROR The degree of error in the data values. For
qualitative data, this is recorded as a pro-
portional error value. For quantitative data,

Optional

Keyword Suffix Value Required/Optional

this should be recorded as a RMS error
value.

FLAG_VALUE Any value in the vector file, which is not a
data value, but has special meaning. This
entry should remain blank if such value
does not exist.

Optional

FLAG_DEF The definition of the above FLAG_VALUE.
This field should remain blank if FLAG_
VALUE does not exist.

Optional

LEGEND_CAT

{<number>}

The legend categories which shows up in
the legend box when the vector file is dis-
played. The <number> can be any positive
integer which is larger than 0.

Optional

COMMENT

{<number>}

Any additional information about the data.
The <number> starts from 1 and increments
by one for each additional comment line.

Optional

LINEAGE

{<number>}

Any information regarding the history of
how the data is recorded. The <number>
starts from 1 and increments by one for
each additional lineage line.

Optional

completeness

{<number>}

The degree of how well the values describe
the subject matter indicated. The <number>
starts from 1 and increments by one for
each additional lineage line.

Optional

consistency

{<number>}

The logical consistency of the file. The
<number> starts from 1 and increments by
one for each additional consistency line.

Optional

The following mapping file fragment defines two IDRISI files. Note that all but the IDRISI_TYPE are optional. There
is no need to specify all of them.

The first file provides a simple example as to how some of the DEF lines are used. The second file gives an example
which has two additional user defined attributes. Note that user-defined attributes are only allowed on Microsoft Win-
dows platforms.

IDRISI_DEF landcover \

IDRISI_FILE_TITLE “ExampleFileTitle1” \

IDRISI_TYPE idrisi_area \

IDRISI_REF_SYSTEM “ExampleRefSystem” \

IDRISI_REF_UNITS kilometers \

IDRISI_LEGEND_CAT{-20} "ExampleLegendCat-20" \

IDRISI_LEGEND_CAT{1} "ExampleLegendCat1" \

IDRISI_LEGEND_CAT{-1} "ExampleLegendCat-1" \

IDRISI_COMMENT{1} "ExampleComment1" \

IDRISI_COMMENT{2} "ExampleComment2" \

IDRISI_COMMENT{3} "ExampleComment3"

IDRISI_DEF roads

IDRISI_FILE_TITLE “ExampleFileTitle2” \

IDRISI_TYPE idrisi_line \

IDRISI_REF_SYSTEM “ExampleRefSystem” \

IDRISI_REF_UNITS kilometers \

IDRISI_LEGEND_CAT{-20} "ExampleLegendCat-20" \

IDRISI_LEGEND_CAT{1} "ExampleLegendCat1" \

IDRISI_LEGEND_CAT{-1} "ExampleLegendCat-1" \

color char(20) \
style logical

COMPRESS_AT_END

Required/Optional: Optional

This statement instructs FME to compact the database after all writing has been done. This makes use of the existing
MDB database option to compact. The compact operation compresses the output database to a small size on disk.

Example:

COMPRESS_AT_END Yes

Workbench Parameter: Compress Database When Done

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

IDRISI features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a
value for each attribute in each IDRISI feature. In addition, each IDIRISI feature contains several special attributes to
hold the type of the geometric entity and its display parameters. All IDRISI features contain an idrisi_type attrib-
ute, which identifies the geometric type. Depending on the geometric type, the feature contains additional attributes
specific to the geometric type. These are described in subsequent sections. All features contain an idrisi_id.

Points

idrisi_type: idrisi_point

IDRISI point features specify a coordinate in addition to its ID value. There are no attributes specific to this type.

Attribute Name Contents

idrisi_type The IDRISI geometric type of this entity.
Range:
idrisi_point|
idrisi_line|
idrisi_area|
idrisi_text

Default: No default

idrisi_id The ID value of the symbol. IDRISI IDs are used to link vec-
tor graphics with user-defined attributes.
Range: Any real > 0.
Default: 1 and increments by 1 for each additional feature

Lines

idrisi_type: idrisi_line

IDRISI line features specify linear features defined by an array of x and y coordinates. There are no attributes specific
to only this type of element.

Regions

idrisi_type: idrisi_area

IDRISI area features specify area (polygonal) features. The areas that make up a single feature may or may not be dis-
joint, and may contain polygons that have holes. The first and last coordinates must be the same in order for it to be a
region.

There are no attributes specific to this type of element.

Text

idrisi_type: idrisi_text

IDRISI text features are used to specify annotation information. Each text feature has a location defined by a single
point geometry, and can have its text string, style, justification, and rotation angle set independently.

The following table lists the special FME attribute names used to control the IDRISI text settings.

Attribute Name Contents

idrisi_text_string This is the text string that is the label for the feature.
Range: 1 - 256 characters
Default: Empty string

idrisi_text_size This the font size of the label for the feature.
Range: > 0
Default: 1/10th of the height of the map or 10

idrisi_style The style code of the text string. This controls the
color of the text string.
Range: Any integer > 0
Default: 1

idrisi_rotation The rotation of the text, as measured in degrees
counterclockwise from the horizontal.
Range: 0.0 - 360.0
Default: 0.0

idrisi_justification_x The justification of the text in the X direction. Values
approaching 1.00 shift the text to the left of the loca-
tion point, and values the closer to 0.00 shift the text
to the right.
Range:
0.00 - 1.00
0.00 Left margin
0.50 Centre
1.00 Right margin
Default: 0.00

Attribute Name Contents

idrisi_justification_y The justification of the text in the Y direction. Values
approaching 1.00 shift the text upward relative to the
location point, and values the closer to 0.00 shift the
text downward.
Range:
0.00 - 1.00
0.00 Bottom
0.50 Centre
1.00 Top
Default: 0.00

Industry Foundation Class STEP Files (IFC) Reader

The IFC Reader allows the Feature Manipulation Engine (FME) to read Industry Foundation Classes (IFC) Standard for
the Exchange of Product model data Files (STEP-Files). IFC is a vendor neutral Building Information Modeling data
model and the ISO 10303 STEP-File standard is its primary exchange format.

The FME format keyword is IFC.

Overview

The IFC specification is promoted and published by International Alliance for Interoperability (IAI). The IFC model
specification is published in the ISO 10303 EXPRESS data modelling language. Data is exchanged through the ISO
10303 STEP-File plain-text format.

The IFC Reader module support IFC specification version 2x, 2x2, and 2x3.

An IFC dataset is a collection of entity instances of entity classes. All class instances that descend from IfcRoot are
mapped to features in FME. There are three fundamental class types in the IFC model:

l Descendants of IfcObject stands for all physically tangible and existing items, and conceptual items, such as proc-
esses and resources. IfcProduct is a subtype of IfcObject and descendants of IfcProduct are the only classes that
may have a geometric representation.

l Descendants of IfcRelationship describe relationships between objects.

l Properties are descendants of IfcPropertyDefinition and are characteristics that may be assigned to objects.

Instances are uniquely identified by an instance name inside a STEP-File dataset. Instance names appear in attributes
that reference other instances.

The attributes of IFC classes are fixed. However, objects can be extended by properties. Properties may have prede-
fined structures defined by the IFC model, or they can be dynamically defined inside a dataset.

A collection of properties forms a property set, and the set is assigned to an object through a relationship instance. In
FME, dynamic property set instances are identified by the Name attribute, and they form feature types according to
this attribute. Properties assigned to these dynamic property sets appear as attributes of feature types.

IFC Quick Facts

Format Type Identifier IFC

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type IfcRoot classes

Typical File Extensions IFC

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Never

Enhanced Geometry Yes

Geometry Type ifc_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes

elliptical arc yes surface yes

ellipses yes text yes

line yes z values yes

none yes

Reader Overview

The IFC reader will automatically detect the IFC specification version of the data file by analyzing its header.

To generate the source schema, the IFC Reader will scan through the source file. Each non-abstract entity descen-
dant from IfcRoot will appear as a source feature type. The source schema also has feature types for history and iden-
tification related entities: IfcOwnerHistory, IfcPerson, IfcApplication, IfcPersonAndOrganization, and IfcOrganization.
The source schema will only contain feature types for entities that are instantiated in the source data file.

Reader Directives

The directives that are processed by the IFC reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword>_ in a mapping file. By default, the <ReaderKeyword> for the IFC reader is IFC.

DATASET

Required/Optional: Required

The value for this directive is the path to the source data file. If the data file does not exist or if the file is unrecognized
by the reader, then the process will fail.

SPLIT_REPRESENTATIONS

Required/Optional: Optional

This directive specifies whether IfcProduct objects associated with multiple IfcShapeRepresentation objects will be
read as a single FME feature. If the value is NO and the IfcProduct object is associated with multiple IfcShap-
eRepresentation objects, then the geometry of the feature will be a collection of all the geometric representations. If
the value is YES, then the IfcProduct will be split among multiple FME features with each feature geometrically rep-
resented by a single IfcShapeRepresentation object. All the split features will have the same attributes that are on the
IfcProduct object. The default value of this directive is YES.

Default value:

IFC_SPLIT_REPRESENTATIONSYES

Workbench Parameter: Split multiple representations

SUBTRACT_OPENINGS

Required/Optional: Optional

This directive specifies whether the reader will subtract IfcOpeningElement representations from IfcProduct rep-
resentations that are related together by an IfcRelVoidsElement object. If the value is YES then the IfcO-
peningElement objects will have no geometry, and IfcProduct representations will have openings as determined by
the IfcRelVoidsElement relationship. If the value is NO then the opening will not be calculated, and IfcOpeningElement
objects will retain their representations. The default value of this directive is YES.

IFC_SUBTRACT_OPENINGSYES

Workbench Parameter: Subtract Openings

IFCSPACE_GEOMETRY

Required/Optional: Optional

This directive specifies whether the reader will preserve or remove the representations of IfcSpace features. IfcSpace
geometries are virtual areas or volumes that provide for certain functions within a building. When physical entities
are most important, visualizing these volumes of space may not be desirable.

If the value is YES then IfcSpace features will have their defined representations. If the value is NO, then IfcSpace fea-
tures will have no geometry. The default value for this directive is NO.

IFC_IFCSPACE_GEOMETRYNO

Workbench Parameter: Read IfcSpace geometries

CONTEXT_TYPES

Required/Optional: Optional

This directive specifies which geometric representation will be processed by the reader according to the associated
IfcRepresentationContext object’s ContextType attribute. If this directive is not specified, then all representations will
be processed. The format for values for this directive is a comma-delimited list of ContextType values. If at least one
ContextType value is specified for this directive, then the reader will only process the representations that are asso-
ciated with IfcRepresentationContext objects that have ContextType values that appear in the list specified for this
directive. However, if a ‘!’ character appears by itself in the comma-delimited string, then the reader will not process

the representations associated with representation contexts that matches a value in the list. If the only value for this
directive is ‘!’, then all context types will be processed.

For example, this mapping file statement will direct the reader to only read geometric representations that are asso-
ciated with ‘Design’ and ‘Sketch’ representation contexts:

IFC_CONTEXT_TYPES Design,Sketch

This mapping file statement will direct the reader to read all geometric representations that are not associated with
the ‘Sketch’ representation context:

IFC_CONTEXT_TYPES !,Sketch

Workbench Parameter: Representation context types to read

REPRESENTATION_IDENTIFIERS

Required/Optional: Optional

This directive specifies which geometric representation will be processed by the reader according to the IfcRep-
resentation object’s RepresentationIdentifier attribute. If this directive is not specified, then all representations will
be processed. The format for values for this directive is a comma-delimited list of RepresentationIdentifier values. If
at least one RepresentationIdentifier value is specified for this directive, then the reader will only process the rep-
resentations that have RepresentationIdentifier values that appear in the list specified for this directive. However, if a
‘!’ character appears by itself in the comma-delimited string, then the reader will not process the representations that
matches a value in the list. If the only value for this directive is ‘!’, then all representation identifiers will be proc-
essed.

For example, this mapping file statement will direct the reader to only read geometric representations with ‘Axis’ and
‘Body’ representation identifiers:

IFC_REPRESENTATION_IDENTIFIERS Axis,Body

This mapping file statement will direct the reader to read all geometric representations except for the ones with an
‘Axis’ representation identifier:

IFC_REPRESENTATION_IDENTIFIERS !,Axis

Workbench Parameter: Representation identifiers to read

REPRESENTATION_TYPES

Required/Optional: Optional

This directive specifies which geometric representation will be processed by the reader according to the IfcRep-
resentation object’s RepresentationType attribute. If this directive is not specified, then all representations except for
the BoundingBox representation type will be processed. The format for values for this directive is a comma-delimited
list of RepresentationType values. If at least one RepresentationType value is specified for this directive, then the
reader will only process the representations that have RepresentationType values that appear in the list specified for
this directive. However, if a ‘!’ character appears by itself in the comma-delimited string, then the reader will not proc-
ess the representations that matches a value in the list. If the only value for this directive is ‘!’, then all representation
types will be processed.

Representations can have multiple representation types: specifically, the MappedRepresentation type can coexist
with other representation types. In this case, all representation types applicable to the representation must be spec-
ified for that representation to be read.

For example, this mapping file statement will direct the reader to only read geometric representations with ‘Brep’ and
‘SweptSolid’ representation types:

IFC_REPRESENTATION_TYPES Brep,SweptSolid

This mapping file statement will direct the reader to read all geometric representations except for the ones with an
‘BoundingBox’ representation type. This is the default value for this directive and this value will be used if the direc-
tive was not specified in the mapping file:

IFC_REPRESENTATION_TYPES !,BoundingBox

Workbench Parameter: Representation types to read

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

IFC features will have attributes that corresponds to the explicit attributes listed in the EXPRESS entity definitions.
Derived attributes and inverse attributes will not appear on features. However, some inverse attributes are mapped to
format specific attributes for convenience and are listed in the following table.

For IfcProduct objects, the attributes ObjectPlacement and Representation are mapped to the format specific attributes
ifc_object_placement and ifc_representation, respectively.

Attributes with attribute type instance are references to other instances. These values will always start with a ‘#’ char-
acter followed by a number. They will match the value of the ifc_instance_name attribute of some feature.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the following format-specific attributes:

Attribute Name Contents

ifc_instance_name This attribute contains the unique instance name that cor-
responds to the feature.

ifc_entity_type This attribute contains the name of the entity of which the
feature is an instance. The value is equivalent to the fea-
ture type name for most features.

ifc_representation_
identifier

This attribute contains the value of the Rep-
resentationIdentifier attribute of the IfcRepresentation
object by which this feature is represented. This attribute
is only applicable when the feature has only one rep-
resentation. (See the ifc_representations attribute)

ifc_context_type This attribute contains the value of the ContextType attrib-
ute of the IfcRepresentationContext object with which the

Attribute Name Contents

feature’s representation is associated. This attribute is
only applicable when the feature has only one rep-
resentation. (See the ifc_representations attribute)

ifc_context_dimension This attribute contains the value of the Coor-
dinateSpaceDimension attribute of the IfcGeo-
metricRepresentationContext object with which the
feature’s representation is associated.

ifc_context_precision This attribute contains the value of the Precision attribute
of the IfcGeometricRepresentationContext object with
which the feature’s representation is associated.

ifc_is_decomposed_by{} This list attribute contains the instance names of objects
that decomposes the feature according to an IfcRel-
Decomposes relationship instance.

ifc_decomposes This attribute contains the instance name of the object
that the feature decomposes according to an IfcRel-
Decomposes relationship instance.

ifc_contains{} This list attribute contains the instance names of objects
that is spatially contained in the feature according to an
IfcRelContainedInSpatialStructure relationship instance.

ifc_is_contained_in This attribute contains the instance name of the object in
which the feature is spatially contained according to an
IfcRelContainedInSpatialStructure relationship instance.

ifc_representations{}.
type

This structured list attribute contains the IFC geometry
type of each representation associated with the feature.

ifc_representations{}.
identifier

This structured list attribute contains the representation
identifier (see ifc_representation_identifier) of each
representation associated with the feature.

ifc_object_placement This attribute contains the instance name of the IfcOb-
jectPlacement object which determines the placement of
the feature’s representation in world coordinates. The IFC
Reader will have processed this object when generating
the geometry for the feature.

ifc_representation This attribute contains the instance name of the IfcRep-
resentation object which determines the representation of
the feature. The IFC Reader will have processed this
object when generating the geometry for the feature.

Material Associations

If the feature is associated with an IfcMaterial object through an IfcRelAssociatesMaterial relationship object, then the
feature will have the following attributes according to the type of material description.

Association of a single material

Attribute Name Contents

ifc_material.name A string value of the name of the material.

Association of a list of materials

Attribute Name Contents

ifc_material.material{}.name A string value of the name of a material in the material
list.

Association of material layers

Attribute Name Contents

ifc_material.layer{}.name A string value of the name of a material layer in the layer
set.

ifc_material.layer{}.thickness A real number value of the thickness of a material layer in
the layer set.

ifc_material.layer{}.is_ventilated A boolean value of either ‘T’ or ‘F’ that determines
whether the material layer is ventilated.

ifc_material.layer{}.layer_set_name An optional string value of thel name of the layer set.

Property Sets

If the feature is a property set object, then its attribute will be IfcProperty objects. The IfcProperty.Name attribute
determines the name of the attribute on the feature. The encoding of various types of IfcProperty classes to feature
attributes is described in the following section:

IfcPropertySingleValue

The value of the attribute on the feature is the value of the IfcPropertySingleValue.NominalValue attribute of the
instance.

IfcPropertyEnumeratedValue

The value of the attribute on the feature is the comma-delimited string of the multiple values of the Ifc-
PropertyEnumeratedValue.EnumerationValues attribute of the instance.

IfcPropertyBoundedValue

The value of the attribute on the feature is the values of the IfcPropertyBoundedValue attributes LowerBoundValue
and UpperBoundValue of the instance arranged in the form ‘<LowerBoundValue>,<UpperBoundValue>’.

IfcPropertyListValue

The value of the attribute on the feature is the comma-delimited string of the multiple values of the Ifc-
PropertyListValue.ListValues attribute of the instance.

IfcComplexProperty

The IfcComplexProperty object contains multiple IfcProperty objects. Each of the IfcProperty objects will be encoded
by the method described above, but their attribute names on the feature will be prefixed by the value of the Ifc-
Property.Name attribute of the IfcComplexProperty instance.

The following example shows a IFC data file snippet and the resulting FME feature schema:

#1=IFCPROPERTYSET($,$,'Example','',(#2));
#2=IFCCOMPLEXPROPERTY('Color',$,'Color',(#3,#4,#5));
#3=IFCPROPERTYSINGLEVALUE('Red',$,IFCINTEGER(0),$);
#4=IFCPROPERTYSINGLEVALUE('Green',$,IFCINTEGER(0),$);
#5=IFCPROPERTYSINGLEVALUE('Blue',$,IFCINTEGER(0),$);

++
Feature Type: Example'
Attribute(string) : Color.Red' has value 0'
Attribute(string) : Color.Green' has value 0'
Attribute(string) : Color.Blue' has value 0'
==

IfcConnectionGeometry

IfcConnectionGeometry objects describe the geometric and topological constraints that facilitate the connection of
two objects. IfcConnectionGeometry objects connect geometries of features, and such geometries with connections
will have the following geometry traits:

Attribute Name Contents

ifc_connects_relating_element A comma delimited list of instance names of instances
that are relate to the geometry.

ifc_connects_related_element A comma delimited list of instance names of instances to
which the geometry relates.

Geometry Representation

The geometry of IFC features is identified by the ifc_type attribute. The valid values for this attribute are listed
and described in the following sections.

Points

ifc_type: ifc_point

The geometry is represented by a single point.

Lines

ifc_type: ifc_line

The geometry is represented by a path. Path segments can be linear or elliptical.

Currently, IfcTrimmedCurve is not supported.

These attributes are common to features with ifc_type of ifc_line, but the attributes may also appear in features with
different ifc_type values.

Attribute Name Contents

ifc_curve_style_name This attribute specifies the name of the specific curve
style assigned to the geometry.

ifc_curve_style_width This attribute specifies the width of the curve.

Attribute Name Contents

ifc_curve_style_color This attribute specifies the color of the curve as a string
in the format “r,g,b” where ‘r’, ‘g’, and ‘b’ are the red,
green, and blue components respectively specified in the
inverval between 0 and 1.

ifc_curve_style_color.name This attribute specifies the name of the color assigned to
the curve.

ifc_curve_style_font_name This attribute specifies the name of the curve font.

ifc_curve_style_font_pattern
.visible

This attribute specifies the length of the visible portion of
the curve. The curve will alternate between visible and
invisible segments accordingly.

ifc_curve_style_font_pattern
.invisible

This attribute specifies the length of the invisible portion
of the curve. The curve will alternate between visible and
invisible segments accordingly.

ifc_curve_style_font_scaling This attribute specifies the scaling factor applied to the
curve font.

Polygon

ifc_type: ifc_polygon

The geometry is represented by an enclosed area.

These attributes are common to features with ifc_type of ifc_polygon, but the attributes also may appear in features
with different ifc_type values.

Attribute Name Contents

ifc_fill_area_style_name This attribute specifies the name of the specific area fill
style assigned to the geometry.

ifc_fill_area_style_color This attribute specifies the color of the area fill as a string
in the format “r,g,b” where ‘r’, ‘g’, and ‘b’ are the red,
green, and blue components respectively specified in the
inverval between 0 and 1.

ifc_fill_area_style_color.
name

This attribute specifies the name of the color assigned to
the fill area.

ifc_fill_area_style_
external_reference.location

This attribute specifies the location of the external
resource item.

ifc_fill_area_style_external
_reference.item_reference

This attribute specifies the external resource identifier.

ifc_fill_area_style_external
_reference.name

This attribute specifies the optional name of the external
resource item.

Surface

ifc_type: ifc_surface

The geometry is represented by a 3D surface. The surface may consist of multiple faces. Faces in IFC are double-
sided; as a result, back-face culling should not be performed on IFC data.

These attributes are common to features with ifc_type of ifc_surface or ifc_solid, but the attributes may also appear
in features with different ifc_type values.

Attribute Name Contents

ifc_surface_style_name This attribute specifies the name of the specific surface
style assigned to the geometry.

ifc_surface_style_side This attribute specifies the side of the surface geometry
to which this style is assigned.

ifc_surface_style_shading_
color

This attribute specifies the shading color of the surface.

ifc_surface_style_diffuse_
transmission_color

This attribute specifies the diffuse transmission color of
the surface.

ifc_surface_style_diffuse_
reflection_color

This attribute specifies the diffuse reflection color of the
surface.

ifc_surface_style_transmission_color This attribute specifies the transmission color of the sur-
face.

ifc_surface_style_
reflectance_color

This attribute specifies the reflectance color of the sur-
face.

Solid

ifc_type: ifc_solid

The geometry is represented by a 3D solid. The outer boundary of the solid is represented by an enclosed surface.
Faces in IFC are double-sided; as a result, back-face culling should not be performed on IFC data.

Currently, for SweptSolid geometries, only IfcExtrudedAreaSolid is supported. The IfcRelVoidsElement relationship is
not supported: IfcWall geometries may not have proper recesses and openings.

Text

ifc_type: ifc_text

The geometry is represented by a text literal.

These attributes are common to features with ifc_type of ifc_text, but the attributes may also appear in features with
different ifc_type values.

Attribute Name Contents

ifc_text_style_name This attribute specifies the name of the specific text style
assigned to the geometry.

ifc_text_style_font_name This attribute specifies the name of the text font.

ifc_text_style_external_reference This attribute specifies an externally defined text style.

ifc_text_style_foreground_color This attribute specifies the foreground color of the text.

ifc_text_style_background_color This attribute specifies the background color of the text.

Bounding Box

ifc_type: ifc_bounding_box

The geometry is represented by a 3D box which represents the bounding box of the physical representation of the fea-
ture. With the default setting for the REPRESENTATION_TYPES directive, bounding boxes will not be output by the IFC
Reader.

Collection

ifc_type: ifc_collection

The geometry is represented by collection of geometry. Each member of the collection may have any geometric rep-
resentation. This geometry type most frequently arises when the IFC feature has multiple geometric representations.

Intergraph GeoMedia Access and SQL Server Warehouse
Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The GeoMedia Access Warehouse Reader/Writer module provides the Feature Manipulation Engine (FME) with access
to Intergraph GeoMedia Access and SQL Server Warehouses, which store both spatial and attribute data.

Note: The following information applies both to Access and SQL Server warehouse reading and writing unless other-
wise specified.

FM0 Quick Facts

Format Type Identifier FM0

Reader/Writer Both

Licensing Level Professional

Dependencies Writer: GeoMedia installed

Dataset Type File

Feature Type Table name

Typical File Extensions .mdb, .accdb

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Optional

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type fm0_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

FM0_SQL Quick Facts

Format Type Identifier FM0_SQL

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Optional

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type fm0_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

Overview

GeoMedia warehouses store both geometry and attributes for features in the form of columns within the tables of a
database. Tables can be divided into two groups based on content. The first group contains meta-information about
the formatting of the data, including coordinate systems, tables aliases, modification logs, a data table list and a field
level index. The second group is the list of tables that actually contain the geometry features and their attributes. For
example, a single Microsoft Access .mdb or .accdb file or a single SQL Server database contains all the necessary
information for an image.

In order to retrieve information from a GeoMedia warehouse, an Open DataBase Connectivity (ODBC) source must be
set up. Depending on the source dataset format, users can specify a filename, database name or a valid existing
ODBC data source name. If the source format is of type “GeoMedia Access warehouse” then either a filename or DSN
can be used. If the source format is of type “GeoMedia SQL Server warehouse” then either a database name with asso-
ciated parameters or DSN can be used. Once the GeoMedia Reader has all the required information, it then dynam-
ically creates a temporary ODBC source (when a filename or database name is supplied) to connect to that database.

Point, line, area, arc, and text primitive geometric data can be stored in the tables produced by GeoMedia, as well as
composites (aggregates), boundaries (donuts) and collections (aggregates) of those types. A given data table hold-
ing multiple types of geometries can be read by the reader, but the writer only produces tables containing one spe-
cific geometry type each, including boundaries, composites or collections of that type. The result is that one table
containing many types of features may be converted into several tables – one for each type of feature by the writer.
This is especially true of the collection type in GeoMedia which is very generally a collection of any primitive type and
has no corresponding equivalent in FME. Syntactically, the type is simply appended to the table name separated by an
underscore (for example, tableOfManyTypes_area).

The key table for determining the names of the spatial tables is called the GFeatures table. This table contains the
list of names of the geometry and attribute data tables. This information can also be retrieved from the Field-
Lookup table which also contains the specific fields of each geometry table. Before either of these lookups can
happen, however, you have to find the GFeatures and FieldLookup tables. Table names can be aliased and
there is only one table that must have a constant name (the GAliasTable). From here, you can look up the given
names of the other metadata tables in the specific database you are viewing.

GeoMedia warehouses hold three-dimensional geometries. A geometry table may contain any mix of attributes the
user has specified, but must contain a column containing the actual geometry object. This column is a blob type and
is simply an encoded block of binary data. Each geometry blob type is encoded in a unique way and varies in length.

GeoMedia can store text in two variations: plain text and rich text. Since FME supports plain text only, the GeoMedia
reader will convert all rich text to plain text and set the text size to either the default (1 ground unit) or to the user-
supplied size in ground units using the TEXT_SIZE_GROUND_UNITS keyword. If the text being read is in rich
text format, it also sets the attribute fm0_rtf_text_string to the original formatted string.

The GeoMedia writer will first check to see whether or not the attribute fm0_rtf_text_string is set. If it is set,
then the formatted string will be used to write out as rich text. If the attribute is not set, then the GeoMedia writer by
default will write plain text unless the PLAIN_TEXT keyword is set to NO. In this case, the GeoMedia writer will write
rich text using either a default font size of 10 or a user-supplied font size using FONT_SIZE keyword. Allowed font
size is between 1 to 1024 inclusive. At this time the font size for rich text is the only supported style for writing.

Reading is performed by parsing the tables and respective binary BLOBs directly from the Microsoft Access database
or the SQL Server database. Therefore, the GeoMedia Access Warehouse Reader does not require GeoMedia to be
installed in order to run. The GeoMedia Access Warehouse Writer, however, uses the GeoMedia COM objects to create
and write the tables and BLOBs, and therefore cannot be used without a licensed GeoMedia installation. The GeoMedia
SQL Server Warehouse Reader/Writer does not require the installation of GeoMedia but does require access to Micro-
soft SQL Server.

Coordinate system support exists for both reading and writing: in the best case, a GeoMedia warehouse that contains
a defined coordinate system can be read and converted to any of the supported writer formats in FME which also sup-
port coordinate systems, with the same coordinate system name. If the coordinate system is not specifically identified
to have the exact same defined name within FME, the attributes of the coordinate system are still transferred, pro-
ducing an identical coordinate system in all but name. The reverse is also true: the writer can interpret any given FME
coordinate system and convert it to either a named GeoMedia coordinate system or an equivalent created coordinate
system.

One issue involves the type of projection used in a coordinate system definition which GeoMedia calls the Base Stor-
age Type. This type can be set to one of projected, geographic or geocentric. Projected types are the usual case and
are handled normally by FME, though it is notable that the storage center values from the GeoMedia coordinate sys-
tem become built into the coordinates and are cleared in translated warehouses. All geographic types are represented
in the Lat/Long coordinate system but remain identical in appearance. The storage center values here will represent
how to convert the coordinates to radians since they will be provided in degrees, as is consistent with the way GeoMe-
dia itself handles geographic types. Finally, the geocentric type is not supported by FME.

Native spatial indexing in GeoMedia is supported by both the reader and the writer. However some conditions apply.
The reader will preserve spatial indexes read from a GeoMedia warehouse and a writer will automatically create new
indexes (when creating new feature tables) based on the data, as long as the following is true:

The CREATE_SPATIAL_INDEX keyword is not set to NO,

The registry key HKEY_LOCAL_MACHINE\SOFTWARE\Intergraph\Applications has a string value
called DefaultJCache which must be set to the correct version of GeoMedia (for example “GeoMedia Professional_
04.00”), and

The autodt.ini file must contain a valid datummapping between the current coordinate system datum and the
WGS84 datum. (See the file for more detail. It is probably located in a directory such as C:\Program Files\G-
eoMedia Professional\Program\cssruntm\cfg\autodt.ini).

When appending to an existing warehouse, the creation of a Spatial Index depends on whether the Spa-
tialKeyFieldName property is set for the geometry column and the column itself exists. If the property is set
and the column exists, then a spatial key will be automatically created for the geometry, regardless of the CREATE_
SPATIAL_INDEX keyword setting.

For the most part, spatial index creation should happen automatically for most known coordinate systems since the
default for the writer creating them is yes, and the registry key mentioned above should be set when GeoMedia is
installed. Additionally, data tables can be created with either primary or secondary indexes by the GeoMedia Access
Warehouse Writer.

When translations are run with enhanced geometry handling turned ON, it enables the Geomedia and Geomedia SQL
readers to read complex geometries like paths, and enables the FME to store them. The Geomedia and Geomedia SQL
writers have been enabled to write FME features with enhanced geometries as well. Altogether, the addition of the
enhanced geometry model support increases accuracy of geometric representation in Geomedia-to-Geomedia
translations, as well as the creation and interpretation of more accurate features when translating to or from other
FME formats

Reader Overview

The GeoMedia Warehouse Reader produces FME features for all data held in the Microsoft Access .mdb or .accdb
files or an MS SQL Server database, with the exception of image (coverage) data. The reader opens the connection to
the source dataset and reads the GAliasTable to determine the proper table names to be used. Next it reads the
table of GFeaturesTable type to determine the list of tables that contain geometry data. This list of data tables to
be read is modified by the specified ID and DEF lines specified in the mapping file or on the command line. Each
geometry table is then read and its features are processed and returned one at a time. When a table is exhausted, the
reader starts on the next data table in the list until all tables are read. Issues with reading in a table may result in a
specific feature being skipped and sometimes an entire table depending on the severity of the error, but the reader
will always try to perform as much translation as possible.

Geometries from GeoMedia do not map exactly to FME geometries. This will have the following effects on the resulting
FME features:

l Collections map to one aggregate feature for each FME fm0_type depending on which types exist in the col-
lection.

l Multilevel composites may be flattened out to simpler first- or second-level nesting.

l Because GeoMedia is not strict in its typing, the reader can produce some nonsensical features that may be
skipped, e.g., a line aggregate containing points.

Reader Directives – all GeoMedia Warehouses

DATASET

Required/Optional: Required

The value of this keyword depends on the format of the source dataset. For GeoMedia Access warehouse, it is either
the filename of MS Access database or an existing ODBC data source name; for GeoMedia SQL Server warehouse, it is
either the database name or an existing ODBC data source name.

When specifying data source name for GeoMedia SQL Server warehouse, a username and password is also required.
For GeoMedia Access warehouse, a password is required only if the source warehouse is password-protected.

Range: Valid File Name or ODBC source for Access warehouses

Default: None

Example:

A typical mapping file fragment specifying an input GeoMedia dataset looks like:

FM0_DATASET D:\Warehouses\featuredata.mdb

or

FM0_DATASET Access_ODBC_Source

FM0_SQL_DATASET myDatabase

or

FM0_SQL_DATASET Sql_Server_ODBC_Source

Workbench Parameter: Source Intergraph GeoMedia Access Warehouse File(s) or Source Intergraph GeoMedia
SQL Server Warehouse Dataset

DEF

Required/Optional: Optional

Each GeoMedia table may optionally be defined before it is read. The definition specifies the name of the table, the
type of geometry on each row, the names and types of all attributes and possibly an optional WHERE clause, or even
an entire SQL statement with which to query the table. The syntax of a GeoMedia DEF thus may appear in one of two
forms.

The first form allows specification of a WHERE clause:

<ReaderKeyword>_DEF <tableName> \
[SQL_WHERE_CLAUSE <whereClause>] \

FM0_GEOMETRY fm0_point|fm0_arc|fm0_line|fm0_area|
fm0_text|fm0_none \

[<attrName> <attrType>]+

Note that the Reader uses only the tableName and possible SQL modifications, ignoring the other geometry and
attribute information, which is relevant only to the writer. An example of an SQL WHERE clause that could be used is

FM0_DEF States \
SQL_WHERE_CLAUSE “id > 35“\

fm0_type fm0_area \
id integer \
name char(20)

Note: The value for SQL_WHERE_CLAUSE should always be enclosed within double quotation marks when specified
on DEF lines.

where “id” is a column of the table “States”. The user is responsible for ensuring the column is contained in the
table, and this WHERE clause is only appended to the SQL statement select * from <tableName>. The word
WHERE is not included in the WHERE clause, but is appended automatically when a clause is specified.

The second form of a DEF line involves specification of an entire SQL statement:

<ReaderKeyword>_DEF <tableName> \
[SQL_STATEMENT <sqlStatement>] \

FM0_GEOMETRY fm0_point|fm0_arc|fm0_line|fm0_area|
fm0_text|fm0_none \

[<attrName> <attrType>]+

The specified SQL statement is used to place the query against the database. It is again the responsibility of the user
to ensure its correspondence with the correct table and columns. An example SQL statement might be

SELECT GEOMETRY FROM POINTS WHERE ID=0

The following table shows the attribute types that are supported.

Field Type Description

char(<length>) Character fields store fixed-length strings. The
length parameter controls the maximum char-
acters that can be stored by the field. When a
character field is written, it is right-padded with
blanks, or truncated, to fit the width. When a char-
acter field is retrieved, any padding blank char-
acters are stripped away.

date Date fields store dates as character strings with
the format YYYYMMDD. Note that <fieldname>.full
contains the time as well and is of the format
YYYYMMDDHHMMSS.

smallint Integer fields store whole numbers. This one is
2 bytes or 16 bits long.

integer Integer fields store whole numbers. This one is
4 bytes or 32 bits long.

float Real fields store decimal numbers. This one is
4 bytes or 32 bits long.

double Real fields store decimal numbers. This one is 8
bytes or 64 bits long.

number

(<width>,<decimals>)

Fields created with this option will be converted
to smallint, integer or double depending on the
value of width and decimal parameters. The width
parameter is the total number of characters allo-
cated to the field, including the decimal point. The
decimals parameter controls the precision of the
data and is the number of digits to the right of the
decimal. If the decimal is zero and width is less
than 5, then the field type will be changed to small-
int. If the decimal is zero and width is greater than 5
and less than 10, then the field type will be
changed to integer. For all other cases, the field
type will be treated as double.

Range: YES | NO

Default: NO

IDs

Required/Optional: Optional

This optional specification is used to identify a specific set of tables to be read from the data source. If nothing is spec-
ified, all tables are returned. This feature is useful only if a data source contains many tables and for efficiency you
want to read only one table, rather than all of them.

Range: Valid table name in the data source

Default: None

Workbench Parameter: Feature Types to Read

PASSWORD

For a password-protected GeoMedia Access warehouse, this is a required parameter; otherwise, it is optional. For a
GeoMedia SQL Server warehouse, this is a required parameter and will specify the password required to log in to the
database specified by DATASET keyword.

Workbench Parameter: Password

TEXT_SIZE_GROUND_UNITS

Specifies the text size in ground units.

Range: Any positive number less than 2,147,483,647

Default: 1

Workbench Parameter: Text Size In Ground Units

USE_ORIENTED_POINTS

Required/Optional: Optional

This directive specifies how the GeoMedia oriented points will be read. If YES is specified, then all GeoMedia oriented
points will be returned with orientation information. If NO is specified, then all GeoMedia-oriented points will be
returned as normal points without the orientation information. The default value of this keyword is NO.

Workbench Parameter: Use oriented points

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

When set to ‘Yes’, indicates to the reader to return all the schemas of the tables in the source database.

If this specification is missing then it is assumed to be ‘No’.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar toRETRIEVE_ALL_SCHEMAS: this optional specification is used to tell the reader to only retrieve the
table names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to Yes, then
RETRIEVE_ALL_SCHEMAS is chosen. If this value is not specified, then it is assumed to be No.

Range: YES | NO

Default: NO

Reader Directives – GeoMedia Access Warehouse

In addition to the reader directives that apply to all GeMedia warehouses, these directives are specific to GeoMedia
Access Warehouses. For GeoMedia SQL Server Warehouse-specific directives, seeReader Directives – GeoMe-
dia SQL Server Warehouse.

The directives listed below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the GeoMedia Warehouse Reader is FM0.

Reader Directives – GeoMedia SQL Server Warehouse

In addition to the reader directives that apply to all GeMedia warehouses, these directives are specific to GeoMedia
SQL Server Warehouses. For GeoMedia Access Warehouse-specific directives, seeReader Directives – GeoMe-
dia Access Warehouse.

The directives listed below are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the SQL Warehouse Reader is FM0_SQL.

SQL_SERVER

Required/Optional: Required

Specifies the name of the server hosting the MS SQL Server that stores the GeoMedia warehouse.

Range: String

Workbench Parameter: Server

USER_NAME

Required/Optional: Required

This is required only for GeoMedia SQL Server Warehouse. The username for the database must be supplied here,
either through the command-line interface or the user interface settings for translation.

Workbench Parameter: User Name

WHERECLAUSE

Required/Optional: Optional

This optional keyword specifies aWHERE clause which is applied to the columns of a table to limit the resulting fea-
tures.

The main difference between this WHERE clause and the one specified on DEF lines is that this WHERE clause will be
applied to all the source feature tables, and the one specified on the DEF lines applies to one particular table. In the
case when both theWHERE clauses are specified, then the DEF lineWHERE clause takes precedence.

Workbench Parameter:Where Clause

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The GeoMedia Access Warehouse Writer writes features to a Microsoft Access database identified by the DATASET
keyword. If the database does not exist, an empty database file is copied and used as a template.

The GeoMedia SQL Server Warehouse Writer writes to existing Microsoft SQL Server databases. If the database does
not exist, the translation will be terminated. If the metadata tables and/or data tables do not exist in the database
specified in the DATASET keyword, they will be created provided user has enough permissions to create and write to
tables to the database. If the metadata tables exist, then information about newly created data table(s) will be
appended to them. When writing to GeoMedia Access warehouses, if data tables exist and OVERWRITE is NO, then
the data is appended to the table without trying to match the schema. When writing to GeoMedia SQL Server ware-
houses, if data tables exist and fm0_truncate_table is NO, then data is appended to the table without trying to match the
schema. If fm0_truncate_table is YES and data tables exist, then all the existing data in the table will be deleted before
writing.

As features are routed to either GeoMedia Warehouse Writer by the FME, they determine the layer (feature type) they
are in and write the features to the corresponding table. Only one Microsoft Access file database is written during a
single FME session, but many tables can be created within the database. Similarly, the SQL Server writer writes to
one database, but may create many tables with that one database. The exception to this rule occurs when either of
the writer types (MS Access or MS SQL Server) are used in conjunction with the FME Multi-writer and thus could
write to several databases or files in a given FME session.

Additional Information About the MS SQL Server Writer

The GeoMedia SQL Server Warehouse Writer does not require GeoMedia to be installed. However, for successful writ-
ing, users must have sufficient permissions for creating and deleting tables, and inserting and updating rows in exist-
ing tables. All metadata and feature tables will be created with “dbo” ownership, which ensures that any user with
permissions has access to the tables. A table with “dbo” ownership means that it is owned by the database admin-
istrator.

When writing to GeoMedia SQL Server warehouse, the writer will create four additional columns for storing the
extents of geometry. These columns are required by GeoMedia. The names for these columns are derived from the
name of the geometry column in the table being written. For example, if the name of the geometry column is Geome-
try, then the four derived column names will be Geometry_xlo, Geometry_ylo, Geometry_xhi and
Geometry_yhi.

In situations where you are reading from a GeoMedia SQL Server warehouse table and writing to the same or different
GeoMedia SQL warehouse, the names of extent columns read from the source warehouse may clash with the derived
ones for writing if the geometry column name is same. Such a translation will fail with the error:

“SQL Server returned following error message(s):
- [Microsoft][ODBC SQL Server Driver][SQL Server]Column names in each table must be
unique.
Column name 'Geometry_XLO' in table '<table-name>' is specified more than once.
** AND ** [Microsoft][ODBC SQL Server Driver][SQL Server]Statement(s) could not be
prepared.”

There are two possible solutions to avoid such errors:

1. Remove the offending extent column names from the destination DEF lines. In workbench this could be accom-
plished by deleting the attributes names from the destination feature type.

or

2. Change the destination geometry column name. In Workbench, this can be easily done from the Parameters
tab on theDestination Feature Type Properties dialog or in in mapping files by setting the fm0_geome-
try_column attribute on the destination DEF line to the desired name.

DEF Line options

Creating Indexes

Data tables can be created with either primary or secondary indexes by the GeoMedia Warehouse Writer by append-
ing an indexing suffix on the DEF line of the value of the field to be indexed. To create a primary index on a field, add
the suffix

,primary

to the value. To create a secondary index, add

,indexed

Note: FME will accept primaryindex as a suffix for backwards compatibility, but primary is the recommended suffix.

Note that there can only be one primary index per table. If one is not specified, the default PRIMARYINDEX column
will be created and indexed as the primary index. Alternatively, users can also provide a different name for PRI-
MARYINDEX column using the default_primary_index_column (or default_primary_index_column in
workbench) option on the DEF line. If a column is specified as “primary” indexed then it will ignore the fm0_pri-
mary_index_column option for that table. If no column is specified “primary”, and the fm0_primary_index_col-
umn has the same value as one of the attribute columns, that perticular attribute column will be erased and replaced
by a primary index.

Note: GeoMedia SQL Server writer allows to create index using multiple columns. This can be done by adding the

appropriate suffix next to the column definition.

The following example creates a primary index on the field ID and a secondary index on the field Number for the
table mytable.

FM0_DEF mytable \
FM0_GEOMETRY fm0_point \

ID integer,primary \
Name char(255) \
Number float,indexed

Example using the fm0_primary_index_column option

FM0_DEF mytable \
FM0_GEOMETRY fm0_point \
fm0_primary_index_column MyIndex \

ID integer,primary \
Name char(255) \
Number float,indexed

Specifying Primary Geometry Column Name

Data tables can be created with a user-specified Geometry column name by supplying its name on the DEF lines.

FM0_DEF mytable \
FM0_GEOMETRY fm0_point \

fm0_geometry_column MyGeometryColumn \
ID integer \
Name char(255) \
Number float

Specifying Whether to Truncate Tables

This option applies only to SQL Server writing. When writing features to data tables, users can specify whether to
append to the existing table or delete all the features from the existing table before writing, using the ‘fm0_truncate_
table’ option. If this option is YES then all the features(rows) in the existing data table will be deleted and new fea-
tures written.

FM0_DEF mytable \
FM0_GEOMETRY fm0_point \
fm0_truncate_table YES \
ID integer \
Name char(255) \
Number float

Creating Clustered or Non-clustered Indexes

This option applies only to SQL Server writing. When writing features to data tables, users can specify whether
to create clustered index or not. In SQL Server database only one column per table can have clustered index. Using
the fm0_clustered_index option which can have one of three values {PRIMARY, EXTENTS, NONE}, users can
specify if the clustered index will be on the primary key column, extent columns or none of the columns. If PRIMARY
is specified then the clustered index on the primary key column will be created. If EXTENTS is specified then a clus-
tered index on the four extent columns (<geom>_xlo, <geom>_ylo, <geom>_xhi and <geom>_yhi)
will be created and the primary key column will have non-clustered index. If NONE is specified, then all indexes are
created as non-clustered.

FM0_DEF mytable \
FM0_GEOMETRY fm0_point \
fm0_clustered_index PRIMARY \
ID integer \
Name char(255) \
Number float

Writer Directives – all GeoMedia Warehouses

The following directives apply to both GeoMedia Access Warehouses and GeoMedia SQL Server Warehouses. The
directives listed below are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for GeoMedia Access Warehouse is FM0 and the <WriterKeyword> for GeoMedia SQL Server Ware-
house is FM0_SQL.

The remaining writer-specific directives are discussed inWriter Directives – GeoMedia Access Ware-
house and inWriter Directives – GeoMedia SQL Server Warehouse.

DATASET

TheDATASET directive operates in the samemanner as it does for the reader.

DEF

Required/Optional: Required

Each GeoMedia table must be defined before it is written to. The definition specifies the name of the table, the type of
geometry on each row, and the names and types of all attributes.

The syntax of a GeoMedia SQL Server DEF line is:

<WriterKeyword>_DEF <tableName> \
fm0_type fm0_point|fm0_arc|fm0_line|fm0_area|

fm0_text|fm0_collection|fm0_none \
[fm0_geometry_column <column name>] \
[fm0_primary_index_column <column name>] \
[fm0_drop_table (yes|no)] \
[fm0_truncate_table (yes|no)] \

[<attrName> <attrType>]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the
specified name exists, it will be overwritten if the fm0_
drop_table DEF line parameter is set to YES, or it will be
truncated if the fm0_truncate_table DEF line parameter is
set to YES. Otherwise the table will be appended. Valid
values for table names include any character string
devoid of SQL-offensive characters and less than 30 char-
acters in length.

fm0_geometry_column This specifies the name of the column used to store the
geometry.
Default:Geometry

fm0_primary_index_column This specifies the name of the column used to store the
default primary index.
Default:PRIMARYINDEX

fm0_drop_table This specifies that if the table exists by this name, it
should be dropped and replaced with a table specified by
this definition.
Default: NO

fm0_truncate_table This specifies that if the table exists by this name, it
should be cleared prior to writing.
Default: NO

fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offen-
sive characters and less than 30 characters in length.

fieldType See the Attribute Types section below.

Attribute Types

The following table shows the attribute types that are supported.

Field Type Description

char(<length>) Character fields store fixed-length strings. The
length parameter controls the maximum char-
acters that can be stored by the field. When a
character field is written, it is right-padded with
blanks, or truncated, to fit the width. When a char-
acter field is retrieved, any padding blank char-
acters are stripped away.

Field Type Description

date Date fields store dates as character strings with
the format YYYYMMDD. Note that <fieldname>.full
contains the time as well and is of the format
YYYYMMDDHHMMSS.

smallint Integer fields store whole numbers. This one is
2 bytes or 16 bits long.

integer Integer fields store whole numbers. This one is
4 bytes or 32 bits long.

float Real fields store decimal numbers. This one is
4 bytes or 32 bits long.

double Real fields store decimal numbers. This one is 8
bytes or 64 bits long.

number

(<width>,<decimals>)

Fields created with this option will be converted
to smallint, integer or double depending on the
value of width and decimal parameters. The width
parameter is the total number of characters allo-
cated to the field, including the decimal point. The
decimals parameter controls the precision of the
data and is the number of digits to the right of the
decimal. If the decimal is zero and width is less
than 5, then the field type will be changed to small-
int. If the decimal is zero and width is greater than 5
and less than 10, then the field type will be
changed to integer. For all other cases, the field
type will be treated as double.

WAREHOUSE_VERSION

The value of this keyword implies compatibility with warehouses created by GeoMedia – the value does not cor-
respond to GeoMedia versions.

l GeoMedia Access Warehouse:

Required/Optional: Optional

Access warehouses created with GeoMedia version 4 are different from Access warehouses created with GeoMedia
version 5 because of the changes to metadata tables. FME supports creating Access warehouses which are com-
patible with warehouses created by all the GeoMedia versions from 4 to 6. If OVERWRITE_DATAFILE is NO,
then the writer will determine the version of the existing warehouse and write to it regardless of the setting of
WAREHOUSE_VERSION. If the warehouse does not exist, the writer will create a new warehouse whose version
will be determined by WAREHOUSE_VERSION keyword setting.

Range: 4, 5 or 6

Default: 5

By default, GeoMedia Access warehouse version 5 is created for a new warehouse or when overwriting an existing
warehouse.

Workbench Parameter: <WorkbenchParameter>

l GeoMedia SQL Server Warehouse:

Required/Optional: Optional

With GeoMedia version 5.2, there have been changes to the metadata tables for SQL Server warehouses. FME can
create new warehouses or write to existing SQL Server warehouses. When writing to an SQL Server warehouse,
there is no option to overwrite, so if a warehouse already exists, then the value of this keyword will be ignored and
data will be written to correspond to the warehouse version that exists. This keyword only applies when creating
new SQL Server warehouses.

Range: 5, 5.2 or 6

Default: 5

Example:

FM0_WAREHOUSE_VERSION 5

or

FM0_SQL_WAREHOUSE_VERSION 5.2

Workbench Parameter: <WorkbenchParameter>

PLAIN_TEXT

Required/Optional: Optional

Note: This directive applies only to writing features of FME type fme_text.

By default, the GeoMedia Access Warehouse Writer will format text objects as rich text format (RTF) to insert the text
size as part of the object, since text size cannot be set any other way during translation. In some cases, however,
plain text may be desired instead of the default RTF text formatting.

Range: YES or NO

Default: YES

Example:

FM0_SQL_PLAIN_TEXT YES
FM0_PLAIN_TEXT NO

Workbench Parameter: <WorkbenchParameter>

FONT_SIZE

Required/Optional: Optional

This directive allows you to specify the font size in points.

Range: 1 - 1024

Default: 10

Example:

FM0_FONT_SIZE 12

Workbench Parameter: <WorkbenchParameter>

Writer Directives – GeoMedia Access Warehouse

These directives apply only to GeoMedia Access Warehouses. For other GeoMedia directives, seeWriter Direc-
tives – GeoMedia SQL Server Warehouse andWriter Directives – all GeoMedia Warehouses.

The directives listed below are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the GeoMedia Warehouse Writer is FM0.

OVERWRITE_DATAFILE

Required/Optional: Optional

When writing to a Microsoft Access database, the default action performed depends on the existence of the file or
ODBC data source defined in FM0_DATASET. If the file does not exist, a template warehouse is used as a base and
the tables and features to be written are appended to it. If the file exists, the tables and features are appended to it.
This is the default behavior and is equivalent to setting the OVERWRITE_DATAFILE to NO. Setting this directive to
YESmeans the template warehouse is used regardless of whether or not the data file exists, and anything existing
previously in the warehouse named by FM0_DATASET is lost.

Range: YES | NO

Default: NO

Workbench Parameter: <WorkbenchParameter>

CREATE_SPATIAL_INDEX

When creating a new warehouse or overwriting an existing warehouse, native GeoMedia spatial index creation is per-
formed automatically by the FME GeoMedia Access Warehouse Writer as long as the input data comes from a known
coordinate system that has a corresponding datummapping in the autodt.ini file under the GeoMedia install
directory. If a spatial index is not desired for the new warehouse, its creation can be turned off by setting this key-
word to NO.

When appending to an existing warehouse, creation of spatial index depends on whether the Spa-
tialKeyFieldName property is set for the geometry column and the spatial key column actually exists. If the
property is set and the column exists, then a spatial key will be automatically created for the geometry, regardless of
the CREATE_SPATIAL_INDEX keyword setting.

Note: When using GeoMedia 5.0 (05.00.23.04) the GeoMedia Hotfix 05.0023.50 must be applied for spatial
indexes to be properly created. This applies to both GeoMedia and GeoMedia Professional. The issue is corrected in
GeoMedia 5.1. Recall that a valid source coordinate system is still required in all cases.

Example:

FM0_CREATE_SPATIAL_INDEX YES

Workbench Parameter: <WorkbenchParameter>

MODIFICATION_LOG

When writing to a Microsoft Access database, any changes to feature tables or metadata tables are written to Mod-
ificationLog and ModifiedTablesmetadata tables if modification logging is enabled. By default, mod-
ification logging is disabled. When writing large number of features, modification logging can add to the size of
database.

Example:

FM0_MODIFICATION_LOG NO

Workbench Parameter: <WorkbenchParameter>

MDB_VERSION

This keyword allows you to specify the Microsoft Access file version.

Example:

FM0_MDB_VERSION 2002

Workbench Parameter: <WorkbenchParameter>

Writer Directives – GeoMedia SQL Server Warehouse

These specific directives apply only to GeoMedia SQL Server Warehouses. For other GeoMedia directives, seeWriter
Directives – GeoMedia Access Warehouse andWriter Directives – all GeoMedia Warehouses.

The directives listed below are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the GeoMedia SQL Server Warehouse is FM0_SQL.

SQL_SERVER

Required/Optional: Required

Specifies the name of the server hosting the MS SQL Server that stores the GeoMedia warehouse.

Range: String

Workbench Parameter: Server

USER_NAME

Required/Optional: Required

This is required only for GeoMedia SQL Server Warehouse. The username for the database must be supplied here,
either through the command-line interface or the user interface settings for translation.

Workbench Parameter: User Name

PASSWORD

This is required only for GeoMedia SQL Server Warehouse. It will specify the password required to log in to the data-
base specified by DATASET keyword.

Workbench Parameter: Password

START_TRANSACTION

This statement tells the writer when to start actually writing features into the database. The writer does not write any
features until the feature is reached that belongs to <last successful transaction> + 1. Specifying a value of zero
causes every feature to be output. Normally, the value specified is zero – a non-zero value is only specified when a
data load operation is being resumed after failing partway through.

Parameter: <last successful transaction>

The transaction number of the last successful transaction. When loading data for the first time, set this value to 0.

Example:

FM0_SQL_START_TRANSACTION 0

Workbench Parameter: Start transaction at

TRANSACTION_INTERVAL

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database. If the TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is
used as the transaction interval.

Example:

FM0_SQL_TRANSACTION_INTERVAL 1500

Workbench Parameter: Transaction interval

IMMEDIATE_WRITE

This statement instructs the FME to immediately write each row of data to the database, rather than batching up
writes into bulk arrays. Bulk arrays are normally preferred, as they require fewer queries sent to the database in
order to store the data.

Example:

FM0_SQL_IMMEDIATE_WRITE NO

Workbench Parameter: Immediate write

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

GeoMedia features consist of geometric shapes which have their associated attributes as part of their definition. All
GeoMedia features contain an fm0_type attribute, which identifies the geometric type. The feature contains additional
attributes specific to its geometric type. Additional attributes are described in subsequent sections. The common
attributes of all GeoMedia features are shown below. The table name is used as the feature type.

Attribute Name Contents

fm0_type The GeoMedia geometric type of this entity.
Range:
fm0_point|
fm0_line|
fm0_arc|
fm0_area|
fm0_text|
fm0_collection|
fm0_none
Default: No default

The blob breakdowns for the composite (aggregate), boundary (donut) and collection (aggregate) features are not
mentioned below with the simple features, each of which has its corresponding attributes and blob data parsed.

Note: Geometries from FME do not map exactly to GeoMedia geometries. Usually, however, this is not an issue
because although some of the internals of the geometries may be changed, their appearance in GeoMedia is still the
same.

Points

fm0_type: fm0_point

GeoMedia point features specify a single set of coordinates, which is converted, and are devoid of any additional geo-
metric attributes.

fm0_type: fm0_oriented_point

GeoMedia-oriented point features specify a single set of coordinates along with a rotation vector. This rotation attrib-
ute is stored as a rotation angle by the reader. Either a rotation angle or the individual components of a rotation vector
may be passed to the writer.

Attribute Name Contents

fm0_rotation This attribute specifies an optional rotation for the
shape where the clockwise direction is positive.
Range: -360 to 360 degrees
Default: 0

Attribute Name Contents

fm0_orientation_i
fm0_orientation_j
fm0_orientation_k

These attributes specify the components of the
optional 3D rotation vector for a point. They may be
used as a preferential alternative to the fm0_rotation
attribute.
The vector components are written directly to GeoMe-
dia and typically form a unit length vector.

Lines

fm0_type: fm0_line

GeoMedia line features consist of a list of two or more points. No additional attributes are required to control GeoMedia
lines.

Arcs

fm0_type: fm0_arc

GeoMedia arcs consist of a start and end point as well as a normal vector and radius. From these points and their
values, the center point of an arc, as well as the start and sweep angles, can be calculated and used to render the arc
in FME format. Note that the normal vector serves to identify an arc as being drawn either clockwise or counter-
clockwise. Similarly, a positive radius indicates an arc of greater than 180 degrees, while a negative radius indicates
an arc of less than 180 degrees.

Attribute Name Contents

fm0_primary_axis

Applicable only with classic
geometry.

The length of the semi-major axis in ground units (x-
axis).
Range: Any real number > 0
Default: No default

fm0_secondary_axis

Applicable only with classic
geometry.

The length of the semi-minor axis in ground units (y-
axis).
Range: Any real number > 0
Default: No default

fm0_start_angle

Applicable only with classic
geometry.

Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Default: 0

fm0_sweep_angle

Applicable only with classic
geometry.

Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

fm0_rotation

Applicable only with classic
geometry.

This attribute specifies and optional rotation for the
shape where the clockwise direction is positive.
Range: -360 to 360 degrees
Default: 0

Areas

fm0_type: fm0_area

GeoMedia area features specify various polygon features. An area is simply a closed line and can be an individual
area, a donut, or an aggregate of areas. As with lines, there are no additional attributes for area features.

Text

fm0_type: fm0_text

GeoMedia text is simple and straightforward, offering no font, color or style attributes. Text attributes include the
string to be written, a rotation and a possible size.

Note: Although the reader attempts to provide a reasonable value for the text size, it may be necessary to adjust the
text size during a Workbench or mapping file translation. Similarly, when writing, the result may have to be
adjusted through the GeoMedia product for better results.

Attribute Name Contents

fm0_justification The alignment of the text around the origin
(not present in Reader)
Range: 0..2, 4..6, 8..10
0 centered vertically, centered horizontally
1 centered vertically, left of the origin
2 centered vertically, right of the origin
4 above the origin, centered horizontally
5 above the origin, left of the origin
6 above the origin, right of the origin
8 below the origin, centered horizontally
9 below the origin, left of the origin
10 below the origin, right of the origin
Default: 9

fm0_text_size

Applicable only with classic
geometry.

The size of the text in ground units (not present in
Writer)
Range: Any real number >= 0
Default: None

fm0_text_font_size

Applicable only with classic
geometry.

The size of the text in points (not present in
Reader). If this is not specified in the writer, the
value from the FONT_SIZEwriter keyword is used.
Range: Any real number between 0 and 1024.
Default: None

fm0_text_string

Applicable only with classic
geometry.

The text string to be displayed.
Range: Any character string
Default: None

fm0_rtf_text_string This attribute is used in both the reader and writer.
If this attribute is set when reading, the original

Attribute Name Contents

RTF text string from the source dataset will be
included. If this attribute is set when writing, the
RTF text string will be written. In this case, the key-
word PLAIN_TEXT will be overridden by this attrib-
ute. This option is provided for two main reasons:
When translating from GeoMedia to GeoMedia if
the source dataset contains RTF text strings, then
they will be translated without any loss of for-
matting information; and it also gives the user the
ability to supply custom formatted RTF text strings
per feature, written out to the destination dataset.
Range: Any RTF character string.(No syntax ver-
ification done by the writer)
Default: None

fm0_rotation

Deprecated – applicable only
with classic geometry.

This attribute specifies an optional rotation for the
shape where the clockwise direction is positive.
Range: -360 to 360 degrees
Default: 0

None

fm0_type: fm0_none

Features with no coordinates are tagged with this type when reading or writing to or from GeoMedia.

<ReaderKeyword>_DEF <tableName> \
[SQL_STATEMENT <sqlStatement>] \

FM0_GEOMETRY fm0_point|fm0_arc|fm0_line|fm0_area|
fm0_text|fm0_none \
[<attrName> <attrType>]+

Collections

fm0_type: fm0_collection

These are GeoMedia features that are heterogeneous aggregates of simple types.

For example, an aggregate of points, lines, and polygons can comprise a collection. There are no additional attributes
required for collections.

Troubleshooting

Common issues that arise when using the GeoMedia Access Warehouse Reader and Writer are sometimes a matter of
knowledge about how the product works, as well as its limitations.

Spatial Indexes

To create spatial indexes in GeoMedia Professional 5, you will need to install Hot Fix 05.00.23.50, available on Inter-
graph’s website at:

www.intergraph.com/gis/support/GMProHotFix5.asp

http://www.intergraph.com/gis/support/GMProHotFix5.asp

Text Size

This can be an awkward issue in writing. Often a dataset will appear with very small text that you cannot see until you
zoom in closely, and other times the text seems too large for the data. It is suggested that for reading, use the TEXT_
SIZE_GROUND_UNITS keyword to set the size appropriate to the bounds of your source dataset. For writing, set
the PLAIN_TEXT to NO and provide a suitable font size using FONT_SIZE keyword.

“Class not found” Errors

This is a message from GeoMedia that is passed back through FME. There are two basic causes:

The GeoMedia Access Warehouse Writer requires GeoMedia to be installed in order to run; if it is not installed, then
this message may result.

If GeoMedia is installed, then there is likely more than one copy or version of GeoMedia installed on the machine and
the installations are in conflict. This is possible due to the registration scheme of the GeoMedia products. The solution
recommended by Intergraph is to uninstall all GeoMedia products, clean the registry of anything related to GeoMedia
(especially the HKEY LOCAL MACHINE\Software\Intergraph\Applications key), and then reinstall
the single version of GeoMedia you want to use.

Translation Errors

Translation errors can occur if the destination dataset is set to create a file in a directory that does not exist. Since the
GeoMedia Warehouse Writer is a file-based writer, it requires that the path in which the destination file is to be
created must already exist.

Translation Errors in Workbench

There is a known issue with the GeoMedia SQL Server warehouse writer and Workbench Feature Type Properties.

The Database User field should be left blank. Entering a username in the field may cause the FME translation to fail.
However, even if the translation is successful, GeoMedia will not be able to read the resulting table.

Intergraph MGE Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.
The Intergraph MGE Reader/Writer is nearly identical to the (Bentley) MicroStation GeoGraphics Read-
er/Writer. The only difference is that by default, the <ReaderKeyword> for the GeoGraphics reader is GG.
This chapter contains information that is applicable to both formats.

The Intergraph Modular GIS Environment (MGE) Reader and Writer modules provide the FME with the ability to read
and write design files and their associated databases.

Overview

MGE uses standard MicroStation elements to represent the graphical portions (geometry) of the geographic map
objects. These elements are identical to the design file elements used by the Design File Reader/Writer. Any geometry
enhancements made to the Design File Reader/Writer benefit the MGE Reader/Writer.

The non-graphical aspects of a map object are defined by linking an MGE feature to elements in a database. Features
are linked to elements in the database via pairs of entity and mslink numbers. Feature definitions are stored in a
special table within the project’s database. Each row of the feature table defines a feature, providing a name, feature
code, feature type, display attributes (to be applied to elements linked to that feature), and possibly a pointer to a
table of non-graphical attributes to be associated with each instance of the feature.

Tip: A feature in Intergraph MGE is closer in nature to a feature type in FME terminology. In
this chapter, we refer to FME’s features using the term “FME features” to differentiate it from
MGE’s features.

The following table describes the general database tables used. Other tables not listed are non-graphical user attrib-
ute tables. The mscatalog and feature tables are mandatory for the database used.

Table Name Description

mscatalog The key table to determine where there
are more attributes to the feature in the
other tables.

feature This table holds all the feature types and
the general feature information.

maps The table contains the corresponding map
information associated with the feature.

category This table holds information about the cat-
egories associated with the feature.

ugfeature, ugcategory, ugjoin_cat, ugmap,
ugcommand, ugtable_cat

Extended tables of the Intergraph Design
format table that hold additional infor-
mation for MGE.

The MGE Reader and Writer use symbolic names for the design element types rather than numeric values. This
greatly simplifies element type specification. The following table maps the design element type number to its cor-
responding FME feature igds_type value that is used by the MGE Reader and Writer. Subsequent sections describe the
handling of each of these element types in detail.

IGDS Element Type FME igds_type

2 igds_cell

3 idgs_point

4, 12 idgs_line

6, 14 idgs_shape

7 idgs_text_node

11, 12 idgs_curve

15 idgs_ellipse

16 idgs_arc

17 idgs_text

7, 17 idgs_multi_text

2, 6, 14 idgs_solid

MGE Quick Facts

Format Type Identifier MGE

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type GeoGraphics Feature Name

Typical File Extensions .dgn, .cad

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type igds_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none no

Reader Overview

The MGE Reader extracts all elements from the design files, one at a time, via the help of the Design File Reader. For
each element, it finds every attached feature and passes each on to the rest of the FME for processing, along with any
corresponding non-graphical attributes. Complex elements are extracted as single FME features. If the element has
any attribute linkages attached to it, these are read in and added as attributes to the FME feature created.

When the MGE Reader encounters an element type it does not recognize, it is processed as an “unlinked” element
type.

Reader Directives

The following directives are processed by the MGE reader. The suffixes shown will be prefixed by the current <Read-
erKeyword> in the mapping file.By default, the <ReaderKeyword> for the MGE reader is MGE. Please see the
Bentley MicroStation Design Reader/Writer for other keyword suffixes.

DATASET

Required/Optional: Required

Contains the directory name of the input MGE files.

SERVER_TYPE

Required/Optional: Required

Contains the server type for the input data.

SERVER_NAME

Required/Optional: Required

Contains the server name for the input data.

USER_NAME

Required/Optional: Optional

Contains the user name for the database. May be required by the database being used.

Workbench Parameter: Database Username

PASSWORD

Required/Optional: Optional

Contains the password for the database. May be required by the database being used.

Workbench Parameter: Database Password

DATABASE_NAME

Required/Optional: Optional

Contains the database name. May be required by the database being used.

DEF

Required/Optional: Required

The <ReaderKeyword>_DEFmust be used to define a feature before elements of that feature may be read. It
allows complete specification of a MGE feature. The definition of a feature consists of:

l A name for the feature.

l A set of database attributes associated with each element attached to the feature. All database attributes of a given
feature are stored in a single table; elements attached to that feature contain linkages into this attribute table.

l A set of properties which apply to all map objects belonging to that feature. (These properties, described in
greater detail below, define the graphic specifications applied to elements attached to the feature, as well as spec-
ifying the feature’s feature code, category, and other feature-specific attributes.)

The syntax for the definition line is:

<ReaderKeyword>_DEF “<featureName>” \
[<attrName> <attrType>]* \
[<featPropertyName> “<featPropertyValue>”]*

The feature namemust follow the conventions for MGE feature names. The letter case of alphabetic characters in the
names is insignificant, as all names are converted to lowercase for internal use by the MGE Reader.

There may be zero or more attributes associated with a feature. Like feature names, the case of attribute names is
insignificant. (Attribute names are conventionally specified in lowercase to more easily distinguish them from the
type properties.) The following table shows the supported attribute types:

Field Type Description

char(<width>) Character fields store fixed length strings. The
width parameter controls the maximum of char-
acters that can be stored by the field. No pad-
ding is required for strings which are shorter
than this width.

date Date fields store dates as character strings
with the format YYYYMMDD.

number(<width>,<decimals>) Number fields store single and double pre-
cision floating point values. The width param-
eter is the total number of characters
allocated to the field, including the decimal
point. The decimals parameter controls the pre-
cision of the data, and is the number of digits
to the right of the decimal.

logical Logical fields store TRUE/FALSE data. Data
read or written from/to such fields must
always have a value of either true or false.

The MGE reader only requires the specification of those attributes which are of interest to the translation process;
there is no need to mention any attributes which are not used. Further, every attribute which is specified in the map-
ping file is verified against those associated with the feature being defined, to ensure that it exists and that its type is
compatible.

There are a number of properties that may be specified to define the feature of interest. Every specified property
must agree with the existing MGE feature, or an error will result. No property specifications are required when

reading from a MGE project; however, in order for feature attributes not belonging to the design file to be written, a
GG_ATTR_TABLEneeds to be defined (the default table name is the feature name).

UNITS

Required/Optional: Optional

The <ReaderKeyword>_UNITSdirective controls the conversion between UORs in the design file and FME coor-
dinates. There are three possibilities, outlined in the table below. If no UNITS directive is specified, then GG_
MASTER_UNITS is the default.

GG_UNITS Value Description

GG_MASTER_UNITS The UORs read from the design file will be con-
verted intomaster units, according to the con-
version factor defined in MicroStation’s terminal
control block (TCB), before being stored in an
FME feature. This is the default.

GG_SUB_UNITS The UORs read from the design file will be con-
verted into subunits, according to the conversion
factor defined in MicroStation’s TCB, before being
stored in an FME feature.

GG_UORS The UORs read from the design file will be stored
directly in an FME feature, with no conversion.

FEATURE_TABLE_NAME

The <ReaderKeyword>_FEATURE_TABLE_NAMEdirective identifies the name of the feature table. Use this direc-
tive only if you have a feature table with the name other than feature.

Workbench Parameter: Feature table name

CATEGORY_TABLE_NAME

The <ReaderKeyword>_CATEGORY_TABLE_NAMEdirective identifies the name of the feature table. Use this direc-
tive only if you have a category table with the name other than category.

Workbench Parameter: Category table name

Writer Overview

The MGE Writer writes all elements to the current master file. It extracts the conversion parameters required to trans-
late coordinates from feature coordinate units to internal Units of Resolution (UORs). It also determines the dimension
of the master file.

When writing to GG/MGE, one of the Data Source types from ODBC, MDB or ORACLE has to be selected. Against the
Database Server Name, an empty database has to specified which the writer uses to write all the tables like msca-
talog, feature, etc. For instance, with Access (MDB) as the data source, an empty database .mdb or .accdb file
would suffice. When an existing database is used, new records are appended to the existing tables. The username
and password are optional and may or may not apply in every case.

A cell library file may optionally be used by the MGE Writer. Cell libraries contain named symbol definitions which can
be used to depict point features. If a cell library is specified, the MGE Writer reads in all the cell definitions for later
when cell features are output. The MGE Writer can use either 2 or 3 dimension cell libraries, and will automatically
convert the cell definitions to be of the correct dimension for output.

The MGE Writer then outputs each FME feature it is given. Most often, a single FME feature corresponds to a single
design element. However, some of the IGDS element types cause several elements to be output as a complex unit

(with the complex bit turned on). This occurs when a multi-line text object, a cell, or a closed shape or linear feature
with more than 101 coordinates is output. The MGE Writer hides all of the details of complex element output.

Tip: Since coordinates in design files are ultimately stored as integer UORs, it is possible for
precision to be lost or overflow to occur when they are output. Care must be taken to ensure
that the conversion parameters in the seed file preserve the data precision and range.

WAREHOUSE_VERSION

Required/Optional: Optional

Range: 4, 5 or 6

Default: 5

SERVER_TYPE

Required/Optional: Required

Contains the server type for the output data.

SERVER_NAME

Required/Optional: Required

Contains the server name for the output data.

USER_NAME

Required/Optional: Optional

Contains the user name for the database. May be required by the database being used.

Workbench Parameter: Database Username

PASSWORD

Required/Optional: Optional

Contains the password for the database. May be required by the database being used.

Workbench Parameter: Database Password

DATABASE_NAME

Required/Optional: Optional

Contains the database name. May be required by the database being used.

Workbench Parameter: Output Access Database File

UNITS

Required/Optional: Optional

Specifies how FME feature coordinates will be interpreted and converted into UORs. See the documentation under the
MGE Reader for details.

Workbench Parameter: Output Units

IMMEDIATE_WRITE

Required/Optional: Optional

Specifies if the database is written immediately when needed (yes) or not (no).

Workbench Parameter: Immediately Write Database Records

TRANSACTION_INTERVAL

Required/Optional: Optional

The number of features that are to be in a single transaction before the FME performs a commit operation when writ-
ing to the database.

Workbench Parameter: Transaction Interval

DEF

Required/Optional: Required

Defines an MGE feature. Each feature must be defined before it can be written. The definition specifies the char-
acteristics which make up the MGE feature. Additionally, it specifies the non-graphical attributes which will appear in
the correlation section for the feature. There may be many DEF lines, one for each file to be read.

The following table summarizes the supported feature properties:

l Entries under theWorkbench Parameter Name column are the keyword descriptions as seen in Workbench.

l Entries under theMapping File Property Name column correspond to the actual DEF line parameters used in
the mapping file.

Note: Regardless of type, all feature properties’ values are specified in quotation marks.

Workbench
Property Name

Mapping File
Property Name Description Type Required/

Optional

Feature Code GG_FEAT_CODE A set of dot-separated
integers which define
numerically the feature
hierarchy structure.

char(10) Optional

Category
Number

GG_CATEGORY The name of the cat-
egory containing the fea-
ture; this must be one of
the categories defined
on the MGE project.

char(32) Optional

User Attribute
Table Name

GG_ATTR_TABLE The name of the data-
base table defining the
non-graphical attributes
for the feature. If there
are no such features,
this value should be the
null string (“ ”). This is
required in order to
write out the attributes
that are not part of the
design file. The default
is the feature name.

char(32) Required

Element Type GG_ELEMENT_TYPE The type of elements
tagged with this feature.

integer Optional

Element Lock GG_ELOCK The strength of enforce-
ment of the above ele-
ment type (0 =>

char(12) Optional

Workbench
Property Name

Mapping File
Property Name Description Type Required/

Optional

interest - attach to any
element type; 1 => sim-
ilar - may attach only to
“comparable” element
type; 2 => exact - ele-
ment type must exactly
match GG_ELEMENT_
TYPE).

Geometry Type GG_FEAT_TYPE The geometry type of
the feature type. (-=>
undefined - default; 1
=> point; 2 => line; 3
=> area boundary; 4
=> area centroid; 5 =>
label).

integer Optional

Feature Level GG_LEVEL The level number
applied to elements
attached to this feature.

integer Optional

Feature Style or
Line Code

GG_STYLE The style or line code
applied to elements
attached to this feature.

integer Optional

Feature Weight GG_WEIGHT The weight applied to
elements attached to
this feature.

integer Optional

Feature Color GG_COLOR The color applied to ele-
ments attached to this
feature.

integer Optional

Feature Angle GG_ANGLE Angle at which feature is
set.

float Optional

Feature Height GG_HEIGHT Height of feature,
applied to attached text
and node elements.

float Optional

Feature Width GG_WIDTH Width of feature,
applied to attached text
and node elements.

float Optional

Line Spacing GG_LINE_SPACING Line spacing of text
nodes attached to fea-
ture.

float Optional

Workbench
Property Name

Mapping File
Property Name Description Type Required/

Optional

Line Length GG_LINE_LENGTH Line length of text nodes
attached to feature.

integer Optional

Feature Font GG_FONT Font used for attached
text and node elements.

integer Optional

Feature Symbol GG_SYMBOL Feature symbol used to
form symbol text.

char(1) Optional

Feature Jus-
tification

GG_JUSTIFICATION Direction at which fea-
ture text is justified.

integer Optional

Active Stream
Delta

GG_STREAM_DELTA Active stream delta. float Optional

Active Stream
Tolerance

GG_STREAM_TOL Active stream tolerance. float Optional

Feature Snap
Type

GG_SNAP_TYPE Type of feature snap. integer Optional

Feature Snap Tol-
erance

GG_SNAP_TOL Feature snap tolerance. integer Optional

Database Link-
age Mode

GG_NEW_DUP Database linkage mode
(-1 => NO_LINK; 0=>
NEW_LINK; 1=>DUP_
LINK).

integer Optional

Feature Class GG_CLASS Feature class. integer Optional

Feature Priority GG_FEAT_PRIO Priority of feature rel-
ative to other features in
design file.

integer Optional

Database Links
to Infomode

GG_INFO_MODE Sets database links to
infomode.

integer Optional

Displayable
Attribute Type

GG_DAS_TYPE Displayable attribute
type.

integer Optional

Display Priority GG_DISPLAY_PRIO Priority of display for
elements with multiple
feature tags.

float Optional

FEATURE_TABLE_NAME

Required/Optional: Optional

Specifies the name of the feature table to be written. This defaults to the name feature.

Workbench Parameter: Feature table name

CATEGORY_TABLE_NAME

Required/Optional: Optional

Specifies the name of the category table to be written. This defaults to the name category.

Workbench Parameter: Category table name

LINKAGE_TYPE

Required/Optional: Optional

Specifies the type of database linkages that will be attached to features written to MGE layers. The value is a character
string. If this directive is not specified, the MGE writer defaults to creating database linkages of type “dmrs”.

Workbench Parameter: Linkage Type

MANGLE_DBCS_TEXT

Required/Optional: Optional

Controls whether or not double-byte-character set text is mangled when text strings are written. Microstation uses
special header bytes to single DBCS text. If this directive is set to YES in the mapping file, then these special bytes
will be output when a DBCS text string is encountered. The default value is NO. Note that the IGDS reader auto-
matically de-mangles DBCS text.

Workbench Parameter: Mangle DBCS Text

COMPRESS_AT_END

Required/Optional: Optional

Tells the writer to compact the .mdb, .accdb Access database file. This compresses the file size after all the writ-
ing is done. This makes use of the existing MDB database option to compact. The compact operation compresses the
output database to a small size on disk.

Range: YES | NO

Default: NO

Workbench Parameter: Compress Database When Done

SPLIT_BIG_DGN7_FILES

Required/Optional: Optional

Note: This directive applies to the V7 writer only.

Allows user to split Version 7 DGN files bigger than 32 MB. Note that this directive can be manually set to no in the
mapping file.

Range: YES | NO

Default: YES

Workbench Parameter: Split Files > 32 MB

MDB_VERSION

This statement instructs FME to set the version of the output Microsoft Access file version. Access file versions 97 and
2000 are the supported types. By default, an Access 2000 file is created.

Example:

MDB_VERSION 97

Workbench Parameter: MS Access Version

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Each design element may be attached to one or more MGE features. The FME feature consists of a design element, a
single MGE feature, and the attributes from the row of the feature’s attribute table which corresponds to the element.
Special FME feature attributes are used to hold design element parameters. The MGE Writer will use these attribute
values as it fills in an element structure during output. The MGE Reader will set these attributes in the FME feature it
creates for each element it reads.

Tip: By using a common value for graphic group value, several otherwise separate elements
may be tied together into a logical super-element for later processing by application pro-
grams.

The FME considers the MGE feature name to be the FME feature type of an element in a MGE design file. Each MGE ele-
ment, regardless of its geometry type, shares a number of other parameters, as described in the following table.
Please see the Design File Reader/Writer feature representation for the parameters specific descriptions to each of
the supported element types.

ISO 8211 Reader

Format Notes: This format is not supported by FME Base Edition.

The ISO8211 Reader provides FME with access to data in an ISO/IEC 8211:1994 formatted files. These files are called
ISO8211 files.

Overview

ISO 8211 is a format for the structured and self-described transfer of data. It is the underlying encoding format used
for the SDTS and S-57 file formats, as well as being used for some other purposes. While data in an ISO 8211 for-
matted file may be spatial, that can't be directly deduced from the ISO 8211 formatting information. This reader
produces features with attributes, but no geometry.

More information on the ISO 8211 format can be found at:

http://user.icx.net/~brooks/iso8211.html

ISO 8211 Quick Facts

Format Type Identifier ISO8211

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type DDF

Typical File Extensions .ddf

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type iso8211_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

http://user.icx.net/~brooks/iso8211.html

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The FME considers a single ISO 8211 formatted file, usually with the .DDF extension, to be a data set. Each record in
the file is read as a feature.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the ISO 8211 reader is ISO8211.

DATASET

Required/Optional: Required

The file name of the ISO 8211 formatted file to be read often has the extension .DDF as shown in this example:

ISO8211_DATASET PALO_ALTO\SC01LE01.DDF

Workbench Parameter: Source ISO8211 File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

Features read from the database consist of a series of attribute values. They have no geometry. The feature type of
each feature is DDF.

ISO 8211 records, which are translated into FME features, consist of a list of fields. Fields consist of subfields, which
can repeat within a field. Fields and subfields have names.

Each subfield value is translated into an FME attribute, and its name is generated by appending the subfield name to
the field name separated with an underscore. Repeated subfields are translated into FME array syntax.

Example:

An ISO8211 record with three fields – ENID, LINE and SADR – might be translated as follows. In this case, the
ENID field has two subfields,MODN and RCID.

The LINE field has three subfields MODN, OBRP and RCID. TheSADR field has two subfields X and Y, but they
are repeating so they are presented in array syntax.

String Attribute: ENID_MODN' is NO01'
String Attribute: ENID_RCID' is 10'
String Attribute: LINE_MODN' is LE01'
String Attribute: LINE_OBRP' is LE'
String Attribute: LINE_RCID' is 10'
String Attribute: SADR_X{0}' is 57367669'
String Attribute: SADR_X{1}' is 57367659'
String Attribute: SADR_Y{0}' is 414608954'
String Attribute: SADR_Y{1}' is 414610051'

Each record in an ISO 8211 file can potentially have different sets of fields selected from a set of fields defined in the
header of the file. When a field appears, it will always have the same set of subfields.

JSON (JavaScript Object Notation) Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

JSON (JavaScript Object Notation) is a simple structured text format. It is designed to be easy for both humans and
computers to produce and consume, and to be easily integrated into JavaScript applications.

Overview

JSON is centred around the concept of an Object and an Array. An object is a set of name/value pairs, while an array
is a list of values. A value can be an object, an array, a string, a number (integral, decimal, or exponential), a boolean,
or the literal value null. An object key must always be a string.

A JSON object is a pair of braces containing key/value pairs separated by commas, with a colon between each key and
value. The keys are an unordered set, which means that each of the keys in an object should be unique, and the order
that the keys appear in the object is ignored. An object can have any number of key/value pairs, including zero. A
sample JSON object is:

{
“key with string value”:”this is a string value”,
“key with exponential value”:-59.45E-4,
“key with null value”:null,
“key with boolean value”:true,
“key with array value”:[false, 12, 56.82, { “key”:”value” }],
“key with object value”:{}

}

A JSON array is an ordered set of values separated by commas. An array can have any number of values, including
zero. A sample JSON array is:

[
12,
“a string value”,
56.3e6,
null,
false,
[1, 2, 3, {}]

]

Coordinate systems are supported in JSON through the use of a json_ogc_wkt_crs key and OGCWKT text. Quotations
in the WKT text should be escaped with backslashes.

{
“json_featuretype”:”SampleJSONFeature”,
“json_ogc_wkt_crs”:”GEOCS[\”WGS84 Lat/Long’s, Degrees, -180 ==> \

+180\”,DATUM[\”WSG_1984\”,SPHEROID[\”World Geodetic System of \
1984\”,6378137,298.257223563],AUTHORITY[\”EPSG\”,\”6326\”]], \
PRIMEM[\”Greenwich\”,0],UNIT[\”degree\”,0.0174532925199433], \
AUTHORITY[\”EPSG\”,\”4326\”]]”

“json_geometry”:”LINESTRING(45.3 56.89, 85.63 96.73, 12.61 91.38)”
}

Further information on JSON can be found at http://www.json.org.

http://www.json.org/

JSON Quick Facts

Format Type Identifier JSON

Reader/Writer Reader/Writer

Licensing Level Professional

Dependencies None

Dataset Type File/URL

Feature Type Varies – schema is dependent
on the source dataset.

Typical File Extensions .json

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type json_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The JSON reader is capable of reading JSON text structured in several different ways. The only requirement it places
on the JSON text is that every FME feature must be represented by a single JSON object or array.

If the feature is represented by a JSON object, the user can specify the object key whose value will become the FME
feature type, as well as the key whose value contains the feature geometry. All other key/value pairs in the JSON
object are turned into attribute names/values. If the value of a key is a nested JSON object or array, then the actual
JSON text becomes the value of the corresponding attribute.

If the feature is represented by an array, each value in the array will become an attribute value. The attribute names
will be generic names attribute0, attribute1, attribute2, etc, corresponding to the position of the value within the
array. As in the object case, if an array element is a nested JSON object or array, the corresponding attribute value
will be the actual JSON text. A feature constructed in this manner will have no geometry or coordinate system, and
will have the default JSON feature type.

The JSON objects and arrays that are to be turned into FME features are specified by a JSON query. More information
on JSON queries can be found in the JSONQueryFactory documentation.

The reader can read from a local or network file, or a remote URL accessible via http or ftp. The reader can access
these URLs directly, or via a proxy server.

Geometry

The JSON reader supports two different geometry formats: GeoJSON and OGC-WKT, and the user specifies the type
of geometry that the reader should attempt to use. The reader also allows for attribute-only datasets which contain no
geometry. More information on the GeoJSON geometry objects can be found in the GeoJSON reader/writer doc-
umentation.

Example 1 (GeoJSON) :

{
“json_featuretype”:”SampleJSONFeature”,
“json_geometry”:
{

“type”:”LineString”,
“coordinates”:[[45.3,56.89], [85.63,96.73], [12.61,91.38]]

}
}

Example 2 (OGC-WKT):

{
“json_featuretype”:”SampleJSONFeature”,
“json_geometry”:”LINESTRING(45.3 56.89, 85.63 96.73, 12.61 91.38)”

}

Coordinate Systems

The JSON reader currently supports coordinate systems in OGCWKT format as described in the overview.

FME Feature Attributes

Feature attributes are set to the value of a JSON object key, or to the value of an element in a JSON array. If this value
is a string, it will be set as a UTF-16 encoded string attribute on the FME feature. If the value is an integer, real
number or boolean, it will be set as the corresponding attribute type.

If the value is a nested object or array, then the actual JSON text of the object or array will become the attribute value.
This allows particular portions of the object or array to be retrieved using the JSONExtractor transformer (which uses
the JSONQueryFactory FME factory).

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the JSON reader is JSON.

DATASET

Required/Optional: Required

The location of the JSON file to be read. This can be the path to a local or network file, or a URL.

Examples:

JSON_DATASET c:\json_sample.json
JSON_DATASET \\path\to\network\file.json

JSON_DATASET http://searc-
h.yahooapis.com/ImageSearchService/V1/imageSearch?appid=YahooDemo&query=FME&output=json

SCHEMA_SCAN_QUERY

Required/Optional: Optional

Specifies where in the JSON text the reader should look for objects representing FME features. If no value is provided,
then the default query json[*] is used. This default query will work for a dataset that is an array of JSON objects,
each of which represents a single feature. More information on JSON queries can be found in the JSONQueryFactory
documentation.

Example:

JSON_SCHEMA_SCAN_QUERY json[“searchResults”][*]

Workbench Parameter: JSON Query for feature objects

FEATURE_TYPE_KEY

Required/Optional: Optional

This directive specifies the JSON object key whose value will become the feature type of the FME feature produced
from the object. If no value is provided, then a default value of json_featuretype will be used.

Example:

JSON_FEATURE_TYPE_KEY json_featuretype

Workbench Parameter: Feature Type key name

GEOMETRY_KEY

Required/Optional: Optional

This directive specifies the JSON object key whose value contains the geometry of the FME feature produced from the
object. If no value is provided, then a default value of json_geometry is used.

Example:

JSON_GEOMETRY_KEY json_geometry

Workbench Parameter: Geometry key name

GEOMETRY_FORMAT

Required/Optional: Optional

This directive specifies the geometry format that the reader should use when converting the value of the GEOMETRY_
KEY directive into FME geometry. Possible values are GeoJSON, OGC-WKT and None. If no value is provided, then a
default value of GeoJSON is used.

Example:

JSON_GEOMETRY_FORMAT OGC-WKT

Workbench Parameter: Geometry format

DELETE_DOWNLOAD_FILE

Required/Optional: Optional

If the value of this directive is ‘Yes’ then when the reader has finished reading downloaded JSON text, it will delete the
file that the JSON text was downloaded to. The default value is ‘No’. The value of this directive is only meaningful if the
dataset is a URL.

Example:

JSON_DELETE_DOWNLOAD_FILE No

Workbench Parameter: Delete downloaded file

PROXY_URL

Required/Optional: Optional

Specifies a proxy server that the reader will be use when accessing a URL dataset. The port number of the proxy
server can be set in the URL, or by using the PROXY_PORT directive.

Example:

JSON_PROXY_URL www.someproxy.net
JSON_PROXY_URL www.someproxy.net:8080

Workbench Parameter: Http Proxy URL

PROXY_PORT

Required/Optional: Optional

Specifies the port number of the proxy server indicated by the PROXY_URL directive. This directive should only be
used if the port number was not indicated in the PROXY_URL directive. This directive is ignored if the PROXY_URL
directive has no value.

Example:

JSON_PROXY_PORT 8080

Workbench Parameter: Http Proxy Port

PROXY_USERNAME

Required/Optional: Optional

Specifies the username to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_PASSWORD or PROXY_AUTH_METHOD directives have no value.

Example:

JSON_PROXY_USERNAME someusername

Workbench Parameter: Http Proxy Username

PROXY_PASSWORD

Required/Optional: Optional

Specifies the password to use when accessing a password protected proxy server. This directive is ignored if any of
the PROXY_URL, PROXY_USERNAME or PROXY_AUTH_METHOD directives have no value.

Example:

JSON_PROXY_PASSWORD password1234

Workbench Parameter: Http Proxy Password

PROXY_AUTH_METHOD

Required/Optional: Optional

Specifies the authentication method to use when accessing a password protected proxy server. This directive is
ignored if any of the PROXY_URL, PROXY_USERNAME or PROXY_PASSWORD directives have no value. Accept-
able values for this directive are ‘Basic’ or ‘Digest’.

Example:

JSON_PROXY_AUTH_METHOD Basic

Workbench Parameter: Http Proxy Authentication Method

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The JSON writer will output features as an array of JSON objects. The user can specify the key in the JSON object
whose value will contain the FME feature type, as well as the key whose value will contain the feature geometry. Fea-
ture attributes are written out as key/value pairs in the JSON object.

Coordinate Systems

The JSON writer currently supports coordinate systems in OGCWKT format as described in the overview. If no coor-
dinate system is specified, no coordinate system will be output.

Geometry

The JSON writer supports the same two different geometry formats as the JSON reader: GeoJSON and OGC-WKT, and
the user specifies the type of geometry that the writer should use. The writer also allows the user to specify that all
feature geometry should be ignored, so that only feature attributes will be written.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the JSON writer is JSON.

DATASET

Required/Optional: Required

The file to which the should output the JSON text. If the file does not exist it will be created.

Example:

JSON_DATASET c:\data.json

Workbench Parameter: Destination JSON File

FEATURE_TYPE_KEY

Required/Optional: Optional

This directive specifies the JSON object key whose value will contain the feature type of the FME feature represented
by a JSON object. If no value is provided, then a default value of json_featuretype will be used.

Example:

JSON_FEATURE_TYPE_KEY json_featuretype

Workbench Parameter: Feature Type key name

GEOMETRY_KEY

Required/Optional: Optional

This directive specifies the JSON object key whose value will contain the geometry of the FME feature represented by
a JSON object. If no value is provided, then a default value of json_geometry is used.

Example:

JSON_GEOMETRY_KEY json_geometry

Workbench Parameter: Geometry key name

GEOMETRY_FORMAT

Required/Optional: Optional

This directive specifies the geometry format that the writer should use to populate the value of the object key spec-
ified by the GEOMETRY_KEY directive. Possible values are GeoJSON, OGC-WKT and None. If no value is provided,
then a default value of GeoJSON is used.

Example:

JSON_GEOMETRY_FORMAT OGC-WKT

Workbench Parameter: Geometry format

WRITE_NULL_ATTRIBUTE_VALUES

Required/Optional: Optional

This directive specifies whether or not the JSON object representing an FME feature should include a key for every
attribute specified by the feature schema, or only those attributes for which the FME feature has a value. Possible
values for this directive are Yes and No. If the value is No, then the JSON object will only contain keys for which the
FME feature has an attribute value. If the value of the directive is Yes, then the output JSON objects wills contain keys
for every attribute in the feature type schema, and keys for which an FME feature has no attribute value will have a
null JSON value. The default value of this directive is No.

Example:

JSON_WRITE_NULL_ATTRIBUTE_VALUES Yes

Workbench Parameter:Write ‘null’ for attributes with no value

WRITER_CHARSET

Required/Optional: Optional

The character set encoding in which the JSON text will be written. Possible values for this directive are UTF-8, UTF-
16, UTF-16BE, UTF16-LE, UTF-32, UTF-32BE and UTF-32LE. If no character set is specified, the JSON text will be
written in the UTF-8 character set.

Example:

JSON_WRITER_CHARSET UTF-16

Workbench Parameter: Output Character Set

WRITE_BOM

Required/Optional: Optional

The value of this directive specifies whether or not the JSON writer should preface the JSON text with a byte order
marker to indicate the endianness of the Unicode text. Possible values for this directive are Yes and No. The default
value is No.

Example:

JSON_WRITE_BOM Yes

Workbench Parameter: Byte Order Marker

JSONP_FUNC_NAME

Required/Optional: Optional

The value of this directive specifies the JSONP javascript function name that the user wants to wrap the JSON file
with. JSONP (JSON with Padding) is developed as a standard for grabbing JSON from external domains, that works
well with AJAX calls.

The default value is null. If no value is set or the default is set, then the JSON writer will output a JSON file without the
JSONP padding.

Example:

JSONP_FUNC_NAME getFeatures

Workbench Parameter: JSONP function call name, if JSONPmode used

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Geometry

The geometry of JSON features may be identified by the json_type attribute. The valid values for this attribute are:

json_type Description

json_no_geom FME Feature with no geometry.

json_point Point feature.

json_line Linear feature.

json_polygon Simple polygon or donut feature.

json_rectangle Simple rectangular polygon feature.

json_collection Feature with multiple geometries.

No Geometry

json_type: json_no_geom

Features with their json_type attribute set to json_no_geom do not contain any geometry data.

Points

json_type: json_point

Features with their json_type set to json_point are single coordinate features or an aggregate of single points.

Lines

json_type: json_line

Features with their json_type set to json_line are polyline features or an aggregate of polylines.

Areas

json_type: json_polygon

Features with their json_type set to json_polygon are polygon features which may or may not have interior bound-
aries, or an aggregate of such polygons.

Boxes

json_type: json_rectangle

Features with their json_type set to json_rectangle are simple rectangular closed polygons. Features with this type
will not have any interior boundaries.

Aggregates

json_type: json_collection

Features with their json_type set to json_collection are a heterogeneous collection of multiple geometries.

Landmark Z-Map Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

The Landmark Z-Map module provides the FME with the ability to write geometric data files which are compatible with
Landmark Graphics’ Z-MAP Plus™ software.

Z-Map files store both feature geometry and attribution. A Z-Map file has the following file name extension:

File Name Extension Contents

.dat Z-Map data file

The extension is added to the base name of the Z-Map file. The base name is the feature name.

Z-Map Quick Facts

Format Type Identifier ZMAP

Reader/Writer Writer

Licensing Level Professional

Dependencies None

Dataset Type Writer: Directory

Feature Type File name base

Typical File Extensions .dat

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Not applicable

Schema Required Yes

Transaction Support No

Encoding Support No

Geometry Type ZMAP_TYPE

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster reader: yes
writer: no

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none yes

Band Interpretations Real64

Palette Key Interpretations not applicable

Palette Value Interpretations not applicable

Nodata Value None

Cell Origin (x, y) 0.5, 0.5

Rotation Support No

GCP Support No

World File Support No

TAB File Support No

Writer Overview

The Z-Map writer creates and writes feature data to Z-Map files into the directory specified by the DATASET key-
word. Existing Z-Map files with the same name specified are overwritten with the new feature data.

The Z-Map writer does not currently support raster features.

Writer Directives

The directives processed by the Z-Map writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Z-Map writer is ZMAP.

DATASET

Required/Optional: Required

This is the name of a directory containing one or more Z-Map files. The default extension for Z-Map files is .dat.

An example of the DATASET keyword in use is:

ZMAP_DATASET /usr/data/zmap/input

Workbench Parameter: Destination Landmark Z-MAP Directory

DEF

Required/Optional: Required

The <WriterKeyword>_DEFmust be used to define a feature before elements of that feature may be written. The
syntax for the definition line is:

<WriterKeyword>_DEF <featureName> \
[<attrName> <attrType>]*

The following table shows the supported attribute types:

Field Type Description

char(<width>) Character fields store fixed length
strings. The width parameter controls
the maximum of characters that can
be stored by the field. No padding is
required for strings which are shorter
than this width.

date Date fields store dates as character
strings with the format YYYYMMDD.

number(<width>) Number fields store single and double
precision floating point values. The
width parameter is the total number of
characters allocated to the field,
including the decimal point. These
numbers are stored as characters.

logical Logical fields store TRUE/FALSE data.
Data read or written from/to such
fields must always have a value of
either true or false.

<code_type>,<width> The code_type parameter is the Z-Map
data type code number. The width
parameter controls the field width.

The following is an example DEF line with the <WriterKeyword> as ZMAP:

ZMAP_DEF roads \
“Well Name” char(31) \
Operator 20,47

Feature Representation (Z-Map Writer)

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Each written Z-Map element, regardless of its geometry type, shares attributes in the following table. Subsequent
subsections will describe parameters specific to each of the supported element types.

Attribute Name Contents

zmap_type The Z-Map geometric type of this entity.
Range:zmap_point |
zmap_line |
zmap_text

Default: No default

LATITUDE The latitude of the first point. This only exists when
the coordinate system is Latitude/Longitude.
Range: Any real

Attribute Name Contents

Default: No default

LONGITUDE The longitude of the first point. This only exists
when the coordinate system is Latitude/Longitude.
Range: any real
Default: No default

X (EASTING) The x-coordinate. This only exists when the coor-
dinate system is not Latitude/Longitude.
Range: any real
Default: No default

Y (NORTHING) The y-coordinate. This only exists when the coor-
dinate system is not Latitude/Longitude.
Range: Any real
Default: No default

Points

zmap_type: zmap_point

There are no specific attributes for this type.

Lines

zmap_type: zmap_line

Attribute Name Contents

SEG I.D. The fault or line identifier (all vertices for the
same line have the same identifier). The values
are generated by the writer.
Range: Any real number.
Default: increments from 1

Text

zmap_type: zmap_text

Attribute Name Contents

TEXT_ANGLE The text rotation angle.
Range: Any real number.
Default: 0

TEXT_SIZE The text character size in inches.
Range: Any real number.
Default: 0

CHARACTER_TEXT The text label.
Range: Maximum 47 characters
Default: Blank

Landmark Zycor Graphics File (ZGF) Reader

Format Notes:
This format is not supported by FME Base Edition.

The Landmark Zycor Graphics File (ZGF) Reader allows the Feature Manipulation Engine (FME) to read Zycor Graphics
Files (ZGFs). The ZGF format is used by Zycor programs to store 2D graphics information.

Overview

ZGF is a two-dimensional (2D) system with no provision for storing user-defined attributes for the geometric data. A
ZGF file has the following file name extension:

File Name Extension Contents

.zgf Vector geometric data

The extension is added to the basename of the ZGF file.

A ZGF contains one or more Major Graphics Units (MGUs), also called pictures. A picture is typically a basemap or con-
tour map, although nothing prevents other types of pictures from being stored. Each picture is composed of one or
more Logical Graphics Blocks (LGBs), also called segments. LGBs contain things such the map border, a title block, a
contour, a posted well, etc. LGBs contain one or more graphic elements. There are six kinds of graphic elements: poly-
line, polygon, text, marker, clip window, and application data elements.

ZGF Quick Facts

Format Type Identifier ZGF

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Geometry based name

Typical File Extensions .zgf

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type zgf_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none yes

Reader Overview

The ZGF reader extracts features from a file one at a time, and passes them on to the rest of the FME for further proc-
essing. The reader finishes when it reaches the end of the file.

Each feature returned by the ZGF reader has its FME feature type set to one of the following: zgf_polyline,
zgf_marker, zgf_text, zgf_clipwindow, zgf_polygon or zgf_applicationdata.

Reader Directives

The directives processed by the ZGF reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the ZGF reader is ZGF.

DATASET

Required/Optional: Required

The value for this keyword is the file containing the ZGF dataset to be read. A typical mapping file fragment specifying
an input ZGF file looks like:

ZGF_DATASET /usr/data/zgf/zgffile.zgf

Workbench Parameter: Source Landmark Zycor ZGF File(s)

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

All ZGF features contain the zgf_type attribute. The value for this attribute is set identically to the value of the feature’s
feature type.

Attribute Name Contents

zgf_type Specifies what type of data the feature represents.
Range:
zgf_polyline |
zgf_marker |
zgf_text |
zgf_clipwindow |
zgf_polygon |

Attribute Name Contents

zgf_applicationdata

Default: No default

Furthermore, all ZGF features contain the following attributes, which are obtained from the MGU containing the fea-
ture:

Attribute Name Contents

zgf_mgu_name The name of the MGU containing the feature.
Range: Maximum of 76 characters
Default: Blank

zgf_mgu_type The type of picture contained by the MGU.
Range: Maximum of 4 characters
Default: Blank

zgf_mgu_status An integer denoting the status of the MGU. A non-zero
value may indicate that the MGU should not be visible.
Range: 32-bit integer
Default: No default.

ZGF features also receive some attributes from the LGB containing the feature, as follows:

Attribute Name Contents

zgf_lgb_type An integer code describing what is contained by the LGB,
such as the map border, a title block, a contour, a posted
well, etc.
Range: 32-bit integer
Default: No default

zgf_lgb_ignore An integer indicating whether the LGB should be ignored.
Range:
< 0 - ignore the LGB
>= 0 - do not ignore the LGB
Default: No default

Polyline

zgf_type: zgf_polyline

ZGF line features specify linear features defined by a sequence of x and y coordinates.

These attributes are specific to line features.

Attribute Name Contents

zgf_line_type An integer code describing the appearance of the
line.
Range:
1 - normal line

Attribute Name Contents

2 - dashed line
3 - bold line
4 - hachured line
5 - hachured line
6 - double dashed line
7 - triple dashed line
Default: No default

zgf_smooth The smoothing flag.

zgf_continue This flag specifies whether or not the polyline was
constructed from multiple smaller segments, as
stored in the ZGF file.
Range:
0 - stored as a single, standalone line
1 - stored as multiple line segments
Default: 0

zgf_line_width The width of the line.
Range: 32-bit real
Default: No default

zgf_first_dash_length

zgf_second_dash_length

zgf_third_dash_length

For dashed lines, these denote the length of the
dashes.
Range: 32-bit real
Default: No default

zgf_first_dash_gap

zgf_second_dash_gap

zgf_third_dash_gap

For dashed lines, these denote the length of the
gaps.
Range: 32-bit real
Default: No default

zgf_hachure_direction

zgf_hachure_spacing

zgf_hachure_length

These are used to specify the presentation prop-
erties of hachure lines.

zgf_marker_number For normal or boldface lines, if zgf_marker_number is
not 0, it specifies the symbol that should be drawn at
each point on the line.
Range: 32-bit integer
Default: No default

zgf_marker_height If zgf_marker_number is specified, zgf_marker_height
denotes the height of this marker.
Range: 32-bit real
Default: No default

zgf_color_index An index to the color table owned by the feature’s

Attribute Name Contents

containing MGU. Used to find the feature’s color.
Range: 0 - 255
Default: No default

zgf_units Indicates the natural coordinate space for the fea-
ture. Note that all coordinates are converted to user
space by the ZGF reader.
Range:
1 - user (also called application, engineering, or
scaled)
2 - plotter (also called unscaled)
3 - normalized (all coordinates between 0.0 - 1.0,
inclusive)
Default: No default

Marker

zgf_type: zgf_marker

The zgf_marker features indicate a point at which a well symbol or symbols should be drawn.

The following table lists the attributes common to all zgf_marker features.

Attribute Name Contents

zgf_marker_number This is a number specifying what sort of symbol to
draw at the point.
Range: 32-bit integer
Default: No default

zgf_marker_height This specifies the height of this marker.

Range: 32-bit real
Default: No default

zgf_id A marker record in a ZGF file may actually contain
several points. These are split into separate point
features by the ZGF Reader. Thus, this is a unique ID
given to each marker record, so that points that
were originally from the same marker record will
have the same zgf_id value.
Range: 32-bit integer
Default: No default

zgf_color_index See the Polyline section.

zgf_units See the Polyline section.

Text

zgf_type: zgf_text

Text features describe a text string located at a particular position.

They have the following attributes:

Attribute Name Contents

zgf_text_string The text string.
Range: Strings
Default: No default

zgf_text_height This specifies the height of the text.
Range: 32-bit real
Default: No default

zgf_angle The text’s angle of rotation in degrees.
Range: 0.00 - 360.00

Default: No default.

zgf_font The font.
Range:
1 - Zycor original
2 - Roman Simplex
3 - Roman Complex
4 - Italics
5 - Duplex
Default: No default.

zgf_justification Justification of the text string.
Range:
1 - lower left
2 - lower right
3 - center
Default: No default.

zgf_color_index See the Polyline section.

zgf_units See the Polyline section.

Clip Window

zgf_type: zgf_clipwindow

Clip Window features describe a rectangular area to which other features should be clipped. Note that the ZGF Reader
does not actually do any clipping, it simply reads these as rectangular features of type zgf_clipwindow.

The following table lists the attributes common to all zgf_clipwindow features.

Attribute Name Contents

zgf_mode Specifies whether or not the clip window is “on”, i.e.
that other features should be clipped to this window.
Range:
0 - off (don’t clip)

Attribute Name Contents

1 - on (clip)
Default: No default

zgf_units See the Polyline section.

Polygon

zgf_type: zgf_polygon

ZGF polygon features specify solid-filled area (polygonal) features.

The following table lists the attributes common to all zgf_polygon features.

Attribute Name Contents

zgf_color_index See the Polyline section.

Application Data

zgf_type: zgf_applicationdata

ZGF application data features contains non-graphical, application specific data. They do not have any geometry.

The following table lists the attributes common to all zgf_applicationdata features.

Attribute Name Contents

zgf_id Identification number.
Range: 32-bit integer
Default: No default.

zgf_data The application data.
Range: Strings
Default: No default.

LandXML Reader

The LandXML Reader allows the Feature Manipulation Engine (FME) to read LandXML (Extensible Markup Language)
documents.

LandXML is an XML-based survey exchange format. This document assumes that the reader has a good under-
standing of the LandXML format.

More information is available at http://www.landxml.org.

Overview

Current support for LandXML is limited to the following LandXML element types.

l <Alignment>

l <Alignments>

l <Application>

l <CgPoint>

l <CgPoints>

l <CoordinateSystem>

l <FeatureDictionary>

l <LandXML>

l <Parcel>

l <Parcels>

l <PlanFeature>

l <PlanFeatures>

l <Project>

l <Surface>

l <Surfaces>

l <Survey>

l <Units>

This provides support for a restricted subset of LandXML version 1.1. Further support is planned for the future.

Each of the above elements in a LandXML document will result in one or more features being produced.

http://www.landxml.org/

LandXML Quick Facts

Format Type Identifier LANDXML

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type .xml

Typical File Extensions .xml

Automated Translation Support limited

User-Defined Attributes Yes

Coordinate System Support limited

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc limited raster no

donut polygon yes solid no

elliptical arc limited surface yes

ellipses no text no

line yes z values yes

none no

Reader Overview

The LandXML reader module produces an FME feature for each supported element type in the file.

Automatic coordinate system support is limited to CoordinateSystem elements which contain OGCWKT coordinate sys-
tem definitions or recognized EPSG codes. In the case where neither is true, the coordinate system attributes will be
available within FME/Workbench for further examination, but geometry found in the LandXML file will not have a coor-
dinate system set. It is of course possible to set the coordinate system based on the values found in the Coor-
dinateSystem feature manually.

CoordGeom Elements

The geometry of an Alignment, Parcel, or PlanFeature makes use of a CoordGeom element to store a part of its geome-
try. A CoordGeom element consists of any number of linear elements or curve/spiral elements. The LandXML Reader
currently has limited support for Curve and Spiral elements. Curve elements which are arc types, defined by three

points (start, center, end) will be read. Chord Curve elements are not read, and no Spiral elements are read. If a
Curve or spiral type is not read it will result in an interpolation between segments of a CoordGeom element. A warning
will be issued if a spiral element or an unsupported Curve elemtns is encountered. Support for these elements will be
added in future versions of the reader. It is recommended that if the data contains a spiral or curve element as part of
a CoordGeom element that the geometry of the output be considered faulty (since when a spiral or curve is skipped,
the intervening space will be linearly interpolated from the surrounding segments. But if linear interpolation
produced correct geometry, then there would have been no need for a curve or spiral component).

Reader Directives

The directives processed by the LandXML reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the LandXML reader is LANDXML.

DATASET

Required/Optional: Required

An example of the DATASET directive in use is:

LANDXML_DATASET /usr/data/input.xml

Workbench Parameter: LandXML Document

SPLIT_COLLECTIONS

Required/Optional: Required

Default: YES

Many formats are not capable of handling features with heterogeneous aggregates (e.g. an aggregate composed of a
point and a polygon). In order to more easily support automatic translations, by default these collections will be
deaggregated. In a non-automated translation you will usually want this set to ‘NO’. This keyword can only be set at
schema-generation time, as it alters the schema features that would be read.

An example of the SPLIT_COLLECTIONS keyword in use is:

LANDXML_SPLIT_COLLECTIONS NO

Workbench Parameter: Split Collections

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

LandXML is an XML-based format, so all features have both XML specific format attributes, as well as LandXML-spe-
cific format attributes.

This table lists the LandXML-specific format attributes.

Attribute Name Contents

landxml_landxml_type The LandXML element type that this feature belongs to.

landxml_retwall_offset_
above

On a Surface Feature, determines how to interpret the ver-
tical offset on the geometry.

landxml_retwall_offset_
right

On a Surface Feature, determines how to interpret the hor-
izontal offset on the geometry.

landxml_element_id An attribute which identifies this feature. It is used to track
the hierarchy of elements within a LandXML document.

landxml_parent_id An attribute which identifies the parent of this feature. It is
used to track the hierarchy of elements within a LandXML
document.

landxml_children_id A comma-separated value attribute which identifies the
children of this feature (by landxml_element_id value). It
is used to track the hierarchy of elements within a LandXML
document.

landxml_equipment_type This attribute identifies the type of the equipment used for
a survey. Only found on Survey feature types. Current pos-
sible values are "equipment_laser_details”,"equipment_
instrument_details","equipment_gps_reciever_details","eq-
uipment_gps_antenna_details”.

In particular, landxml_element_id, landxml_parent_id, and landxml_children_id all work together to provide infor-
mation on the hierarchy of elements within the original LandXML document. These attributes are bookkeeping attrib-
utes, in that they store information on the placement of elements within the original LandXML document, but are not
properties of the elements themselves. That is, there is no element or attribute that corresponds to the landxml_par-
ent_id attribute, but rather the placement of the element itself is recorded in these format attributes.

As an example of these attributes in action, consider the following LandXML fragment

<Parcels name="AirPorts">
<Parcel name="AirPort_01">

<Parcels name="Runways_01"/>
</Parcel>
<Parcel name="AirPort_02">

<Parcels name="Runways_02">
<Parcel name="Runway_02_01"/>

</Parcels>
</Parcel>

</Parcels>

Here we see a Parcels feature, which contains two Parcel features, each of which in turn contains a single Parcels fea-
ture, and one of those embedded Parcels contains a single Parcel feature. The following features would be produced
(with geometry and irrelevant attributes omitted for clarity).

Parcels
name : Airports
landxml_element_id : 1
landxml_children : 2,4

Parcel
name : AirPort_01
landxml_element_id : 2
landxml_parent_id : 1
landxml_children : 3

Parcels
name : Runways_01
landxml_element_id : 3
landxml_parent_id : 2

Parcel
name : AirPort_02
landxml_element_id : 4
landxml_parent_id : 1
landxml_children : 5

Parcels
name : Runways_02
landxml_element_id : 5
landxml_parent_id : 3
landxml_children : 6

Parcel
name : Runway_02_01
landxml_element_id : 6
landxml_parent_id : 5

So within FME, these IDs can be used to reconstruct the original structure of the document.Within a reader, the
landxml_element_id will be unique to each feature.

Note that while it is possible to create cyclic containment hierarchies (i.e. with a Parcels feature referencing a Parcel
feature as its parent, which in turn references that Parcels feature as its parent). These will cause the translation to
fail with a warning that a cyclic relationship was detected. Self loops (in which a feature refers to itself as its parent)
will be detected and the parent reference changed to the default parent in the document.

Of the feature types currently read, only Parcel/Parcels and CgPoints elements can create a cycle. A Parcels element is
a container for Parcel elements, and a Parcel element can contain a Parcels element. In the case of CgPoints, A
CgPoints element can contain other CgPoints elements.

Geometry Representations

In general, the geometry will be identified by the xml_type attribute as defined in the documentation for theXML
(Extensible Markup Language) Reader/Writer.

Click here for more information on See "Geometry Traits" and See "LandXML Features ".

Geometry Traits

In a number of LandXML feature types (Alignment, PlanFeature, Parcel, Surface elements), the geometry of a feature
can be quite complicated and make use of a number of different elements, each with its own purpose. Since FME cur-
rently restricts a feature to having only one geometric element, the LandXML reader constructs an aggregate out of
the different geometry properties that a given feature has. Then, in order to make it easier to examine a given geome-
try property, we have assigned to each geometry a geometry trait (essentially an attribute on a geometry) which iden-
tifies it.

Trait Name Contents

landxml_geometry_type A string identifying the geometry in question.

An example taken from an Alignment element shows the landxml_geometry_type trait in question.

++
Geometry Type: IFMEAggregate
Number of Geometry Traits: 1
GeometryTrait(string): landxml_geometry_type' has value alignment_geometry'
Number of Geometries:

Geometry Number: 0

Geometry Type: IFMEPoint
Number of Geometry Traits: 1
GeometryTrait(string): landxml_geometry_type' has value start'
Coordinate Dimension: 2
(1283.49421251,1309.71022416)

Geometry Number: 1

Geometry Type: IFMEPath
Number of Geometry Traits: 1
GeometryTrait(string): landxml_geometry_type' has value alignment_boundary'
Number of Segments: 13

[rest of geometry omitted]
+++

Geometry Traits are also used on features produced by the LandXML reader in order to tie properties of a geometry
tightly to that geometry. For example, it is possible to have a set of BreakLine elements on a Surface SourceData ele-
ment. Each BreakLine element can have a set of properties (called ‘Feature’ elements in LandXML). By coupling the
name-value pairs directly on the geometry, it is easy to determine which feature-property refers to which BreakLine.

The LandXML Writer does not currently support writting Curve or Spiral types. These geometries will be stroked into
lines before writing.

LandXML Features

In addition to a large set of predefined attributes, LandXML has a mechanism for user-defined attributes called Fea-
tures (not to be confused with FME features).

While LandXML Features include a set of related attributes (a name, a DocFileReference, etc.), they can also include
simply name-value pairs. In order to capture the related attributes as a group, list attributes are used. In particular,
the structure of a LandXML Feature encompasses the following attributes:

l Feature{}.Code

l Feature{}.Source

l Feature{}.Property{}.Label

l Feature{}.Property{}.Value

l Feature{}.DocFileRef{}.Name

l Feature{}.DocFileRef{}.Location

l Feature{}.DocFileRef{}.Filetype

l Feature{}.DocFileRef{}.FileFormat

Due to LandXML’s structure, these Feature attributes may be stored on either a Feature, or as traits on a geometry.

MapInfo MIF/MID Reader/Writer

The MapInfo Data Interchange Format (MIF) Reader/Writer allows FME to read and write MapInfo® import and export
files.

MIF is a published ASCII format used by the MapInfo product for input and export. TheMapInfo Reference Manual
describes the MIF format and all constants it uses for color, style, symbol, and fill patterns.

MapInfo Interchange Format Files are often called MIF or MIF/MID files.

Overview

MapInfo is a two-dimensional (2D) system with no provision for transferring elevation data for each vertex in a
MapInfo feature. However, point features can define an elevation attribute to store their elevation.

MIF files store both feature geometry and attribution. A logical MIF file consists of two physical files, having the fol-
lowing file name extensions:

File Name Extension Contents

.mif Vector geometric data

.mid Attributes for the geometric data

These extensions are added to the basename of the MIF file.

The MapInfo reader and writer support the storage of point, line, polyline, arc, ellipse, rectangle, rounded rectangle,
region (polygon), and text geometric data in .mif files. The MIF format also stores features with no geometry. Features
having no geometry are referred to as having a geometry of none.

Each geometric entity present in a .mif file has display properties such as pen and brush width, pattern, and color. In
addition, each entity has a row of attributes stored in an associated .mid file. A single .mif file contains many different
types of geometry however, the associated attribute in the .mid file must have the same number and type of fields for
each entity in the .mif file. The order of the entries in the two files is synchronized. For example, the second geometric
entity in the .mif file has the attributes held in the second row of the .mid file.

The number and type of attributes associated with each entity is specified by the user. There must be at least one
attribute field in the .mid file.

The following example shows a MIF file containing three region entities in it. Note that the second polygon contains a
hole, and the third polygon is an aggregate of two disjoint polygons, one of which contains a hole. Each geometric
entity in turn corresponds with one record in the attribute table.

FME considers a MIF dataset to be a collection of MIF files in a single directory. The attribute definitions for each MIF
file must be defined in the mapping file before it can be read or written.

When translations are run with enhanced geometry handling turned ON, it enables the MIF reader to read complex
geometries like heterogeneous aggregates, and enables the FME to store them.

Note, however, that when enhanced geometry handling is turned ON, the reader’s BREAK_COLLECTION directive will
be overridden and set to NO.

MIF Quick Facts

Format Type Identifier MIF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .mif (.mid)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type mif_type
Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values no

none yes

Reader Overview

The MIF reader first scans the directory it is given for the MIF files defined in the mapping file. For each MIF file that it
finds, it checks to see if it that file is requested by looking at the list of IDs specified in the mapping file. If a match is
made or no IDs were specified in the mapping file, the MIF file is opened. The MIF reader then extracts features from
the file one at a time, and passes them on to the rest of the FME for further processing. When the file is exhausted,
the MIF reader starts on the next file in the directory.

Optionally a single MIF file can be provided as the dataset. In this case, only that MIF file will be read.

Reader Directives

The directives that are processed by the MIF reader are listed below. The suffix shown is prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the MIF reader is MIF.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the MIF files to be read, or a single MIF file. A typical mapping
file fragment specifying an input MIF dataset looks like:

MIF_DATASET /usr/data/mapinfo/92i080

Workbench Parameter: Source MapInfo MIF/MID File(s)

DEF

Required/Optional: Optional

The definition specifies the base name of the file, and the names and the types of all attributes. The syntax of a MIF
DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The file names of the physical MIF files is constructed by using the directory specified by the DATASET keyword, the
basename specified on the MIF DEF lines, and the .mif (geometry) and .mid (attributes) extensions.

MIF files require at least one attribute to be defined. The attribute definition given must match the definition of the file
being read. If it does not, translation is halted and the true definition of the MIF file’s attributes gets logged to the log
file. There are no restrictions on the field names of MIF attributes.

Tip: MapInfo decimal fields are analogous to DataBase Format (DBF) number fields. MapInfo
also provides float, integer, and smallint field types for storing numeric values.

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed length strings.
The width parameter controls the maximum
number of characters that can be stored by
the field. No padding is required for strings
shorter than this width.

date Date fields store dates as character strings
with the format YYYYMMDD.

datetime Datetime fields store dates as character

Field Type Description

strings with the format
YYYYMMDDHHMMSS.FFF

decimal(<width>,
<decimals>)

Decimal fields store single and double pre-
cision floating point values. The width param-
eter is the total number of characters
allocated to the field, including the decimal
point. The decimals parameter controls the pre-
cision of the data and is the number of digits
to the right of the decimal.

float Float fields store floating point values. There
is no ability to specify the precision and width
of the field.

integer Integer fields store 32 bit signed integers.

logical Logical fields store TRUE/FALSE data. Data
read or written from and to such fields must
always have a value of either true or false.

smallint Small integer fields store 16 bit signed
integers and therefore have a range of -32767
to +32767.

time Time fields store times as character strings
with the format HHMMSS.FFF

The following mapping file fragment defines two MIF files. Notice that neither definition specifies the geometric type
of the entities it will contain since MIF files may contain any of the valid geometry types.

MIF_DEF landcover \
area decimal(12,3) \

 landcoverType char(11) \
 perimeter float
MIF_DEF roads \

numberOfLanes smallint \
roadType char(5) \
underConstruction logical \
divided logical \
travelDirection char(6)

IDs

Required/Optional: Optional

This optional specification limits the available and defined MIF files read. If no IDs are specified, then all defined and
available MIF files are read.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> \
<baseNameN>

The basenames must match those used in DEF lines.

Workbench Parameter: Feature Types to Read

Example: The example below selects only the roads MIF file for input during a translation:

MIF_IDs roads

BREAK_COLLECTION (applicable only with classic geometry)

Required/Optional: Optional

This directive specifies how the MIF collections are processed. If no BREAK_COLLECTION is specified, then all MIF col-
lections are broken down into their component parts before being returned to FME. If a MIF-to-MIF translation is
being performed, then this may be set to NO to preserve the collections as single features.

Note that when FME_GEOMETRY_HANDLING is set to YES, this directive will be overridden and set to NO.

Workbench Parameter: <WorkbenchParameter>

Example:

This example shows how collections may be preserved:

MIF_BREAK_COLLECTION NO

ENCODING

This directive is applicable only if you are working with foreign (non-English) character sets.

For example, if your source data contains foreign characters, using this directive along with the encoding value
ensures that the original data is preserved from the reader to the writer.

Required/Optional

Optional

Values

Values supported by MapInfo 10:

SJIS, CP437, CP850, CP852, CP855, CP857, CP860, CP861, CP863, CP864, CP865, CP869, CP932, CP936, CP950,
CP1250, CP1251, CP1253, CP1254, CP1255, CP1256, ISO8859-1, ISO8859-2, ISO8859-3, ISO8859-4, ISO8859-5,
ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9

Mapping File Syntax

<ReaderKeyword>_ENCODING <encoding>

Workbench Parameter

Character Encoding (optional)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MIF writer creates and writes feature data to MIF files in the directory specified by the DATASET keyword. As with
the reader, the directory must exist before the translation occurs. Any old MIF files in the directory are overwritten
with the new feature data. As features are routed to the MIF writer, the MIF writer determines the file into which the
features are written and outputs them accordingly. Many MIF files can be written during a single FME session.

The version of MIF files produced depends on the data being written. FME automatically writes the lowest possible ver-
sion that still supports the data. For example, if time or datetime attributes are being written, or the coordinate sys-
tem is “Krovak S-JTSK”, then the version will be set to at least 900; otherwise it will be lower if the data can be
supported in a lower version.

When the MIF writer receives a feature with an fme_color or fme_fill_color attribute, the writer will honor the
color values. The only exception is when native MapInfo color settings are also present, in which case the native set-
tings will take precedence.

Writer Directives

The directives that are processed by the MIF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MIF writer is MIF.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the MIF file(s) to be written.

Workbench Parameter: Destination MapInfo Directory

DEF

Required/Optional: Required

The MIF writer processes this directive as described in theReader Directives section.

COORDSYS_STATEMENT

Required/Optional: Required

The value for this directive is the coordinate system statement that should be written to the header of the produced
MIF files. Normally, FME examines the coordinate system information present on the features written to the MIF files,
and generates a coordinate system statement based on this information. However, in certain circumstances it is nec-
essary to override this and force a particular coordinate system to be output into the file. This is typically done to
force the units of a non-earth projection to something other than the default, which are metres.

The syntax of this line is the same as the line defined for the CoordSys line in the MapInfo MIF/MID documentation. For
example, to force a non-earth inches coordinate system, this line would be present in the mapping file:

MIF_COORDSYS_STATEMENT CoordSys NonEarth Units \”in\”

The FME appends bounds information to this statement when it is written to the MIF file. Notice that the quotes must
be escaped, as they are required when the coordinate system statement is written to the MIF file.

Workbench Parameter: Coordinate System Statement

BOUNDS

This directive allows explicit setting of the bounds of the output features. Because MIF has limited precision available
for the storage of coordinates, defining a tight bound on the range of the data can preserve more accuracy. When this
directive is specified, the coordinate system string written to the top of the MIF file will contain this bounds spec-
ification. The syntax of this directive is:

MIF_BOUNDS<xmin> <ymin> <xmax> <ymax>

Workbench Parameter: Bounds Min X, Bounds Min Y, Bounds Max X, and Bounds Max Y

FILENAME_PREFIX

The value for this directive is prepended to every output file that is created by the writer.

For example, to have the word temp appear on the front of every file name, this line would be present in the mapping
file:

MIF_FILENAME_PREFIX temp

Workbench Parameter: <WorkbenchParameter>

WRITE_REGION_CENTROIDS

To direct the Writer to output region centroids, the syntax of this directive is:

WRITE_REGION_CENTROIDS yes

Workbench Parameter: Generate and Write Region Centroids

ENCODING

This directive is applicable only if you are working with foreign (non-English) character sets.

For example, if your data contains foreign characters, using this directive along with the encoding value ensures that
the original characters are preserved.

Required/Optional

Optional

Values

Values supported by MapInfo 10:

SJIS, CP437, CP850, CP852, CP855, CP857, CP860, CP861, CP863, CP864, CP865, CP869, CP932, CP936, CP950,
CP1250, CP1251, CP1253, CP1254, CP1255, CP1256, ISO8859-1, ISO8859-2, ISO8859-3, ISO8859-4, ISO8859-5,
ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9

Mapping File Syntax

<WriterKeyword>_ENCODING <encoding>

Workbench Parameter

Character Encoding (optional)

Feature Representation

MIF features consist of geometry and attributes. The attribute names are defined in the DEF line and there is a value
for each attribute in each MIF feature. In addition, each MIF feature contains several special attributes to hold the type
of the geometric entity and its display parameters. All MIF features contain themif_type attribute, which identifies the

geometric type. All MIF features may contain either or both of the fme_color and fme_fill_color attributes, which store
the color and fill color of the feature respectively.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

mif_type The MIF geometric type of this entity.
Range:
mif_point|
mif_polyline|
mif_region|
mif_text|
mif_ellipse|
mif_arc|
mif_rectangle|
mif_rounded_rectangle|
mif_collection|
mif_none
Default: No default

fme_color A normalized RGB triplet representing the color of the
feature, with format r,g,b.
Range: 0,0,0 to 1,1,1
Default: No default

fme_fill_color A normalized RGB triplet representing the fill color of the
feature, with format r,g,b.
Range: 0,0,0 to 1,1,1
Default: No default

Points

mif_type:mif_point

MIF point features specify a single x and y coordinate in addition to any associated user-defined attributes. An aggre-
gate of point features may also be read or written – this corresponds to the MIF MULTI_POINT primitive type.

A MIF point also specifies a symbol. The symbol is defined by a symbol number, a color, and a size. If no symbol is
defined for a point entity, the previous symbol is used.

The table below lists the special FME attribute names used to control the MIF symbol settings.1

Attribute Name Contents

mif_symbol_color The color of the symbol. MapInfo colors are defined in rel-
ative concentrations of red, green, and blue. Each color

1MapInfo symbols cannot be rotated. However, some third-party add-ons to MapInfo rotate symbols based on a user-
defined rotation attribute.

Attribute Name Contents

ranges from 0 to 255, and the color value is calculated
according to the formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mif_symbol_shape The number of the symbol. See the MapInfo Reference
Manual for a list of the available symbols.
Range: 31...67
Default: 35 (a star)

mif_symbol_size The point size of the symbol. Note that this size is not
scaled depending on the zoom level.
Range: Any integer number > 0
Default: 10

Font Points

mif_type:mif_font_point

MIF font point are very similar to MIF points, but allow a symbol based on a TrueType font to be specified. In addition
to the font, may specify rotation, color, shape number, size, and style.

The table below lists the special FME attribute names used to control the MIF font point settings:

Attribute Name Contents

mif_symbol_color The color of the symbol calculated according to the for-
mula:
 (red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mif_symbol_shape The number of the shape within the TrueType font to be
used as the symbol.
Range: Integer
Default: No default

mif_symbol_size The point size of the symbol.
Range: Integer
Default: 12

mif_symbol_font The name of the TrueType font to be used for the sym-
bol.
Range: String
Default: No default

Attribute Name Contents

mif_symbol_angle The rotation angle for the symbol, measured in degrees
counterclockwise from horizontal.
Range: -360.0..360.0
Default: 0

mif_symbol_style The display style for the symbol.
Range:
0 (Plain text)
1 (Bold text)
16 (Black border around symbol)
32 (Drop Shadow)
256 (White border around symbol)
Default: 0

Custom Points

mif_type:mif_custom_point

MIF custom points are very similar to MIF points, but allow a bitmap image to be specified as the symbol to be drawn.
In addition to the image, color, size, and style may be specified.

The table below lists the special FME attribute names used to control the MIF custom point settings:

Attribute Name Contents

mif_symbol_color The color of the symbol calculated according to the for-
mula:
 (red*65536) + (green*256) + blue
Whether or not the color is used depends on the setting of
the style attribute.
Range: 0…2^24 - 1
Default: 0 (black)

mif_symbol_file_name The name of the bitmap file found in the MapInfo Cust-
Symb directory.
Range: String
Default: No default

mif_symbol_size The point size of the symbol.
Range: Integer
Default: 12

mif_symbol_style The display style for the symbol.
Range:
0 (White pixels in the image are transparent, allowing
whatever is beneath to show through. Non-white pixels
are drawn in the same color as they are in the bitmap.)
1 (White pixels in the image are drawn as white. Non-
white pixels are drawn in the same color as they are in

Attribute Name Contents

the bitmap.)
2 (White pixels in the image are transparent. Non-white
pixels are drawn in the color specified by mif_symbol_
color.)
3 (White pixels in the image are drawn in white. Non-
white pixels are drawn in the color specified by mif_sym-
bol_color)
Default: 0

Multipoints

mif_type:mif_point, mif_font_point, mif_custom_point

MIF multipoint feature specify a number of individual sets of points each defined by an x and y coordinate. All the
points share the same attributes and geometry. This is supported as a homogeneous aggregate feature composed of
points, font points or custom points.

The MIF multipoint uses the same attribute names control settings as the points, font points and custom point.

Polylines

mif_type:mif_polyline

MIF polyline features specify linear features defined by a sequence of x and y coordinates. Each polyline has a pen
style associated with it specifying the color, width, and pen pattern of the line. A polyline may also specify that it is a
smoothed line, in which case MapInfo uses a curve fitting algorithm when rendering the line1. If no pen style is
defined, the previous style is used.

Tip: MapInfo MIF supports a special type for two point lines. The FME transparently converts
such MIF lines into polylines, both as it reads MIF files and as it writes them.

The table below lists the special FME attribute names used to control the MIF polyline settings.

Attribute Name Contents

mif_pen_color The color of the polyline. MapInfo colors are defined in relative con-
centrations of red, green, and blue. Each color ranges from 0 to 255, and
the color value is calculated according to the formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mif_pen_pattern The pattern used to draw the line. See the MapInfo Reference Manual for a
list of the available patterns.
Range: 1…77
Default: 2

mif_pen_width The width of the line rendered for the polyline feature. This is measured as
a thickness in pixels. A width of 1 is always drawn as a hairline. A width of 0
should be considered to be a line with no width, or a line with no style, or

1MapInfo renders smoothed polylines substantially slower than unsmoothed polylines.

Attribute Name Contents

invisible, and should not normally be used. If an invisible line is necessary,
it should be created by setting the pattern to 1 (None). If a hairline is
desired, the pen should be created by setting the width to 1.
The width can be specified as a point width, in which case this formula is
used: penwidth = (point width * 10) + 10
Range: 0...7 (pixel width)
11...2047 (point width)
Default: 1

mif_smooth Controls whether or not the polyline will be smoothed when rendered.
Range: true|false
Default: false

Regions

mif_type:mif_region

MIF region features specify area (polygonal) features. The areas that make up a single feature may or may not be dis-
joint, and may contain polygons that have holes. Each region has a pen style associated with it to control the color,
width, and pen pattern used when its boundary is drawn. In addition, a region may set its brush pattern, foreground,
and background color to control how its enclosed area will be filled. If no pen or brush style is defined for a region
entity, the previous style is used. The following table lists the special FME attribute names used to control the MIF
region settings.

Attribute Name Contents

mif_brush_pattern The pattern used to fill the area the region contains. See
the MapInfo Reference Manual for a list of the available
brush patterns.
Range: 1…71
Default: 2 (solid)

mif_brush_foreground The foreground color used when the region is filled.
MapInfo colors are defined in relative concentrations of
red, green, and blue. Each color ranges from 0 to 255,
and the color value is calculated according to the for-
mula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mif_brush_background The background color used when the region is filled. (-1
specifies transparent color)
Range: -1…2^24 - 1
Default: 16777215 (white)

mif_pen_color The color of the boundary of the region.
Range: 0…2^24 - 1
Default: 0 (black)

Attribute Name Contents

mif_pen_pattern The pattern used to draw the region’s boundary. See the
MapInfo Reference Manual for a list of the available pat-
terns.
Range: 1…77
Default: 2

mif_pen_width The width of the line rendered for the region’s boundary.
This is measured as a thickness in pixels. A width of 1 is
always drawn as a hairline. A width of 0 should be con-
sidered to be a line with no width, or a line with no style,
or invisible, and should not normally be used. If an invis-
ible line is necessary, it should be created by setting the
pattern to 1 (None). If a hairline is desired, the pen
should be created by setting the width to 1.
Range: 0...35
Default: 1

mif_center_xcoord The centroid x coordinate.
Range: Any real number
Default: 0

mif_center_ycoord The centroid y coordinate.
Range: Any real number
Default: 0

Text

mif_type:mif_text

MIF text features are used to specify annotation information. Each text feature can have its font, color, spacing, jus-
tification, and rotation angle set independently. The following table lists the special FME attribute names used to con-
trol the MIF text settings.

Attribute Name Contents

mif_rotation The rotation of the text, as measured in degrees
counterclockwise from horizontal.
Range: -360.0..360.0
Default: 0

mif_text_fontbgcolor The background color used when the text is drawn.
Range: 0…2^24 - 1
Default: 16777215 (white)

mif_text_fontfgcolor The foreground color used when the text is drawn.
MapInfo colors are defined in relative concentrations
of red, green, and blue. Each color ranges from 0 to
255, and the color value is calculated according to the
formula:

Attribute Name Contents

(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mif_text_fontname The name of the font used to draw the text. The font
named must be available on the destination computer
system.
Range:
Default: Arial

mif_text_fontstyle The style code of the text. This flag controls whether
the text is bold, underlined, italic, etc. See the
MapInfo Reference Manual for a list of style codes and
their meanings. The basic range of possible flag set-
tings are listed below. Combinations of various values
are also allowed. For example, a value of 6 indicates a
bold and italic text style:
Range:
0 - Plain
1 - Bold
2 - Italic
4 - Underline
16 - Outline (only supported on the Macintosh)
32 - Shadow
256 - Halo
512 - All Caps
1024 - Expanded
Default: 0 (plain text)

mif_text_height The height of the text in ground units.
Range: Any real number >= 0
Default: 10

mif_text_justification The justification of the text.
Range: left | center | right
Default: left

mif_text_spacing The spacing between lines of multiline text. The meas-
ure is expressed as a multiple of the text height.
Range: 1.0 | 1.5 | 2.0
Default: 1.0

mif_text_string The text to be displayed.
Range: Any character string
Default: No default

mif_text_width The total width of the text string in ground units. The

Attribute Name Contents

MIF text representation stores a bounding box for the
text, and mif_text_width is the width of the bounding
box.
Range: Any real number >= 0
Default: 10

mif_text_linetype The type of line attaching the text to the anchor point.
Range: 0 (None: do not display a line with the label.)
1 (Simple: create a callout by using a simple line that
connects the label to the anchor point.)
2 (Arrow: create a callout by using an arrow and line
that connects the label to anchor point.)
Default: 0 (None)

mif_text_line_end_x The x position of the label line end point. The linetype
needs to be 1 or 2 for the label line to be visible.
Range: Any real number
Default: No default

mif_text_line_end_y The y position of the label line end point. The linetype
needs to be 1 or 2 for the label line to be visible.
Range: Any real number
Default: No default

Tip: The font color and style settings will not be used unless a font name is specified.

Ellipse

mif_type:mif_ellipse

MIF ellipse features are point features, and have only a single coordinate. This point serves as the centre of the
ellipse. Additional attributes specify the primary axis and secondary axis of the ellipse. MIF ellipses currently do not
support rotation. For compatibility with other systems, the MIF reader always returns a rotation of 0. If a rotation is
specified to the writer, the ellipse is turned into a region, vectorized, and rotated by the amount specified.

Tip: The primary ellipse axis is not necessarily the longest axis, but rather the one on the x
axis.

In addition to the attributes below, ellipses also make use of the brush and pen attributes as defined by mif_region.

Attribute Name Contents

mif_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

mif_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

mif_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Arc

mif_type:mif_arc

MIF arc features are linear features used to specify elliptical arcs. As such, the feature definition for mif_arc is similar
to the ellipse definition with two additional angles to control the portion of the ellipse boundary drawn. MIF arcs cur-
rently do not support rotation. For compatibility with other systems, the MIF reader always returns a rotation of 0. In
addition, if a rotation is specified to the writer, the arc is turned into a polyline, vectorized, and rotated by the amount
specified.

Tip: The function@Arc() can be used to convert an arc to a linestring. This is useful for storing
Arcs in systems not supporting them directly.

In addition to the attributes below, arcs also make use of the pen attributes as defined on mif_polyline.

Attribute Name Contents

mif_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

mif_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

mif_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

mif_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

mif_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Rectangle

mif_type:mif_rectangle

MIF rectangle objects are represented in the FME as closed polygons. When a MIF rectangle is read, it is turned into a
closed polygon feature. When a MIF rectangle is written, the minimum bounding rectangle of the feature is taken and
used as the four corners of the rectangle. MIF rectangles take the same additional attributes as MIF regions to specify
their brush and pen.

Rounded Rectangle

mif_type:mif_rounded_rectangle

MIF rounded rectangle objects are represented in the FME as closed polygons. When a MIF rounded rectangle is read,
it is turned into a closed polygon feature and the corners are vectorized to preserve the intended shape of the rec-
tangle. The rounding radius is also stored as an attribute. When a MIF rounded rectangle is written, the minimum
bounding rectangle of the feature is taken and used as the four corners of the rectangle, and the rounding diameter
is taken from an attribute of the feature. MIF rounded rectangles take the same additional attributes as MIF regions to
specify their brush and pen.

Attribute Name Contents

mif_rounding Contains the diameter in ground unit, of the circle used to
produce the rounded corners.
Range: Any real number > 0
Default: No default

Collection

mif_type:mif_collection

MIF collections are defined as a combination of the other feature types. This is represented as nonhomogeneous
aggregates composed of the other feature types.

To create MapInfo collections using FME, set the mif_type attribute to mif_collection on the feature destined for the
MIF dataset. It is important that the feature to be saved as a collection is an aggregate feature.

The table below lists the special FME attribute name used to control the MIF collection settings:

Attribute Name Contents

mif_collection_comp{}

Deprecated

This is the list attribute prefix used to store the attrib-
utes for each collection part. The suffixes are the attrib-
ute names for the control settings of the other feature
types.
Range: none
Default: none

MapInfo TAB Reader/Writer

The MapInfo Native Format Reader and Writer modules provide FME with the ability to read and write directly to
MapInfo files. The MapInfo Native Format is a proprietary format used by the MapInfo Professional Desktop mapping
product. MapInfo Native format files are often called Tab files.

The MapInfo Native Format reader and writer are closely patterned after the MapInfo MIF/MID reader and writer. This
commonality makes it easy to support both MIF and MapInfo Native formats in the samemapping file.

Overview

MapInfo is a two-dimensional system with no provision for transferring elevation data for each vertex in a MapInfo fea-
ture. However, point features can define an elevation attribute to store their elevation.

MapInfo files store both feature geometry and attributes. A logical MapInfo file consists of several physical files, hav-
ing the following file name extensions:

File Name Extension Contents

.tab The main file for a MapInfo table, it is associated with the
appropriate DAT, MAP, ID, and IND files.

.dat, .dbf, .mdb, .accdb,

.xls
Tabular data for a table in MapInfo’s native format(.dat),
dBASE format (.dbf), MS Access format (.mdb or .accdb) or
MS Excel format (.xls). MS Access and MS Excel formats are
only supported when using the MITAB reader.

.id An index to a MapInfo graphical objects (MAP) file.

.map Contains geographic information describing map objects.

.ind An index to a MapInfo tabular (DAT) file.

These extensions are added to the basename of the specified MapInfo file. Throughout the remainder of this chapter,
references to “file” are references to the logical MapInfo file, not the multiple physical files that make it up.

The MapInfo reader and writer support the storage of point, line, polyline, arc, ellipse, rectangle, rounded rectangle,
region (polygon), and text geometric data. The MapInfo format also stores features with no geometry. Features hav-
ing no geometry are referred to as having a geometry of none.

Each geometric entity present in MapInfo has display properties, such as pen and brush width, pattern, and color. In
addition, each entity has a row of attributes associated with it. A single MapInfo map file can contain many different
types of geometry however, the associated attributes must have the same number and type of fields for each entity in
the file.

The MapInfo reader can open datasets in which the attributes are stored as .dat, .dbf, .mdb, .accdb, or .xls files. In
other words, the MapInfo reader supports datasets of Type NATIVE, Type DBF, Type ACCESS and Type XLS. Types
ACCESS and XLS are only supported when using the MITAB reader

In addition, the MapInfo reader also supports datasets of Type FME. These are files that store all of their auxiliary
information in a separate FME dataset. The auxiliary dataset can be in any format that the FME supports for reading.
MapInfo files of type FME are created in MapInfo 9.0 and later with the “Open Universal Data” option.

The number and type of attributes associated with each entity is specified by the user. There must be at least one
attribute field defined before a MapInfo file can be created.

The following illustration shows a MapInfo file containing three region entities. Note that the second polygon contains
a hole while the third polygon is an aggregate of two disjoint polygons, one of which contains a hole. Each geometric
entity in turn corresponds with one record in the attribute table.

FME considers a MapInfo dataset to be a collection of tab files and related files in a single directory. The attribute def-
initions for each MapInfo file set must be defined in the mapping file before it can be read or written.

When translations are run with enhanced geometry handling turned ON, it enables the MapInfo reader to read
complex geometries like heterogeneous aggregates, and enables the FME to store them.

Note, however, that when enhanced geometry handling is turned ON, the reader’s BREAK_COLLECTION directive
will be overwritten and set to NO.

MapInfo Quick Facts

Format Type Identifier MAPINFO
MITAB

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .tab (.dat, .id, .map, .ind)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Always

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Geometry Type mapinfo_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values no

none yes

Reader Overview

The MapInfo reader first scans the directory it is given for the MapInfo files which have been defined in the mapping
file. For each logical MapInfo file that it finds, it checks to see if it that file is requested by looking at the list of IDs
specified in the mapping file. If a match is made, or no IDs were specified in the mapping file, the MapInfo file is
opened. The MapInfo reader then extracts features from the file one at a time, and passes them on to the rest of the
FME for further processing. When the file is exhausted, the MapInfo reader starts on the next file in the directory.

Optionally, a single MapInfo file can be given as the dataset. In this case, only that MapInfo file is read.

Reader Directives

The directives that are processed by the MapInfo reader are listed below. The suffix shown is prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the MIF reader is MAPINFO.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the MapInfo files to be read, or a single MapInfo file. A typical
mapping file fragment specifying an input MapInfo dataset looks like:

MAPINFO_DATASET /usr/data/mapinfo/92i080

Workbench Parameter: Source MapInfo TAB File(s)

DEF

Required/Optional: Optional

The definition specifies the base name of the file, and the names and types of all attributes. The syntax of a MapInfo
DEF line is:

<ReaderKeyword>_DEF <baseName> [<attrName> <attrType>[,indexed]]+

The file names of the physical MapInfo files are constructed by using the directory specified by theDATASET key-
word, the basename specified on the MapInfoDEF lines, and the file extensions.

MapInfo requires that at least one attribute be defined. The attribute definition given must match the definition of the
file being read. If it does not, translation is halted and the true definition of the MapInfo file attributes are logged to
the log file. There are no restrictions on the field names of MapInfo attributes. The following table shows the attribute
types which are supported.

Field Type Description

char(<width>) Character fields store fixed length strings. The width
parameter controls the maximum of characters stored by
the field. No padding is required for strings shorter than
this width.

date Date fields store dates as character strings with the for-
mat dependent on your location. This format is usually
YYYYMMDD.

datetime Datetime fields store dates as character strings with the
format YYYYMMDDHHMMSS.FFF

decimal(<width>,
<decimals>)

Decimal fields store single and double precision floating
point values. The width parameter is the total number of
characters allocated to the field, including the decimal
point. The decimals parameter controls the precision of
the data and is the number of digits to the right of the dec-
imal.

float Float fields store floating point values. There is no ability
to specify the precision and width of the field.

Field Type Description

integer Integer fields store 32 bit signed integers.

logical Logical fields store boolean data. Data read or written
from/to such fields must always have a value of either
true or false.

smallint Small integer fields store 16 bit signed integers, and
therefore have a range of -32767 to +32767.

time Time fields store times as character strings with the for-
mat HHMMSS.FFF

The attribute type may also have ,indexedwhen the definition is specified for a writer. When specified, this results in
the writer building an attribute index table for the columns that are indexed thereby making queries in MapInfo
faster. This directive is only recognized by the writer module.

The following mapping file fragment defines two MapInfo files. Notice that neither definition specifies the geometric
type of the entities it will contain because MapInfo files may contain any of the valid geometry types.

MAPINFO_DEF landcover \
area decimal(12,3) \
landcoverType char(11) \
perimeter float

MAPINFO_DEF roads \
numberOfLanes smallint \
roadType char(5) \
underConstruction logical \
divided logical \
travelDirection char(6)

IDs

Required/Optional: Optional

This specification is used to limit the MapInfo files that are read. If no IDs are specified, then all defined and available
MapInfo files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> \
<baseNameN>

The basenames must match those used in DEF lines.

The example below selects only the roads MapInfo file for input during a translation:

MAPINFO_IDs roads

Workbench Parameter: Feature Types to Read

BREAK_COLLECTION (applicable only with classic geometry)

Required/Optional: Optional

This directive specifies how the MapInfo collections are processed. If no BREAK_COLLECTION is specified, then all
MapInfo collections are broken down into their component parts before being returned to FME. If a MapInfo-to-
MapInfo translation is being performed, then this may be set to NO to preserve the collections as single features.

Note that when enhanced geometry handling is turned ON, this directive will be overwritten and set to NO.

This example shows how collections may be preserved:

MAPINFO_BREAK_COLLECTION NO

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

FME_TABLE_PASSWORD

Required/Optional: Optional

This keyword is only applicable when opening datasets of Type FME. If the auxillary FME dataset is a database reader,
then MapInfo willl not automatically put the password for the source database in the tab file. This directive allows the
user to specify the password dynamically. Additionally, if the password is hardcoded into the tab file, then this direc-
tive will supercede that password.

The syntax of the FME_TABLE_PASSWORD directive is:

 <ReaderKeyword>_FME_TABLE_PASSWORD password

This directive is optional. However, if it is needed to open the FME dataset, then it will need to be provided on both
generation and runtime.

Workbench Parameter: Password for FME Table

ENCODING

This directive is applicable only if you are working with foreign (non-English) character sets.

For example, if your source data contains foreign characters, using this directive along with the encoding value
ensures that the original data is preserved from the reader to the writer.

Required/Optional

Optional

Values

Values supported by MapInfo 10:

SJIS, CP437, CP850, CP852, CP855, CP857, CP860, CP861, CP863, CP864, CP865, CP869, CP932, CP936, CP950,
CP1250, CP1251, CP1253, CP1254, CP1255, CP1256, ISO8859-1, ISO8859-2, ISO8859-3, ISO8859-4, ISO8859-5,
ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9

Mapping File Syntax

<ReaderKeyword>_ENCODING <encoding>

Workbench Parameter

Character Encoding (optional)

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MapInfo writer creates and writes feature data to MapInfo files in the directory specified by theDATASET key-
word. If the directory does not exist, the writer has to create it. Any old MapInfo files in the directory are overwritten
with the new feature data. As features are routed to the MapInfo writer, the MapInfo writer determines the file into
which the features are to be written and outputs them accordingly. Many MapInfo files can be written during a single
FME session.

The version of TAB files produced depends on the data being written. FME automatically writes the lowest possible
version that still supports the data. For example, if time or datetime attributes are being written, or the coordinate sys-
tem is “Krovak S-JTSK”, then the version will be set to at least 900; otherwise it will be lower if the data can be sup-
ported in a lower version.

When the MapInfo writer receives a feature with an fme_color or fme_fill_color attribute, the writer will
honor the color values. The only exception is when native MapInfo color settings are also present, in which case the
native settings will take precedence.

Writer Directives

The directives that are processed by the MAPINFO writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MapInfo writer is MAPINFO.

The MapInfo writer processes the DATASET and DEF keywords as described in the Reader Directives section. It does,
however, make use of some additional directives:

DATASET

Required/Optional: Required

Contains the directory name of the output MapInfo files.

Workbench Parameter: Destination Directory

DEF

Required/Optional: Required

Defines a MapInfo file. The definition contains the file’s base name (without any of the extensions), and the definitions
of the attributes. There may be many DEF lines, one for each file to be written.

COORDSYS_STATEMENT

Required/Optional: Optional

The value for this directive is the coordinate system statement that should be used in the produced MapInfo files. Nor-
mally, FME examines the coordinate system information present on the features written to the files, and outputs the
coordinate system based on this information. However, in certain circumstances it is necessary to override this and
force a particular coordinate system to be output. This is typically done to force the units of a non-earth projection to
something other than the default, which is metres.

The syntax of this line is the same as that defined for theCoordSys line in the MapInfo MIF/MID documentation. For
example, to force a non-earth inches coordinate system, this line would be present in the mapping file:

MAPINFO_COORDSYS_STATEMENT CoordSys NonEarth Units \"in\"

Notice that the quotes must be escaped, as they are required when the coordinate system statement is interpreted by
the MapInfo Writer.

Workbench Parameter: Coordinate System Statement

BOUNDS

Required/Optional: Optional

This directive allows explicit setting of the bounds of the output features. Because MapInfo has limited precision avail-
able for the storage of coordinates, defining a tight bound on the range of the data can preserve more accuracy. The
syntax of this directive is:

MAPINFO_BOUNDS<xmin> <ymin> <xmax> <ymax>

Workbench Parameter: Bounds Min X, Bounds Min Y, Bounds Max X, Bounds Max Y

BUILD_OPTIMAL_SPATIAL_INDEX

Required/Optional: Optional

This directive tells the MapInfo writer to create an optimal spatial index when writing. This will allow for faster spatial
queries on the resulting file when using MapInfo Pro or other software that takes advantage of built in spatial index-
ing. The use of this directive will, however, slow down the writing of the file. The default value for the directive is no.
The syntax of this directive is:

MAPINFO_BUILD_OPTIMAL_SPATIAL_INDEX <yes|no>

Workbench Parameter: Build Optimal Spatial Index

Note: This writer directive pertains only to the MITAB writer.

USE_SOURCE_BOUNDING_BOX

The USE_SOURCE_BOUNDING_BOX directive tells the MapInfo writer to attempt to use any bounding box infor-
mation that the Reader for the current FME session can provide it to set its bounds. This will only be used when no
coordinate system is set for the MapInfo writer.

Currently, only the Shape reader in FME provides bounding box information, so setting this directive to YES will only
have an effect if a Shape to MapInfo translation is being performed without any coordinate system being set.

Note: This is a writer directive and applies only to the MapInfo writer. Its use is discouraged.

FILENAME_PREFIX

Required/Optional: Optional

The value for this keyword is prepended to every output file that is created by the writer.

For example, to have the word temp appear on the front of every file name, this line would be present in the mapping
file:

MAPINFO_FILENAME_PREFIX temp

WRITE_REGION_CENTROIDS

Required/Optional: Optional

To direct the Writer to output region centroids, the syntax of this directive is:

WRITE_REGION_CENTROIDS yes

Workbench Parameter: Generate and Write Region Centroids

STROKE_ARCS

Required/Optional: Optional

Indicates whether the arcs will be vectorized before writing. If yes, all arcs will be converted to polylines. This option
may be useful where sweep angles have precision finer than 0.1 degree.

STROKE_ARCS yes

Workbench Parameter: Stroke arcs into polyline

ENCODING

This directive is applicable only if you are working with foreign (non-English) character sets.

For example, if your data contains foreign characters, using this directive along with the encoding value ensures that
the original characters are preserved.

Required/Optional

Optional

Values

Values supported by MapInfo 10:

SJIS, CP437, CP850, CP852, CP855, CP857, CP860, CP861, CP863, CP864, CP865, CP869, CP932, CP936, CP950,
CP1250, CP1251, CP1253, CP1254, CP1255, CP1256, ISO8859-1, ISO8859-2, ISO8859-3, ISO8859-4, ISO8859-5,
ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9

Mapping File Syntax

<WriterKeyword>_ENCODING <encoding>

Workbench Parameter

Character Encoding (optional)

Feature Representation

MapInfo features consist of geometry and attributes. The attribute names are defined in theDEF line and there is a
value for each attribute in each FME MapInfo feature.

In addition, each MapInfo FME feature contains several special attributes to hold the type of the geometric entity and
its display parameters. All MapInfo FME features contain the mapinfo_type attribute, which identifies the geo-
metric type. All MapInfo features may contain either or both of the fme_color and fme_fill_color attrib-
utes, which store the color and fill color of the feature respectively.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

mapinfo_type The MapInfo geometric type of this entity.
Range:

mapinfo_point|
mapinfo_polyline|
mapinfo_region|
mapinfo_text|
mapinfo_ellipse|
mapinfo_arc|
mapinfo_rectangle|
mapinfo_rounded_rectangle|
mapinfo_collection|
mapinfo_none

Default: No default

fme_color A normalized RGB triplet representing the color of the fea-
ture, with format r,g,b.
Range: 0,0,0 to 1,1,1
Default: No default

fme_fill_color A normalized RGB triplet representing the fill color of the
feature, with format r,g,b.
Range: 0,0,0 to 1,1,1
Default: No default

Points

mapinfo_type:mapinfo_point

MapInfo point features specify a single x and y coordinate in addition to any associated user-defined attributes. An
aggregate of point features may also be read or written – this corresponds to the MapInfo MULTI_POINT primitive
type.

A MapInfo point also specifies a symbol. The symbol is defined by a symbol number, a color, and a size.1 If no symbol
is defined for a point entity, the previous symbol is used. The table below lists the special FME attribute names used
to control the MapInfo symbol settings.

Attribute Name Contents

mapinfo_symbol_color The color of the symbol. MapInfo colors are defined in
relative concentrations of red, green, and blue. Each
color ranges from 0 to 255, and the color value is cal-
culated according to the formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1

1MapInfo symbols cannot be rotated. However, some third-party add-ons to MapInfo will rotate symbols based on a
user-defined rotation attribute.

Attribute Name Contents

Default: 0 (black)

mapinfo_symbol_shape The number of the symbol. See the MapInfo Reference
Manual for a list of the available symbols.
Range: 31...67
Default: 35 (a star)

mapinfo_symbol_size The point size of the symbol. Note that this size is not
scaled depending on the zoom level.
Range: Any integer number > 0
Default: 10

Font Points

mapinfo_type:mapinfo_font_point

MapInfo font points are very similar to MapInfo points, but allow a symbol based on a TrueType font to be specified. In
addition to the font, a rotation, color, shape number, size, and style may be specified.

The table below lists the special FME attribute names used to control the MapInfo font point settings:

Attribute Name Contents

mapinfo_symbol_color The color of the symbol calculated according to the
formula:
 (red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_symbol_shape The number of the shape within the TrueType font to
use as the symbol.
Range: Integer
Default: No default

mapinfo_symbol_size The point size of the symbol.
Range: Integer
Default: 12

mapinfo_symbol_font The name of the TrueType font to be used for the
symbol.
Range: String
Default: No default

mapinfo_symbol_angle The rotation angle for the symbol, measured in
degrees counterclockwise from horizontal.
Range: -360.0..360.0
Default: 0

mapinfo_symbol_style The display style for the symbol.
Range:
0 (Plain text)

Attribute Name Contents

1 (Bold text)
16 (Black border around symbol)
32 (Drop Shadow)
256 (White border around symbol)
Default: 0

Custom Points

mapinfo_type:mapinfo_custom_point

MapInfo custom points are very similar to MapInfo points, but allow a bitmap image to be specified as the symbol to
be drawn. In addition to the image, color, size, and style may be specified.

The table below lists the special FME attribute names used to control the MapInfo custom point settings:

Attribute Name Contents

mapinfo_symbol_color The color of the symbol calculated according to the
formula:
(red*65536) + (green*256) + blue
Whether or not the color is used, depends on the set-
ting of the style attribute.
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_symbol_file_name The name of the bitmap file found in the MapInfo
CustSymb directory.
Range: String
Default: No default

mapinfo_symbol_size The point size of the symbol.
Range: Integer
Default: 12

mapinfo_symbol_style The display style for the symbol.
Range:
0 (White pixels in the image are transparent, allow-
ing whatever is beneath to show through. Non-white
pixels are drawn in the same color as they are in the
bitmap.)
1 (White pixels in the image are drawn as white.
Non-white pixels are drawn in the same color as they
are in the bitmap.)
2 (White pixels in the image are transparent. Non-
white pixels are drawn in the color specified by
mapinfo_symbol_color.)
3 (White pixels in the image are drawn in white.
Non-white pixels are drawn in the color specified by
mapinfo_symbol_color)

Attribute Name Contents

Default: 0

Multipoints

mapinfo_type:mapinfo_point, mapinfo_font_point, mapinfo_custom_point

MapInfo multipoint is supported as a homogeneous aggregate feature composed of points, font points or custom
points.

The MapInfo multipoint uses the same attribute names control settings as the points, font points and custom point.

Polylines

mapinfo_type:mapinfo_polyline

MapInfo polyline features specify linear features defined by a sequence of x and y coordinates. Each polyline has a
pen style associated with it that specifies the color, width, and pen pattern of the line. A polyline may also specify that
it is a smoothed line1, in which case MapInfo uses a curve fitting algorithm when rendering the line. If no pen style is
defined, the previous style is used.

Tip: MapInfo supports a special type for two point lines. FME transparently converts such lines
into polylines, both as it reads and as it writes them.

The table below lists the special FME attribute names used to control the MapInfo polyline settings.

Attribute Name Contents

mapinfo_pen_color The color of the polyline. MapInfo colors are defined in
relative concentrations of red, green, and blue. Each
color ranges from 0 to 255, and the color value is cal-
culated according to the formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_pen_pattern The pattern used to draw the line. See the MapInfo Ref-
erence Manual for a list of the available patterns.
Range: 1…77
Default: 2

mapinfo_pen_width The width of the line rendered for the polyline feature.
This is measured as a thickness in pixels. A width of 1 is
always drawn as a hairline. A width of 0 should be con-
sidered to be a line with no width, or a line with no style,
or invisible, and should not normally be used. If an invis-
ible line is necessary, it should be created by setting the
pattern to 1 (None). If a hairline is desired, the pen
should be created by setting the width to 1.
The width can be specified as a point width, in which
case this formula is used: penwidth = (point width * 10) + 10

1MapInfo renders smoothed polylines substantially slower than unsmoothed polylines.

Attribute Name Contents

Range:
0...7 (pixel width)
11...2047 (point width)
Default: 1

mapinfo_smooth Controls whether or not the polyline will be smoothed
when rendered.
Range: true|false
Default: false

Regions

mapinfo_type:mapinfo_region

MapInfo region features specify area (polygonal) features. The areas that make up a single feature may or may not be
disjoint, and may contain polygons which have holes. Each region has a pen style associated with it to control the
color, width, and pen pattern used when its boundary is drawn. In addition, a region may set its brush pattern, fore-
ground, and background color to control how the area it encloses will be filled.

The following table lists the special FME attribute names used to control the MapInfo region settings.

Attribute Name Contents

mapinfo_brush_pattern The pattern used to fill the area the region contains.
See the MapInfo Reference Manual for a list of the
available brush patterns.
Range: 1…71
Default: 2 (solid)

mapinfo_brush_foreground The foreground color used when the region is filled.
MapInfo colors are defined in relative concentrations
of red, green, and blue. Each color ranges from 0 to
255, and the color value is calculated according to the
formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_brush_background The background color used when the region is filled. (-
1 specifies transparent color)
Range: -1…2^24 - 1
Default: 16777215 (white)

mapinfo_brush_transparent Controls whether or not the brush’s background is
transparent.
Range: true|false
Default: true if no brush background was specified or
if set to -1; false otherwise

mapinfo_pen_color The color of the boundary of the region.

Attribute Name Contents

Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_pen_pattern The pattern used to draw the region’s boundary. See
the MapInfo Reference Manual for a list of the avail-
able patterns.
Range: 1…77
Default: 2

mapinfo_pen_width The width of the line rendered for the region’s bound-
ary. This is measured as a thickness in pixels. A width
of 1 is always drawn as a hairline. A width of 0 should
be considered to be a line with no width, or a line with
no style, or invisible, and should not normally be used.
If an invisible line is necessary, it should be created
by setting the pattern to 1 (None). If a hairline is
desired, the pen should be created by setting the width
to 1.
Range: 0...35
Default: 1

mapinfo_centroid_x The centroid x coordinate.
Range: Any real number
Default: 0

mapinfo_centroid_y The centroid y coordinate.
Range: Any real number
Default: 0

Text

mapinfo_type:mapinfo_text

MapInfo text features are used to specify annotation information. Each text feature can have its font, color, spacing,
justification, and rotation angle set independently. The following table lists the special FME attribute names used to
control the MapInfo text settings.

Attribute Name Contents

mapinfo_rotation The rotation of the text, as measured in
degrees counterclockwise from hor-
izontal.
Range: -360.0..360.0
Default: 0

mapinfo_text_fontbgcolor The background color used when the text
is drawn.
Range: 0…2^24 - 1
Default: 16777215 (white)

Attribute Name Contents

mapinfo_text_fontfgcolor The foreground color used when the text
is drawn. MapInfo colors are defined in
relative concentrations of red, green, and
blue. Each color ranges from 0 to 255,
and the color value is calculated accord-
ing to the formula:
(red*65536) + (green*256) + blue
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_text_fontname The name of the font used to draw the
text. The font named must be available
on the destination computer system.
Range: Any valid system font
Default: Helve

mapinfo_text_height The height of the text in ground units.
Range: Any real number >= 0
Default: 10

mapinfo_text_justification The justification of the text.
Range: left | center | right
Default: left

mapinfo_text_spacing The spacing between lines of multiline
text. The measure is expressed as a mul-
tiple of the text height.
Range: 1.0 | 1.5 | 2.0
Default: 1.0

mapinfo_text_linetype The type of line attaching the text to the
anchor point.
Range:
0 (None: do not display a line with the
label.)
1 (Simple: create a callout by using a sim-
ple line that connects the label to the
anchor point.)
2 (Arrow: create a callout by using an
arrow and line that connects the label to
anchor point.)
Default: 0 (None)

mapinfo_text_line_end_x The x position of the label line end point.
The linetype needs to be 1 or 2 for the
label line to be visible.
Range: Any real number

Attribute Name Contents

Default: No default

mapinfo_text_line_end_y The y position of the label line end point.
The linetype needs to be 1 or 2 for the
label line to be visible.
Range: Any real number
Default: No default

mapinfo_text_line_pen_color Stores pen color for text label
Range: 0…2^24 - 1
Default: 0 (black)

mapinfo_text_line_pen_width Stores pen width for text label
Range:
0...7 (pixel width)
11...2047 (point width)
Default: 1

mapinfo_text_line_pen_pattern Stores pen pattern for text label
Range: 1…77
Default: 2

mapinfo_text_fontstyle_bold Indicates if the text is bold or not.
Range: true | false
Default: false

mapinfo_text_fontstyle_italic Indicates if the text is in Italics
Range: true | false
Default: false

mapinfo_text_fontstyle_underline Indicates if the text is underlined.
Range: true | false
Default: false

mapinfo_text_fontstyle_strikeout Indicates if the text has a line through
the middle of it.
Range: true | false
Default: false

mapinfo_text_fontstyle_outline Indicates if the text is outlined
Range: true | false
Default: false

mapinfo_text_fontstyle_shadow Indicates if the text has a shadow.
Range: true | false
Default: false

mapinfo_text_fontstyle_inverse Indicates if the text is shown in inverse.
Range: true | false

Attribute Name Contents

Default: false

mapinfo_text_fontstyle_blink Indicates if the text is blinking.
Range: true | false
Default: false

mapinfo_text_fontstyle_opaque Indicates if the text is opaque.
Range: true | false
Default: false

mapinfo_text_fontstyle_halo Indicates if the text has a halo.
Range: true | false
Default: false

mapinfo_text_fontstyle_allcaps Indicates if the text is uppercase.
Range: true | false
Default: false

mapinfo_text_fontstyle_expanded Indicates if the text is expanded.
Range: true | false
Default: false

mapinfo_text_string The text to be displayed.
Range: Any character string
Default: No default

mapinfo_text_width The width of the entire text string, in
ground units.
Range: Any real number >= 0
Default: 10

Ellipse

mif_type:mif_ellipse

MapInfo ellipse features are point features, and only have a single coordinate. This point serves as the centre of the
ellipse. Additional attributes specify the primary axis and the secondary axis of the ellipse. MapInfo ellipses currently
do not support rotation. For compatibility with other systems, the MapInfo reader always returns a rotation of 0. If a
rotation is specified to the writer, the ellipse is turned into a region, vectorized, and rotated by the amount specified.

Tip: The primary ellipse axis is not necessarily the longest axis, but rather the one on the x
axis.

In addition to the attributes below, ellipses also make use of the brush and pen attributes as defined bymapinfo_
region.

Attribute Name Contents

mapinfo_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

mapinfo_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

mapinfo_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Arc

mapinfo_type:mapinfo_arc

MapInfo arc features are linear features used to specify elliptical arcs. As such, the feature definition for mapinfo_arc
is similar to the ellipse definition with two additional angles to control the portion of the ellipse boundary drawn.
MapInfo arcs currently do not support rotation. For compatibility with other systems, the MapInfo reader always
returns a rotation of 0. In addition, if a rotation is specified to the writer, the arc is turned into a polyline, vectorized,
and rotated by the amount specified.

Tip: The function@Arc() can be used to convert an arc to a linestring. This is useful for storing
Arcs in systems not supporting them directly.

In addition the attributes below, arcs also make use of the pen attributes as defined onmapinfo_polyline.

Attribute Name Contents

mapinfo_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

mapinfo_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

mapinfo_start_angle Refer to the @Arc (function) in the FME Functions and Factories
manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: 0

mapinfo_sweep_angle Refer to the @Arc (function) in the FME Functions and Factories
manual for a detailed definition of sweep_angle.

Range: 0.0..360.0
Default: No default

mapinfo_rotation The rotation of the major axis. The rotation is measured in
degrees counter clockwise up from horizontal.
Range: -360.0..360.0
Default: 0

Rectangle

mapinfo_type:mapinfo_rectangle

MapInfo rectangle objects are represented in the FME as closed polygons. When a MapInfo rectangle is read, it is
turned into a closed polygon feature. When a MapInfo rectangle is written, the minimum bounding rectangle of the
feature is taken and used as the four corners of the rectangle. MapInfo rectangles take the same additional attributes
as MapInfo regions to specify their brush and pen.

Rounded Rectangle

mapinfo_type:mapinfo_rounded_rectangle

MapInfo rounded rectangle objects are represented in the FME as closed polygons. When a MapInfo rounded rec-
tangle is read, it is turned into a closed polygon feature and the corners are vectorized to preserve the intended
shape of the rectangle. The rounding radius is also stored as an attribute. When a MapInfo rounded rectangle is
written, the minimum bounding rectangle of the feature is taken and used as the four corners of the rectangle, and
the rounding diameter is taken from an attribute of the feature. MapInfo rounded rectangles take the same additional
attributes as MapInfo regions to specify their brush and pen.

Attribute Name Contents

mapinfo_rounding_width Contains the width, in ground units, of the ellipse
used to produce the rounded corners.
Range: Any real number > 0
Default: No default

mapinfo_rounding_height Contains the height, in ground units, of the ellipse
used to produce the rounded corners.
Range: Any real number > 0
Default: Value of mapinfo_rounding_width

Collections

mapinfo_type:mapinfo_collection

MapInfo collections are defined as a combination of the other MapInfo geometry types. This is represented as non-
homogeneous aggregates composed of the other geometry types.

To create MapInfo collections using FME, set the mapinfo_type attribute to mapinfo_collection on the fea-
ture destined for the MapInfo dataset. It is important that the feature to be saved as a collection is an aggregate fea-
ture.

The table below lists the special FME attribute names used to control the MapInfo collection settings:

Attribute Name Contents

mapinfo_collection_
cmp{}

Deprecated

This is the list attribute prefix used to store the attributes for
each collection part. The suffixes are the attribute names for
the control settings of the other geometric types.
Range: none
Default: none

Microsoft Access Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

The Microsoft® Access reader and writer provide FME with access to attribute data held in live MS Access database
tables. This data may not necessarily have a spatial component to it. FME provides read and write access to live MS
Access databases via Microsoft’s ActiveX Data Objects (ADO).

Note: Only the standard SQL wildcard characters (% and _) are supported for SQL LIKE queries. Microsoft Access
wildcard characters (*, ?, and #) are not supported.

See the @SQL function in the FME Functions and Factories manual. This function allows arbitrary Structured Query
Language (SQL) statements to be executed against any database.

MS Access Database Quick Facts

Format Type Identifier MDB_ADO

Reader/Writer Both

Licensing Level Professional

Dependencies n File versions prior to 2007: None, but the for-
mat is available only on Windows.

n File versions 2007 or newer: install a cor-
responding or newer version of Microsoft
Office, or the free download of Microsoft
Access Database Engine 2010 Redis-
tributable.

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Encoding Support Yes

Geometry Type db_none

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

Geometry Support

Geometry Supported? Geometry Supported?

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The FME considers a database data set to be a collection of relational tables. The tables must be defined in the map-
ping file before they can be read. Arbitrary where clauses and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MS Access reader is MDB_ADO.

DATASET

Required/Optional: Required

This is the file name of the Microsoft Access Database.

Example:

MDB_ADO_DATASET c:/data/citySource.mdb

Workbench Parameter: Source Microsoft Access Database File(s)

PROVIDER_TYPE

Required/Optional: Optional

The type of database provider being used. This directive is internal to FME and should always be set toMDB_ADO.
For example,

MDB_ADO_PROVIDER_TYPE MDB_ADO

PASSWORD

Required/Optional: Optional

The password used to access the database. It can be omitted for Access databases without password protection.

Please note that databases associated with a Microsoft Access workgroup are not supported.

Example:

MDB_ADO_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Required

The syntax of the definition is:

MDB_ADO_DEF <tableName> \
[mdb_where_clause<whereClause>] \

[<fieldName><fieldType>] +

or

MDB_ADO_DEF <queryName> \
[mdb_sql_statement <sqlQuery>] \

The <tableName>must match the name of an existing MS Access table in the database. This will be used as the
feature type of all the features read from the table. The exception to this rule is when using themdb_sql_statement
directive. In this case, the DEF namemay be any valid alphabetic identifier; it does not have to be an existing table
name – rather, it is an identifier for the custom SQL query. The feature type of all the features returned from the SQL
query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any of the per table configuration
parameters are given, they will override, for that table, whatever global values have been specified by the reader
directives such as the WHERE_CLAUSE. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

mdb_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This directive will be ignored if
the mdb_sql_statement is present.

mdb_sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the MS
Access reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <queryName>. All returned features
will have a feature type of <queryName>, and attrib-
utes for all columns selected by the query. The mdb_
where_clause is ignored if mdb_sql_statement is sup-
plied. This form allows the results of complex joins to
be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The MS Access reader allows one to use themdb_sql_statement parameter to specify an arbitrary SQL SELECT query
on the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the query to
define at least one feature. Each of these features will be given the feature type named in the DEF line, and will con-
tain attributes for every column returned by theSELECT. In this case, all DEF line parameters regarding aWHERE
clause or spatial querying are ignored, as it is possible to embed this information directly in the text of the
<sqlQuery>.

In the following example, the all records whose ID is less than 5 will be read from the supplier table:

MDB_ADO_DEF supplier \
 mdb_where_clause "id < 5" \

 ID integer \
 NAME char(100) \
 CITY char(50)

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

MDB_ADO_DEF complex \
mdb_sql_statement \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has nomdb_
where_clause or mdb_sql_statement specified in its DEF line, the global <ReaderKeyword>_WHERE_CLAUSE
value, if present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF line
does contain its own mdb_where_clause or mdb_sql_statement, it will override the global WHERE clause.

The syntax for this clause is:

MDB_ADO_WHERE_CLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

MDB_ADO_WHERE_CLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then all tables are read. The syntax of the IDs directive is:

MDB_ADO_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

MDB_ADO_IDs HISTORY

Workbench Parameter: Feature Types to Read

READ_CACHE_SIZE

Required/Optional: Optional

This directive controls how the reader retrieves rows from the database. This must be a numeric value which must be
greater than 0.

The READ_CACHE_SIZE is used to determine the number of rows that are retrieved at one time into local memory
from the data source. For example, if the READ_CACHE_SIZE is set to 10, after the reader is opened, the reader will
read 10 rows into local memory. As features are processed by the FME, the reader returns the data from the local
memory buffer. As soon as you move past the last row available in local memory, the reader will retrieve the next 10
rows from the data source.

This directive affects the performance of the reader, and will result in significantly degraded performance if incor-
rectly set. The optimum value of this directive depends primarily on the characteristics of individual records and the
transport between the database and the client machine. It is less affected by the quantity of rows that are to be
retrieved.

By default, the READ_CACHE_SIZE is set to 10. This value has been determined to be the optimal value for average
datasets.

Workbench Parameter: Number of Records to Fetch At A Time

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

When set to “Yes”, indicates to the reader to return all the schemas of the tables in the database.

If this directive is missing, it is assumed to be “No”.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this directive is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MS Access writer module stores attribute records into a live relational database. The MS Access writer provides
the following capabilities:

l Transaction Support: The MS Access writer provides transaction support that eases the data loading process.
Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support pro-
vides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The MS Access writer uses the information within the FME mapping file to automatically create
database tables as needed.

l Writer Mode Specification: The MS Access writer allows the user to specify what database command should be
issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE. The writer mode can be
specified at three unique levels: at the writer level, on the feature type, or on individual features.

Writer Directives

The directives processed by the MS Access Writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MS Access writer is MDB_
ADO.

DATASET, PROVIDER_TYPE

TheDATASET and PROVIDER_TYPE directives operate in the samemanner as they do for the MS Access
reader. The remaining writer-specific directives are discussed in the following sections.

Workbench Parameter: Destination Microsoft Access Database File

PASSWORD

Required/Optional: Optional

The password used to access the database. For existing databases, it may be omitted for Access databases without
password protection. If the database does not exist, then the newly created Microsoft Access database will be pro-
tected by this password.

Please note that databases associated with a Microsoft Access workgroup are not supported.

MDB_ADO_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Required

Each MS Access table must be defined before it can be written. The general form of a MS Access definition statement
is:

MDB_ADO_DEF <tableName> \
[mdb_update_key_columns <keyColumns>]\
[mdb_drop_table (yes|no)]\
[mdb_truncate_table (yes|no)] \
[mdb_table_writer_mode (inherit_from_writer|insert|

update|delete)] \
[<fieldName><fieldType>[,<indexType>]]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the
specified name exists, it will be overwritten if the mdb_

Parameter Contents

drop_table DEF line parameter is set to YES, or it will be
truncated if the mdb_truncate_table DEF line parameter is
set to YES. Otherwise the table will be appended. Valid
values for table names include any character string
devoid of SQL-offensive characters and less than 128
characters in length.

mdb_table_writer_mode The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE, DELETE and
INHERIT_FROM_WRITER. Note that INSERT mode allows
for only INSERT operations where as UPDATE and DELETE
can be overwritten at the feature levels. INHERIT_FROM_
WRITER simply indicates to take this value from the
writer level and not to override it at the feature type
level.
Default:INHERIT_FROM_WRITER

mdb_update_key_
columns

This is a comma-separated list of the columns which are
matched against the corresponding FME attributes’
values to specify which rows are to be updated or
deleted when the writer mode is either UPDATE or
INSERT.
For example:
mdb_update_key_columns ID

would instruct the writer to ensure that the FME attrib-
ute is always matched against the column with the same
name. Also, the target table is always the feature type
specified in the DEF line.
Each column listed with the mdb_update_key_columns
directive must be defined with a type on the DEF line, in
addition to the columns whose values will be updated by
the operation.

mdb_drop_table This specifies that if the table exists by this name, it
should be dropped and replaced with a table specified by
this definition.
Default: NO

mdb_truncate_table This specifies that if the table exists by this name, it
should be cleared prior to writing.
Default: NO

fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offen-
sive characters and less than 128 characters in length.

Parameter Contents

fieldType The type of a column in a table. The valid values for the
field type are listed below:

yesno
memo
hyperlink
replicationid
oleobject
integer
byte
long
autonumber
datetime
decimal(width,decimal)
single
double
currency
text(width)

indexType The type of index to create for the column.
If the table does not previously exist, then upon table
creation, a database index of the specified type is
created. The database index contains only the one col-
umn.
The valid values for the column type are listed below:

indexed: An index without constraints.
unique: An index with a unique constraint.

VERSION

Required/Optional: Required

This statement tells the MS Access writer what version of database should be created. If the database file already
exists, the writer will automatically detect and use the correct version.

Parameter Contents

<version> The version of Microsoft Access database
file to create. The valid values are listed
below:
2000/2002/2003
95/97
2.0
Default: 2000/2002/2003

Example:

MDB_ADO_VERSION 2000/2002/2003

Workbench Parameter: Version

START_TRANSACTION

Required/Optional: Optional

This statement tells the MS Access writer module when to start actually writing features into the database. The MS
Access writer does not write any features until the feature is reached that belongs to <last successful transaction>
+ 1. Specifying a value of zero causes every feature to be output. Normally, the value specified is zero – a non-zero
value is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last suc-
cessful transaction. When loading data for
the first time, set this value to 0.
Default: 0

Example:

MDB_ADO_START_TRANSACTION 0

Workbench Parameter: Start transaction at

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If theMDB_ADO_TRANSACTION_INTERVAL statement is not specified, then a value of 500 is used as the
transaction interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.
Default: 500

If theMDB_ADO_TRANSACTION_INTERVAL is set to zero, then feature based transactions are used. As each
feature is processed by the writer, they are checked for an attribute called fme_db_transaction. The value of this
attribute specifies whether the writer should commit or rollback the current transaction. The value of the attribute
can be one of COMMIT_BEFORE, COMMIT_AFTER, ROLLBACK_AFTER or IGNORE. If the fme_db_trans-
action attribute is not set in any features, then the entire write operation occurs in a single transaction.

Example:

MDB_ADO_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction interval

WRITER_MODE

Required/Optional: Optional

Note: For more information, see the chapter Database Writer Mode on page 19.

This directive informs the MS Access writer which SQL operations will be performed by default by this writer. This
operation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation can be over-
written at the feature type or table level. The corresponding feature type DEF parameter name is calledmdb_table_

#
#
#
#
#
#

writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_FROM_
WRITER which causes the writer level mode to be inherited by the feature type as the default for features contained
in that table.

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE or DELETE features. These are skipped.

If theMDB_ADO_WRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
DELETE
Default: INSERT

Example:

MDB_ADO_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

INIT_TABLES

Required/Optional: Optional

This directive informs the MS Access writer when each table should be initialized. Initialization encompasses the
actions of dropping or truncating existing tables, and creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the MS Access writer will initialize all tables immediately after pars-
ing the DEF lines and opening the database file. In this mode, all tables will be initialized, even if the MS Access
writer receives no features for a given table.

When INIT_TABLES is set to FIRSTFEATURE, the MS Access writer will only initialize a table once the first fea-
ture destined for that table is received. In this mode, if the MS Access writer does not receive any features for a given
table, the table will never be initialized.

Workbench Parameter: Initialize Tables

Writer Mode Specification

The MS Access writer allows the user to specify a writer mode, which determines what database command should be
issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the mdb_update_key_columns DEF line parameter, or via
the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the mdb_update_key_
columns DEF line parameter. If both the fme_where attribute and the mdb_update_key_columns DEF line
parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field ID less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the mdb_update_key_columns DEF line
parameter and uses it to determine which records should be affected by the command. Please refer toSee "DEF"
for more information about the mdb_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels. It may be specified on the writer level, on the feature type or
on individual features.

At the writer level, the writer mode is specified by the WRITER_MODE directive. This directive can be superseded by
the feature type writer mode specification. For more information on this directive, see the chapter Database
Writer Mode.

At the feature type level, the writer mode is specified by the mdb_writer_mode DEF line parameter. This param-
eters supersedes the WRITER_MODE directive. Unless this parameter is set to INSERT, it may be superseded on
individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for more infor-
mation about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

Feature Representation

Features read from a database consist of a series of attribute values. They have no geometry. The attribute names are
as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line was used,
then the attribute names are as they are returned by the query, and as such may have their original table names as
qualifiers. The feature type of each MS Access feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

Microsoft DirectX Writer

Note: This format is not available in FME Base Edition.

Overview

The DirectX Writer allows FME write Microsoft DirectX® Format (.x) files.

The DirectX format was originally developed as an open interchange format for DirectX 2.0 and was supported until
Direct3D 9.0. It is now commonly used as an interchange format between different 3D modelling and rendering appli-
cations.

DirectX Quick Facts

Format Type Identifier DIRECTX
Reader/Writer Writer
Licensing Level Professional
Dependencies None
Dataset Type Writer: Direc-

tory
Feature Type DIRECTX_

MODEL
Typical File Extensions .x
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support No
Generic Color Support No
Appearance Support (Surfaces
Only)

Yes

Spatial Index Never
Schema Required Yes
Transaction Support Never
Enhanced Geometry Yes
Geometry Type Attribute directx_type

Geometry Support

Geometry Supported? Geometry Supported?
aggregate yes point no
circles yes polygon yes
circular arc no raster no
donut poly-
gon

yes Solid yes

elliptical arc no surface yes
ellipses yes Text no

line no z values yes
none no

Writer Overview

The 3D model has a hierarchal structure of Nodes, which are elements of the model. For each node, there is a cor-
responding mesh, which contains the geometry of the object. Feature types become Nodes. Features become Meshes
that may have geometries and attributes.

The DirectX writer produces an '.x' file for each FME feature type sent to the writer. Surface, solid, and polygon geom-
etries are converted into DirectX triangle mesh structures. Texture files are written to the same directory as the mod-
els and referenced by DirectX models using the texture name. Any old files in the output directory are overwritten by
new files with the same name. If the output files cannot be written, the translation fails.

The DirectX Writer supports feature type fanout and will write a different DirectX model file for each feature type.

l The DirectX format is limited to 32-bit precision for its coordinates and, as a result, translations involving a
greater level of precision (i.e., using world coordinates instead of local coordinates) may produce DirectX data
where different coordinates are collapsed into a single coordinate. This issue can be resolved by offsetting the
x,y,z coordinates such that the model's origin is moved to (0,0,0) or another point close to this, which has the
effect of moving the model into a local coordinate system.

Writer Directives

The directives that are processed by the DirectX writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the DirectX writer is DIRECTX.

DATASET

The value for this directive is the path to the output directory. If the output directory does not exist, the writer will
create a new one.

The output file will be created within the specified directory. All associated texture files, if any, will be written to the
same directory.

For example, if the output directory is C:\DirectXFiles\house\ and the Feature Type Name is “shed” the output file will
be C:\DirectXFiles\house\shed.x.

If an output file exists, the writer will overwrite it. If other applications have an output file opened, the writer will be
unable to continue and the translation will fail.

Required/Optional

Required

Workbench Parameter

Destination DirectX Directory

FILE_TYPE

Values

Text (default) | Binary | Compressed Binary.

n Text: produces a human-readable text file that can be examined using a text editor.

n Binary: produces a binary version of the file in the legacy binary format, which are generally smaller than the text
version.

n Compressed Binary: produces a compressed version of the file.

Required/Optional

Optional

Workbench Parameter

Output File Type

LHCS_CONVERSION

Required/Optional: Optional

DirectX uses a left-handed coordinate system (LHCS), while FME natively uses a right-handed coordinate system.

During export, FME features will be transformed to convert to a LHCS according to the option selected on the writer.

Values

Flip Z: FME will convert to LHCS by scaling all z-values by negative one (-1).

Swap Y and Z: FME will convert to LHCS by swapping the Y and Z axes.

Required/Optional

Optional

Workbench Parameter

Conversion to LHCS Method

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (see About Feature Attrib-
utes), this format adds the format-specific attributes described in this section.

DirectX features consist of geometry alone. All DirectX features contain a directx_type attribute, which identifies the
geometric type.

Geometries with no Z coordinates (2D geometries) will be assigned zero as their z values.

Mesh

directx_type: directx_model

Models are meshes are composed of triangular faces. If the input mesh contains faces with more than three distinct
vertices, then the face will be converted into multiple triangular faces. The triangular faces of a mesh need not be con-
nected.

Polygons and donuts are treated as meshes. They will be converted into triangular faces that represents the inner
area of the polygon or donut.

Microsoft Excel Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

The Microsoft Excel reader and writer modules provide FME with access to attribute data held in MS Excel workbooks.
This data may not necessarily have a spatial component to it. FME provides read and write access to MS Excel work-
books via Microsoft’s ActiveX Data Objects (ADO).

Tip: See the @SQL function in the Functions and Factories manual. This function allows arbi-
trary Structured Query Language (SQL) statements to be executed against any database.

MS Excel Quick Facts

Format Type Identifier XLS_ADO

Reader/Writer Both

Licensing Level Professional

Dependencies l File versions prior to 2007: None, but the format is avail-
able only on Windows.

l File versions 2007 or newer: install a corresponding or
newer version of Microsoft Office, or the free download
of Microsoft Access Database Engine 2010 Redis-
tributable.

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Encoding Support Yes

Geometry Type db_none

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

Geometry Support

Geometry Supported? Geometry Supported?

circular arc no raster yes

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

FME considers a database data set to be a collection of relational tables. The tables must be defined in the mapping
file before they can be read. Arbitrary where clauses and joins are fully supported. In MS Excel, tables can be either
worksheets or named ranges. The FME always denotes named ranges by following their names with an asterisk (*)
character.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MS Excel reader is XLS_ADO.

DATASET

Required/Optional: Required

This is the file name of the Microsoft Excel workbook.

Example:

XLS_ADO_DATASET C:/data/citySource.xls

Workbench Parameter: Source Microsoft Excel File(s)

PROVIDER_TYPE

Required/Optional: Optional

The type of database provider being used. This keyword is internal to FME and should always be set toXLS_ADO.

XLS_ADO_PROVIDER_TYPE XLS_ADO

DEF

Required/Optional: Required

The syntax of the definition is:

XLS_ADO_DEF <tableName> \
[xls_where_clause <whereClause>] \

[<fieldName> <fieldType>] +

OR

XLS_ADO_DEF <queryName> \
[xls_sql_statement <sqlQuery>] \

The <tableName>must match the name of an existing MS Excel worksheet or named range in the workbook. The
name does not support non alpha-numeric characters. If the table is a named range, the must be followed with a *.
Worksheets do not need to be followed by any characters. This will be used as the feature type of all the features read

from the worksheet. The exception to this rule is when using the xls_sql_statement keyword. In this case, the DEF
namemay be any valid alphabetic identifier; it does not have to be an existing worksheet name – rather, it is an iden-
tifier for the custom SQL query. The feature type of all the features returned from the SQL query are given the query
name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each worksheet. If any of the per table con-
figuration parameters are given, they will override, for that table, whatever global values have been specified by the
reader keywords such as the WHERE_CLAUSE. If any of these parameters is not specified, the global values will be
used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

xls_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This keyword will be ignored if
the xls_sql_statement is present.

xls_sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the MS
Excel reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <queryName>. All returned features
will have a feature type of <queryName>, and attrib-
utes for all columns selected by the query. The xls_
where_clause is ignored if xls_sql_statement is sup-
plied. This form allows the results of complex joins to
be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The MS Excel reader allows one to use the xls_sql_statement parameter to specify an arbitrary SQL SELECT query on
the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the query to
define at least one feature. Each of these features will be given the feature type named in theDEF line, and will con-
tain attributes for every column returned by theSELECT. In this case, all DEF line parameters regarding a
WHERE clause or spatial querying are ignored, as it is possible to embed this information directly in the text of the
<sqlQuery>.

In the following example, the all records whose ID is less than 5 will be read from the Sheet1 worksheet:

XLS_ADO_DEF Sheet1$ \
 xls_where_clause "id < 5" \
 ID integer \
 NAME text \
 CITY text

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

XLS_ADO_DEF complex \
xls_sql_statement \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has no xls_
where_clause or xls_sql_statement specified in its DEF line, the global <ReaderKeyword>_WHERE_CLAUSE value,
if present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF line does
contain its own xls_where_clause or xls_sql_statement, it will override the global WHERE clause.

The syntax for this clause is:

XLS_ADO_WHERE_CLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

XLS_ADO_WHERE_CLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then all worksheets are read. Also, if no IDs are specified and SHOW_NAMED_RANGES is set to yes
all named ranges are also read. The syntax of the IDs keyword is:

XLS_ADO_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

Note that feature type names for named ranges must be followed by an asterisk (*) character.

The example below selects only theHISTORY worksheet for input during a translation:

XLS_ADO_IDs HISTORY

Workbench Parameter: Feature Types to Read

READ_CACHE_SIZE

Required/Optional: Optional

This keyword controls how the reader retrieves rows from the database. This must be a numeric value which must be
greater than 0.

The READ_CACHE_SIZE is used to determine the number of rows that are retrieved at one time into local memory
from the data source. For example, if the READ_CACHE_SIZE is set to 10, after the reader is opened, the reader will
read 10 rows into local memory. As features are processed by the FME, the reader returns the data from the local
memory buffer. As soon as you move past the last row available in local memory, the reader will retrieve the next 10
rows from the data source.

This keyword affects the performance of the reader, and will result in significantly degraded performance if incor-
rectly set. The optimum value of this keyword depends primarily on the characteristics of individual records and the
transport between the database and the client machine. It is less affected by the quantity of rows that are to be
retrieved.

By default, the READ_CACHE_SIZE is set to 10. This value has been determined to be the optimal value for average
datasets.

Workbench Parameter: Number of Features To Fetch At A Time

SHOW_NAMED_RANGES

Required/Optional: Optional

This keyword controls whether the reader will interpret named ranges as being valid feature types.

If SHOW_NAMED_RANGES is set to yes, then every named range will appear as a unique feature type. The names of
these feature types will be the name of the named range, followed by an asterisk (*) character.

If SHOW_NAMED_RANGES is set to no, then named ranges will not appear as feature types.

Each worksheet always appears as a unique feature types.

FIRST_ROW_IS_HEADING

Required/Optional: Optional

This directive controls whether the reader will interpret the first row of each column as field names or as data.

If FIRST_ROW_IS_HEADING is set to yes, then the first row of every table will be used as field names.

If FIRST_ROW_IS_HEADING is set to no then the first row of every table will be used as data. Field names will be auto-
matically generated, using the name F1 for the first column, F2 for the second column, and so on.

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

When set to YES, tells the reader to return all the schemas of the tables in the database.

If this specification is missing, it is assumed to be NO.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

This directive is similar to RETRIEVE_ALL_SCHEMAS except when set to YES.

When set to YES, this directive tells the reader to only return the names of all of the tables in the database. However,
if RETRIEVE_ALL_SCHEMAS is also set to YES, then RETRIEVE_ALL_SCHEMAS takes precedence.

If this specification is missing, it is assumed to be NO.

Range: YES | NO

Default: NO

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MS Excel writer module stores attribute records into a live relational database. The MS Excel writer provides the
following capabilities:

l Table Creation: The MS Excel writer uses the information within the FME mapping file to automatically create
database tables as needed.

l Writer Mode Specification: The MS Excel allows the user to specify what database command should be issued
for each feature received. Valid writer modes are INSERT and UPDATE. The writer mode can be specified at three
unique levels. It may be specified on the writer level, on the feature type or on individual features.

Writer Directives

The directives processed by the MS Excel Writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MS Excel writer is XLS_ADO.

DATASET, PROVIDER_TYPE

These directives operate in the samemanner as they do for the MS Excel reader. The remaining writer-specific direc-
tives are discussed in the following sections.

Workbench Parameter: Destination Microsoft Excel File

DEF

Required/Optional: Required

Each MS Excel table must be defined before it can be written. The general form of a MS Excel definition statement is:

XLS_ADO_DEF <tableName> \
[xls_update_key_columns <keyColumns>] \
[xls_table_writer_mode (inherit_from_writer|insert|update)] \

[xls_is_named_range (yes|no) \
[<fieldName> <fieldType>]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the
specified name exists it will be truncated if the xls_
truncate_table DEF line parameter is set to YES. Other-
wise the table will be appended. Table names may con-
sist of only alphanumeric characters, and must be less
than 31 characters in length..

Parameter Contents

xls_table_writer_mode The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE and INHERIT_
FROM_WRITER. Note that INSERTmode allows for
only INSERT operations where as UPDATE can be over-
written at the feature levels. INHERIT_FROM_WRITER
simply indicates to take this value from the writer
level and not to override it at the feature type level.
Default:INHERIT_FROM_WRITER

xls_update_key_
columns

This is a comma-separated list of the columns which
are matched against the corresponding FME attrib-
utes’ values to specify which rows are to be updated
when the writer mode is UPDATE.
For example:
xls_update_key_columns ID
would instruct the writer to ensure that the FME attrib-
ute is always matched against the column with the
same name. Also, the target table is always the fea-
ture type specified in the DEF line.
Each column listed with the xls_update_key_columns key-
word must be defined with a type on the DEF line, in
addition to the columns whose values will be updated
by the operation.

xls_is_named_range This controls whether the destination table is a work-
sheet or a named range.
Default: YES

fieldName The name of the field to be written. Valid values for
field name include any character string devoid of SQL-
offensive characters and less than 255 characters in
length.

fieldType The type of a column in a table. The valid values for
the field type are listed below:
text
varchar(width)
datetime
decimal(width,decimal)
currency(width,decimal)
double

VERSION

Required/Optional: Optional

This statement tells the MS Excel writer what version of workbook should be created. If the workbook already exists,
the writer will automatically detect and use the correct version.

Parameter Contents

<version> The version of Microsoft Excel workbook to
create. The valid values are listed below:
97/2000/2002/2003
5.0/95
4.0
3.0
Default: 97/2000/2002/2003

Example:

XLS_ADO_VERSION 2000/2002/2003

Workbench Parameter: Excel Version

START_TRANSACTION

Required/Optional: Optional

This statement tells the MS Excel writer module when to start actually writing features into the database. The MS
Excel writer does not write any features until <last successful feature> + 1 features have been reached. Specifying
a value of zero causes every feature to be output. Normally, the value specified is zero – a non-zero value is only spec-
ified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful feature> The number of the last successful feature.
When loading data for the first time, set
this value to 0.
Default: 0

Example:

XLS_ADO_START_TRANSACTION 0

Workbench Parameter: Start Writing at Feature

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

Since MS Excel does not support transactions, this value should always be set to 1.

If theXLS_ADO_TRANSACTION_INTERVAL statement is not specified, then a value of 1 is used as the trans-
action interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.
This value must always be set to 1.
Default: 1

Example:

XLS_ADO_TRANSACTION_INTERVAL 1

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This keyword informs the MS Excel writer which SQL operations will be performed by default by this writer. This oper-
ation can be set to INSERT or UPDATE. The default writer level value for this operation can be overwritten at the
feature type or table level. The corresponding feature type DEF parameter name is called xls_table_writer_mode. It has
the same valid options as the writer level mode and additionally the value INHERIT_FROM_WRITER which causes
the writer level mode to be inherited by the feature type as the default for features contained in that table.

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE features. These are skipped.

If the XLS_ADO_WRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
Default: INSERT

Example:

XLS_ADO_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

INIT_TABLES

Required/Optional: Optional

This keywords informs the MS Excel writer when each table should be initialized. Initialization encompasses the
actions of truncating existing tables and creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the MS Excel writer will initialize all tables immediately after parsing
the DEF lines and opening the Excel workbook. In this mode, all tables will be initialized, even if the MS Excel writer
receives no features for a given table.

When INIT_TABLES is set to FIRSTFEATURE, the MS Excel writer will only initialize a table once the first feature
destined for that table is received. In this mode, if the MS Excel writer does not receive any features for a given table,
the table will never be initialized.

Workbench Parameter: Initialize Tables

Writer Mode Specification

The MS Excel writer allows the user to specify a writer mode, which determines what database command should be
issued for each feature received. Valid writer modes are INSERT and UPDATE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new row on a worksheet.

In UPDATEmode, the attribute values of each received feature are used to update existing rows in the worksheet.
The rows which are updated are determined via the xls_update_key_columns DEF line parameter, or via the
fme_where attribute on the feature.

Writer Mode Constraints

In UPDATEmode, the fme_where attribute always takes precedence over the xls_update_key_columns
DEF line parameter. If both the fme_where attribute and the xls_update_key_columns DEF line parameter
are not present, then UPDATEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE com-
mand. For example, if fme_where were set to ‘id<5’, then all database records with field id less than 5 will be
affected by the command.

When the fme_where attribute is not present, the writer looks for the xls_update_key_columns DEF line
parameter and uses it to determine which records should be affected by the command. Please refer to the DEF section
for more information about the xls_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels: on the writer level, on the feature type, or on individual fea-
tures.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification.

Note: For more information on this directive, see the chapter Database Writer Mode.

At the feature type level, the writer mode is specified by the xls_writer_mode DEF line parameter. This param-
eters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be superseded on
individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for more infor-
mation about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT or UPDATE.

Feature Representation

Features read from a database consist of a series of attribute values. They have no geometry. The attribute names are
as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line was used,
then the attribute names are as they are returned by the query, and as such may have their original table names as
qualifiers. The feature type of each MS Excel feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

Microsoft SQL Server Reader/Writer

Notes: This format is not supported by FME Base Edition.

Overview

The Microsoft SQL Server reader and writer modules provide FME with access to attribute data held in live MS SQL
Server database tables. This data may not necessarily have a spatial component to it. The FME provides read and
write access to live MS SQL Server databases via Microsoft’s ActiveX Data Objects (ADO).

Tip: See the @SQL function in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any database.

MS SQL Server Quick Facts

Format Type Identifier MSSQL_ADO

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Database name

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Encoding Support Yes

Geometry Type db_none

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line no z values n/a

none yes

Reader Overview

The FME considers a database data set to be a collection of relational tables. The tables must be defined in the map-
ping file before they can be read. Arbitrary where clauses and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MS SQL Server reader is MSSQL_ADO.

DATASET

Required/Optional: Required

This is the database name.

Example:

MSSQL_ADO_DATASET citySource

Workbench Parameter: Source Microsoft SQL Server Non-spatial Name

PROVIDER_TYPE

Required/Optional: Optional

The type of database provider being used. This keyword is internal to FME and should always be set toMSSQL_
ADO. For example,

MSSQL_ADO_PROVIDER_TYPE MSSQL_ADO

SERVER

Required/Optional: Required

The host name of the MS SQL Server.

MSSQL_ADO_SERVER mi6

Workbench Parameter: Server

USER_NAME

Required/Optional: Optional

The name of user who will access the database. If Windows Authentication is being used, this is ignored.

MSSQL_ADO_USER_NAME bond007

Workbench Parameter: User Name

PASSWORD

Required/Optional: Optional

The password of the user accessing the database. If Windows Authentication is being used, this is ignored.

MSSQL_ADO_PASSWORD moneypenny

Workbench Parameter: Password

COMMAND_TIMEOUT

The timeout in seconds for a query to the database. If set to zero, there is no timeout. The default is 30.

Required/Optional

Optional

Values

0 = no timeout

Default: 30

Mapping File Syntax

MSSQL_SPATIAL_COMMAND_TIMEOUT 15

Workbench Parameter

Command Timeout

USE_SSPI

Required/Optional: Optional

This specifies whether Windows Authentication should be used to authenticate to the database server. This keyword
should be set to either yesor no.

If USE_SSPI is set to yes, then the USER_NAME and PASSWORD keywords are ignored.

MSSQL_ADO_USE_SSPI yes

Workbench Parameter: Use Windows Authentication

DEF

Required/Optional: Required

The syntax of the definition is:

MSSQL_ADO_DEF <tableName> \
[mssql_where_clause <whereClause>] \

[<fieldName> <fieldType>] +

or

MSSQL_ADO_DEF <queryName> \
[mssql_sql_statement <sqlQuery>] \

The <tableName>must match the name of an existing MS SQL Server table in the database. This will be used as
the feature type of all the features read from the table. The exception to this rule is when using themssql_sql_statement
keyword. In this case, the DEF namemay be any valid alphabetic identifier; it does not have to be an existing table
name – rather, it is an identifier for the custom SQL query. The feature type of all the features returned from the SQL
query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any of the per table configuration
parameters are given, they will override, for that table, whatever global values have been specified by the reader key-
words such as the WHERE_CLAUSE. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

mssql_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This keyword will be ignored if
the mssql_sql_statement is present.

mssql_sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the MS SQL
Server reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <queryName>. All returned features
will have a feature type of <queryName>, and attrib-
utes for all columns selected by the query. The
mssql_where_clause is ignored if mssql_sql_state-
ment is supplied. This form allows the results of com-
plex joins to be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The MS SQL Server reader allows one to use themssql_sql_statement parameter to specify an arbitrary SQL SELECT
query on the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the
query to define at least one feature. Each of these features will be given the feature type named in theDEF line, and
will contain attributes for every column returned by theSELECT. In this case, all DEF line parameters regarding a
WHERE clause or spatial querying are ignored, as it is possible to embed this information directly in the text of the
<sqlQuery>.

In the following example, the all records whose ID is less than 5 will be read from the supplier table:

MSSQL_ADO_DEF supplier \
 mssql_where_clause "id < 5" \
 ID integer \
 NAME char(100) \
 CITY char(50)

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

MSSQL_ADO_DEF complex \
mssql_sql_statement \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has nomssql_
where_clause or mssql_sql_statement specified in its DEF line, the global <ReaderKeyword>_WHERE_CLAUSE
value, if present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF
line does contain its own mssql_where_clause or mssql_sql_statement, it will override the global WHERE clause.

The syntax for this clause is:

MSSQL_ADO_WHERE_CLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

MSSQL_ADO_WHERE_CLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then no tables are read. The syntax of the IDs keyword is:

MSSQL_ADO_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

MSSQL_ADO_IDs HISTORY

READ_CACHE_SIZE

Required/Optional: Optional

This keyword controls how the reader retrieves rows from the database. This must be a numeric value which must be
greater than 0.

The READ_CACHE_SIZE is used to determine the number of rows that are retrieved at one time into local memory
from the data source. For example, if the READ_CACHE_SIZE is set to 10, after the reader is opened, the reader will
read 10 rows into local memory. As features are processed by the FME, the reader returns the data from the local
memory buffer. As soon as you move past the last row available in local memory, the reader will retrieve the next 10
rows from the data source.

This keyword affects the performance of the reader, and will result in significantly degraded performance if incor-
rectly set. The optimum value of this keyword depends primarily on the characteristics of individual records and the
transport between the database and the client machine. It is less affected by the quantity of rows that are to be
retrieved.

By default, the READ_CACHE_SIZE is set to 10. This value has been determined to be the optimal value for average
datasets.

Workbench Parameter: Number of Records To Fetch At A Time

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

This optional directive is used to tell the reader to retrieve the names and the schemas of all the tables in the source
database. If this value is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this value is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MS SQL Server writer module stores attribute records into a live relational database. The MS SQL Server writer
provides the following capabilities:

l Transaction Support: The MS SQL Server writer provides transaction support that eases the data loading proc-
ess. Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support
provides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The MS SQL Server writer uses the information within the FME mapping file to automatically
create database tables as needed.

l Writer Mode Specification: The MS SQL Server writer allows the user to specify what database command
should be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE. The writer mode
can be specified at three unique levels: on the writer level, on the feature type, or on individual features.

Writer Directives

The directives processed by the MS SQL Server Writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MS SQL Server writer is
MSSQL_ADO.

DATASET, PROVIDER_TYPE, SERVER, USER_NAME, PASSWORD, USE_SSPI, COMMAND_TIMEOUT

These directives operate in the samemanner as they do for the MS SQL Server reader. The remaining writer-specific
directives are discussed in the following sections.

START_TRANSACTION

Required/Optional: Optional

This statement tells the MS SQL Server writer module when to start actually writing features into the database. The
MS SQL Server writer does not write any features until the feature is reached that belongs to <last successful

transaction> + 1. Specifying a value of zero causes every feature to be output. Normally, the value specified is zero –
a non-zero value is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last suc-
cessful transaction. When loading data for
the first time, set this value to 0.
Default: 0

Example:

MSSQL_ADO_START_TRANSACTION 0

Workbench Parameter: Start Transaction at

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If theMSSQL_ADO_TRANSACTION_INTERVAL statement is not specified, then a value of 500 is used as the
transaction interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.
Default: 500

If theMSSQL_ADO_TRANSACTION_INTERVAL is set to zero, then feature based transactions are used. As
each feature is processed by the writer, they are checked for an attribute called fme_db_transaction. The value of
this attribute specifies whether the writer should commit or rollback the current transaction. The value of the attrib-
ute can be one of COMMIT_BEFORE, COMMIT_AFTER, ROLLBACK_AFTER or IGNORE. If the fme_db_
transaction attribute is not set in any features, then the entire write operation occurs in a single transaction.

Example:

MSSQL_ADO_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction interval

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This keyword informs the MS SQL Server writer which SQL operations will be performed by default by this writer.
This operation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation can be
overwritten at the feature type or table level. The corresponding feature type DEF parameter name is calledmssql_
table_writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_FROM_
WRITER which causes the writer level mode to be inherited by the feature type as the default for features contained
in that table.

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE or DELETE features. These are skipped.

If theMSSQL_ADO_WRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
DELETE
Default: INSERT

Example:

MSSQL_ADO_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

INIT_TABLES

Required/Optional: Optional

This keywords informs the MS SQL Server writer when each table should be initialized. Initialization encompasses the
actions of dropping or truncating existing tables, and creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the MS SQL Server writer will initialize all tables immediately after parsing
the DEF lines and opening the connection to the database. In this mode, all tables will be initialized, even if the MS
SQL Server writer receives no features for a given table.

When INIT_TABLES is set to FIRSTFEATURE, the MS SQL Server writer will only initialize a table once the first feature
destined for that table is received. In this mode, if the MS SQL Server writer does not receive any features for a given
table, the table will never be initialized.

Workbench Parameter: Initialize Tables

Writer Mode Specification

The MS SQL Server writer allows the user to specify a writer mode, which determines what database command
should be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the mssql_update_key_columns DEF line parameter, or via
the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the mssql_update_
key_columns DEF line parameter. If both the fme_where attribute and the mssql_update_key_columns
DEF line parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field id less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the mssql_update_key_columns DEF line
parameter and uses it to determine which records should be affected by the command. Please refer to "DEF" on page
915 for more information about the mssql_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels: on the writer level, on the feature type, or on individual fea-
tures.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification. Please refer to the WRITER_MODE keyword documentation for more infor-
mation about this keyword.

At the feature type level, the writer mode is specified by the mssql_writer_mode DEF line parameter. This
parameters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be super-
seded on individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for
more information about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

Table Representation

Each MS SQL Server table must be defined before it can be written. The general form of a MS SQL Server definition
statement is:

MSSQL_ADO_DEF <tableName> \
[mssql_update_key_columns <keyColumns>] \
[mssql_drop_table (yes|no)] \
[mssql_truncate_table (yes|no)] \
[mssql_table_writer_mode (inherit_from_writer|insert|update|delete)] \
[<fieldName> <fieldType>[,<indexType>]]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the
specified name exists, it will be overwritten if the mssql_
drop_table DEF line parameter is set to YES, or it will be
truncated if the mssql_truncate_table DEF line param-
eter is set to YES. Otherwise the table will be appended.
Valid values for table names include any character string
devoid of SQL-offensive characters and less than 128
characters in length.

Parameter Contents

mssql_table_writer_
mode

The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE, DELETE and
INHERIT_FROM_WRITER. Note that INSERT mode allows
for only INSERT operations where as UPDATE and
DELETE can be overwritten at the feature levels.
INHERIT_FROM_WRITER simply indicates to take this
value from the writer level and not to override it at the
feature type level.
Default:INHERIT_FROM_WRITER

mssql_update_key_
columns

This is a comma-separated list of the columns which are
matched against the corresponding FME attributes’
values to specify which rows are to be updated or
deleted when the writer mode is either UPDATE or
INSERT.
For example:
mssql_update_key_columns ID

would instruct the writer to ensure that the FME attribute
is always matched against the column with the same
name. Also, the target table is always the feature type
specified in the DEF line.
Each column listed with the mssql_update_key_columns
keyword must be defined with a type on the DEF line, in
addition to the columns whose values will be updated by
the operation.

mssql_drop_table This specifies that if the table exists by this name, it
should be dropped and replaced with a table specified by
this definition.
Default: NO

mssql_truncate_table This specifies that if the table exists by this name, it
should be cleared prior to writing.
Default: NO

fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offen-
sive characters and less than 128 characters in length.

fieldType See the Attribute Types section below.

indexType The type of index to create for the column.
If the table does not previously exist, then upon table
creation, a database index of the specified type is
created. The database index contains only the one col-
umn. Remember that a given table can contain at most

Parameter Contents

one clustered index.
The valid values for the column type are listed below:
l indexed: An index without constraints.
l indexed_not_null: An index with a non-nullable con-
straint.

l unique: An index with a unique constraint.
l uniqueclustered: A clustered index with a unique con-
straint.

l clustered: A clustered index without constraints.
l clustered_not_null: A clustered index with a non-nul-
lable constraint.

l not_null: A non-nullable column.
l primary_key: A primary key with non-nullable and
unique constraints.

Attribute Types

This section of the <WriterKeyword>_DEF statement defines the attribute types for a table.

bigint

This type is used to represent 64-bit signed integers.

int

This type is used to represent 32-bit signed integers.

smallint

This type is used to represent 16-bit signed integers.

tinyint

This type is used to represent numbers between 0 and 255.

bit

This type is used to represent an integer with a value of 1 or 0

decimal

This type is used to represent fixed precision and scale numeric data from -10^38+1 to 10^38+1.

numeric

This type is used to represent fixed precision and scale numeric data from -10^38+1 to 10^38+1.

money

This type is used to represent monetary data values from -2^63 to 2^63-1. Attribute values are real numbers such
as 55.2354.

smallmoney

This type is used to represent monetary data values from -214748.3648 to 214748.3647. Attribute values are real
numbers such as 55.2354.

float

This type is used to represent 32-bit floating precision numbers.

real

This type is used to represent 16-bit floating precision numbers.

date

This type is used to represent date data from January 1, 0001 to December 31, 9999. For example, a value of
20061231 represents December 31, 2006. When writing to a pre-2008 SQL Server this type will be converted to date-
time.

time

This type is used to represent time data with an accuracy of 100 nanoseconds. For example, a value of
235959.0000000 represents 11:59:59PM. When writing to a pre-2008 SQL Server this type will be converted to date-
time.

datetime2

This type is used to represent date and time data from January 1, 0001 to December 31, 9999 with an accuracy of
100 nanoseconds. For example, a value of 20061231235959.0000000 represents 11:59:59PM on December 31,
2006. When writing to a pre-2008 SQL Server this type will be converted to datetime.

datetime

This type is used to represent date and time data from January 1, 1753 to December 31, 9999 with an accuracy of
3.33 milliseconds. For example, a value of 20061231235959 represents 11:59:59PM on December 31, 2006. When
writing to the database, the writer expects the date attribute to be in the form YYYYMMDDHHMMSS.

smalldatetime

This type is used to represent date and time data from January 1, 1900 to June 6, 2079 with an accuracy of one min-
ute. For example, a value of 20060101101000 represents 10:10:00AM on January 1, 2006. When writing to the data-
base, the writer expects the date attribute to be in the form YYYYMMDDHHMMSS.

char

This type is used to represent fixed length character data up to a length of 8000 characters.

varchar

This type is used to represent variable length character data up to a length of 8000 characters.

text

This type is used to represent variable length character data up to a length of 2^31-1 characters.

nchar

This type is used to represent fixed length character data up to a length of 4000 characters.

nvarchar

This type is used to represent variable length character data up to a length of 4000 characters.

binary

This type is used to represent fixed length binary data up to a length of 8000 bytes.

varbinary

This type is used to represent variable length binary data up to a length of 8000 bytes.

image

This type is used to represent variable length binary data up to a length of 2^31-1 bytes.

uniqueidentifier

Uniqueidentifier is used to represent GUID’s. As such, it must be set up like a valid GUID. Example: {B85E62C3-
DC56-40C0-852A-49F759AC68FB}

Note: the {} must be present for the GUID to be written successfully.

identity

This type is used to represent an auto-incrementing integer field.

If you try to write a value to it; the value will be ignored and the database will simply take the largest integer in the col-
umn, increment it and put that number into the field.

Feature Representation

Features read from a database consist of a series of attribute values. They have no geometry. The attribute names are
as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line was used,
then the attribute names are as they are returned by the query, and as such may have their original table names as
qualifiers. The feature type of each MS SQL Server feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

Microsoft SQL Server (Spatial) Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Overview

The Microsoft SQL Server (Spatial) reader and writer modules provide FME with access to spatial and attribute data
held in live MS SQL Server database tables. The FME provides read and write access to live MS SQL Server databases
via Microsoft’s ActiveX Data Objects (ADO).

MS SQL Server (Spatial) Quick Facts

Format Type Identifier MSSQL_SPATIAL

Reader/Writer Both

Licensing Level Reading: Professional
Writing: DB2, Oracle, or SQL Server
Edition

Dependencies SQL Server 2008+

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support Yes

Encoding Support Yes

Geometry Type mssql_spatial_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values Reader: yes
Writer: no

none yes

Reader Overview

FME considers a database dataset to be a collection of relational tables. Arbitrary where clauses and joins are fully
supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the MS SQL Server (Spatial) reader is MSSQL_SPATIAL.

SERVER

Required/Optional: Required

The host name of the MS SQL Server.

MSSQL_SPATIAL_SERVER mi6

Workbench Parameter: Server

USE_SSPI

Required/Optional: Optional

This specifies whether Windows Authentication should be used to authenticate to the database server. This keyword
should be set to either yesor no.

If USE_SSPI is set to yes, then the USER_NAME and PASSWORD keywords are ignored.

MSSQL_SPATIAL_USE_SSPI yes

Workbench Parameter: Use Windows Authentication

USER_NAME

Required/Optional: Optional

The name of user who will access the database. If Windows Authentication is being used, this is ignored.

MSSQL_SPATIAL_USER_NAME bond007

Workbench Parameter: User Name

PASSWORD

Required/Optional: Optional

The password of the user accessing the database. If Windows Authentication is being used, this is ignored.

MSSQL_SPATIAL_PASSWORD moneypenny

Workbench Parameter: Password

COMMAND_TIMEOUT

The timeout in seconds for a query to the database. If set to zero, there is no timeout. The default is 30.

Required/Optional

Optional

Values

0 = no timeout

Default: 30

Mapping File Syntax

MSSQL_SPATIAL_COMMAND_TIMEOUT 15

Workbench Parameter

Command Timeout

DATASET

Required/Optional: Required

This is the database name.

Example:

MSSQL_SPATIAL_DATASET citySource

Workbench Parameter: Source Microsoft SQL Server Spatial Name

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has nomssql_
where_clause or mssql_sql_statement specified in its DEF line, the global <ReaderKeyword>_WHERE_CLAUSE
value, if present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF
line does contain its own mssql_where_clause or mssql_sql_statement, it will override the global WHERE clause.

The syntax for this clause is:

MSSQL_SPATIAL_WHERE_CLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

MSSQL_SPATIAL_WHERE_CLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then no tables are read. The syntax of the IDs keyword is:

MSSQL_SPATIAL_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

MSSQL_SPATIAL_IDs HISTORY

DEF

Required/Optional: Optional

The syntax of the definition is:

MSSQL_SPATIAL_DEF <tableName> \
[(mssql_geom_column <geometry column name>) \
|(mssql_geog_column <geography column name>)] \
[mssql_where_clause <whereClause>] \
[<fieldName> <fieldType>] +

or

MSSQL_SPATIAL_DEF <queryName> \
[(mssql_geom_column <geometry column name>) \
|(mssql_geog_column <geography column name>)] \
[mssql_sql_statement <sqlQuery>] \
[<fieldName> <fieldType>] +

The <tableName>must match the name of an existing MS SQL Server table in the database. This will be used as
the feature type of all the features read from the table. The exception to this rule is when using themssql_sql_statement
keyword. In this case, the DEF namemay be any valid alphabetic identifier; it does not have to be an existing table
name – rather, it is an identifier for the custom SQL query. The feature type of all the features returned from the SQL
query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any of the per table configuration
parameters are given, they will override, for that table, whatever global values have been specified by the reader key-
words such as the WHERE_CLAUSE. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

mssql_geom_column This specifies the column FME will read geometry
from. If the selected table has exactly one spatial col-
umn, and neither the mssql_geom_column or mssql_
geog_column keywords are used, FME will determine
the spatial column automatically. Only one of mssql_
geom_column and mssql_geog_column may be spec-
ified on each DEF line.

mssql_geog_column This specifies the column FME will read geography
from. If the selected table has exactly one spatial col-
umn, and neither the mssql_geom_column or mssql_
geog_column keywords are used, FME will determine
the spatial column automatically. Only one of mssql_
geom_column and mssql_geog_column may be spec-
ified on each DEF line.

mssql_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This keyword will be ignored if
the mssql_sql_statement is present.

Parameter Contents

mssql_sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the MS SQL
Server (Spatial) reader will execute the query, and
use the resulting rows as the features instead of read-
ing from the table <queryName>. All returned fea-
tures will have a feature type of <queryName>, and
attributes for all columns selected by the query. The
mssql_where_clause is ignored if mssql_sql_state-
ment is supplied. This form allows the results of com-
plex joins to be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The MS SQL Server (Spatial) reader allows one to use themssql_sql_statement parameter to specify an arbitrary SQL
SELECT query on the DEF line. If this is specified, FME will execute the query, and use each row of data returned
from the query to define one feature. Each of these features will be given the feature type named in theDEF line, and
will contain attributes for every column returned by theSELECT. In this case, all DEF line parameters regarding a
WHERE clause or spatial querying are ignored, as it is possible to embed this information directly in the text of the
<sqlQuery>.

In the following example, all records whose ID is less than 5 will be read from the supplier table. If the supplier table
contains a geometry column, it will be automatically detected and read.

MSSQL_SPATIAL_DEF supplier \
 mssql_where_clause "id < 5" \
 ID integer \
 NAME char(100) \
 CITY char(50)

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be presented on each returned feature. The feature type will be set to complex. Geometry will be read from the
GEOM column in the CITY table.

MSSQL_SPATIAL_DEF complex \
mssql_geom_column GEOM \
mssql_sql_statement \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

READ_CACHE_SIZE

Required/Optional: Optional

This keyword controls how the reader retrieves rows from the database. This must be a numeric value which must be
greater than 0.

The READ_CACHE_SIZE is used to determine the number of rows that are retrieved at one time into local memory
from the data source. For example, if the READ_CACHE_SIZE is set to 10, after the reader is opened, the reader will
read 10 rows into local memory. As features are processed by the FME, the reader returns the data from the local
memory buffer. As soon as you move past the last row available in local memory, the reader will retrieve the next 10
rows from the data source.

This keyword affects the performance of the reader, and will result in significantly degraded performance if incor-
rectly set. The optimum value of this keyword depends primarily on the characteristics of individual records and the

transport between the database and the client machine. It is less affected by the quantity of rows that are to be
retrieved.

By default, the READ_CACHE_SIZE is set to 10. This value has been determined to be the optimal value for average
datasets.

Workbench Parameter: Number of Records to Fetch at a Time

ASSUME_ONE_SRID_PER_COL

Required/Optional: Optional

SQL Server does not constrain all geometry objects in a column to have the same Spatial Reference ID (SRID). How-
ever, it is common practice to use a single SRID within a given column. If this directive is set to “NO”, FME will not
assume that each geometry column uses a single SRID when querying the database.

Parameter Contents

<assume_one_srid_per_col> “YES” or “NO”
Default: YES

Example:

MSSQL_SPATIAL_ASSUME_ONE_SRID_PER_COL YES

Workbench Parameter: Geometry Columns Have Exactly One SRID

PERSISTENT_CONNECTION

Required/Optional: Optional

If this directive is set to YES, database connections will be left open and reused when possible until FME is shut
down.

The syntax of the PERSISTENT_CONNECTION directive is:

<ReaderKeyword>_PERSISTENT_CONNECTION [yes | no]

Workbench Parameter: Make Connection Persistant

PROVIDER_TYPE

Required/Optional: Optional

The type of database provider being used. This keyword is internal to FME and, if specified, should always be set to
MSSQL_SPATIAL. For example,

MSSQL_SPATIAL_PROVIDER_TYPE MSSQL_SPATIAL

HANDLE_MULTIPLE_SPATIAL_COLUMNS

If this directive is set to YES, feature geometry will be read into an aggregate. A directive is set on the aggregate to
indicate that each part of the aggregate is independent from the others, and its own geometry. Geometry parts of the
aggregate are named and contain geometry according to their respective column in the table being read.

When using this feature, neither the geometry/geography column, nor the feature type SELECT statement can be
specified.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HANDLE_MULTIPLE_SPATIAL_COLUMNS YES

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The MS SQL Server (Spatial) writer module stores attribute records into a live relational database. The MS SQL Server
(Spatial) writer provides the following capabilities:

l Transaction Support: The MS SQL Server (Spatial) writer provides transaction support that eases the data load-
ing process. Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction
support provides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The MS SQL Server (Spatial) writer uses the information within the FME mapping file to auto-
matically create database tables as needed.

l Writer Mode Specification: The MS SQL Server (Spatial) writer allows the user to specify what database com-
mand should be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE. The writer
mode can be specified at three unique levels: on the writer level, on the feature type, or on individual features.

Writer Directives

The directives processed by the MS SQL Server (Spatial) Writer are listed below. The suffixes shown are prefixed by
the current <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the MS SQL Server
(Spatial) writer is MSSQL_SPATIAL.

SERVER

Required/Optional: Required

The host name of the MS SQL Server.

MSSQL_SPATIAL_SERVER mi6

Workbench Parameter: Server

USE_SSPI

Required/Optional: Optional

This specifies whether Windows Authentication should be used to authenticate to the database server. This keyword
should be set to either yesor no.

If USE_SSPI is set to yes, then the USER_NAME and PASSWORD keywords are ignored.

MSSQL_SPATIAL_USE_SSPI yes

Workbench Parameter: Use Windows Authentication

USER_NAME

Required/Optional: Optional

The name of user who will access the database. If Windows Authentication is being used, this is ignored.

MSSQL_SPATIAL_USER_NAME bond007

Workbench Parameter: User Name

PASSWORD

Required/Optional: Optional

The password of the user accessing the database. If Windows Authentication is being used, this is ignored.

MSSQL_SPATIAL_PASSWORD moneypenny

Workbench Parameter: Password

COMMAND_TIMEOUT

The timeout in seconds for a query to the database. If set to zero, there is no timeout. The default is 30.

Required/Optional

Optional

Values

0 = no timeout

Default: 30

Mapping File Syntax

MSSQL_SPATIAL_COMMAND_TIMEOUT 15

Workbench Parameter

Command Timeout

DATASET

Required/Optional: Required

This is the database name.

Example:

MSSQL_SPATIAL_DATASET citySource

Workbench Parameter: Destination Microsoft SQL Server Spatial Name

DEF

Required/Optional: Required

See Table Representation for details.

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This directive informs the MS SQL Server (Spatial) writer which SQL operations will be performed by default by this
writer. This operation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation
can be overwritten at the feature type or table level. The corresponding feature type DEF parameter name is called
mssql_table_writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_
FROM_WRITER which causes the writer level mode to be inherited by the feature type as the default for features con-
tained in that table.

The operation can be set specifically for individual features as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted.

If theMSSQL_SPATIAL_WRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
DELETE
Default: INSERT

Example:

MSSQL_SPATIAL_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

INIT_TABLES

Required/Optional: Optional

This keywords informs the MS SQL Server (Spatial) writer when each table should be initialized. Initialization encom-
passes the actions of dropping or truncating existing tables, and creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the MS SQL Server (Spatial) writer will initialize all tables immediately
after parsing the DEF lines and opening the connection to the database. In this mode, all tables will be initialized,
even if the MS SQL Server (Spatial) writer receives no features for a given table.

When INIT_TABLES is set to FIRSTFEATURE, the MS SQL Server (Spatial) writer will only initialize a table once the
first feature destined for that table is received. In this mode, if the MS SQL Server (Spatial) writer does not receive
any features for a given table, the table will never be initialized.

Workbench Parameter: Initialize Tables

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;

DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

START_TRANSACTION

Required/Optional: Optional

This statement tells the MS SQL Server (Spatial) writer module when to start actually writing features into the data-
base. The MS SQL Server (Spatial) writer does not write any features until the feature is reached that belongs to <last
successful transaction> + 1. Specifying a value of zero causes every feature to be output. Normally, the value spec-
ified is zero – a non-zero value is only specified when a data load operation is being resumed after failing partway
through.

Parameter Contents

<last successful transaction> The transaction number of the last suc-

Parameter Contents

cessful transaction. When loading data for
the first time, set this value to 0.
Default: 0

Example:

MSSQL_SPATIAL_START_TRANSACTION 0

Workbench Parameter: Start transaction at

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If the TRANSACTION_INTERVAL statement is not specified, then a value of 500 is used as the transaction inter-
val.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.
Default: 500

If the TRANSACTION_INTERVAL is set to zero, then feature based transactions are used. As each feature is proc-
essed by the writer, they are checked for an attribute called fme_db_transaction. The value of this attribute spec-
ifies whether the writer should commit or rollback the current transaction. The value of the attribute can be one of
COMMIT_BEFORE, COMMIT_AFTER, ROLLBACK_AFTER or IGNORE. If the fme_db_transaction attrib-
ute is not set in any features, then the entire write operation occurs in a single transaction.

Example:

MSSQL_SPATIAL_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction interval

SPATIAL_TYPE

Required/Optional: Optional

This directive specifies whether to write geometry (planar data) or geography (geodetic data) when writing to tables
whose DEF line does not include with the mssql_geom_column or mssql_geog_column keywords.

This directive only has effect in combination with the SPATIAL_COLUMN directive.

Parameter Contents

<spatial_type> “geometry” or “geography”
Default: geometry

Example:

MSSQL_SPATIAL_SPATIAL_TYPE geometry

Workbench Parameter: Spatial Type

SPATIAL_COLUMN

Required/Optional: Optional

This directive specifies the geometry or geography column to use when writing to tables whose DEF line does not
include with the mssql_geom_column or mssql_geog_column keywords.

This directive only has effect in combination with the SPATIAL_TYPE directive.

Parameter Contents

<spatial_column> The spatial column name.
Default: GEOM

Example:

MSSQL_SPATIAL_SPATIAL_COLUMN GEOM

Workbench Parameter: Spatial Column

ORIENT_POLYGONS

Required/Optional: Optional

When writing geography (geodetic) data, polygons must be oriented according to the left-hand rule: outer bound-
aries must be counter-clockwise and inner boundaries must be clockwise. If this directive is set to “NO”, FME will not
automatically reorient polygons. You may wish to disable this feature if your input polygons are known to have correct
orientation. Note that FME determines polygon orientation by projecting features onto a plane which does not wrap
around the earth’s poles or 180 degree meridian and does not take into account the curvature of the earth. Therefore,
FME may (re)orient polygons incorrectly in some cases.

Parameter Contents

<reorient_polygons> “YES” or “NO”
Default: YES

Example:

MSSQL_SPATIAL_ORIENT_POLYGONS YES

Workbench Parameter: Orient Polygons

PROVIDER_TYPE

Required/Optional: Optional

The type of database provider being used. This keyword is internal to FME and, if specified, should always be set to
MSSQL_SPATIAL. For example,

MSSQL_SPATIAL_PROVIDER_TYPE MSSQL_SPATIAL

HANDLE_MULTIPLE_SPATIAL_COLUMNS

If this directive is set to YES, feature geometry will be written from an aggregate.

This aggregate must contain individual geometries, namely that each part is independent from the others and is its
own complete geometry. Each part geometry of the aggregate must have a name. If the aggregate contains geom-
etries with names that match the spatial columns of the table being written, the geometries will be written to the
appropriate columns.

When using this feature, the geometry/geography columns cannot be specified.

Required/Optional

Optional

Mapping File Syntax

<WriterKeyword>_HANDLE_MULTIPLE_SPATIAL_COLUMNS YES

Writer Mode Specification

The MS SQL Server (Spatial) writer allows the user to specify a writer mode, which determines what database com-
mand should be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the mssql_update_key_columns DEF line parameter, or via
the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the mssql_update_
key_columns DEF line parameter. If both the fme_where attribute and the mssql_update_key_columns
DEF line parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field id less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the mssql_update_key_columns DEF line
parameter and uses it to determine which records should be affected by the command. Please refer to Table Rep-
resentation for more information about the mssql_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels: on the writer level, on the feature type, or on individual fea-
tures.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification. Note: For more information on this directive, see the chapter Database
Writer Mode.

At the feature type level, the writer mode is specified by the mssql_writer_mode DEF line parameter. This
parameters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be super-
seded on individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for
more information about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

Table Representation

Each MS SQL Server table must be defined before it can be written. The general form of a MS SQL Server (Spatial)
writer definition statement is:

MSSQL_SPATIAL_DEF <tableName> \
[mssql_update_key_columns <keyColumns>] \
[mssql_drop_table (yes|no)] \
[mssql_truncate_table (yes|no)] \
[mssql_table_writer_mode (inherit_from_writer|insert|

update|delete)] \
[(mssql_create_index_sql <SQL>] \
[(mssql_geom_column <geometryColumn>) \

|(mssql_geog_column <geographyColumn>)] \
[<fieldName> <fieldType>[,<indexType>]]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the spec-
ified name exists, it will be overwritten if the mssql_drop_
table DEF line parameter is set to YES, or it will be trun-
cated if the mssql_truncate_table DEF line parameter is
set to YES. Otherwise the table will be appended. Valid
values for table names include any character string devoid
of SQL-offensive characters and less than 128 characters in
length.

mssql_table_writer_
mode

The the default operation mode of the feature type in terms
of the types of SQL statements sent to the database. Valid
values are INSERT, UPDATE, DELETE and INHERIT_FROM_
WRITER. Note that INSERT mode allows for only INSERT
operations where as UPDATE and DELETE can be overwritten
at the feature levels. INHERIT_FROM_WRITER simply indi-
cates to take this value from the writer level and not to
override it at the feature type level.
Default:INHERIT_FROM_WRITER

mssql_update_key_
columns

This is a comma-separated list of the columns which are
matched against the corresponding FME attributes’ values
to specify which rows are to be updated or deleted when
the writer mode is either UPDATE or INSERT.
For example:
mssql_update_key_columns ID

would instruct the writer to ensure that the FME attribute is
always matched against the column with the same name.
Also, the target table is always the feature type specified in
the DEF line.
Each column listed with the mssql_update_key_columns
keyword must be defined with a type on the DEF line, in
addition to the columns whose values will be updated by
the operation.

mssql_drop_table This specifies that if the table exists by this name, it should
be dropped and replaced with a table specified by this def-

Parameter Contents

inition.
Default: NO

mssql_truncate_table This specifies that if the table exists by this name, it should
be cleared prior to writing.
Default: NO

geometryColumn The name of the field containing geometry. The MS SQL
Server (Spatial) Writer supports multiple columns per table
when used with the HANDLE_MULTIPLE_SPATIAL_COLUMNS
directive. The geometry column should not be listed with
the other fields in the <fieldName> and <fieldType>
parameters.

geographyColumn The name of the field containing geography. The MS SQL
Server (Spatial) Writer supports multiple columns per table
when used with the HANDLE_MULTIPLE_SPATIAL_COLUMNS
directive. The geography column should not be listed with
the other fields in the <fieldName> and <fieldType>
parameters.

fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offensive
characters and less than 128 characters in length.

indexType The type of index to create for the column.
If the table does not previously exist, then upon table cre-
ation, a database index of the specified type is created. The
database index contains only the one column. Remember
that a given table can contain at most one clustered index.
The valid values for the column type are listed below:
l indexed: An index without constraints.
l unique: An index with a unique constraint.
l uniqueclustered: A clustered index with a unique con-
straint.

l clustered: A clustered index without constraints.
l indexed: An index without constraints.
l indexed_not_null: An index with a non-nullable con-
straint.

l unique: An index with a unique constraint.
l uniqueclustered: A clustered index with a unique con-
straint.

l clustered: A clustered index without constraints.
l clustered_not_null: A clustered index with a non-nullable
constraint.

l not_null: A non-nullable column.
l primary_key: A primary key with non-nullable and

Parameter Contents

unique constraints.

mssql_create_index_sql Due to the complexity of Spatial Index Creation, FME allows one to specify
a SQL statement to create an index on a specific spatial column in a MSSQL
Spatial table. This SQL is honored on table creation, and is executed imme-
diately after the table is created.

In this example, a default spatial index is created on geometry column “a”
of table “my_table”. A Bounding Box must be specified for every spatial
index, making this a minimal spatial index creation statement.

MSSQL_SPATIAL_PROVIDER_INDEX_SQL

"CREATE SPATIAL INDEX SIDX_a ON my_table(a) WITH (BOUNDING_BOX
= (-200, -200, 200, 200))"

In this example, a spatial index is created on geography spatial column “b”
of “my_table”. If an existing index named SIDX_b exists, it will be dropped
and replaced by this one.

"CREATE SPATIAL INDEX [SIDX_b] ON my_table(b) USING GEOGRAPHY_
GRID WITH (GRIDS = (LOW, MEDIUM, HIGH, HIGH), CELLS_PER_OBJECT
= 32, DROP_EXISTING = ON)”

See the MSDN article titled “CREATE SPATIAL INDEX (Transact-SQL)” for
more information and examples.

Attribute Types

This section of the <WriterKeyword>_DEF statement defines the attribute types for a table.

bigint

This type is used to represent 64-bit signed integers.

int

This type is used to represent 32-bit signed integers.

smallint

This type is used to represent 16-bit signed integers.

tinyint

This type is used to represent numbers between 0 and 255.

bit

This type is used to represent an integer with a value of 1 or 0

decimal

This type is used to represent fixed precision and scale numeric data from -10^38+1 to 10^38+1.

numeric

This type is used to represent fixed precision and scale numeric data from -10^38+1 to 10^38+1.

money

This type is used to represent monetary data values from -2^63 to 2^63-1. Attribute values are real numbers such
as 55.2354.

smallmoney

This type is used to represent monetary data values from -214748.3648 to 214748.3647. Attribute values are real
numbers such as 55.2354.

float

This type is used to represent 32-bit floating precision numbers.

real

This type is used to represent 16-bit floating precision numbers.

date

This type is used to represent date data from January 1, 0001 to December 31, 9999. For example, a value of
20061231 represents December 31, 2006.

time

This type is used to represent time data with an accuracy of 100 nanoseconds. For example, a value of
235959.0000000 represents 11:59:59PM.

datetime2

This type is used to represent date and time data from January 1, 0001 to December 31, 9999 with an accuracy of
100 nanoseconds. For example, a value of 20061231235959.0000000 represents 11:59:59PM on December 31,
2006.

datetime

This type is used to represent date and time data from January 1, 1753 to December 31, 9999 with an accuracy of
3.33 milliseconds. For example, a value of 20061231235959 represents 11:59:59PM on December 31, 2006. When
writing to the database, the writer expects the date attribute to be in the form YYYYMMDDHHMMSS.

smalldatetime

This type is used to represent date and time data from January 1, 1900 to June 6, 2079 with an accuracy of one min-
ute. For example, a value of 20060101101000 represents 10:10:00AM on January 1, 2006. When writing to the data-
base, the writer expects the date attribute to be in the form YYYYMMDDHHMMSS.

char

This type is used to represent fixed length character data up to a length of 8000 characters.

varchar

This type is used to represent variable length character data up to a length of 8000 characters.

text

This type is used to represent variable length character data up to a length of 2^31-1 characters.

nchar

This type is used to represent fixed length character data up to a length of 4000 characters.

nvarchar

This type is used to represent variable length character data up to a length of 4000 characters.

binary

This type is used to represent fixed length binary data up to a length of 8000 bytes.

varbinary

This type is used to represent variable length binary data up to a length of 8000 bytes.

image

This type is used to represent variable length binary data up to a length of 2^31-1 bytes.

uniqueidentifier

Uniqueidentifier is used to represent GUIDs. As such, it must be set up like a valid GUID. Example: {B85E62C3-
DC56-40C0-852A-49F759AC68FB}

Note: the {} must be present for the GUID to be written successfully.

identity

This type is used to represent an auto-incrementing integer field.

If you try to write a value to it; the value will be ignored and the database will simply take the largest integer in the col-
umn, increment it and put that number into the field.

Feature Representation

Features are written to the database table with the same name as their feature type, and include geometry as well as
attributes as defined on the DEF line.

Northgate StruMap Reader/Writer

The StruMap® reader and writer modules allow the Feature Manipulation Engine (FME) to read and write Northgate
Information Solutions StruMap SGF/SGX format files. StruMap SGF/SGX files use a published ASCII format.

Overview

The StruMap reader and writer support the storage of point, line, polygon, and text geometric data in a single file.
The names of the user-defined attributes are not stored with each feature, but rather in the file header where the
structure of the features are defined.

FME considers a StruMap dataset to be a single file.

StruMap Quick Facts

Format Type Identifier STRUMAP

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File for Both

Feature Type Feature Code

Typical File Extensions .sgf

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type strumap_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster yes

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none no

Reader Overview

The StruMap reader extracts features from the input file individually and passes them on to the rest of the FME for fur-
ther processing. An important thing to note in the StruMap input file is that text components or child can be attached
to any geometric types, whereas line symbols can only be attached to lines. The StruMap reader will not output these
as a single aggregate feature, but rather as a series of features sharing the same strumap_id. Additionally, a
strumap_child_id is added to each child to identify its order.

Reader Directives

The directives listed below are processed by the StruMap reader. The suffixes listed are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the StruMap reader is STRUMAP.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the StruMap files to be read. A typical mapping file fragment
specifying an input StruMap dataset looks like:

Example:

STRUMAP_DATASET /usr/data/strumap/input.sgf

Workbench Parameter: Source Northgate StruMap File(s)

DEF

Required/Optional: Required

Each StruMap feature must be defined before it can be read. The definition specifies the feature code of the feature,
and the names and the types of all attributes. The syntax of a StruMap DEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The following table shows the attribute types supported.

Field Type Description

char(<width>) Character fields store fixed length strings. The
width parameter controls the maximum number of
characters that can be stored by the field. No pad-
ding is required for strings shorter than this
width.

date Date fields store date as character strings with
the format YYYYMMDD.

double Float fields store 64-bit floating point values.
There is no ability to specify the precision and
width of the field.

integer Integer fields store 32-bit signed integers.

logical Logical fields store TRUE/FALSE data. Data read
or written from and to such fields must always
have a value of either true or false.

IDs

Required/Optional: Optional

This optional specification limits StruMap features read. If no IDs are specified, then all StruMap features in the input
file are read.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName> \

<baseName1> \
<baseNameN>

The basenames must match those used in DEF lines.

The example below selects only the roads StruMap feature for input during a translation:

STRUMAP_IDs roads

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The StruMap writer creates and writes all features it is given to the file specified by the DATASET keyword. Any exist-
ing StruMap files in the directory that have the same name as the output dataset will be overwritten with the new
data.

Multiple geometric types can be stored in each StruMap file. Any feature whose feature type is not specified in the
mapping file will not be written to file. If no strumap_id is present, a feature is considered a single feature in the
output file (as opposed to being part of an aggregate). Features that share the same ID, which pass through the
writer one after another (grouped by ID prior to entering the writer), are considered a single feature when output to
file. It is an additional requirement that components of a parent feature pass through the writer before their children.
Otherwise, the parent and child relationship may not be realized.

The JOIN directive is not supported by the writer; in other words, features must carry all the attribution before they
are passed into the writer.

Writer Directives

The directives processed by the StruMap writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the StruMap writer is STRUMAP.

DATASET

Required/Optional: Required

This specifies the output file to which the features are to be written. A typical mapping file fragment specifying an out-
put StruMap dataset looks like:

STRUMAP_DATASET /usr/data/Strumap/output.sgf

Workbench Parameter: Destination Northgate StruMap File

DEF

Required/Optional: Required

Each StruMap feature type must be defined before it can be written. The definition specifies a unique feature code of
the feature type, and the names and the types of all attributes. The syntax of a StruMap DEF line is:

<WriterKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

The attribute types supported are the same as those listed in the Reader section.

STRING_DELIMITER

Required/Optional: Optional

This is the character added around a string to indicate the beginning and the ending of a string. For example, to indi-
cate that a pair character “\” should be used to quote a string, the following is used. By default, double quotation
marks are used.

<WriterKeyword>_STRING_DELIMITER “\”

Feature Representation

StruMap features consist of geometry and attributes. In particular, all StruMap features contain a strumap_type
attribute, which identifies the geometric type of the feature.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

There are five types defined for the strumap_type attribute:

Attribute Name Contents

strumap_type The StruMap geometric type of this feature.
Range:
strumap_point |
strumap_line |
strumap_line_symbol |
strumap_polygon |

strumap_displayed_text

Default: No default

Note: strumap_displayed_text is used in place of both
strumap_text and strumap_ftext because the latter types
are not supported by the Writer.

strumap_id The StruMap ID number of the feature. This helps the writer
identify the components of each feature. Features which are
meant to be part of an aggregate feature should share the
same ID. For the reader, this is automatically set. For the
writer, if this is not specified, then each feature is considered
a single output feature when written to file.
Range: Positive Integers
Default: No default

strumap_child_id The StruMap geometric type of this feature.
Range:
strumap_point |

strumap_line |
strumap_line_symbol |
strumap_polygon |

strumap_displayed_text

Default: No default

Points

strumap_type: strumap_point

This indicates that the feature is a StruMap point. Additional attributes include:

Attribute Name Contents

strumap_angle The angle of the rotated symbol.
Range: Real
Default: No default

strumap_type: strumap_line_symbol

This indicates that the feature is a StruMap line symbol. This is actually a component of a StruMap line and cannot be
written to file on its own in terms for the StruMap definition; however, it can represented by other formats.

In addition to the geometry are the following attributes:

Attribute Name Contents

strumap_linesym_num The line symbol number of the line symbol.
Range: integers greater or equal to 0
Default: No default

strumap_linesym_angle The rotation of the line symbol.
Range: Any real number
Default: No default

strumap_linesym_scale The scale factor of the line symbol.
Range: Any real number
Default: No default

Lines

strumap_type: strumap_line

This indicates that the feature is a StruMap line. In addition to the geometry are the following attributes:

Attribute Name Contents

strumap_line_style The line style of the line.
Range: integers greater than or equal to 0
Default: No default

strumap_red The red intensity of the line. This must be used
together with strumap_green and strumap_blue in
order to be used by the StruMap writer.
Range: Integer from 1 to 255
Default: No default

strumap_green The green intensity of the line.
Range: Integer from 1 to 255
Default: No default

strumap_blue The blue intensity of the line.

Attribute Name Contents

Range: Integer from 1 to 255
Default: No default

strumap_flowdir_position The position of the flow direction. This must be used
with the strumap_flowdir_easting and strumap_
flowdir_northing attributes.
Range:
0 (not set) |
1 (flow from point 1 to point 2) |
2 (flow from point 2 to point 1) |
3 (bidirectional flow) |
4 (blocked)
Default: No default

strumap_flowdir_x1 The x coordinate for the first point in terms for the
strumap_flowdir_position.
Range: Real
Default: No default

strumap_flowdir_y1 The y coordinate for the first point in terms for the
strumap_flowdir_position.
Range: Real
Default: No default

strumap_flowdir_x2 The x coordinate for the second point in terms for the
strumap_flowdir_position.
Range: Real
Default: No default

strumap_flowdir_y2 The y coordinate for the second point in terms for the
strumap_flowdir_position.
Range: Real
Default: No default

strumap_mask_x{<number>} The x coordinate of the mask. <number> is a positive
integer used to indicate the order of the mask.
Hence, in order for this to be valid, it has to be used
in conjunction with strumap_mask_y{<number>} and
strumap_mask_length{<number>} where <number>
share the exact same value. As a result of this mech-
anism, more than one mask can be added to each
line feature.
Range: Real
Default: No default

strumap_mask_y{<number>} The y coordinate of the mask. See strumap_mask_x.
Range: Real

Attribute Name Contents

Default: No default

strumap_mask_length

{<number>}

The length of the gap. See strumap_mask_x.
Range: Real
Default: No default

Polygons

strumap_type: strumap_polygon

This indicates that the feature is a StruMap polygon. The first and last coordinates of the polygon must be the same.

Additional attributes include:

Attribute Name Contents

strumap_seed_x The x coordinate of the seed for the polygon.
Range: Real
Default: Defaults to the x coordinate of the first point in
the polygon.

strumap_seed_y The y coordinate of the seed for the polygon.
Range: Real
Default: Defaults to the y coordinate of the first point in
the polygon.

Text

strumap_type: strumap_displayed_text

StruMap displayed text features are used to specify annotation information. Each text feature has a location defined
by a single point geometry, and can have its text string, style, justification, and rotation angle set independently.

The following table lists the special FME attribute names used to control the Strumap_display_text settings.

Attribute Name Contents

strumap_attr_code A text string representing the attribute short code as
defined in the rule file.

strumap_attr_value A text string containing the value of the attribute.

strumap_height The height of the strumap_attr_value in ground units.

strumap_width The width of the strumap_attr_value in ground units.

strumap_red The red color component of the strumap_attr_value.

strumap_green The green color component of the strumap_attr_value.

strumap_blue The blue color component of the strumap_attr_value.

strumap_angle The angle at which the strumap_attr_value is displayed.

strumap_position The justification of the strumap_attr_value.
Range:

Attribute Name Contents

0 (not set) |
1 (bottom left) |
2 (center left) |
3 (top left) |
4 (bottom center) |
5 (center center/ original position) |
6 (top center) |
7 (bottom right) |
8 (center right) |
9 (top right)
Default: No default

strumap_min_length The minimum length of span on which to display bub-
ble.
Range: Positive real numbers
Default: 0

strumap_circle Indicates that an ellipse should be drawn instead of a
box.
Range: true
Default: false

strumap_box Indicates that a box should be drawn.
Range: true
Default: false

strumap_solid Indicates that the ellipse or the box should be filled.
Range: true
Default: false

strumap_line Indicates that a line should be drawn from the text to
the item.
Range: true
Default: false

strumap_arrow Indicates that an arrow should be drawn on a line.
Range: true
Default: false

NULL (Nothing) Reader/Writer

Overview

The NULL format is useful only for testing purposes.

As a reader, it returns no (0) features.

As a writer, any feature written to it is deleted, and it produces no output.

ODBC 3.x Reader

Format Notes: This format is not supported by FME Base Edition.

Overview

The ODBC 3.x reader enables FME to access live databases accessible via Open DataBase Connectivity (ODBC) (ODBC
driver version 3 or better).

This reader is mainly intended for FoxPro databases as the commonly available FoxPro ODBC driver only supports
ODBC specifications version 3.x.

Tip: See the @SQL function in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any database.

ODBC 3.x Quick Facts

Format Type Identifier ODBC2

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type ODBCDatasource name

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Geometry Type db_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

Geometry Support

Geometry Supported? Geometry Supported?

line no z values n/a

none yes

Reader Overview

FME considers a database dataset to be a collection of relational tables. The tables must be defined in the mapping file
before they can be read. Arbitrary WHERE clauses and joins are fully supported.

Reader Directives

The directives that are processed by the ODBC 3.x reader are listed below. The suffixes shown are prefixed by the cur-
rent <ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the ODBC 3.x reader is
ODBC2.

DATASET

Required/Optional: Required

Example:

ODBC2_DATASET citySource

Workbench Parameter: Source ODBC 3.x Dataset

USER_NAME

Required/Optional: Optional

The name of user who will access the database. For some database types, this is ignored.

ODBC2_USER_NAME bond007

Workbench Parameter: User ID

PASSWORD

Required/Optional: Optional

The password of the user accessing the database. For some database types, this is ignored.

ODBC2_PASSWORD moneypenny

Workbench Parameter: Password

DEF

Required/Optional: Required

Each database table must be defined before it can be read. The definition may take two forms:

The syntax of the first form is:

ODBC2_DEF <tableName> \
 [odbc2_where_clause <whereClause>] \

[odbc2_sql <sql statement>] \
 [<fieldName> <fieldType>] +

In this form, the fields and their types are listed. The <fieldType> of each field must be given, but it is not verified
against the database definition for the field. In effect, it is ignored.

The <tableName>must match a table in the database. This will be used as the feature type of all the features read
from the table.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features, unless lim-
ited by a global directive:

<ReaderKeyword>_WHERE_CLAUSE

If a <whereClause> is specified, only those rows that are selected by the clause will be read. Note that the
<whereClause> does not include the word “WHERE.”

In this example, the all records whose ID is less than 5 will be read from the supplier table:

ODBC2_DEF supplier \
 odbc2_where_clause "id < 5" \
 ID integer \
 NAME char(100) \
 CITY char(50)

The syntax of the second form is:

ODBC2_DEF <tableName> \
 odbc2_sql <sqlStatement>

In this form, an arbitrary complete <sqlStatement> will be executed. The statement is passed untouched to the
database (and therefore may include non-portable database constructions). The results of the statement will be
returned, one row at a time, as features to FME. This form allows the results of complex joins to be returned to FME.

All features will be given the feature type <tableName>, even though they may not necessarily have come from that
particular table. Indeed, with this form, the <tableName> need not exist as a separate table in the database.

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

ODBC2_DEF complex \
odbc2_sql \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

WHERE_CLAUSE

Required/Optional: Optional

This optional specification is used to limit the rows read by the reader from each table. If a given table has no odbc2_
where_clause or odbc2_sql specified in its DEF line, the global <ReaderKeyword>_WHERECLAUSE value, if
present, will be applied as the WHERE specifier of the query used to generate the results. If a table’s DEF line does
contain its own odbc2_where_clause or odbc2_sql, it will override the global WHERE clause.

The syntax for this clause is:

ODBC2_WHERECLAUSE <whereClause>

Note that the <whereClause> does not include the word “WHERE.”

The example below selects only the features whose lengths are more than 2000:

ODBC2_WHERECLAUSE LENGTH > 2000

Workbench Parameter:Where Clause

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then all defined and available tables are read. The syntax of the IDs keyword is:

ODBC2_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

ODBC2_IDs HISTORY

PERSISTENT_CONNECTION

A user may want to keep a connection to a database for reuse during a particular FME session. For example, when run-
ning a batch of 100 mapping files on the same database connection, it may be desirable to keep a connection open
and save the processing time required to make and break a database connection.

A database connection will be determined to be the same when the database name, the username, the password, and
the transaction interval are the same.

Values: YES | NO

Default value: NO

Example:

ODBC2_PERSISTENT_CONNECTION YES

Workbench Parameter: Persistent Connection

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

Features read from a database consist of a series of attribute values. They have no geometry. The attribute names are
as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line was used,
then the attribute names are as they are returned by the query, and as such may have their original table names as
qualifiers. The feature type of each Database feature is as defined on its DEF line.

Mapping File Example

This example illustrates how the two forms of theDEF lines can be used to read from an ODBC database source,
which is named rogers.

READER_TYPE ODBC2
ODBC2_DATASET rogers

As we are reading from an MS-ACCESS database, we don’t need to
specify these:
DATABASE_USER_NAME <userName>
DATABASE_PASSWORD <password>

Form 1 of the DEF line is used like this -- it reads just
the two fields we list and applies the where clause

ODBC2_DEF supplier \
 odbc2_where_clause "id < 5" \
 ID integer \
 CITY char(50)

Form 2 of the DEF line is used like this -- we let SQL
figure out what fields we want and do a complex join
involving 3 tables. The FME features will have whatever
fields are relevant. The "feature type" as far as
FME is concerned is whatever was put on the DEF line.
In this case "complex" is the feature type, even though no
table named "complex" is present in the database.

ODBC2_DEF complex \
 odbc2_sql "SELECT CUSTOMER.NAME, CUSTOMER.ID,
 VIDEOS.ID, VIDEOS.TITLE FROM RENTALS, CUSTOMER,
 VIDEOS WHERE RENTALS.customerID = CUSTOMER.ID AND
 VIDEOS.ID = RENTALS.videoID AND CUSTOMER.ID = 1"

Finally, define the NULL writer as our output -- we will
just log everything we read to the log file for inspection.

WRITER_TYPE NULL
NULL_DATASET null

FACTORY_DEF * SamplingFactory \
INPUT FEATURE_TYPE * @Log()

OpenStreetMap (OSM) XML Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

The OpenStreetMap (OSM) is a collaborative mapping project for creating a free and editable map of the whole world.

This section assumes familiarity with the OSM format. Further information on OSM can be found at http://www.-
openstreetmap.org.

Overview

OpenStreetMap data can be downloaded in a topologically structured XML format. The data primitives in an OSM data
file are nodes, ways, and relations.

n A node is a lat/lon pair.

n A way is a list of at least two node references describing a linear feature. Ways can be closed, in which case the
first and the last node are identical. Areas are not explicitly represented in OSM but are identified via community-
approved tags.

n Relations are a group of zero or more primitives with an associated role. All data in OSM are in the WGS-84 datum.

OSM has no explicit schema (feature type) definitions. Each node, way, and relation can have an arbitrary number of
attributes, called tags in OSM. A tag is composed of a key and a value. The OpenStreetMap wiki does define a set of
recommend tags that can be used to classify the nodes and ways into higher-level groupings, i.e., feature types.

The FME OSM reader provides some user settings to help influence the classification of the OSM data being read. This
is needed for most GIS formats that have explicit schema definitions. The community-defined feature types can be
found at http://wiki.openstreetmap.org/index.php/Map_Feature.

OSM Quick Facts

Format Type Identifier OSM

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type

Typical File Extensions .osm

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://wiki.openstreetmap.org/index.php/Map_Feature
http://wiki.openstreetmap.org/index.php/Map_Feature

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The OSM reader can interpret OSM XML files in several different ways. The reader may output un-categorized nodes,
ways and relations, or it may categorize these data primitives according to the recommended interpretations found in
http://wiki.openstreetmap.org/index.php/Map_Features.

The OSM reader provides two options when directed to interpret the OSM data with the OSM community approved fea-
ture types. The data can be interpreted with either broad or specific categories.

For example, when set to specific, the reader will output highway_motorway, highway_primary, high-
way_unclassified, etc., as feature types, whereas it will only output a highway feature type when its mode is
set to broad. Note that in either case, a schema scan of the data file being read is performed to determine the possible
attribute name/value pairs of each feature type.

With three exceptions the OSM relations are not interpreted. The interpreted relations are the ones that are tagged
with a key of type and values of either multipolygon, route, or restriction. Both route and
restriction are output as non-geometrical features, and their feature types are set to relation_route and
relation_restriction, respectively. The multipolygon relation is output as an area or multi-area geome-
try; this includes donuts, or an aggregate of polygons and donuts. The multipolygon relation may be output as a
line or a non-geometrical feature. In the case of bad geometrical information, the multipolygon relation feature
type will be set to relation_multipolygon.

Geometry

The OSM reader supports points, lines, and area geometries. Points are constructed from OSM nodes, linear features
from OSM ways, and area features are constructed from either appropriately tagged closed OSM ways, or from OSM
multipolygon relations.

Coordinate Systems

The features output by the OSM reader are always in LL84.

FME Feature Attributes

All OSM tags are loaded from the OSM data primitives are loaded as FME feature attributes. Relation feature types will
have their members mapped as an FME list attribute in the FME feature. The list attribute will have 3 components:

member{}.type

member{}.ref

member{}.role

Relation feature types will also have an attribute named as osm_relation_type to describe the type of relation.

You can use this member list attribute to further process the relations within FME Workbench.

http://wiki.openstreetmap.org/index.php/Map_Features
http://wiki.openstreetmap.org/index.php/Map_Features

In OSM way features are constructed by reference to node IDs. These node IDs are mapped into the nd{}.ref list
attribute in FME way features.

Reader Directives

The suffixes shown are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the OSM reader is OSM.

DATASET

The location of the OSM file to be read.

Required/Optional

Required

Mapping File Syntax

OSM_DATASET c:\sample.osm

Workbench Parameter

Source OpenStreetMap File(s)

CLOSE_AREAS

Specifies whether the OSM reader should create area geometries for OSM ways, whose first and last point equal, even
if their “area” tag is not appropriately set. The valid values for this directive are ‘Yes’ and ‘No’, with the default being
‘Yes’.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

Required/Optional

Optional

Mapping File Syntax

OSM_CLOSE_AREAS No

Workbench Parameter

not applicable

CUSTOM_AREA

This directive relies on a text file whose content lists the way feature types that should be converted into area geom-
etries when their first and last coordinates equal.

The format of the text file is simple: each feature type that should be considered a possible area is listed on a separate
line. Two example files can be found under <FME InstallDir>\xml\osm\AreaFeatureLists\osm_spe-
cific_areas.txt and <FME InstallDir>\xml\osm\AreaFeatureLists\osm_broad_
areas.txt.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

Required/Optional

Optional

Mapping File Syntax

OSM_CUSTOM_AREA c:\my_osm_areas.txt

Workbench Parameter

not applicable

SCHEMA_CHOICE

This optional directive specifies whether the OSM primitives should be interpreted via predefined FME factory pipe-
lines that categorize the nodes, ways, and relations according to the recommended interpretations found in
http://wiki.openstreetmap.org/index.php/Map_Features, or if a user defined factory pipeline should be
used.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

Values

COMMUNITY (default) | CUSTOM

TheCOMMUNITY_FEATURE_TYPES directive should be used in conjunction with this directive when this direc-
tive is set to ‘COMMUNITY’.

The CUSTOM_OSM_PIPELINE directive should be used in conjunction with this directive when this directive is set to
‘CUSTOM’.

Required/Optional

Optional

Mapping File Syntax

OSM_SCHEMA_CHOICE CUSTOM

Workbench Parameter

not applicable

COMMUNITY_FEATURE_TYPES

This optional directive is applicable when the SCHEMA_CHOICE is set to COMMUNITY, it specifies the predefined FME
factory pipeline that categorizes the nodes, ways, and relations into to the recommended interpretations found in
http://wiki.openstreetmap.org/index.php/Map_Features. The valid values for this directive are
‘BROAD’, ‘SPECIFIC’ and ‘RAW’, with ‘BROAD’ being the default.

When ‘BROAD’ is chosen, then the OSM reader will use the “{FME Directory”\xml\osm\schemaMap\osm_broad_sche-
ma.fmi” to categorize the OSM data primitives into broader categories. The osm_broad_schema.fmi contains a
sequence of FME factories that would assign a node, way, or relation an specific feature according to the existence of
certain tag keys. For example, any way with a ‘highway’ tag key regardless of its tag value will be categorized into a
highway feature type.

When ‘SPECIFIC’ is chosen, then the OSM reader will use the “{FME Directory”\xml\osm\schemaMap\osm_specific_
schema.fmi” to categorize the OSM data primitives into more detailed categories. The osm_specific_schema.fmi pipe-
line contains a SchemaMappingFactory that loads a CSV file, {FME Directory}\xml\osm\schemaMap\osm_specific_
schema.fmi, to help it categorize the OSM data primitives according to the tag key and tag value. For example, any
OSM way primitive with a ‘highway’ tag key and tag value of ‘primary’ will be categorized into a highway_primary fea-
ture type.

When ‘RAW’ is chosen, then the OSM reader will leave the OSM nodes, ways, and relations unprocessed.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within Workbench
after the workspace has been generated.

http://wiki.openstreetmap.org/index.php/Map_Features
http://wiki.openstreetmap.org/index.php/Map_Features
http://wiki.openstreetmap.org/index.php/Map_Features
http://wiki.openstreetmap.org/index.php/Map_Features

Required/Optional

Optional

Mapping File Syntax

OSM_COMMUNITY_FEATURE_TYPES SPECIFIC

Workbench Parameter

not applicable

CUSTOM_OSM_PIPELINE

This optional directive is applicable when the SCHEMA_CHOICE is set to CUSTOM. It specifies a user-defined factory
pipeline that can be used to transform the OSM nodes, ways and relations into user-defined feature types.

This directive is used when generating workspaces and mapping files. As a result, it is not editable within the Work-
bench after the workspace has been generated.

Required/Optional

Optional

Mapping File Syntax

OSM_CUSTOM_OSM_PIPELINE c:\my_osm_feature_categorization.fmi

Workbench Parameter

not applicable

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The OSM writer will write out features as nodes, ways, and relations into an OSM file. Lines and areas that have more
than 2000 points will be split into multiple ways, each having at most 2000 nodes. Duplicated nodes are also handled
to make sure no duplicate OSM nodes are written out. Conversion of coordinates into WGS84/LL84 is done auto-
matically into the writer.

OSM Tags Handling

Feature types in OSM writer do not have any predefined schema. User attributes that are specified on the feature type
will be used as tags in the OSM elements of the output file, if such attributes exist on the features or geometry traits
of the geometry.

Example: A feature type named “amenity” has 3 tags that OSM writer will create if the features have such attributes:

OSM_2_DEF amenity \

amenity xml_char(17) \

building xml_char(4) \

source xml_char(19)

OSM Elements Writing

There are common attributes on each OSM element that the writer will write out if feature attributes or geometry traits
exist: id, uid, timestamp, visible, changeset, and version.

If an OSM node, point or relation does not have an id attribute found on geometry or feature, then a negative value
will be assigned to each element.

OSM node

All geometries that contain points (including line, polygon, donut or any multi geometry) will have their coordinates
written out as OSM nodes.

Tags on the OSM node will only be written out if there are user attributes defined on feature types and such attributes
exist on the feature as attributes or point-level geometry as traits.

In the case where there are multiple sources of the same node (for example, from a point and a line), only the first
node with positive ID is written out. If there are no nodes with positive ID, then the first node the writer encounters
will be written out.

OSM way

All linear geometries will have corresponding OSM way elements written out. The writer does not check for duplicated
lines.

OSM relation

A feature is written out as an OSM relation if osm_relation_type attribute exist, and the value of such attribute
determines the type of relation.

Tags that are associated with the relation must be specified as attributes on the features. Tags for the members (OSM
ways and nodes) must be specified as traits on each geometry part of feature.

Multipolygon relation

OSM writer also writes out multipolygon relation from donut or multipolygon geometry, even if osm_relation_
type attribute does not exist on the feature.

The multipolygon relation that is written out follows the rules and examples described in http://wiki.-
openstreetmap.org/wiki/Relation:multipolygon

Other relation

A feature with null or no geometry can be used to describe an OSM relation by specifying the following attributes:

osm_relation_type The type of OSM relation to be written out
member{}.ref, member{}.role and
member{}.type list

Each attribute describes the reference id, role and type of
members in relation. The length of list attributes must be
equal; otherwise, no relation will be written out.

A feature with collection geometry can be written out as any relation provided that osm_relation_type is spec-
ified. All non-null geometry parts will be written out as ways and/or nodes and included as members in the relation.

http://wiki.openstreetmap.org/wiki/Relation:multipolygon
http://wiki.openstreetmap.org/wiki/Relation:multipolygon
http://wiki.openstreetmap.org/wiki/Relation:multipolygon

The attributes of <member> element (role and type) must be specified as traits to the geometry parts. The ref
attribute of <member> is populated from the ID of the ways or nodes that have been written out.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the OSM writer is OSM.

NUM_DEC_POINTS

This directive controls the number of decimal points that will be written in the OSM file for the lat/long coordinates of
OSM points. If it is not specified, the default is 7 decimal points.

Required/Optional

Optional

Mapping File Syntax

OSM_NUM_DEC_POINTS 7

Workbench Parameter

Number of Decimal Points

WRITER_CHARSET

The character set encoding in which the OSM file will be written.

Values

UTF-8 | UTF-16 | UTF-16BE | UTF16-LE | UTF-32 | UTF-32BE | UTF-32LE

If no character set is specified, the OSM file will be written in the UTF-8 character set

Required/Optional

Optional

Mapping File Syntax

OSM_WRITER_CHARSET UTF-16

Workbench Parameter

Output Character Set

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Please see the Writer Overview section for details on how the features are converted into OSM elements in the OSM
Writer.

Geometry

The geometry features produced by the OSM reader can be identified by the xml_type attribute. The valid values for
this attribute are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_point Point feature.

xml_line Linear feature.

xml_area Simple polygon, donut, or an aggregate
of polygon and donut features.

No Geometry

xml_type: xml_no_geom

Features with their xml_type attribute set to xml_no_geom do not contain any geometry data.

Points

xml_type: xml_point

Features with their xml_type set to xml_point are single coordinate features or an aggregate of single points.

Lines

xml_type: xml_line

Features with their xml_type set to xml_line are polyline features or an aggregate of polylines.

Areas

xml_type: xml_polygon

Features with their xml_type set to xml_polygon are polygon features which may or may not have interior boundaries,
or an aggregate of such polygons.

Oracle Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Oracle® Version: Any references to Oracle 8i throughout this chapter are also applicable to Oracle 9i and Oracle 10g.

Oracle Instant Client: Instant Client can be used to run your OCI, OCCI, JDBC, and ODBC applications without
installing a full Oracle Client. Instant Client supports SQL*Plus.

For more information on how it works with FME, see http://www.f-
mepedia.com/index.php/OverviewOracle_Instant_Client.

http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client

Overview

The Oracle Reader/Writer enables FME to read and write attribute data stored using Oracle. This module com-
municates directly with Oracle for maximum throughput.

Oracle Spatial is also supported by FME:

l The object-relational model is documented in theOracle Spatial Object Reader/Writer.

l The relational model is documented in Oracle Spatial Relational Reader/Writer.

If only attributes are to be read or written, then this Oracle Database reader and writer module of FME should be
used. In addition, an OracleQueryFactory is available to extract data from an Oracle database within the FME
factory pipeline.

Tip: See the QueryFactory in the FME Functions and Factories manual. This factory also
exploits the powerful query capabilities of Oracle Spatial.

See the @SQL function, also in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any Oracle
database.

Oracle Quick Facts

Format Type Identifier ORACLE8I_DB

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Geometry Type oracle_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon no solid yes

elliptical arc no surface yes

ellipses no text no

line no z values n/a

none yes

Reader Overview

FME considers an Oracle dataset to be a database containing a collection of relational tables. The tables must be
defined in the mapping file before they can be read. Arbitrary WHERE clauses and joins are fully supported. When
using the object-relational model, an entire arbitrary SQL SELECT statement may also be used as a source of
results.

Reader Directives

The directives listed below are processed by the Oracle Database reader. The suffixes listed are prefixed by the cur-
rent <ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the Oracle Database reader is
ORACLE8I_DB.

DATASET

Required/Optional: Required

This specifies the SQL/Net service name for the Oracle database, which can be blank to use the default service. If it is
specified, then the service must have been set up in the local SQL/Net configuration.

Example:

ORACLE8I_DB_DATASET citySource

Workbench Parameter: Source Oracle Non-spatial Service

USER_NAME

The name of user who will access the database.

Required/Optional

Optional

Mapping File Syntax

ORACLE8I_DB_USER_NAME bond007

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the usernamemay be left blank, or may be completely omitted.

If a connection cannot be established using the provided username, a second attempt will be made using the upper-
case version of the username.

Workbench Parameter

Username

PASSWORD

Required/Optional: Required

The password of the user accessing the database.

ORACLE8I_DB_PASSWORD moneypenny

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the password may be left blank, or may be completely omitted.

Workbench Parameter: Password

WORKSPACE

Required/Optional: Optional

The name of the Oracle Workspace Manager workspace which will be used by the reader. All tables read by the reader
will be read using the same workspace. If this parameter is omitted, or left blank, the default LIVE workspace will be
used.

ORACLE8I_DB_WORKSPACE B_focus_1

Workbench Parameter: Oracle Workspace

DEF

Required/Optional: Optional

The syntax of the definition is:

ORACLE8I_DB_DEF <tableName> \
[oracle_where_clause_encoded <whereClause>] \
[oracle_sql_encoded <sqlQuery>] \
[oracle_table_writer_mode (inherit_from_writer|insert|update|delete)] \
[<fieldName> <fieldType>] +

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The <tableName> must match a table in the Oracle database. This will be used as the feature type of all the features
read from the table. If the <tableName> does not match a table in the database, a second attempt will be made using
the uppercase version of the <tableName>.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader directives
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

oracle_where_clause_encoded This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, the value of
the <ReaderKeyword>_WHERE_CLAUSE directive is
used.
This parameter is encoded as described in the sec-
tion Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax.

oracle_sql_encoded This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the Oracle
Database reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <layerName>. All returned features

Parameter Contents

will have a feature type of <layerName>, and attrib-
utes for all columns selected by the query.
The oracle_where_clause_encoded are ignored if
oracle_sql_encoded is supplied.
This parameter is encoded as described in the sec-
tion Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax.

oracle_table_writer_
mode

The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE, DELETE and
INHERIT_FROM_WRITER. Note that INSERT mode
allows for only INSERT operations where as UPDATE
and DELETE can be overwritten at the feature levels.
INHERIT_FROM_WRITER simply indicates to take this
value from the writer level and not to override it at
the feature type level.
Default:INHERIT_FROM_WRITER

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a <where-
Clause> is specified, only those rows which are selected by the clause will be read. Note that the <whereClause>
does not include the wordWHERE.

When using the object model, the FME allows one to use the oracle_sql_encoded parameter to specify an arbitrary
SQL SELECT query. If this is specified, the FME will execute the query, and use each row of data returned from the
query to define a feature. Each of these features will be given the feature type named in theDEF line, and will con-
tain attributes for every column returned by the SELECT. In this case, all DEF line parameters regarding aWHERE
clause are ignored, as it is possible to embed this information directly in the text of the <sqlQuery>.

The following example joins the tables ROADS and ROADNAMES, placing the resulting data into FME features with a
feature type of MYROADS. Imagine that ROADS defines some attributes for the roads, and has a numeric field named
ID, and that ROADNAMES joins the numeric field ID with character arrays with the roads’ names.

ORACLE8I_DB_DEF MYROADS \
oracle_sql “SELECT * FROM ROADS, \

 ROADNAMES WHERE ROADS.ID = ROADNAMES.ID”

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then all defined and available tables are read. The syntax of the IDs directive is:

ORACLE8I_DB_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

ORACLE_IDs ROADS

WHERE_CLAUSE

Required/Optional: Optional

This specifies an SQL WHERE clause, which is applied to the table’s columns to limit the resulting features. This fea-
ture is currently limited to apply only to the attributes of the target table, and does not allow for joining multiple tables
together. The effect of table joins can be achieved by specifying the entire queries in the DEF line with an oracle_
sql_encoded parameter.

By default, there is no WHERE clause applied to the results, so all features in the table are returned.

CHUNK_SIZE

Required/Optional: Optional

The features are read from the Oracle database using a bulk reading technique to maximize performance. Normally
1000 rows of data are read from the database at a time.

This directive allows one to tune the performance of the reader. It specifies how many rows are read from the data-
base at a time.

Workbench Parameter: Rows to Read at a Time

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

REMOVE_SCHEMA_QUALIFIER

Required/Optional: Optional

Specifies whether to keep or remove the schema qualifier. The full name of a table in an Oracle database is of the for-
mat <schema_name>.<table_name>. Setting this keyword to YES indicates that the reader should return the
table name without any prefixes. This is useful when:

l creating a workspace that will be passed on to another organization using the same table names,

When this keyword is set to YES during the generation of a mapping file or workspace, the source feature types will
be the table names without any prefix; otherwise, they will contain the owner name as a prefix. It is recommended
that this keyword not be changed in value after generating the mapping file/workspace as it is possible for no fea-
tures to be successfully passed onto the writer (since the writer is expecting feature types with different names).

Note that even when REMOVE_SCHEMA_QUALIFIER is set to YES, if the table is owned by a user other than the
current user, the <owner_name> prefix will not be dropped so that the reader will find the correct table; however,
the <database_name> prefix will still be dropped.

Value: YES | NO

Default Value: NO

Example:

ORACLE8I_DB_REMOVE_SCHEMA_QUALIFIER YES

Workbench Parameter: Remove Schema Qualifier

USE_UNIFIED_DATE_ATTRS

Required/Optional: Optional

Specifies whether we want to use unified date attributes, where the date and time are read into one attribute, or
whether we want to use split date attributes, where two attributes are produced, one with only the date and another
with both the date and time.

The value of this keyword should not be changed. It is automatically set to YES in new mapping files and workspaces.
To maintain backwards compability, if this keyword is not present, the reader will behave as though the keyword is
set to NO.

Value: YES | NO

Default Value: YES (in new mapping files and workspaces), NO otherwise

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Oracle Database writer module stores attribute data in an Oracle database. Only uppercase table names are sup-
ported.

The Oracle Database writer provides the following capabilities:

l Transaction Support: The Oracle Database writer provides transaction support that eases the data loading proc-
ess. Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support
provides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The Oracle Database writer uses the information within the FME mapping file to automatically
create database tables as needed.

l Table Dropping: The Oracle Database writer has an option that allows each table to be written to be dropped if
recreating, or truncated if appending.

l Index Creation: The Oracle Database writer will set up and populate all needed indexes and index tables as part
of the loading process.

l Bulk Loading: The Oracle Database writer uses a bulk loading technique to ensure speedy data load.

Writer Directives

The directives processed by the Oracle Database writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Oracle Database writer is
ORACLE8I_DB.

DATASET, USER_NAME, WORKSPACE, BEGIN_SQL{}, and END_SQL{}

These directives operate in the samemanner as they do for the Oracle Database reader.

DEF

Required/Optional: Required

Each Oracle Database table must be defined before it can be written. The general form of an Oracle Database def-
inition statement is:

ORACLE8I_DB_DEF <tableName> \
 [oracle_sql_encoded <sqlQuery>] \
 [oracle_update_key_columns <column>[,<column>]... \
 [oracle_delete_key_columns <column>[,<column>]... \
 [oracle_drop_table (yes|no)] \
 [oracle_truncate_table (yes|no)] \
 [oracle_params <creationParams>] \

[oracle_sequenced_cols column[:seqname][;column[:seqname]]...] \
[<fieldName> <fieldType>]*

If the user wishes to create a table, the table definition allows control of the table that will be created. Otherwise, the
table definition serves to provide options for inserting, updating or deleting data in an existing table. In each case,
some parameters may be unused. The recommended approach is to take advantage of the updated Workbench GUI to
limit mistakes when setting the layer parameters.

If the table already exists in the database, then it is not necessary to list the fields and their types – FME will use the
schema information in the database to determine this. If the fields and types are listed, they must match those in the
database, however, not all fields must be listed.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it must be a field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

oracle_sql_encoded This specifies an SQL INSERT or UPDATE query to be used
to define the results. If this is specified, the Oracle Data-
base writer will execute the query, defining one row for
each feature from the FME.
The values in the query are specified by embedding
:attrName in the query itself, where attrName is the name of
the FME feature’s attribute; for example:
INSERT INTO EXAMPLE VALUES :a, :b

In this example, the attributes named a and b will be
taken from each feature written to <tableName>.
The attributes named in the query must be listed on the
DEF line so that the FME knows what type to use. There is
no necessary or implied correlation between the FME
attribute name and the Oracle column name. Take, for
example, this UPDATE query:
UPDATE RR SET TEXTSTRING=:mytext WHERE ID=:myid

In this example, the Oracle column named ID is compared
to the value of each feature’s attribute named myid, and
the value of the table’s column named TEXTSTRING is set
from the feature attribute named mytext.
This parameter is encoded as described in the section Sub-
stituting Strings in Mapping Files in FME Fundamentals
help > Mapping File Syntax.

oracle_params This specifies additional parameters to be appended to the
Oracle CREATE query used to create the output table. It is

Parameter Contents

used to specify table allocation characteristics and the
like.
If this is specified, it will override the global CREATE_
TABLE_PARAMS directive.

oracle_update_key_
columns

This instructs the Oracle Database writer to perform an
UPDATE operation on the table, rather than performing an
INSERT. The argument is a comma-separated list of the
columns which are matched against the corresponding
FME attributes’ values to specify which rows are to be
updated with the other attribute values.
For example:
oracle_update_key_columns ID

would have a similar effect to the “UPDATE” example in
the above discussion of the oracle_sql_encoded direc-
tive. In this case, however, the FME attribute is always
matched against the Oracle column with the same name.
Also, the target table is always the feature type specified
in the DEF line.
Each column listed with the oracle_update_key_columns direc-
tive must be defined with a type on the DEF line, in addi-
tion to the columns whose values will be updated by the
operation.

oracle_delete_key_
columns

This instructs the Oracle Database writer to perform an
DELETE operation on the table, rather than performing an
INSERT. The argument is a comma-separated list of the
columns which are matched against the corresponding
FME attributes’ values to specify which rows are to be
updated with the other attribute values.
For example:
oracle_delete_key_columns ID

In this case, the FME attribute is always matched against
the Oracle column with the same name. Also, the target
table is always the feature type specified in the DEF line.
Each column listed with the oracle_delete_key_columns direc-
tive must be defined with a type on the DEF line.

oracle_drop_table This specifies whether a table should be dropped, if it
exists, before being recreated. If the table does not exist,
then the operation is ignored and the user is warned. Note
that the drop table option is only available when specifying
table creation parameters.

oracle_truncate_

table

This specifies whether a table should be truncated, if it
exists, before data is inserted. If the table does not exist,

Parameter Contents

then the operation is ignored and the user is warned. Note
that the truncate table option is only available when not
specifying table creation parameters.

oracle_sequenced_cols Indicates which columns' values come from sequences.
The format for this parameter is of the form

oracle_sequenced_cols col-
umn1:seqname1;column2:seqname2;...

where "columnN" is the name of the column whose value
is provided by the sequence, and "seqnameN" is the name
of the sequence providing the value.
If ":seqnameN" is not given, the column's value will be
provided by a sequence with the same name as the col-
umn. Sequence names are case-sensitive. The sequences
will be created if they do not already exist, in which case a
message will be written to the log file.

oracle_contains_measures This directs the writer to write measures to the destination
table. When this directive is set to yes and the incoming
feature does not have any measures, then null values are
written. This parameter applies when writing to existing
tables.
Default is NO.

START_TRANSACTION

Required/Optional: Optional

This statement tells the Oracle Database writer module when to start actually writing features into the database. The
Oracle Database writer does not write any features until the feature is reached that belongs to <last successful
transaction> + 1. Specifying a value of zero causes every feature to be output. Normally, the value specified is zero –
a non-zero value is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last successful
transaction. When loading data for the first time,
set this value to 0.

Example:

ORACLE8I_DB_START_TRANSACTION 0

Workbench Parameter: Transaction to Start Writing At

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If the TRANSACTION_INTERVAL statement is not specified, then a value of 2000 is used as the transaction interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Example:

ORACLE8I_DB_TRANSACTION_INTERVAL 5000

Workbench Parameter: Features To Write Per Transaction

CHUNK_SIZE

See the CHUNK_SIZE directive in the Reader Directives section.

BEGIN_SQL{n}

This directive is described in the Reader Directives section. In the case of the writer, the statements will be executed
only when the first feature actually written to the dataset.

END_SQL{n}

This directive is described in the Reader Directives section. In the case of the writer, the statements will be executed
only if at least one feature has been written to the dataset.

STRICT_ATTR_CONVERSION

This directive instructs the Oracle writer on how to proceed when a problem arises while converting a value from one
of a feature’s attributes to an oracle column value. Examples of such problems would be the truncation of a string
value to fit into the target character column, an error in converting a non-numeric attribute to write to a numeric col-
umn.

In normal operation, the Oracle writer will silently truncate strings which are too long, or null out values which cannot
be successfully converted. It can optionally log features which have conversion problems, or drop problem features
and write a warning to the log.

Possible values for this directive are summarized in the following table:

Parameter Contents

NO Silently ignore conversion errors. (This is the default
behaviour.)

YES Features are dropped from the translation and a
warning is written to the log.

WARN Log any features causing conversion errors, and then
continue the translation as usual

Example:

ORACLE8I_DB_STRICT_ATTR_CONVERSION WARN

Workbench Parameter: Enforce strict attribute conversion

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This directive informs the Oracle Database writer which SQL operations will be performed by default by this writer.
This operation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation can be
overwritten at the feature type or table level. The corresponding feature type DEF parameter name is called oracle_
table_writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_FROM_
WRITER which causes the writer level mode to be inherited by the feature type as the default for features contained
in that table.

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE or DELETE features. These are skipped.

If theWRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
DELETE
Default: INSERT

Example:

ORACLE8I_DB_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

Writer Mode Specification

The Oracle Database writer allows the user to specify a writer mode, which determines what database command
should be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the oracle_update_key_columns DEF line parameter, or
via the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the oracle_update_
key_columns DEF line parameter. If both the fme_where attribute and the oracle_update_key_col-
umns DEF line parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field id less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the oracle_update_key_columns DEF
line parameter and uses it to determine which records should be affected by the command. Please refer to DEF on
page ??? for more information about the oracle_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels: on the writer level, on the feature type, or on individual fea-
tures.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification. Note: For more information on this directive, see the chapter Database
Writer Mode.

At the feature type level, the writer mode is specified by the oracle_writer_mode DEF line parameter. This
parameters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be super-
seded on individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for
more information about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

Feature Representation

Features read from Oracle Databases consist of a series of attribute values. They have no geometry. The feature type
of each Database feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined by on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), the Oracle Database module makes use of the following special attribute names:

Attribute Name Contents

oracle_type The type of geometric entity stored within the fea-
ture. This is always set to:
oracle_nil

Features read from, or written to, Oracle Databases have an attribute for each column in the database table. The fea-
ture attribute name will be the same as the source or destination column name. The attribute and column names are
case-sensitive.

Troubleshooting

Problems sometimes arise when attempting to connect to an Oracle database. This is almost always due to a mis-
configuration in the user’s environment. The following suggestions can often help detect and overcome such prob-
lems.

l Ensure you can connect to the database with the service name, user name, and password using SQL*Plus.

l Ensure that you have the correct version of the Oracle client software installed. Oracle 8.1.5 or newer is rec-
ommended. Note that many clients have had problems if they have both 8.0.4 and 8.1.x installed on the same com-
puter.

l Ensure that your ORACLE_HOME environment variable is correctly set: see the Oracle documentation for details.
This is required for some specific versions of Oracle 8i, and may be required even if SQL*Plus appears to oper-
ate correctly without it.

l If you have had older versions of the Oracle client software installed, make sure that your PATH variable has the
current version’s Oracle directory first, before any other Oracle software, including the WebDB package.

l It is sometimes helpful to define an environment variable named ORACLE, with the same value as the ORACLE_
HOME variable. With some installations, it often helps to ensure that the variable named ORACLE is not defined.

l When running on UNIX, the following environment variables should be defined:

Variable Contents Sample Value

ORACLE_BASE Top level of directory into
which Oracle client software
is installed.

/opt2/oracle8i/app/oracle

ORACLE_HOME The Oracle product direc-
tory.

/opt2/oracle8i/app/oracle/
product.8.1.5

ORACLE_SID The system ID for the host’s
database instance.

FME

LD_LIBRARY_PATH A list of directories which
will be searched for shared
objects. This list must
include the FME_HOME path,
as well as the lib sub-
directory of ORACLE_HOME.

${LD_LIBRARY_PATH}:${FME_HOME}:-
${ORACLE_HOME}/lib

l In most cases, the ORACLE_SERVER_NAME and ORACLE_DATABASE directives should be left with blank
values, with the ORACLE_DATASET directive containing the Oracle service name of the database.

Oracle Spatial Object Reader/Writer

Format Notes: This format is not supported by FME Base Edition.

Object Writing

Object writing is available only with these FME Editions: Oracle, DB2, Smallworld, and Server.

Raster Support

l Raster writing is a beta format.

l Raster writing is available only with FME Oracle Edition.

l Raster reading is a beta format.

l Raster data is supported only for Oracle 10g and above.

3D Geometry Support

Reading and writing of 3D surfaces and solids is available only for Oracle 11g.

Oracle® Version

Any references to Oracle 8i throughout this chapter are also applicable to Oracle 9i and Oracle 10g.

Oracle Instant Client

Instant Client can be used to run your OCI, OCCI, JDBC, and ODBC applications without installing a full Oracle Client.
Instant Client supports SQL*Plus.

For more information on how it works with FME, see http://www.fmepedia.com/index.php/Oracle_
Instant_Client.

http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client
http://www.fmepedia.com/index.php/Oracle_Instant_Client

Overview

The Oracle Spatial Reader/Writer module enables FME to read and write geometric, raster and attribute data stored
using Oracle Spatial. This module communicates directly with Oracle Spatial for maximum throughput. Both the rela-
tional and object-relational models of Oracle Spatial are supported by FME: the object-relational model is discussed
here and the relational model is discussed in a separate chapter – Oracle Spatial Relational Reader/Writer.
The object-relational model is often referred to as simply the object model, to prevent confusion with the pure rela-
tional model.

Raster data,both reading and writing, is supported for Oracle Spatial Databases version 10g and above. Raster read-
ing and writing is identified by a unique reader and writer option but is covered in this documentation chapter.

If only attributes are to be read or written, then the Database reader and writer module of FME should be used. In
addition, an OracleQueryFactory is available to extract data from an Oracle Spatial database within the FME factory
pipeline.

This section assumes familiarity with Oracle Spatial, the geometry types it supports, its indexing mechanisms and
raster components.

Tip:

See the QueryFactory in the FME Functions and Factories manual. This factory also exploits
the powerful query capabilities of Oracle Spatial.

See the @SQL function, also in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any Oracle
database.

Oracle Spatial Object Quick Facts

Format Type Identifier ORACLE8I
ORACLERASTER

Reader/Writer Both

Licensing Level See Format Notes

Dependencies See Format Notes

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Always

Schema Required Yes

Transaction Support Yes

Enhanced Geometry Yes

Geometry Type oracle_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster yes

donut polygon yes solid yes

elliptical arc no surface yes

ellipses no text no

line yes z values yes

none yes

Raster-Specific Quick Facts

Band Interpretations Red8, Red16, Green8, Green16,
Blue8, Blue16, Alpha8, Alpha16,
Gray8, Gray16, Int8, UInt8, Int16,
UInt16, Int32, UInt32, Real32,
Real64

Palette Key Interpretations UInt32

Palette Value Interpretations Gray8, RGB24, RGBA32

Nodata Value Any, but all bands on a raster must
have the same value.

Cell Origin (x, y) (0.5, 0.5) or (0.0, 1.0)

Pyramid Generation yes

Native Compression yes

Rotation Support yes

GCP Support yes

World File Support no

TAB File Support no

Reader Overview

The FME considers an Oracle Spatial dataset to be a database containing a collection of relational tables together with
their geometry or GeoRaster columns. The tables must be defined in the mapping file before they can be read. Arbi-
trary WHERE clauses and joins are fully supported. When using the object-relational model, an entire arbitrary SQL
SELECT statement may also be used as a source of results.

The reader is also capable of reading the GeoRaster column along with all the related metadata tables. Note that if the
raster image is compressed then the reader ignores compression and always reads it as uncompressed data.

When reading 3D spatial data, it is important to set the READ_3D_POLYGON_AS_FACE directive to “YES”. This direc-
tive is described in greater detail in the following section.

Reader Directives

The directives listed below are processed by the Oracle Spatial reader. The suffixes listed are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the Oracle Spatial reader is
ORACLE8I.

DATASET

Required/Optional: Required

This specifies the SQL/Net service name for the Oracle Spatial database, which can be blank to use the default serv-
ice. If it is specified, then the service must have been set up in the local SQL/Net configuration.

Example:

ORACLE_DATASET citySource

Workbench Parameter: Source Oracle Spatial Object Service

USER_NAME

The name of user who will access the database.

Required/Optional

Optional

Mapping File Syntax

ORACLE_USER_NAME bond007

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the usernamemay be left blank, or may be completely omitted.

If a connection cannot be established using the provided username, a second attempt will be made using the upper-
case version of the username.

Workbench Parameter

User ID

PASSWORD

Required/Optional: Required

The password of the user accessing the database.

ORACLE_PASSWORD moneypenny

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the password may be left blank, or may be completely omitted.

Workbench Parameter: Password

WORKSPACE

Required/Optional: Optional

The name of the Oracle Workspace Manager workspace which will be used by the reader. All tables read by the reader
will be read using the same workspace. If this parameter is omitted, or left blank, the default LIVE workspace will be
used.

ORACLE8I_DB_WORKSPACE B_focus_1

Workbench Parameter: Oracle Workspace

DEF

Required/Optional: Optional

The syntax of the definition is:

ORACLE_DEF <tableName> \
[oracle_envelope_min_x <xmin>] \
[oracle_envelope_min_y <ymax>] \
[oracle_envelope_max_x <xmin>] \
[oracle_envelope_max_y <ymax>]\
[oracle_interaction <interactionType>]\
[oracle_interaction_result <interactionQualifier>]\
[oracle_where_clause_encoded <whereClause>]\
[oracle_sql_encoded <sqlQuery>]\
[oracle_dim <dim>]\
[oracle_mapinfo_symbology_style_column <columnName>]\
[<fieldName> <fieldType>] +

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The exception to this is the geometry field type, which is used to specify a geometry column. When reading from a
table with multiple geometry columns, the FME normally selects one of the columns arbitrarily to define the geometry
of the resulting features; when the DEF line specifies a single field with a type of geometry, the specified column will
be used to define the geometry of the features.

The <tableName> must match a table in the Oracle database. This will be used as the feature type of all the features
read from the table. If the <tableName> does not match a table in the database, a second attempt will be made using
the uppercase version of the <tableName>.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader directives
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

oracle_envelope
_minx oracle_envelope
_miny oracle_envelope
_maxx oracle_envelope
_maxy

These specify the spatial extent of the features to be
read from the layer. If these are not all specified, the
values from the <ReaderKeyword>_SEARCH_ENVEL-
OPE directive are used. (Note that when this directive
is set to yes for the raster reader, then it always clips
to the envelope specified).

oracle_interaction This specifies the spatial interaction type to be tested
for this layer. If this is not specified, the value of the
<ReaderKeyword>_INTERACTION directive is used.

oracle_interaction
_result

This specifies the required result of the spatial inter-
action comparison performed for this layer. If this is
not specified, the value of the <ReaderKeyword>_
INTERACTION_RESULT directive is used.

oracle_where_clause_encoded This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, the value of
the <ReaderKeyword>_WHERE_CLAUSE directive is

Parameter Contents

used.
This parameter is encoded as described in the sec-
tion Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax.

oracle_sql_encoded This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the Oracle
Spatial reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <layerName>. All returned features
will have a feature type of <layerName>, and attrib-
utes for all columns selected by the query.
The oracle_where_clause_encoded and all param-
eters which specify a spatial constraint – oracle_
envelope_minx, oracle_interaction, and so on – are
ignored if oracle_sql_encoded is supplied.
If the object model is being used, and the SELECT
statement returns a column containing geometry, the
oracle_dim parameter must be used to specify the
dimension of the geometry. This is necessary
because Oracle 8.1.5 does not provide a way for the
FME to determine the dimension of an arbitrary col-
umn without knowing the exact name of the orig-
inating column and its source table.
This parameter is encoded as described in the sec-
tion Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax

oracle_dim This specifies the number of dimensions (2 or 3) for
the table’s geometry. This is required only if the
oracle_sql_encoded parameter is used to specify a
SELECT query.

oracle_mapinfo_symbology_style_
column

This specifies the name of the column which contains
style information for MapInfo symbology. When set,
the read feature will contain a set of MIF format
attributes and FME generic attributes which cor-
respond to the symbology information parsed from
this field. If this parameter is not set, no symbology
is read.

If no whereClause is specified, all rows in the table will be read and returned as individual features. If a whereClause
is specified, only those rows which are selected by the clause will be read. Note that the whereClause does not
include the word WHERE.

When using the object model, FME allows you to use the oracle_sql_encoded parameter to specify an arbitrary SQL
SELECT query. If this is specified, FME will execute the query, and use each row of data returned from the query to
define a feature. Each of these features will be given the feature type named in the DEF line, and will contain

attributes for every column returned by the SELECT. In this case, all DEF line parameters regarding a WHERE clause
or spatial querying is ignored, as it is possible to embed this information directly in the text of the <sqlQuery>.

The following example joins the tables ROADS and ROADNAMES, placing the resulting data into FME features with a
feature type of MYROADS. Imagine that ROADS defines the geometry for the roads, and has a numeric field named ID,
and that ROADNAMES joins the numeric field ID with character arrays with the roads’ names.

ORACLE8I_DEF MYROADS \
oracle_dim 2 \
oracle_sql “SELECT * FROM ROADS, \

 ROADNAMES WHERE ROADS.ID = ROADNAMES.ID”

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then all defined and available tables are read. The syntax of the IDs directive is:

ORACLE_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

ORACLE_IDs ROADS

Workbench Parameter: Feature Types to Read

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

Mapping File Example

The example below selects a small area for extraction:

ORACLE_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

INTERACTION

Required/Optional: Optional

This specifies the type of relationship which must exist between the search envelope and the geometry in the target
layer. Any supported relationship, or combination of relationships, may be specified. (Not supported for the Raster
reader).

This table lists the valid geometry interaction relationships.

Search Method Description

ANYINTERACT The objects are non-disjoint.

CONTAINS The interior and boundary of one object is completely
contained in the interior of the other object.

COVEREDBY The opposite of COVERS. A COVEREDBY B implies B
COVERS A.

COVERS The interior of one object is completely contained in
the interior or the boundary of the other object and
their boundaries intersect.

DISJOINT The boundaries and interiors do not intersect.

Search Method Description

EQUAL The two objects have the same boundary and interior.

INSIDE The opposite of CONTAINS. A INSIDE B implies B CON-
TAINS A.

ON The interior and boundary of one object is on the
boundary of the other object (and the second object
covers the first object). This relationship occurs, for
example, when a line is on the boundary of a polygon.

OVERLAPBDYDISJOINT The interior of one object intersects the boundary and
interior of the other object, but the two boundaries do
not intersect. This relationship occurs, for example,
when a line originates outside a polygon and ends
inside that polygon.

OVERLAPBDYINTERSECT The boundaries and interiors of the two objects inter-
sect.

TOUCH The boundaries intersect but the interiors do not inter-
sect.

In addition to specifying a single relationship, one may specify a combination of relationships to be tested by con-
catenating them with a plus sign (+). For example, the <ReaderKeyword>_INTERACTION may be specified as
INSIDE + TOUCH.

Workbench Parameter: Relationship to Query Feature

INTERACTION_RESULT

Required/Optional: Optional

This specifies the test that is applied to the results of the above geometry relationship comparison. When using the
object model, Spatial queries return results of TRUE rather than the name of the interaction – as they do with the
older relational model – so the default test for the object model is “= ‘TRUE’”, regardless of the type of interaction
involved. (Not supported for raster reader).

This directive is of little use when using the object model, and is provided only for backward compatibility.

Workbench Parameter: Relationship Result Test

WHERE_CLAUSE

Required/Optional: Optional

This specifies an SQL WHERE clause, which is applied to the table’s columns to limit the resulting features. This fea-
ture is currently limited to apply only to the attributes of the target Spatial layer, and does not allow for joining mul-
tiple tables together. The effect of table joins can be achieved using the object model, by specifying the entire queries
in the DEF line with an oracle_sql_encoded parameter.

By default, there is no WHERE clause applied to the results, so all features in the layer are returned.

Workbench Parameter:Where Clause

CHUNK_SIZE

Required/Optional: Optional

The geometry is read from the Oracle database using a bulk reading technique to maximize performance. Normally
1000 rows of data are read from the database at a time.

This directive allows one to tune the performance of the reader. It specifies how many rows are read from the data-
base at a time.

Workbench Parameter: Rows to Read at a Time

STRUCTURED_GEOMETRY (only applicable with classic geometry)

Required/Optional: Optional

Using enhanced geometry (by setting the global directive FME_GEOMETRY_HANDLING to YES) removes the need
for using this directive and makes it simple to translate complex Oracle geometries into other formats, preserving the
original geometry as it was stored in Oracle. Note that this keyword is not supported for raster reader.

Oracle 8i Spatial’s object model stores geometry in a much more structured fashion than is normally used by FME fea-
tures. While this structure can be mirrored in FME by using aggregates and list attributes, it is far more difficult to
deal with than are simple points, lines, polygons, and donuts. Therefore, the Oracle Spatial reader normally flattens
out the features – such as by combining polygons’ boundaries and holes to form donuts, and stroking out sequential
arcs to make simple line strings – before they are returned from the reader.

Occasionally, however, one might want a faithful representation of exactly how the geometry appears in the Oracle
geometry object. The STRUCTURED_GEOMETRY directive, when given a value of YES, tells the Oracle 8i Spatial
reader to provide the geometry in a form which mirrors the structure in the database. The representation of this struc-
ture is defined below, in the section titled Structured Geometry Representation.

Note: Structured geometry requires special processing: it should not be enabled unless a framework to deal with
the structured geometry is provided in the mapping file or FME Objects application. It is only available when read-
ing Oracle 8i Spatial tables using the object model – it is not available when using the relational model, or when writ-
ing to an Oracle 8i database.

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

TOPOLOGY

Required/Optional: Optional

The reader reads sdo_topo_geometry column if the table contains it. If the table has both an sdo_geometry
column and sdo_topo_geometry column, then only the column that appears first is read. If a table has both
types, to ensure reading sdo_topo_geometry column, its name should be specified on the DEF line.

REMOVE_SCHEMA_QUALIFIER

Required/Optional: Optional

Specifies whether to keep or remove the schema qualifier. The full name of a table in an Oracle database is of the for-
mat <schema_name>.<table_name>. Setting this keyword to YES indicates that the reader should return the
table name without any prefixes. This is useful when:

l creating a workspace that will be passed on to another organization using the same table names,

When this keyword is set to YES during the generation of a mapping file or workspace, the source feature types will
be the table names without any prefix; otherwise, they will contain the owner name as a prefix. It is recommended
that this keyword not be changed in value after generating the mapping file/workspace as it is possible for no fea-
tures to be successfully passed onto the writer (since the writer is expecting feature types with different names).

Note that even when REMOVE_SCHEMA_QUALIFIER is set to YES, if the table is owned by a user other than the
current user, the <owner_name> prefix will not be dropped so that the reader will find the correct table; however,
the <database_name> prefix will still be dropped.

Value: YES | NO

Default Value: NO

Example:

ORACLE_REMOVE_SCHEMA_QUALIFIER YES

USE_UNIFIED_DATE_ATTRS

Required/Optional: Optional

Specifies whether we want to use unified date attributes, where the date and time are read into one attribute, or
whether we want to use split date attributes, where two attributes are produced, one with only the date and another
with both the date and time.

The value of this keyword should not be changed. It is automatically set to YES in new mapping files and workspaces.
To maintain backwards compability, if this keyword is not present, the reader will behave as though the keyword is
set to NO.

Value: YES | NO

Default Value: YES (in new mapping files and workspaces), NO otherwise

MAPINFO_SYMBOLOGY_STYLE_COLUMN

Required/Optional: Optional

This optional generation parameter specifies the name of the MapInfo symbology style column. If a column by this
name is found, it will be omitted from the schema of the generated source feature type, and the oracle_mapinfo_sym-
bology_style_column DEF line parameter will be set to the name of this column. (Not supported for raster reader).

MAPINFO_SYMBOLOGY_INDEX_COLUMN

Required/Optional: Optional

This optional generation parameter specifies the name of the MapInfo symbology index column. If a column by this
name is found, it will be omitted from the schema of the generated source feature type. (Not supported for raster
reader).

READ_3D_POLYGON_AS_FACE

Required/Optional: Optional

This optional keyword controls whether 3D polygons are read by Oracle Spatial as 3D face geometries or as regular
polygons. (Not supported for raster reader).

Value: YES | NO

Default Value: NO

Workbench Parameter: Read 3D Polygons as Faces

HANDLE_MULTIPLE_SPATIAL_COLUMNS

If this directive is set to YES, feature geometry will be read into an aggregate. A directive is set on the aggregate to
indicate that each part of the aggregate is independent from the others, and its own geometry. Geometry parts of the
aggregate are named and contain geometry according to their respective column in the table being read. If a geome-
try is read as NULL, it will be appended to the aggregate as a null geometry.

When using this feature, neither the geometry column, nor the feature type SELECT statement can be specified. Also,
tables with topology columns will not be read in this mode.

Required/Optional

Optional

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Oracle Spatial writer module stores geometric, raster and attribute data in an Oracle Spatial database. Only upper-
case table names are supported.

The Oracle Spatial writer provides the following capabilities:

l Transaction Support: The Oracle Spatial writer provides transaction support that eases the data loading proc-
ess. Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support
provides a mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The Oracle Spatial writer uses the information within the FME mapping file to automatically
create database tables as needed. If the relational model of storing geometry is used, the writer will create and pop-
ulate all needed supporting tables. In such a case, the <layername>, <layername>_SDOGEOM, <lay-
ername>_SDOLAYER, <layername>_SDOINDEX, and <layername>_SDODIM tables will all be created.
Likewise, creation of tables containing GeoRaster columns is also supported, including the corresponding Raster
Data Table (RDT) creation. Metadata tables and triggers are also created accordingly.

l Table Dropping: The Oracle Spatial writer has an option that allows each table to be written to be dropped if rec-
reating, or truncated if appending. Metadata information is updated using triggers for rasters and it is replaced on
write for geometry. Likewise, dropping of RDTs associated with the GeoRaster columns is performed if the RDT is
empty. Metadata tables are updated via DML triggers, however the triggers themselves are not currently dropped.

l Index Creation: The Oracle Spatial writer will set up and populate all needed indexes and index tables as part of
the loading process. For the relational model, indexes on SDO_GID columns in the <layername> and <lay-
ername>_SDOGEOM tables are created, and a compound index on theSDO_GID and SDO_CODE columns
in the <layername>_SDOINDEX is created. The <layername>_SDOINDEX table will also be populated.

l Bulk Loading: The Oracle Spatial writer uses a bulk loading technique to ensure speedy data load.

l Raster Interleaving: Raster data can be written using Band SeQuential (BSQ), Band Interleaved by Line (BIL) or
Band Interleaved by Pixel (BIP) interleaving. The default interleaving is BSQ.

l Raster Compression: Native DEFLATE, JPEG-B and JPEG-F compression can optionally be performed as a post-
process once writing is complete.

l Raster Pyramid Generation: Native pyramid generation can optionally be performed as a post-process once
writing is complete. Number of levels and the resampling type can be optionally specified.

l Raster Validation: Native validation can optionally be performed as a post-process once writing is complete.

Writer Directives

The directives processed by the Oracle Spatial writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Oracle Spatial writer is
ORACLE8I or ORACLERASTER when using the object model.

DATASET, USER_NAME, and WORKSPACE

These directives operate in the samemanner as they do for the Oracle Spatial reader.

DEF

Required/Optional: Required

Each Oracle Spatial layer (table) must be defined before it can be written. The general form of an Oracle Spatial def-
inition statement is:

ORACLE_DEF <tableName> \
 [oracle_model object \
 [oracle_dim <dim>] \
 [oracle_srid <spatialReference>] \
 [oracle_x_name <ord1>] \

[oracle_y_name <ord2>] \
[oracle_z_name <ord3>] \

 [oracle_x_tol <xtol>] \
[oracle_y_tol <ytol>] \
[oracle_z_tol <ztol>] \

 [oracle_min_x <xmin>] \
[oracle_min_y <ymin>] \
[oracle_min_z <zmin>] \
[oracle_max_x <xmax>] \
[oracle_max_y <ymax>] \
[oracle_max_z <zmax>] \

 [oracle_create_indices (yes|no)] \
 [oracle_index_params <paramString>] \
 [oracle_levels <levels>] \
 [oracle_numtiles <numtiles> \
 [oracle_gid_name <gidName>] \
 [oracle_sql_encoded <sqlQuery>] \

[oracle_table_writer_mode (inherit_from_writer|insert|update|delete)] \
 [oracle_update_key_columns <column>[,<column>]... \
 [oracle_default_geom_column <columnName>] \
 [oracle_geom_column <columnName>] \
 [oracle_raster_column <columnName>] \
 [oracle_force_geom_updates (yes|no)] \
 [oracle_force_raster_updates (yes|no)] \
 [oracle_force_index_creation (yes|no)] \
 [oracle_drop_table (yes|no)] \
 [oracle_truncate_table (yes|no)] \
 [oracle_contains_measures (yes|no)] \
 [oracle_default_contains_measures (yes|no)] \

[oracle_gid_name <gidName>] \
 [oracle_params <creationParams>] \

[oracle_sequenced_cols column[:seqname][;column[:seqname]]...] \
[<fieldName> <fieldType>]*

If the user wishes to create a table, the table definition allows control of the layer that will be created. Otherwise, the
table definition serves to provide options for inserting, updating or deleting data in an existing table. In each case,
some parameters may be unused. The recommended approach is to take advantage of the updated Workbench GUI to
limit mistakes when setting the layer parameters.

If the table already exists in the database, then it is not necessary to list the fields and their types – FME will use the
schema information in the database to determine this. If the fields and types are listed, they must match those in the
database, however, not all fields must be listed.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it must be a field type supported by the target database.

If the object model is being used, a field’s type can be specified as geometry, which indicates that the named field is to
hold the geometry contained on the FME features. If no geometry column is defined, and the table being written
already exists with one or more columns of geometric data in the database, the FME will arbitrarily choose one of the
table’s geometric columns to contain the FME features’ spatial components.

The same is true of GeoRaster columns which can be set as type GeoRaster.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

oracle_model This indicates what model for storing geometry should be
used.
This is an optional parameter—the default is object, the
only value supported for the Oracle Spatial (Object)
writer.

oracle_dim This specifies the dimension of the layer, which can cur-
rently be 2 or 3. The default is 2.

oracle_srid This specifies the spatial referencing information for the
geometry in the table. It is specified as an integer, and cor-
responds to the spatial reference identifier (SRID) column
in the global table MDSYS.CS_SRS.
All geometry within a given table must have the same spa-
tial referencing. If the target table exists in the database
and the value specified for oracle_srid does not match the
value contained in USER_SDO_GEOM_METADATA, the
metadata's SRID will be used in place of the specified
oracle_srid.
If oracle_srid is not specified, tables will be created with a
NULL value for the SRID field.

oracle_index_params This specifies a set of parameters which is inserted into
the SQL query used to create an index for the table. Con-
sult the Oracle Spatial documentation for information on
specifying index creation parameters.

oracle_levels This specifies the tesselation level used to create the spa-
tial index for the layer. The larger the number, the longer
spatial index creation will take by the finer the granularity
of the index. The range is any integer between 1 and 64.
The default is 0 is given, so that no levels will be specified
when the index is created; depending on the version of the
Oracle Spatial database being written to, this may force it
to use RTree indexing instead of fixed or hybrid indexing.
If using fixed or hybrid indexing, a positive integral value
must be specified.

oracle_numtiles This specifies the number of variable-sized tiles used (per
geometry) when creating a hybrid spatial index within the
object model. The range is any positive integer. If this is
not specified at the time when a spatial index is created,
and oracle_levels is specified, fixed spatial indexing will be
used in the created index.

oracle_x_name This specifies the name to use for the first ordinate. This
name is used when the geometry column’s information in

Parameter Contents

the SDO_GEOM_METADATA table is created. The default is
X.

oracle_y_name This specifies the name to use for the second ordinate.
This name is used when the geometry column’s infor-
mation in the SDO_GEOM_METADATA table is created. The
default is Y.

oracle_z_name This specifies the name to use for the third ordinate. This
name is used when the geometry column’s information in
the SDO_GEOM_METADATA table is created. The default is
Z.

oracle_x_tol This specifies the comparison tolerance for the x coor-
dinates. Coordinates in x that are closer than this value
are considered equal. The default is 0.000000005.

oracle_y_tol This specifies the comparison tolerance for the y coor-
dinates. Coordinates in y that are closer than this value
are considered equal. The default is 0.000000005.

oracle_z_tol This specifies the comparison tolerance for the z coor-
dinates. Coordinates in z that are closer than this value
are considered equal. The default is 0.000000005.

oracle_m_tol This specifies the comparison tolerance for the measures
(LRS). Values in measures that are closer than this value
are considered equal. The default is 0.000000005.

oracle_min_x The minimum x value expected in the dataset. If any x
values are present which are less than this value, the spa-
tial index will give undefined results. For best spatial
search performance, this value should be as close to the
true minimum x as possible.
This parameter must be specified.

oracle_min_y The minimum y value expected in the dataset. If any y
values are present which are less than this value, the spa-
tial index will give undefined results. For best spatial
search performance, this value should be as close to the
true minimum y as possible.
This parameter must be specified.

oracle_min_z The minimum z value expected in the dataset. In the cur-
rent release of Oracle Spatial, no indexing is done on the z
axis, so the value can be arbitrarily assigned.
This parameter must be specified if the dimension of the
layer is 3.

Parameter Contents

oracle_min_m The minimum “measure” value expected in the dataset.
Default is 0.

oracle_max_x The maximum x value expected in the dataset. If any x
values are present which are greater than this value, the
spatial index will give undefined results. For best spatial
search performance, this value should be as close to the
true maximum x as possible.
This parameter must be specified.

oracle_max_y The maximum y value expected in the dataset. If any y
values are present which are greater than this value, the
spatial index will give undefined results. For best spatial
search performance, this value should be as close to the
true maximum y as possible.
This parameter must be specified.

oracle_max_z The maximum z value expected in the dataset. In the cur-
rent release of Oracle Spatial, no indexing is done on the z
axis, so the value can be arbitrarily assigned.
This parameter must be specified if the dimension of the
layer is 3.

oracle_max_m The minimum “measure” value expected in the dataset.
Default is 0.

oracle_create_indices This indicates whether or not indices are to be created as
part of the data load. The valid choices for the object
model are yes and no.
If no is specified, no index creation is done.
The default is yes.

oracle_sql_encoded This specifies an SQL INSERT or UPDATE query to be used
to define the results. If this is specified, the Oracle Spatial
writer will execute the query, defining one row for each
feature from the FME.
The values in the query are specified by embedding
:attrName in the query itself, where attrName is the name of
the FME feature’s attribute; for example:
INSERT INTO EXAMPLE VALUES :a, :b

In this example, the attributes named a and b will be
taken from each feature written to <tableName>.
The attributes named in the query must be listed on the
DEF line so that the FME knows what type to use. There is
no necessary or implied correlation between the FME
attribute name and the Oracle column name. Take, for
example, this UPDATE query:

Parameter Contents

UPDATE RR SET TEXTSTRING=:mytext WHERE ID=:myid

In this example, the Oracle column named ID is compared
to the value of each feature’s attribute named myid, and
the value of the table’s column named TEXTSTRING is set
from the feature attribute named mytext.
If one of the named attributes is a geometry attribute, a
given row’s feature will define the geometry for that col-
umn. In this case, the oracle_dim parameter must be used
to specify the dimension of the geometry. This is nec-
essary because Oracle 8.1.5 does not provide a way for
the FME to determine the dimension of an arbitrary col-
umn without knowing the exact name of the originating col-
umn and its source table.
This parameter is available only when using the object
model.
This parameter is encoded as described in the section Sub-
stituting Strings in Mapping Files in FME Fundamentals
help > Mapping File Syntax.

oracle_params This specifies additional parameters to be appended to the
Oracle CREATE query used to create the output table. It is
used to specify table allocation characteristics and the
like.
If this is specified, it will override the global CREATE_
TABLE_PARAMS directive.

oracle_sequenced_cols Indicates which columns' values come from sequences.
The format for this parameter is of the form

oracle_sequenced_cols col-
umn1:seqname1;column2:seqname2;...

where "columnN" is the name of the column whose value
is provided by the sequence, and "seqnameN" is the name
of the sequence providing the value.
If ":seqnameN" is not given, the column's value will be
provided by a sequence with the same name as the col-
umn. Sequence names are case-sensitive. The sequences
will be created if they do not already exist, in which case a
message will be written to the log file.

oracle_table_writer_
mode

The default operation mode of the feature type in terms of
the types of SQL statements sent to the database.Valid
values are INSERT, UPDATE, DELETE and INHERIT_FROM_
WRITER. Note that INSERT mode allows for only INSERT
operations where as UPDATE and DELETE can be over-

Parameter Contents

written at the feature levels. INHERIT_FROM_WRITER
simply indicates to take this value from the writer level
and not to override it at the feature type level.
Default:INHERIT_FROM_WRITER

oracle_update_key_
columns

This instructs the Oracle Spatial writer to perform an
UPDATE operation on the table, rather than performing an
INSERT. The argument is a comma-separated list of the
columns which are matched against the corresponding
FME attributes’ values to specify which rows are to be
updated with the other attribute values.
For example:
oracle_update_key_columns ID

would have a similar effect to the “UPDATE” example in
the above discussion of the oracle_sql_encoded direc-
tive. In this case, however, the FME attribute is always
matched against the Oracle column with the same name.
Also, the target table is always the feature type specified
in the DEF line.
Each column listed with the oracle_update_key_columns
directive must be defined with a type on the DEF line, in
addition to the columns whose values will be updated by
the operation.

oracle_force_geom_
updates

If this option is given a value of YES, and a table UPDATE
operation is being performed, then the resulting UPDATE
will affect the table’s geometry column, even if no geome-
try column is specified on the DEF line. Otherwise, only
attributes specified on the DEF line will be updated.

oracle_force_raster_
updates

If this option is given a value of YES, and a table UPDATE
operation is being performed, then the resulting UPDATE
will affect the table’s GeoRaster column, even if no Geo-
Raster column is specified on the DEF line. Otherwise,
only attributes specified on the DEF line will be updated.

oracle_gid_name This specifies that a particular column in the table is to
hold a unique number. The FME will determine the highest
value in this column when it starts writing to the table.
This value will be incremented and written to the specified
column for each row of the table. For example, if your
table had the column MY_ID,which you wish to have a
unique value, you’d include the oracle_gid_name in your
DEF line
ORACLE8I_DEF MYTABLE \
oracle_gid_name MY_ID \
MY_ID INT \

Parameter Contents

GEOM GEOMETRY \
NAME VARCHAR2(20)

oracle_default_
geom_column

When writing to the object model, the Oracle Spatial
writer will create a column to hold the geometry, even if
no attribute of type GEOMETRY is specified on the DEF
line. This column is typically called GEOM, but may be
changed to any other name by using this directive. For
example:
oracle_default_geom_column GEOMETRIE

would cause the Oracle Spatial writer to write the FME fea-
tures’ geometry to a column named “GEOMETRIE” in the
resulting table, if no other geometry column is specified in
the DEF line.
Note that this directive merely specifies a default value
for the geometry column. If a geometry column or col-
umns are explicitly named on the DEF line, the explicit
name will be chosen instead of the default. If the table
already exists in the Oracle database, then the geometry
column will be chosen from those defined on the existing
table.
Also, if the writer directive “OVERRIDE_DEFAULT_GEOM”
has been specified in the mapping file or FMEObjects ses-
sion with a value of YES, then the default geometry col-
umn mechanism will be disabled. If this is the case,
geometry columns will only be added to new tables if
explicitly listed in the DEF line.

oracle_geom_column This table definition parameter is the same as the one
above except that it is operative only when the table exists
and is being updated. If this is the case, then this param-
eter specifies which of the possibly multiple geometry col-
umns to update with the geometry on the update feature.

oracle_raster_

column

When writing to the object model, the Oracle Spatial
writer will create a column to hold the GeoRaster object if
this parameter has a non-blank value. The default column
is typically called RAST, but may be changed to any other
name by using this directive. For example:
oracle_raster_column RASTERIZER

would cause the Oracle Spatial Raster writer to write the
FME feature’s geometry to a column named
“RASTERIZER” in the resulting table, if no other GeoRaster
column is specified in the DEF line.
Note that this directive merely specifies a default value
for the geometry column. If a GeoRaster column or col-

Parameter Contents

umns are explicitly named on the DEF line, the explicit
name will be chosen instead of the default. If the table
already exists in the Oracle database, then the GeoRaster
column will be chosen from those defined on the existing
table.

oracle_index_name This specifies the name for the spatial index that will be
created on the table. If this is not specified, a spatial index
name will be created based on a database sequence and
the name of the table being written.

oracle_force_index_
creation

This specifies whether a new spatial index will always be
created when writing to a table. If set to yes, a new spatial
index will always be created for the table being written,
and any existing spatial index with the same name will be
dropped before it is created. Otherwise index creation will
not occur when the table being written already contains an
index.

oracle_drop_table This specifies whether a table should be dropped, if it
exists, before being recreated. If the table does not exist,
then the operation is ignored and the user is warned. Note
that the drop table option is only available when specifying
table creation parameters.

oracle_truncate_

table

This specifies whether a table should be truncated, if it
exists, before data is inserted. If the table does not exist,
then the operation is ignored and the user is warned. Note
that the truncate table option is only available when not
specifying table creation parameters.

oracle_contains_measures This directs the writer to write measures to the destination
table. When this directive is set to yes and the incoming
feature does not have any measures, then null values are
written. This parameter applies when writing to existing
tables.
Default is NO.

oracle_default_contains_meas-
ures

This directs the writer to write measures to the destination
table. When this directive is set to yes and the incoming
feature does not have any measures, then null values are
written. This parameter applies when writing to new
tables.
Default is NO.

Linear Referencing (Measures): The writer will consider table metadata definition first before writing measures
to an existing table. If the DEF line parameters oracle_contains_measures or oracle_default_contains_measures do
not agree with the table definition, the writer will issue a warning indicating whether or not either measure has

been written, even if those directives are set to No or Yes respectively. Those two parameters will be followed only
when oracle_drop_table is set to Yes or the table does not exist before writing.

When creating new tables, the writer will create the table with metadata definitions specified by the DEF line param-
eters. Currently, 3D surfaces and solids do not handle measure reading and writing – therefore, null value place-
holders will be used for those geometries when writing measures to oracle. All other geometries will have measure
values written if values are assigned; otherwise, null values will be written.

START_TRANSACTION

Required/Optional: Optional

This statement tells the Oracle Spatial writer module when to start actually writing features into the database. The
Oracle Spatial writer does not write any features until the feature is reached that belongs to <last successful trans-
action> + 1. Specifying a value of zero causes every feature to be output. Normally, the value specified is zero – a
non-zero value is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last successful
transaction. When loading data for the first time,
set this value to 0.

Example:

ORACLE_START_TRANSACTION 0

Workbench Parameter: Transaction to Start Writing At

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If theORACLE_TRANSACTION_INTERVAL statement is not specified, then a value of 2000 is used as the trans-
action interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Example:

ORACLE_TRANSACTION_INTERVAL 5000

Workbench Parameter: Features to Write Per Transaction

CREATE_TABLE_PARAMS

Required/Optional: Optional

This statement allows the mapping file to specify parameters that are defined on the tables created by the Oracle Spa-
tial writer. Its value is appended to the SQL CREATE TABLE query used to create the tables.

If theCREATE_TABLE_PARAMS statement is not specified, then each table will be created with the default table
parameters, unless the table’s DEF line contains the oracle_params directive. An individual table’s oracle_params
will always take precedence over the global CREATE_TABLE_PARAMS directive.

Parameter Contents

<parameters> The string to be appended to the CREATE
TABLE query.

Example:

ORACLE8I_CREATE_TABLE_PARAMS “TABLESPACE JOEDATA1”

CHUNK_SIZE

See the CHUNK_SIZE directive in the Reader Directives section.

Workbench Parameter: Features Per Bulk Write

OVERRIDE_DEFAULT_GEOM

Required/Optional: Optional

FME normally includes a geometry column named “GEOM” in any Oracle Spatial (object model) table it creates. This
is true for automatically generated semantic mapping files, as well as for tables created within an FME Objects appli-
cation.

The geometry column name can be changed in a mapping file by using the “oracle_default_geom_column” parameter to
the DEF line, or can be completely eliminated by removing any mention of a geometry column or default geometry col-
umn. This, however, does not apply to FME Objects applications, which cannot be as explicit about the contents of the
DEF line.

The OVERRIDE_DEFAULT_GEOM directive allows an FME Objects application to create tables in Oracle 8i Spatial
which have no geometric data. If this directive is given with a YES value, then the default geometry column mech-
anism will be completely disabled, and tables will be created with geometry columns only if such columns are explic-
itly defined as attributes of type GEOMETRY.

The following FME Objects code (written in Java) shows an example of disabling the default geometry mechanism for
an Oracle Spatial (object model) writer:

...
IFMEStringArray writerDirectives = session.createStringArray();
...
writerDirectives.append("ORACLE8I_OVERRIDE_DEFAULT_GEOM");
writerDirectives.append("Yes");
writer.open(destInfo.dataset,writerDirectives);
...

BEGIN_SQL{n}

This directive is described in the Reader Directives section. In the case of the writer, the statements will be executed
only when the first feature actually written to the dataset.

Workbench Parameter: SQL Statement to Execute Before Translation

END_SQL{n}

This directive is described in the Reader Directives section. In the case of the writer, the statements will be executed
only if at least one feature has been written to the dataset.

Workbench Parameter: SQL Statement to Execute After Translation

STRICT_ATTR_CONVERSION

This directive instructs the Oracle writer on how to proceed when a problem arises while converting a value from one
of a feature’s attributes to an oracle column value. Examples of such problems would be the truncation of a string
value to fit into the target character column, an error in converting a non-numeric attribute to write to a numeric col-
umn, or an error converting an FME geometry to fit into an SDO_GEOMETRY value.

In normal operation, the Oracle writer will silently truncate strings which are too long, or null out values which cannot
be successfully converted. It can optionally log features which have conversion problems, or drop problem features
and write a warning to the log.

Possible values for this directive are summarized in the following table:

Parameter Contents

NO Silently ignore conversion errors. (This is the default
behaviour.)

YES Features are dropped from the translation and a
warning is written to the log.

WARN Log any features causing conversion errors, and then
continue the translation as usual

Example:

ORACLE8I_STRICT_ATTR_CONVERSION WARN

Workbench Parameter: Enforce Strict Attribute Conversion

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This directive informs the Oracle writer which SQL operations will be performed by default by this writer. This oper-
ation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation can be over-
written at the feature type or table level. The corresponding feature type DEF parameter name is called oracle_table_
writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_FROM_
WRITER which causes the writer level mode to be inherited by the feature type as the default for features contained
in that table.

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE or DELETE features. These are skipped.

If theWRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:

INSERT
UPDATE
DELETE

Default: INSERT

Example:

ORACLE8I_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

HANDLE_MULTIPLE_SPATIAL_COLUMNS

If this directive is set to YES, feature geometry will be written from an aggregate. This aggregate must contain individ-
ual geometries, namely that each part is independent from the others and is its own complete geometry. Each part
geometry of the aggregate must have a name. If the aggregate contains geometries with names that match the spatial
columns of the table being written, the geometries will be written to the appropriate columns. If the aggregate does
not contain a name that matches a spatial column on the table being written NULL will be written in INSERT mode.

When using this feature, the geometry column cannot be specified and the table must already exist.

Required/Optional

Optional

Writer Mode Specification

The Oracle Spatial writer allows the user to specify a writer mode, which determines what database command should
be issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the oracle_update_key_columns DEF line parameter, or
via the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the oracle_update_
key_columns DEF line parameter. If both the fme_where attribute and the oracle_update_key_col-
umns DEF line parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field id less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the oracle_update_key_columns DEF
line parameter and uses it to determine which records should be affected by the command. Please refer to "DEF" on
page 989 for more information about the oracle_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels: on the writer level, on the feature type, or on individual fea-
tures.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification.

Note: For more information on this directive, see the chapter Database Writer Mode .

At the feature type level, the writer mode is specified by the oracle_writer_mode DEF line parameter. This
parameters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be super-
seded on individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for
more information about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

FME Raster Features

FME raster features represent raster data and use several concepts that are unlike those used in the handling of vec-
tor data. SeeAbout FME Rasters.

Oracle supports rasters with an arbitrary number of bands, provided all bands are the same data type. Any number
of bands may optionally have a palette.

Oracle supports reading and writing 1, 2, and 4 bit rasters. Note that the smallest data type supported by FME is 1
byte (8 bits). Thus, on reading, 1, 2, and 4 bit rasters are automatically converted to 8 bits. On writing, an option is
provided to reduce the size of 8 bit rasters to 1, 2, or 4 bits.

Feature Representation

Both vector and raster features read from Oracle Spatial consist of a series of attribute values and either geometry or
raster data. The feature type of each Database feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined by on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), the Oracle Spatial module makes use of the following special attribute names:

Attribute Name Contents

oracle_type The type of geometric entity stored within the fea-
ture. The valid values for the object model are listed
below:

oracle_nil
oracle_point
oracle_line
oracle_area
oracle_arc
oracle_rectangle
oracle_circle
oracle_solid
oracle_surface
oracle_multipoint
oracle_multiline
oracle_multipoly
oracle_multisolid

oracle_multisurface

oracle_collectionoracle_raster

oracle_srid This attribute is defined only when reading from an
Oracle table which has spatial referencing infor-
mation. It contains the spatial reference identifier
(SRID) for the geometry column retrieved. Its value
will be the same for all features returned from a par-
ticular table when writing vector geometry. Raster
features each have an individual coordinate system
per feature which specified by this attribute.
The SRID value is used to look up a coordinate sys-
tem, which is converted to an FME coordinate system

Attribute Name Contents

and attached to each feature returned by the reader.
This attribute is not used by the Oracle Spatial writer
when writing vector geometry.

Features read from, or written to, Oracle Spatial also have an attribute for each column in the database table. The fea-
ture attribute name will be the same as the source or destination column name. The attribute and column names are
case-sensitive.

Note: The geometry descriptions given here are only entirely correct when using the default geometry encoding.
When reading structured geometry from a table with the object model (using the STRUCTURED_GEOMETRY direc-
tive), the geometry will be formatted slightly differently. The section Structured Geometry Representation
describes how geometry objects are represented when structured geometry is enabled.

SDO_POINT Field

Oracle Spatial’s object model allows each geometry to have a “point” location, in addition to any ordinates defining the
geometry. It stores this information in a field named SDO_POINT within the geometry object. If this field is not
NULL in the Oracle Spatial geometry object, this location is stored on the FME feature using the following attributes:

Attribute Name Contents

oracle_sdo_point.x The first ordinate of the Oracle Spatial geometry’s
SDO_POINT field. This attribute is defined if this field
is defined on the geometry.

oracle_sdo_point.y The second ordinate of the Oracle Spatial geometry’s
SDO_POINT field. This attribute is defined if this field
is defined on the geometry.

oracle_sdo_point.z The third ordinate of the Oracle Spatial geometry’s
SDO_POINT field. This attribute is defined if this field
is defined on the geometry, and has a “z” component.

Notice, however, that simple points are normally represented in Oracle Spatial geometry objects with an empty ordi-
nate array, with the actual point location stored in theSDO_POINT field. In this case, the FME feature will have a
“point” geometry and will not contain the oracle_sdo_point attributes. If the Oracle geometry has both an ordinate
list defining a point and a defined SDO_POINT field, the FME feature will contain both a point geometry and the
required oracle_sdo_point attributes.

Unknown Elements

Oracle Spatial (object) structures each geometry object with zero or more elements, each with a specified numeric
type. Normally these types represent an actual geometry type, such as “point” or “line”, but there is also a type
defined as “unknown”. Unknown elements are ignored by Oracle Spatial’s geometric computation procedures, and
may be used by applications to store whatever numeric data they see fit to store.

FME has the ability to read and write a geometry’s unknown elements. It represents the unknown elements entirely
with feature attributes, of the form oracle_unknown_element{m}.attrName, wherem (m>=0) is the ordinal posi-
tion of the element relative to the other unknown elements, and attrName has one of the following values.

Attribute Name Contents

interpretation The interpretation tells the application what kind of
data is represented by the unknown element. This

Attribute Name Contents

may be any integral value, and is not interpreted spe-
cially by FME or Oracle in any way.

num_ordinates This specifies the number of ordinates that make up
the element. The ordinates are stored in Oracle as a
one-dimensional array of numbers. A given element
may have zero or more ordinates associated with it.

ordinate{m} This is the number at the given ordinate position (0
<= m <= (num_ordinates-1)). It can be any number
representable in an Oracle NUMBER type.

The unknown elements are given a sequence number among all of a given feature’s unknown elements, but are not
given any hint as to their position relative to other elements in a geometry. That is, FME sees the elements as an array
of information added to an Oracle geometry object, and pays no attention to where the elements are placed in relation
to “real” geometric elements of the feature. When writing to Oracle Spatial objects, FME always places the unknown
elements before all other elements in the geometry.

No Coordinates

oracle_type: oracle_nil

Features with no coordinates are tagged with this value when reading or writing to or from Oracle Spatial.

Points

oracle_type: oracle_point

Features tagged with this value consist of a single point or an aggregate of points. When the object model is being
used, an aggregate or line geometry tagged as oracle_point will be written as a “point cluster” with one or more
coordinates stored as actual ordinates in the point, rather than being written as a single coordinate stored in the out-
put geometry object’s SDO_POINT field, or coerced to being an oracle_line.

Oracle's oriented points are also supported. In this case, the SDO_POINT field is set to NULL, and the orientation of
the point is specified on the FME feature either as a set of three numbers describing the orientation in 3D space, or a
single value describing the planar rotation, as summarized in the following table. Orientation will be read through
geometry traits and attributes as per the chart below. Similarly, when writing, point orientation can be provided
using either attributes or traits.

Attribute/Trait Name Contents

oracle_orientation The orientation of the point, expressed in degrees
counter-clockwise from the positive X axis. When
reading, this is an approximation of the orientation
described by the (i,j,k) orientation vector. When writ-
ing, this value is used to compute an (i,j,0) unit vec-
tor on the horizontal plane, if no such (i,j,k) vector is
defined on the feature being written.

Attribute/Trait Name Contents

oracle_orient_i The “X axis” component of a vector describing the
point’s orientation. This vector is normally a unit vec-
tor in 3D space. If the three components of the orien-
tation vector are present on a feature being written,
then the vector is used in place of any value present
on the oracle_orientation attribute.

oracle_orient_j The “Y axis” component of a vector describing the
point’s orientation. The comments above for oracle_
orient_i apply to this attribute as well.

oracle_orient_k The “Z axis” component of a vector describing the
point’s orientation. The comments above for oracle_
orient_i apply to this attribute as well.

Lines

oracle_type: oracle_line

Linear features are tagged with this value when reading or writing to or from Oracle Spatial. Both single part and
aggregate linear features are supported.

Aggregates are written out as “multiline” geometry containing several linear elements, just as if the feature had been
tagged with oracle_multiline. Any non-linear elements contained in the aggregate are discarded.

Areas

oracle_type: oracle_area

Area features are tagged with this value when reading or writing to or from Oracle Spatial. Both single part and aggre-
gate area features are supported. An area feature may be either a polygon or a donut polygon. Note that checking is
done to ensure that the area features adhere to the geometry rules of Oracle Spatial as they are loaded.

Aggregates are written out as “multipolygon” geometry containing several polygonal elements, just as if the feature
had been tagged with oracle_multiline. Any non-polygonal elements contained in the aggregate are discarded.

Arcs

oracle_type: oracle_arc

Arc features are tagged with this value when reading or writing to or from Oracle Spatial (object model). The arc is
defined in the FME feature by a center point and a number of attributes to define the shape of the arc.

Attribute Name Contents

oracle_primary_radius The length of the arc’s semi-major axis, measured in
ground units.

oracle_secondary_radius The length of the arc’s semi-minor axis, measured in
ground units.

oracle_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Attribute Name Contents

oracle_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

oracle_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise from horizontal.

It is important to note that, as of the time of writing, there is no way to represent a non-circular arc. If oracle_primary_
radius and oracle_secondary_radius are specified as different values, the FME will convert the arc to a line string approx-
imating the arc prior to writing it to the Oracle geometry object.

It is also important to note that when reading arcs from Oracle Spatial, the FME does not always leave the arc in its
original form. If the arc is part of an aggregate type – multipolygon, multiline or collection geometry, or a multipoly or
multiline element within a polygon or line geometry – FME will first convert the arc to a line string approximation, in
order to simplify processing of the resulting aggregate. At some point in the future, Safe Software may implement a
mode in which the Oracle Spatial reader provides a more faithful representation of the exact structure of the geometry
embedded in an Oracle table’s geometry columns.

Note that when in enhanced geometry mode, stroking will not take place and all the arcs will be preserved.

Rectangles

oracle_type: oracle_rectangle

Oracle Spatial rectangle objects are represented in the FME by closed polygons. When a rectangle is read, it is turned
into a closed polygon feature. When a feature is written tagged with an oracle_rectangle type, its minimum bound-
ing rectangle is computed, and the resulting lower-left and upper-right coordinates will form the ordinates for the
Oracle geometry.

Circle

oracle_type: oracle_circle

Circle features are tagged with this value when reading or writing to or from Oracle Spatial (object model). The circle
is defined in the FME feature by a center point and an attribute to define the circle’s radius:

Attribute Name Contents

oracle_radius The length of the circle’s semi-major axis, measured
in ground units.

oracle_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise from horizontal.

It is important to note that when reading circles from Oracle Spatial, FME does not always leave the circle in its orig-
inal form. If the circle is part of an aggregate type (multipolygon or collection geometry) or defines a hole or boundary
of a donut, FME will first “stroke” a linear approximation of the circle, and use that in the structure.

Note that when in enhanced geometry mode, stroking will not take place and all the arcs will be preserved.

Solids

oracle_type: oracle_solid

Solid features are tagged with this value when reading or writing to or from Oracle Spatial (object model).

Solid features are supported only when writing to an Oracle Database version 11g or later. If the Oracle Spatial
(object model) writer detects a version of Oracle Database older than version 11g, solid features will automatically be
downgraded to a 2D representation prior to writing.

Oracle Spatial (object model) directly supports simple solids, composite solids and optimized solids.

For writing, all other types of solid geometries (e.g., extrusions) are decomposed into simple solids prior to writing.

Surfaces

oracle_type: oracle_surface

Surface features are tagged with this value when reading or writing to or from Oracle Spatial (object model).

Surface features are supported only when writing to an Oracle Database version 11g or later. If the Oracle Spatial
(object model) writer detects a version of Oracle Database older than version 11g, surface features will automatically
be downgraded to a 2D representation prior to writing.

Oracle Spatial (object model) directly supports composite surfaces, 3D polygons and rectangles.

For reading, 3D polygons and rectangles are only read as surfaces if READ_3D_POLYGON_AS_FACE is set to YES.

For writing, all other types of surface geometries (e.g., triangle fans or strips) are decomposed into composite sur-
faces prior to writing.

Multipoints

oracle_type: oracle_multipoint

Aggregate point features are tagged with this value when reading or writing to or from Oracle Spatial. When writing
to Oracle, each element of the aggregate must be have a “point” geometry; others will simply be discarded before writ-
ing.

Oracle's oriented points are supported for each element of the point aggregate. On write, these can be specified on
each point geometry as a trait. On read, each point geometry element in the multipoint will have the below geometry
traits if the point has an orientation.

Trait Name Contents

oracle_orientation The orientation of the point, expressed in degrees counter-clockwise from
the positive X axis. When reading, this is an approximation of the orien-
tation described by the (i,j,k) orientation vector. When writing, this value
is used to compute an (i,j,0) unit vector on the horizontal plane, if no such
(i,j,k) vector is defined on the feature being written.

oracle_orient_i The “X axis” component of a vector describing the point’s orientation. This
vector is normally a unit vector in 3D space. If the three components of the
orientation vector are present on a feature being written, then the vector is
used in place of any value present on the oracle_orientation attribute.

oracle_orient_j The “Y axis” component of a vector describing the point’s orientation. The
comments above for oracle_orient_i apply to this attribute as well.

oracle_orient_k The “Z axis” component of a vector describing the point’s orientation. The
comments above for oracle_orient_i apply to this attribute as well.

Multi-lines

oracle_type: oracle_multiline

Aggregate linear features are tagged with this value when reading or writing to or from Oracle Spatial. When writing
to Oracle, each element of the aggregate must be have a linear geometry; others will simply be discarded before writ-
ing.

When reading multiline features from Oracle, any contained arcs will be stroked out to a linear approximation before
being placed into the FME feature. This results in a less accurate representation of the geometry actually contained in
the Oracle table, but greatly simplifies the processing of such data. At some point in the future, Safe Software may
implement a mode in which the Oracle Spatial reader provides a more faithful representation of the exact structure of
the geometry embedded in an Oracle table’s geometry columns.

Note that when in enhanced geometry mode, stroking will not take place and all the arcs will be preserved.

Multipolygons

oracle_type: oracle_multipoly

Aggregate polygonal features are tagged with this value when reading or writing to or from Oracle Spatial. When writ-
ing to Oracle, each element of the aggregate must be have a polygonal geometry; others will simply be discarded
before writing.

When reading multipolygon features from Oracle, any contained rectangles and circles will be stroked out to a linear
approximation before being placed into the FME feature. This results in a less accurate representation of the geome-
try actually contained in the Oracle table, but greatly simplifies the processing of such data. At some point in the
future, Safe Software may implement a mode in which the Oracle Spatial reader provides a more faithful rep-
resentation of the exact structure of the geometry embedded in an Oracle table’s geometry columns.

Note that when in enhanced geometry mode, stroking will not take place and all the arcs will be preserved.

Multi-Solids

oracle_type: oracle_multisolid

Aggregate solid features are tagged with this value when reading or writing to or from Oracle Spatial (object model).
When writing to Oracle, each element of the aggregate must have a solid geometry.

Solid features are supported only when writing to an Oracle Database version 11g or later. If the Oracle Spatial
(object model) writer detects a version of Oracle Database older than version 11g, solid features will automatically be
downgraded to a 2D representation prior to writing.

Oracle Spatial (object model) directly supports simple solids, composite solids and optimized solids.

For writing, all other types of solid geometries (e.g., extrusions) are decomposed into simple solids prior to writing.

Multi-Surfaces

oracle_type: oracle_multisurface

Aggregate surface features are tagged with this value when reading or writing to or from Oracle Spatial (object
model). When writing to Oracle, each element of the aggregate must have a surface geometry.

Surface features are supported only when writing to an Oracle Database version 11g or later. If the Oracle Spatial
(object model) writer detects a version of Oracle Database older than version 11g, surface features will automatically
be downgraded to a 2D representation prior to writing.

Oracle Spatial (object model) directly supports composite surfaces, 3D polygons and rectangles.

For reading, 3D polygons and rectangles are only read as surfaces if READ_3D_POLYGON_AS_FACE is set to YES.

For writing, all other types of surface geometries (e.g., triangle fans or strips) are decomposed into composite sur-
faces prior to writing.

Raster

oracle_type: oracle_raster

Features with raster data are unlike vector data in that they can contain various types of data arranged in blocks of pix-
els.

Attribute Name Contents
oracle_raster_compression_type The type of compression to be used. This option is the

one used to determine whether or not compression
will occur. Current options are NONE, DEFLATE, JPEG-
B and JPEG-F. If this optional attribute is not spec-
ified, the default value is NONE and the GeoRaster
object is not compressed. If the attribute value is set
to NONE for an existing GeoRaster object, then the

Attribute Name Contents
object will be uncompressed. Lastly, any other
options will cause the specified type of compression
to occur in either INSERT or UPDATE operations. Note
that compression is applied as a post-process.

oracle_raster_compression_update_type The type of compression to be used when updating an existing Geo-
Raster object. This option overrides oracle_raster_compression_
type when an update is being performed.

Current options are PRESERVE, REMOVE, DEFLATE, JPEG-B, and
JPEG-F. PRESERVE preserves the existing compression on the Geo-
Raster object, provided the data is not being rewritten. REMOVE
removes compression on the existing GeoRaster object. The other
options cause the specified type of compression to be applied.

oracle_raster_compression_quality The JPEG compression quality, which is the degree of lossiness
caused by the compression. Valid values are integers from 0 (low-
est quality) to 100 (highest quality). This value is ignored when not
using one of the JPEG compression types.

oracle_raster_default_red_band This optional parameter specifies the index of the red
band in the raster. Note that the index is zero based
so that the first band is at index 0. If this parameter is
not present on any the input rasters then a very sim-
ple default method is used to determine whether to
treat 3 or 4 band rasters as RGB or RGBA.

oracle_raster_default_green_band This optional parameter specifies the index of the
green band in the raster. Note that the index is zero
based so that the first band is at index 0. If this param-
eter is not present on any the input rasters then a
very simple default method is used to determine
whether to treat 3 or 4 band rasters as RGB or RGBA.

oracle_raster_default_blue_band This optional parameter specifies the index of the blue
band in the raster. Note that the index is zero based
so that the first band is at index 0. If this parameter is
not present on any the input rasters then a very sim-
ple default method is used to determine whether to
treat 3 or 4 band rasters as RGB or RGBA.

oracle_raster_gcp_table_name The Ground Control Point (GCP) table name for the
external storage of GCPs that may exist in the source
data. This may be unique for each raster. The default
GCP table name is the RDT table name with an suffix
of _GCP. If GCPs are not present on any the input
rasters then this table will not be created.

oracle_raster_interleaving_
type

This optional parameter specifies the type of inter-
leaving to be applied to the data when written. Pos-
sible interleaving values include: BSQ (Band
SeQuential), BIL (Band Interleaved by Line) or BIP
(Band Interleaved by Pixel). The default interleaving
is BSQ. If the raster contains only a single band then
interleaving is irrelevant. This interleaving parameter
does not apply to palette values which are always BIP

Attribute Name Contents
interleaved.

oracle_raster_number_of_bits_per_cell This optional parameter specifies the bit depth of the data when
written. Possible values are 1, 2, 4, and AUTO. When AUTO is
selected, the bit depth will be determined by the interpretation of
the input raster bands. When a specific bit depth is selected, the
interpretation of the input raster bands must be one of UINT8,
GRAY8, RED8, GREEN8, BLUE8, and ALPHA8. In this case, data
values will be truncated to the specified number of bits. For exam-
ple, if the number of bits is set to 4, a value of 201 (1100 1001 in
base 2) will become 9 (1001 in base 2).

oracle_raster_pyramid_
max_level

This optional parameter specifies the maximum
number of pyramid levels to be generated. It is a max-
imum because pyramids will not be generated when
the number of rows or columns in a GeoRaster is less
than 64. The default for this value is to auto-calculate
the correct number of pyramid levels for the raster so
that the smallest pyramid has at least 64 rows and col-
umns.

oracle_raster_pyramid_
resampling

The type of resampling to be applied when generating
pyramid levels. The options are NN, BILINEAR, AVER-
AGE4, AVERAGE16, and CUBIC. The default is NN or
Nearest Neighbor.

oracle_raster_pyramid_type This optional parameter specifies the type of pyramid
to create.The options are NONE and DECREASE. If the
attribute value is set to NONE for an existing Geo-
Raster object, the existing pyramids will be deleted.

oracle_raster_pyramid_update_type The type of pyramid to create when updating an exist-
ing GeoRaster object. This option overrides oracle_
raster_pyramid_type when an update is being per-
formed.
Current options are PRESERVE, REMOVE, and
DECREASE. PRESERVE preserves the existing pyr-
amids, provided the data is not being rewritten.
REMOVE removes the existing pyramids. DECREASE
generates new pyramids.

oracle_raster_table_name The Raster Data Table (RDT) name for the given Geo-
Raster object. This table is where the pixel values of
the input rasters will be stored.
The default value is an automatically generated table
name based on the raster identifier both of which are
assigned by the database itself. the expected table
name is ‘RDT_<rasterid>$’.

oracle_raster_lob_type The large object (LOB) storage type used for storing
raster data. This option only has an effect when cre-
ating a new Raster Data Table (RDT).
The options are BASICFILE and SECUREFILE. BASIC-
FILE specifies the original Oracle LOB storage type.

Attribute Name Contents
SECUREFILE is a new LOB storage type introduced in
version 11g which offers many advantages, including
better performance.
The default value depends on the version of the
Oracle database being written to. When the version is
11g or later, SECUREFILE will be used; when the ver-
sion is older than 11g, BASICFILE will be used.

oracle_raster_tile_size_x The horizontal size in pixels of a tile in the Raster
Data Table (RDT). The value must be a power of 2.

oracle_raster_tile_size_y The vertical size in pixels of a tile in the Raster Data
Table (RDT). The value must be a power of 2.

oracle_raster_validate The option to validate the raster once written. If set to
YES this option employs native GeoRaster validation
and logs either TRUE if the GeoRaster is valid, or else
it logs the Oracle error number that defines the rea-
son for invalidity. The default value is NO indicating
no validation will occur. Note that validation is
checked as a post-writing process and happens before
pyramiding and compression.

oracle_raster_extent_srid This option is similar to the oracle_srid format attrib-
ute except that this SRID only applies to the spatial
extent geometry stored inside the georaster object.
This option allows users to set a different SRID for the
extent of the raster that the raster itself. Valid values
include the valid range of SRID values acceptable to
Oracle. The default value is 0, indicating no SRID is
present. Note that intially the extents are written in
the same SRID as the raster and then reprojection will
occur as necessary as a post-process.

Collections

oracle_type: oracle_collection

Aggregates containing heterogeneous collections of point, line and polygon features are tagged with this value when
reading or writing to or from Oracle Spatial.

When the global directive FME_GEOMETRY_HANDLING is set to enhanced the reader reads all the pieces in the
original form (i.e., without stroking arcs or ellipses). The remainder of this section pertains to classic geometry
cases.

When reading oracle_collection features from Oracle, any contained arcs, rectangles and circles will be stroked out
to a linear approximation before being placed into the FME feature. This results in a less accurate representation of
the geometry actually contained in the Oracle table, but greatly simplifies the processing of such data. At some point
in the future, Safe Software may implement a mode in which the Oracle Spatial reader provides a more faithful rep-
resentation of the exact structure of the geometry embedded in an Oracle table’s geometry columns.

When writing oracle_collection features to Oracle Spatial, it may sometimes be necessary to explicitly tell it what
oracle_type a particular element of the aggregate is. For example, a point cluster can be represented in the FME as a

line feature tagged as being an oracle_point; if this point cluster were contained in an oracle_collectionwithout any
indication that it is in fact a point, the FME would instead write it out as an oracle_line.

To allow for this sort of construct, the FME looks for attributes named oracle_element{n}.oracle_typewhen writing
out a collection. The value of “n” is the position of the element within the aggregate, where the first element is num-
bered 0. Suppose that, in the above “point cluster” example, the cluster is in the third position of the aggregate, with
a two lines on either side. That is, the aggregate contains five linear elements; the first two are lines, the next is the
point cluster, and the remaining two are twomore lines. The feature with the aggregate of these elements would con-
tain the following attributes to tell the FME to write out the collection correctly:

Attribute Name Attribute Value

oracle_type oracle_collection

oracle_element{0}.oracle_type oracle_line

oracle_element{1}.oracle_type oracle_line

oracle_element{2}.oracle_type oracle_point

oracle_element{3}.oracle_type oracle_line

oracle_element{4}.oracle_type oracle_line

Structured Geometry Representation (only applicable with classic geometry)

Using enhanced geometry removes the need for using this representation and makes it simple to translate complex
oracle geometries into other formats, preserving the original geometry as it was stored in Oracle.

When reading from an Oracle 8i Spatial database using the object model, the STRUCTURED_GEOMETRY directive
may be specified to keep the geometry structured in a way which mirrors the way it is represented within Oracle 8i’s
own structures. This accurate representation can be useful for advanced processing of Oracle geometry, but it
stands in the way of normal FME feature processing, and is therefore disabled by default.

The representation of structured geometry is somewhat different from the normal feature representation, described
above. The oracle_type attribute remains the same, but an additional attribute (oracle_subtype) provides more specific
geometry information, and the geometry is often structured using FME aggregates.

The reason for this is that there may be several different representations for a given geometry type. For example, a
“line” may be a sequence of linear segments, a sequence of connected arcs, or a combination of the two. The normal
behavior of the Oracle 8i Spatial reader for such a feature would be to stroke out the arcs, and to make the resulting
feature’s a single line string with all of the coordinates of its parts. When the structured geometry mode is enabled,
the result will be an aggregate containing line geometry to represent the lines, and points with extra attributes (the
same attributes as oracle_arc features would normally have).

The oracle_subtype attribute indicates what geometry structure is used to represent the results. A complex linear fea-
ture such as the one describe above, for example, would have an oracle_subtype value of oracle_composite, indicating
that it is represented by an fme_aggregate geometry.

When a structured geometry is an aggregate type, the features will often require attributes specific to a given ele-
ment of the aggregate. These attributes are named oracle_element{N}.attrName, where N is the position of the element
in the aggregate (starting at 0). In general, there will be an attribute named “oracle_element{N}.oracle_subtype” for
every member of an aggregate that represents an oracle_line or oracle_area feature. Each feature representing a com-
pound Oracle geometry types (oracle_multipoint, oracle_multiline, oracle_multipoly, and oracle_collection), will contain attrib-
utes “oracle_element{N}.oracle_type”, because each element of the collection will be of a different type than the
collection itself.

The following table summarizes all of the oracle_type and oracle_subtype values that are possible with structured geome-
try, and provides a description of each representation. Every structured geometry feature will have one of the oracle_
type values listed in this table. Values such as oracle_arc, which are not listed in the oracle_type column, are rep-
resented as subtypes of another oracle_type.

oracle_type oracle_subtype Representation

oracle_nil N/A No geometry

oracle_point oracle_point Single point geometry (fme_point). As in
the non-structured case, this is normally
encoded into the SDO_POINT feature of
the Oracle geometry object, but may be
a single entry in the ordinate array.

oracle_composite Aggregate containing the points of the
feature. This is used when the point’s
interpretation is greater than 1. (Note
that it is not actually legal for an Oracle
point geometry to contain more than a
single point, but the SDO_GEOMETRY for-
mat technically supports this, so it rep-
resentable in FME.)

oracle_line oracle_line Single line geometry (fme_line).

oracle_arc Point geometry (fme_point) representing
the arc, as it would be represented when
structured geometry is not being used.
(i.e. The point is the centre point of the
arc, and its shape is described by the
attributes oracle_primary_radius, oracle_sec-
ondary_radius, oracle_start_angle, oracle_
sweep_angle, and oracle_rotation.)

oracle_composite An aggregate geometry (fme_aggre-
gate), each of whose elements has a sub-
type of oracle_line or oracle_arc.

oracle_area oracle_polygon A single polygon (fme_polygon) or
donut (fme_donut) geometry.

oracle_circle Point geometry (fme_point) rep-
resenting the circle, as it would be rep-
resented when structured geometry is
not being used. (i.e. The point is the cen-
tre point of the circle, and its radius is
stored in the attributes oracle_radius.)

oracle_rectangle A simple polygon (fme_polygon) con-
taining five points defining the rec-
tangle’s boundary.

oracle_line A linear element (fme_line) that
makes up a part of a boundary of a poly-
gon or one of its holes. (Note that an

oracle_type oracle_subtype Representation

oracle_line element can only appear
as a part of an oracle_composite rep-
resentation, and cannot by themselves
represent a whole polygon.)

oracle_arc A point element (fme_point) with the
usual arc attributes, that makes up a
part of a boundary of a polygon or one of
its holes. (Note that an oracle_arc ele-
ment can only appear as a part of an
oracle_composite representation, and
cannot by themselves represent a whole
polygon.)

oracle_composite An aggregate (fme_aggregate) geome-
try containing a sequence of oracle_
polygon, oracle_circle, oracle_rec-
tangle, oracle_line, and oracle_arc
elements. There will be an attribute
called oracle_element{N}.oracle_sub-
type for each element within the aggre-
gate, as well as attributes oracle_
element{N}.attrName for any other
attributes which pertain specifically to a
particular element (such as a circle’s
radius).
Consecutive oracle_line and oracle_
arc elements which appear in an
oracle_area composite are joined
together to form closing “rings”; these
rings form the boundaries of the polygon
and its holes. (In Oracle 8.1.6 and later,
outer boundaries are counter-clockwise,
and hole boundaries are clockwise.)

oracle_multipoint N/A An aggregate geometry (fme_
aggregate) containing one or more
oracle_point elements. The feature
will contain attributes named oracle_
element{N}.oracle_type and oracle_
element{N}.oracle_subtype for each
point element of the aggregate. How-
ever, point clusters within the multipoint
will not be split further into points and
have oracle_type and oracle_subtype
attributes.

oracle_type oracle_subtype Representation

oracle_multiline N/A An aggregate geometry (fme_
aggregate) containing one or more
oracle_line elements. The feature will
contain an attribute named oracle_ele-
ment{N}.oracle_type for each ele-
ment of the aggregate.

oracle_multipoly N/A An aggregate geometry (fme_
aggregate) containing one or more
oracle_area elements. The feature will
contain an attribute named oracle_ele-
ment{N}.oracle_type for each element
of the aggregate.

oracle_collection N/A An aggregate geometry (fme_
aggregate) containing one or more
oracle_point, oracle_line, and
oracle_area elements. The feature will
contain an attribute named oracle_ele-
ment{N}.oracle_type for each element
of the aggregate.

oracle_raster N/A A raster geometry (fme_raster) con-
taining pixels of various cell types.

GeoMedia Geometry Representation

Intergraph’s GeoMedia stores additional information in Oracle Spatial geometry objects to represent oriented points
and text features. FME’s Oracle Spatial reader/writer has the ability to read and write these objects directly, without
going through any GeoMedia code layers.

Both oriented points and text features appear in FME as normal Oracle point features, with additional attributes to
describe the additional information. These will always be present on FME features read from Oracle tables where the
GeoMedia information is present. If these attributes are defined on features being written to Oracle Spatial, the geome-
try written will include the GeoMedia extensions.

Each feature which has GeoMedia information includes an attribute named geomedia_type, whose value tells which
kind of GeoMedia geometry information is attached. The following sections describe the two types of geometry.

Oriented Point

geomedia_type: geomedia_oriented_point

GeoMedia’s oriented points add an orientation to the point. This can be specified on the FME feature either as a set of
three numbers describing the orientation in 3D space, or a single value describing the planar rotation.

Attribute Name Contents

geomedia_rotation The orientation of the point, expressed in degrees
counter-clockwise from the positive X axis. When
reading, this is an approximation of the orientation
described by the (i,j,k) orientation vector. When writ-

Attribute Name Contents

ing, this value is used to compute an (i,j,0) unit vec-
tor on the horizontal plane, if no such (i,j,k) vector is
defined on the feature being written.

geomedia_orient_i The “X axis” component of a vector describing the
point’s orientation. This vector is normally a unit vec-
tor in 3D space. If the three components of the orien-
tation vector are present on a feature being written,
then the vector is used in place of any value present
on the geomedia_rotation attribute.

geomedia_orient_j The “Y axis” component of a vector describing the
point’s orientation. The comments above for geome-
dia_orient_i apply to this attribute as well.

geomedia_orient_k The “Z axis” component of a vector describing the
point’s orientation. The comments above for geome-
dia_orient_i apply to this attribute as well.

Text

geomedia_type: geomedia_oriented_text

GeoMedia’s text features add a plaintext or RTF text string, orientation to the point. This can be specified on the FME
feature either as a set of three numbers describing the orientation in 3D space, or a single value describing the pla-
nar rotation. Features read from Oracle will have both styles of orientation defined. In this case, the planar rotation is
an approximation computed from the (i,j,k) orientation values.

Attribute Name Contents

geomedia_justification The alignment of the text around the origin point’s coor-
dinates.
Range: 0..2, 4..6, 8..10
0 centered vertically, centered horizontally
1 centered vertically, left of the origin
2 centered vertically, right of the origin
4 above the origin, centered horizontally
5 above the origin, left of the origin
6 above the origin, right of the origin
8 below the origin, centered horizontally
9 below the origin, left of the origin
10 below the origin, right of the origin
Default: 9

geomedia_text_string The plain text version of the displayed text. Text
stored as formatted text in GeoMedia will have an addi-
tional attribute on the FME feature to store the RTF ver-
sion of the text, as well as one to specify the font size.
When writing to Oracle, the RTF version of the text will

Attribute Name Contents

be used if it is supplied; otherwise an RTF string will be
computed from the plain text string if a non-zero font
size is specified.

geomedia_rtf_text_string The formatted text string for the feature. Features
stored as plain text in GeoMedia will not have an RTF
text string attribute defined on them. When a feature
with both plaintext and RTF information is written to
Oracle, the RTF value will be stored into the resulting
text feature; otherwise the plaintext value from geome-
dia_text_string will be combined with the font size from
geomedia_text_font_size to compute a formatted text fea-
ture.

geomedia_text_font_size The size of the formatted text feature, measured in
text points. When reading, this value is extracted from
the RTF text which defines the text feature. When writ-
ing, this value is used as the text size when creating an
RTF string from the plaintext value in geomedia_text_
string. If the feature being written contains a geomedia_
rtf_text_string attribute, the font size is ignored. If the
font size attribute has a zero (0) value, and no RTF text
is supplied, the output text feature will be encoded as
plain text.
Note: GeoMedia features specify text in point size,
whereas the rest of FME uses ground units for text
size. The Oracle Spatial reader/writer does not
attempt to translate between the two.

geomedia_text_font The name of the font to be encoded into an RTF string
for a text feature being written. If this isn’t present, a
default value of “Arial” is used. (This attribute is not
supplied by the reader.)

geomedia_rotation The rotation of the text, measured in degrees counter-
clockwise from the horizontal.

Troubleshooting

Problems sometimes arise when attempting to connect to an Oracle database. This is almost always due to a mis-
configuration in the user’s environment. The following suggestions can often help detect and overcome such prob-
lems:

l For a table to be available to the Oracle Spatial reader, it requires an entry in the USER_SDO_GEOM_METADATA
table defining the geometry column, spatial extents and optionally the SRID of the data.

l Ensure you can connect to the database with the service name, user name, and password using SQL*Plus.

l Ensure that you have the correct version of the Oracle client software installed. Oracle 8.1.5 or newer is rec-
ommended. Note that many clients have had problems if they have both 8.0.4 and 8.1.x installed on the same com-
puter.

l Ensure that your ORACLE_HOME environment variable is correctly set: see the Oracle documentation for details.
This is required for some specific versions of Oracle 8i, and may be required even if SQL*Plus appears to oper-
ate correctly without it.

l If you have had older versions of the Oracle client software installed, make sure that your PATH variable has the
current version’s Oracle directory first, before any other Oracle software, including the WebDB package.

l It is sometimes helpful to define an environment variable named ORACLE, with the same value as the ORACLE_
HOME variable. With some installations, it often helps to ensure that the variable named ORACLE is not defined.

l When running on UNIX, the following environment variables should be defined:

Variable Contents Sample Value

ORACLE_BASE Top level of directory into
which Oracle client soft-
ware is installed.

/opt2/oracle8i/app/oracle

ORACLE_HOME The Oracle product direc-
tory.

/opt2/oracle8i/app/oracle/
product.8.1.5

ORACLE_SID The system ID for the
host’s database instance.

FME

LD_LIBRARY_PATH A list of directories which
will be searched for shared
objects. This list must
include the FME_HOME
path, as well as the lib sub-
directory of ORACLE_
HOME.

${LD_LIBRARY_PATH}:
${FME_HOME}:
${ORACLE_HOME}/lib

l In most cases, the ORACLE_SERVER_NAME and ORACLE_DATABASE directives should be left with blank
values, with the ORACLE_DATASET directive containing the Oracle service name of the database.

Mapping File Example

In this example, linear road features are extracted from Oracle Spatial and routed to MapInfo TAB files.

--
Set up the Oracle Spatial reader

READER_TYPE ORACLE8I
ORACLE_SEARCH_ENVELOPE -128 49 -126 56.5
ORACLE_USER_NAME scott
ORACLE_PASSWORD tiger
ORACLE_DATASET worf

--
Specify the relationship which must exist between
the query region and the returned features.
This is specified by a *type* of relationship, and a
result to be tested. The relationship type is a
string such as ANYINTERACT (the default) or TOUCH+INSIDE.
The result is a simple test applied to determine whether
the features exhibit the correct relationship.

The default value of <> 'FALSE' will be true unless
the relationship for a given pair does not exist;
this is not the same as = 'TRUE' because (for example)
a combined relationship like TOUCH+INSIDE will return
a result of TOUCH, INSIDE, or FALSE.

ORACLE_INTERACTION CONTAINS
ORACLE_INTERACTION_RESULT = ‘TRUE’

--
Set up the mapinfo writer

WRITER_TYPE MAPINFO
MAPINFO_DATASET c:/temp/output

--
Define the Oracle Spatial table we will read

ORACLE_DEF ROADS \
ROADS_ID float \
NUMOFLANES float \
TYPE varchar2(5) \
UNDERCNST varchar2(8) \
DIVIDED varchar2(8) \
TRVLDIR varchar2(6) \
SDO_GID float

MAPINFO_DEF ROADS \
ROADS_ID float \
NUMOFLANES float \
TYPE char(5) \
UNDERCNST char(8) \
DIVIDED char(8) \
TRVLDIR char(6) \
SDO_GID float

--
Route the input Oracle Spatial data to the output TAB file

ORACLE ROADS \
oracle_type oracle_line \
ROADS_ID %ROADS_ID \
NUMOFLANES %NUMOFLANES \
TYPE %TYPE \
UNDERCNST %UNDERCNST \
DIVIDED %DIVIDED \
TRVLDIR %TRVLDIR \
SDO_GID %SDO_GID

MAPINFO ROADS \
mapinfo_type mapinfo_polyline \
ROADS_ID %ROADS_ID \
NUMOFLANES %NUMOFLANES \
TYPE %TYPE \
UNDERCNST %UNDERCNST \
DIVIDED %DIVIDED \
TRVLDIR %TRVLDIR \
SDO_GID %SDO_GID

Oracle Spatial Relational Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

ORACLE® VERSION:

• Any references to Oracle 8i throughout this chapter are also applicable to Oracle 9i andOracle 10g.

Overview

The Oracle Spatial Relational Reader/Writer module enables FME to read and write geometric and attribute data stored
using Oracle Spatial. This module communicates directly with Oracle Spatial for maximum throughput. Both the rela-
tional and object-relational models of Oracle Spatial are supported by FME: the relational model is discussed here and
the object-relational model is discussed in a separate chapter – Oracle Spatial Object Reader/Writer.

If only attributes are to be read or written, then the Database reader and writer module of FME should be used. In
addition, an OracleQueryFactory is available to extract data from an Oracle Spatial database within the FME factory
pipeline.

This chapter assumes familiarity with Oracle Spatial, the geometry types it supports, and its indexing mechanisms.

Tip:

See the QueryFactory in the FME Functions and Factories manual. This factory also exploits
the powerful query capabilities of Oracle Spatial.

See the @SQL function, also in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any Oracle
database.

Oracle Spatial Relational Quick Facts

Format Type Identifier ORACLE

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Optional

Spatial Index Yes

Schema Required Yes

Transaction Support No

Enhanced Geometry Yes

Encoding Support Yes

Geometry Type oracle_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid yes

elliptical arc no surface yes

ellipses no text no

line yes z values yes

none yes

Reader Overview

FME considers an Oracle Spatial dataset to be a collection of relational tables together with their geometry. The tables
must be defined in the mapping file before they can be read. ArbitraryWHERE clauses and joins are fully supported.

Reader Directives

The directives listed below are processed by the Oracle Spatial reader. The suffixes listed are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the Oracle Spatial reader is ORACLE.

DATASET

Required/Optional: Required

This specifies the SQL/Net service name for the Oracle Spatial database, which can be blank to use the default serv-
ice. If it is specified, then the service must have been set up in the local SQL/Net configuration.

ORACLE_DATASET citySource

Workbench Parameter: Source Oracle Spatial Relational Service

USER_NAME

Required/Optional

Optional

Mapping File Syntax

ORACLE_USER_NAME bond007

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the usernamemay be left blank, or may be completely omitted.

If a connection cannot be established using the provided username, a second attempt will be made using the upper-
case version of the username.

Workbench Parameter

Username

PASSWORD

Required/Optional: Required

The password of the user accessing the database.

ORACLE_PASSWORD moneypenny

If the database is configured to use an external authentication adapter (such as Windows NT or Kerberos authen-
tication), the password may be left blank, or may be completely omitted.

Workbench Parameter: Password

DEF

Required/Optional: Optional

The syntax of the definition is:

ORACLE_DEF <layerName> \
[oracle_envelope_min_x <xmin>]
[oracle_envelope_min_y <ymax>] \
[oracle_envelope_max_x <xmin>] \
[oracle_envelope_max_y <ymax>] \
[oracle_interaction <interactionType>] \
[oracle_interaction_result <interactionQualifier>] \
[oracle_where_clause_encoded <whereClause>] \
[oracle_sql_encoded <sqlQuery>] \
[oracle_dim <dim>] \
[<fieldName> <fieldType>] +

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The <layerName> must match an Oracle Spatial relational geometry layer in the database. This will be used as the fea-
ture type of all the features read from the table. If the <tableName> does not match a table in the database, a second
attempt will be made using the uppercase version of the <tableName>.

The layer definition allows specification of separate search parameters for each layer. If any of the configuration
parameters are given, they will override, for that layer, whatever global values have been specified by the reader key-
words listed in the above table. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

oracle_envelope
_minx oracle_envelope
_miny oracle_envelope
_maxx oracle_envelope
_maxy

These specify the spatial extent of the features to be
read from the layer. If these are not all specified, the
values from the <ReaderKeyword>_SEARCH_ENVEL-
OPE directive are used.

oracle_interaction This specifies the spatial interaction type to be tested
for this layer. If this is not specified, the value of the
<ReaderKeyword>_INTERACTION directive is used.

oracle_interaction
_result

This specifies the required result of the spatial inter-
action comparison performed for this layer. If this is
not specified, the value of the <ReaderKeyword>_
INTERACTION_RESULT directive is used.

oracle_where_clause_encoded This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of fea-
tures returned. If this is not specified, the value of the
<ReaderKeyword>_WHERE_CLAUSE directive is used.
This parameter is encoded as described in the section
Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax.

oracle_sql_encoded This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the Oracle
Spatial reader will execute the query, and use the
resulting rows as the features instead of reading from
the table <layerName>. All returned features will
have a feature type of <layerName>, and attributes
for all columns selected by the query.
The oracle_where_clause_encoded and all parameters
which specify a spatial constraint – oracle_envelope_
minx, oracle_interaction, and so on – are ignored if
oracle_sql is supplied.
This parameter is encoded as described in the section
Substituting Strings in Mapping Files in FME Fun-
damentals help > Mapping File Syntax.

oracle_dim This specifies the number of dimensions (2 or 3) for
the table’s geometry. This is required only if the
oracle_sql_encoded parameter is used to specify a
SELECT query.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows which are selected by the clause will be read. Note that the
<whereClause> does not include the wordWHERE.

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then all defined and available tables are read. The syntax of the IDs keyword is:

ORACLE_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

ORACLE_IDs ROADS

Workbench Parameter: Feature Types to Read

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

Mapping File Example

The example below selects a small area for extraction:

ORACLE_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

INTERACTION

Required/Optional: Optional

This specifies the type of relationship which must exist between the search envelope and the geometry in the target
layer. Any supported relationship, or combination of relationships, may be specified.

This table lists the valid geometry interaction relationships.

Search Method Description

DISJOINT Returns DISJOINT if the objects have no common
boundary or interior points; otherwise, returns FALSE.

EQUAL Returns EQUAL if the objects share every point of
their boundaries and interior, including any holes in
the objects; otherwise, returns FALSE.

INSIDE Returns INSIDE if the geometry feature is entirely
contained within the query feature; otherwise, returns
FALSE.

OVERLAPBDYDISJOINT Returns OVERLAPBDYDISJOINT if the objects overlap,
but their boundaries do not interact; otherwise,
returns FALSE.

OVERLAPBDYINTERSECT Returns OVERLAPBDYINTERSECT if the objects over-
lap, and their boundaries intersect in one or more
places; otherwise, returns FALSE.

Search Method Description

TOUCH Returns TOUCH if the two objects share a common
boundary point, but no interior points; otherwise,
returns FALSE.

ANYINTERACTION Returns TRUE if the objects interact according to any
of the above relationships; otherwise, returns FALSE.

In addition to specifying a single relationship, one may specify a combination of relationships to be tested by con-
catenating them with a plus sign (+). For example, if the <ReaderKeyword>_INTERACTION is specified as
INSIDE + TOUCH, the result of the interaction test will be one of: INSIDE, TOUCH, or FALSE.

INTERACTION_RESULT

Required/Optional: Optional

This specifies the test that is applied to the results of the above geometry relationship comparison. When using the
relational model, the name for type of relationship—except in the case of ANYINTERACTION—is returned from
Oracle for a positive match, rather than a value of TRUE. For this reason, the default test for the interaction result is
“<> ‘FALSE’” rather than (the perhaps more intuitive) “= ‘TRUE’”, when using the relational model.

For combined relationships in the relational model, one might want to use a comparison such as “= ‘TOUCH’”
instead of the default.

WHERE_CLAUSE

Required/Optional: Optional

This specifies an SQLWHERE clause, which is applied to the table’s columns to limit the resulting features. This fea-
ture is currently limited to apply only to the attributes of the target Spatial layer, and does not allow for joining mul-
tiple tables together. The effect of table joins can be achieved using the object model, by specifying the entire queries
in theDEF line with an oracle_sql_encoded parameter.

By default, there is noWHERE clause applied to the results, so all features in the layer are returned.

Workbench Parameter:Where Clause

QUERY_SUFFIX

Required/Optional: Optional

The Oracle reader performs a spatial query when it has to find geometry which interacts with a given search envel-
ope. When performing the spatial query in relational mode, the extent of the search is written out to an Oracle Spatial
layer which is separate from the layer of geometry being queried. The name of this query layer is generated by
appending a suffix to the name of the layer being queried; for example, ROADS_QUERY. This directive specifies the
part that is appended to the geometry layer name to form the query layer name. In the preceding example, the query
suffix would be specified as _QUERY.

If this is not specified, a default suffix of _FMESQ will be used.

CHUNK_SIZE

Required/Optional: Optional

The geometry is read from the Oracle database using a bulk reading technique to maximize performance. Normally
1000 rows of data are read from the database at a time.

This directive allows one to tune the performance of the reader. It specifies how many rows are read from the data-
base at a time.

Workbench Parameter: Max Features to Read

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Oracle Spatial writer module stores both geometry and attributes into an Oracle Spatial database. Only uppercase
table names are supported.

The Oracle Spatial writer provides the following capabilities:

1. Transaction Support: The Oracle Spatial writer provides transaction support that eases the data loading
process. Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction
support provides a mechanism for reloading corrected data without data loss or duplication.

2. Table Creation: The Oracle Spatial writer uses the information within the FME mapping file to automatically
create database tables as needed. When the relational model of storing geometry is used, the writer will
create and populate all needed supporting tables. In such a case, the <layername>, <layername>_
SDOGEOM, <layername>_SDOLAYER, <layername>_SDOINDEX, and <layername>_SDODIM
tables will all be created.

3. Index Creation: The Oracle Spatial writer will set up and populate all needed indexes and index tables as
part of the loading process. For the relational model, indexes on SDO_GID columns in the <layername> and
<layername>_SDOGEOM tables are created, and a compound index on theSDO_GID and SDO_CODE
columns in the <layername>_SDOINDEX is created. The <layername>_SDOINDEX table will also be
populated.

4. Bulk Loading: The Oracle Spatial writer uses a bulk loading technique to ensure speedy data load.

Writer Directives

The directives processed by the Oracle Spatial writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Oracle Spatial writer is
ORACLE when using the relational model.

DATASET, USER_NAME, BEGIN_SQL{}, and END_SQL{}

These directives operate in the samemanner as they do for the Oracle Spatial reader.

DEF

Required/Optional: Required

Each Oracle Spatial layer (table) must be defined before it can be written. The general form of an Oracle Spatial def-
inition statement is:

ORACLE_DEF <tableName> \
 [oracle_model (relational|enhanced_relational)] \
 [oracle_min_gid <minGid>] \
 [oracle_num_ords <numOrds>] \

[oracle_dim <dim>] \
 [oracle_srid <spatialReference>] \
 [oracle_levels <levels>] \
 [oracle_ord1name <ord1>] \

[oracle_ord2name <ord2>] \
[oracle_ord3name <ord3>] \

 [oracle_x_tol <xtol>] \
[oracle_y_tol <ytol>] \
[oracle_z_tol <ztol>] \
[oracle_x_col_type <xtype>] \
[oracle_y_col_type <ytype>] \
[oracle_z_col_type <ztype>] \
[oracle_code_size <codeSize>] \
[oracle_min_x <xmin>] \
[oracle_min_y <ymin>] \
[oracle_min_z <zmin>] \
[oracle_max_x <xmax>] \
[oracle_max_y <ymax>] \
[oracle_max_z <zmax>] \

 [oracle_create_indices (yes|no|incremental)] \
 [oracle_index_commit_interval <interval>] \
 [oracle_gid_name <gidName>] \
[<fieldName> <fieldType>]*

The table definition allows complete control of the layer that will be created. If the layer already exists, the majority of
the oracle_ parameters will be ignored and need not be given. As well, if the table already exists in the database, then
it is not necessary to list the fields and their types – FME will use the schema information in the database to determine
this. If the fields and types are listed, they must match those in the database, however, not all fields must be listed.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

oracle_model This indicates which model for storing geometry should
be used. This parameter should normally be specified
with its default value of “relational” when working with
the relational model. It may optionally be specified as
“enhanced_relational“, which places the writer into a mode
which supports the additional features described in the
section entitled Enhanced Relational Operation.

oracle_min_gid This specifies the minimum geometric identifier (GID)
that should be used. The default is the greater of 0, or
the largest GID present in the layer. This is only used by

Parameter Contents

the relational model of Oracle Spatial.

oracle_num_ords This specifies the number of ordinates that will be
present in the <layername>_SDOGEOM table. The default
is 64. This is only used by the relational model of Oracle
Spatial.

oracle_dim This specifies the dimension of the layer, which can be 2
or 3. The default is 2.

oracle_levels This specifies the number of tesselation levels used to
create the spatial index for the layer. The larger the
number, the longer spatial index creation will take but
the finer the granularity of the index. The range is any
integer between 1 and 64 for the quadtree algorithm. If
you want to use the R-Tree algorithm, set the value to 0.
For Oracle 11g users, it is highly recommended to use
the R-Tree algorithm. Oracle 10g users should use the
quadtree algorithm. The default is 1.

oracle_ord1name This specifies the name to use for the first ordinate. This
name is used when the <layername>_SDOGEOM table is
created. The default is X.This is only used by the rela-
tional model of Oracle Spatial.

oracle_ord2name This specifies the name to use for the second ordinate.
This name is used when the <layername>_SDOGEOM
table is created. The default is Y.This is only used by the
relational model of Oracle Spatial.

oracle_ord3name This specifies the name to use for the third ordinate.
This name is used when the <layername>_SDOGEOM
table is created. The default is Z.This is only used by the
relational model of Oracle Spatial.

oracle_x_tol This specifies the comparison tolerance for the x coor-
dinates. Coordinates in x that are closer than this value
are considered equal. The default is 0.000000005.

oracle_y_tol This specifies the comparison tolerance for the y coor-
dinates. Coordinates in x that are closer than this value
are considered equal. The default is 0.000000005.

oracle_z_tol This specifies the comparison tolerance for the z coor-
dinates. Coordinates in x that are closer than this value
are considered equal. The default is 0.000000005.

Parameter Contents

oracle_x_col_type This specifies the column type in the <layername>_
SDOGEOM for the x coordinates. The default is float. This
is only used by the relational model of Oracle Spatial.

oracle_y_col_type This specifies the column type in the <layername>_
SDOGEOM for the y coordinates. The default is float. This
is only used by the relational model of Oracle Spatial.

oracle_z_col_type This specifies the column type in the <layername>_
SDOGEOM for the z coordinates. The default is float. This is
only used by the relational model of Oracle Spatial.

oracle_code_size This specifies the size of the sdo code columns in the
<layername>_SDOINDEX table. The default is 30.
The optimal value for this can be calculated by execut-
ing this SQL procedure in SQLPlus:
set serveroutput on
declare
sz integer;
begin
sz := sdo_admin.sdo_code_size ('FOREST');
dbms_output.put_line ('VALUE is ' || sz);

end;

This is only used by the relational model of Oracle Spa-
tial.

oracle_min_x The minimum x value expected in the dataset. If any x
values are present that are less than this value, the spa-
tial index will give undefined results. For best spatial
search performance, this value should be as close to the
true minimum x as possible.
This parameter must be specified.

oracle_min_y The minimum y value expected in the dataset. If any y
values are present that are less than this value, the spa-
tial index will give undefined results. For best spatial
search performance, this value should be as close to the
true minimum y as possible.
This parameter must be specified.

oracle_min_z The minimum z value expected in the dataset. In the cur-
rent release of Oracle Spatial, no indexing is done on
the z axis, so the value can be arbitrarily assigned.
This parameter must be specified if the dimension of the
layer is 3.

oracle_max_x The maximum x value expected in the dataset. If any x
values are present that are greater than this value, the

Parameter Contents

spatial index will give undefined results. For best spatial
search performance, this value should be as close to the
true maximum x as possible.
This parameter must be specified.

oracle_max_y The maximum y value expected in the dataset. If any y
values are present that are greater than this value, the
spatial index will give undefined results. For best spatial
search performance, this value should be as close to the
true maximum y as possible.
This parameter must be specified.

oracle_max_z The maximum z value expected in the dataset. In the
current release of Oracle Spatial, no indexing is done on
the z axis, so the value can be arbitrarily assigned.
This parameter must be specified if the dimension of the
layer is 3.

oracle_create_
indices

This indicates whether or not indices are to be created
as part of the data load. The valid choices are yes, no or
incremental.
If yes or incremental is specified, attribute indices on
SDO_GID columns in the <layername> and <layername>_
SDOGEOM tables are created, and a compound index on
the SDO_GID and SDO_CODE columns in the <lay-
ername>_SDOINDEX is created.
If yes is specified, the <layername>_SDOINDEX table will
be populated using the SDO_ADMIN.POPULATE_INDEX
function.
If incremental is specified, the <layername>_SDOINDEX
table will be populated for only the features just loaded
using the SDO_ADMIN.UPDATE_INDEX function.
If no is specified, no index creation is done.
The default is no.

oracle_index_

commit_interval

When incremental index creation is used, a commit will
be performed each time the number of features spec-
ified here have been indexed.
The default is 50.

oracle_gid_name When the FME opens up MYTABLE for writing, it performs an SQL
query to determine the highest value of MY_ID in the table MYTA-
BLE. If this value is 34, the next row written by the FME will place a
value of 35 into MY_ID and then 36 for the next row, etc. (If the table
contains no data, the first row for the oracle_gid_name column
will be given a value of 1.) It is important that the variable named by
oracle_gid_name be an actual row on the DEF line. If the above

Parameter Contents

DEF line read:

ORACLE_DEFMYTABLE \
oracle_gid_name MY_ID \
GEOM GEOMETRY \
NAME VARCHAR2(20)

then MY_ID would never actually be assigned a column in the table.

Note: If a feature to be written to an Oracle Spatial rela-
tional table contains an attribute with the same name as
the GID column, the Oracle writer will assume that the
attribute’s value should be used when writing the fea-
ture to the database. No check will be made to deter-
mine whether this value conflicts with any existing
values in the table’s GID column.

START_TRANSACTION

Required/Optional: Optional

This statement tells the Oracle Spatial writer module when to start actually writing features into the database. The
Oracle Spatial writer does not write any features until the feature is reached that belongs to <last successful trans-
action> + 1. Specifying a value of zero causes every feature to be output. Normally, the value specified is zero—a
non-zero value is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last successful
transaction. When loading data for the first time,
set this value to 0.

Example:

ORACLE_START_Transaction 0

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If theORACLE_TRANSACTION_INTERVAL statement is not specified, then a value of 2000 is used as the trans-
action interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.

Example:

ORACLE_Transaction_INTERVAL 5000

Feature Representation

Features read from Oracle Spatial consist of a series of attribute values and geometry. The feature type of each Data-
base feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined by on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), the Oracle Spatial module makes use of the following special attribute names:

Attribute Name Contents

oracle_type The type of geometric entity stored within the fea-
ture. The valid values for both the relational and
object model are listed below:
oracle_nil
oracle_point
oracle_line

oracle_area

Features read from, or written to, Oracle Spatial also have an attribute for each column in the database table. The fea-
ture attribute name will be the same as the source or destination column name.

The attribute and column names are case-sensitive.

No Coordinates

oracle_type: oracle_nil

Features with no coordinates are tagged with this value when reading or writing to or from Oracle Spatial.

Points

oracle_type: oracle_point

Features tagged with this value consist of a single point or an aggregate of points. When the object model is being
used, an aggregate or line geometry tagged as oracle_point will be written as a “point cluster” with several coor-
dinates, rather than being written as a single coordinate, or coerced to being an oracle_line.

Lines

oracle_type: oracle_line

Linear features are tagged with this value when reading or writing to or from Oracle Spatial. Both single part and
aggregate linear features are supported.

When the object model is being used, aggregates are written out as “multiline” geometry containing several linear ele-
ments, just as if the feature had been tagged with oracle_multiline. Any non-linear elements contained in the aggre-
gate are discarded.

Areas

oracle_type: oracle_area

Area features are tagged with this value when reading or writing to or from Oracle Spatial. Both single part and aggre-
gate area features are supported. An area feature may be either a polygon or a donut polygon. Note that checking is
done to ensure that the area features adhere to the geometry rules of Oracle Spatial as they are loaded.

When the object model is being used, aggregates are written out as “multipolygon” geometry containing several
polygonal elements, just as if the feature had been tagged with oracle_multiline. Any non-polygonal elements con-
tained in the aggregate are discarded.

Enhanced Relational Operation

FME normally writes to Oracle Spatial relational databases according to Oracle’s definition of the format. In this def-
inition, user attributes for the layer <layerName> go into the table named <layerName>, and the geometry for a
given feature is stored in one or more rows in the table named <layerName>_SDOGEOM.

Some GIS systems, such as Intergraph’s G/Technology, store user attributes in the <layerName>_SDOGEOM
table in addition to the normal geometry definition. To accommodate such systems, the Oracle Spatial (Relational)
writer can operate in an “enhanced” mode, which is triggered by setting the table’s DEF line’s oracle_model param-
eter to a value of “enhanced_relational”. In the “enhanced” mode, each feature written is searched for attributes
which match the names of the additional columns in the <layerName>_SDOGEOM table. Any matching attributes
are written to their respective columns of the table, on every row used to define the geometry.

One complication when operating in the enhanced_relationalmode is that there may be an attribute in the <lay-
erName>_SDOGEOM table that has the same name as an attribute in <layerName>’s user attribute table, but is
to have a different value. To overcome this complication, the enhanced relational writer searches each feature for
attributes named SDOGEOM.<attrName>; if found, each such attribute’s value is placed into the corresponding
column <attrName> of the <layerName>_SDOGEOM table.

Troubleshooting

Problems sometimes arise when attempting to connect to an Oracle database. This is almost always due to a mis-
configuration in the user’s environment. The following suggestions can often help detect and overcome such prob-
lems.

l Ensure you can connect to the database with the service name, user name, and password using SQL*Plus.

l Ensure that you have the correct version of the Oracle client software installed. Oracle 8.1.5 or newer is rec-
ommended. Note that many clients have had problems if they have both 8.0.4 and 8.1.x installed on the same com-
puter.

l Ensure that your ORACLE_HOME environment variable is correctly set—see the Oracle documentation for details
on this. This is required for some specific versions of Oracle 8i, and may be required even if SQL*Plus appears to
operate correctly without it.

l If you have had older versions of the Oracle client software installed, make sure that your PATH variable has the
current version’s Oracle directory first, before any other Oracle software, including the WebDB package.

l It is sometimes helpful to define an environment variable named ORACLE, with the same value as the ORACLE_
HOME variable. With some installations, it often helps to ensure that the variable named ORACLE is not defined.

l When running on UNIX, the following environment variables should be defined:

Variable Contents Sample Value

ORACLE_BASE Top level of directory into which
Oracle client software is
installed.

/opt2/oracle8i/app/oracle

ORACLE_HOME The Oracle product directory. /opt2/oracle8i/app/oracle/product.8.1.5

ORACLE_SID The system ID for the host’s
database instance.

FME

Variable Contents Sample Value

LD_LIBRARY_PATH A list of directories which will be
searched for shared objects.
This list must include the FME_
HOME path, as well as the lib sub-
directory of ORACLE_HOME.

${LD_LIBRARY_PATH}:${FME_HOME}:-
${ORACLE_HOME}/lib

l In most cases, the ORACLE_SERVER_NAME and ORACLE_DATABASE keywords should be left with blank
values, with the ORACLE_DATASET keyword containing the Oracle service name of the database.

Mapping File Examples

In this example, a Shapefile containing linear features representing rivers is imported into Oracle Spatial, using the
relational model to store the geometry.

--
Set up the shape reader

READER_TYPE SHAPE
SHAPE_DATASET /usr/data/shapes

--
Set up the ORACLE writer, staring at transaction 0

WRITER_TYPE ORACLE
ORACLE_USER_NAME scott
ORACLE_PASSWORD tiger
ORACLE_DATASET worf
ORACLE_TRANSACTION 0

--
Define the original shape file

SHAPE_DEF RIVER \
SHAPE_GEOMETRY shape_polyline \
MOEPCODE char(10) \
DEPTH number(5,0)

--
Define the output Oracle Spatial table

ORACLE_DEF RIVER \
oracle_create_indices incremental \
oracle_index_commit_interval 50 \
oracle_levels 5 \
oracle_min_x -128 \
oracle_min_y 49 \
oracle_max_x -126 \
oracle_max_y 60 \
oracle_model relational \
oracle_x_col_type FLOAT \
oracle_y_col_type FLOAT \
oracle_z_col_type FLOAT \
oracle_dim 2 \
oracle_gid_name SDO_GID \
MOEPCODE varchar2(10) \
DEPTH float

--
Route the input shape data to the output Oracle database

SHAPE RIVER \
MOEPCODE %1 \
DEPTH %2

ORACLE RIVER \
oracle_type oracle_line \
MOEPCODE %1 \
DEPTH %2

In this example, linear road features are extracted from Oracle Spatial and routed to MapInfo TAB files.

--
Set up the Oracle Spatial reader

READER_TYPE ORACLE
ORACLE_SEARCH_ENVELOPE -128 49 -126 56.5
ORACLE_USER_NAME scott
ORACLE_PASSWORD tiger
ORACLE_DATASET worf

--
Specify the relationship which must exist between
the query region and the returned features.
This is specified by a *type* of relationship, and a
result to be tested. The relationship type is a
string such as ANYINTERACT (the default) or TOUCH+INSIDE.
The result is a simple test applied to determine whether
the features exhibit the correct relationship.
The default value of <> 'FALSE' will be true unless
the relationship for a given pair does not exist;
this is not the same as = 'TRUE' because (for example)
a combined relationship like TOUCH+INSIDE will return
a result of TOUCH, INSIDE, or FALSE.

ORACLE_INTERACTION CONTAINS
ORACLE_INTERACTION_RESULT <> 'FALSE'

--
Set up the mapinfo writer

WRITER_TYPE MAPINFO
MAPINFO_DATASET c:/temp/output

--
Define the Oracle Spatial table we will read

ORACLE_DEF ROADS \
ROADS_ID float \
NUMOFLANES float \
TYPE varchar2(5) \
UNDERCNST varchar2(8) \
DIVIDED varchar2(8) \
TRVLDIR varchar2(6) \
SDO_GID float

MAPINFO_DEF ROADS \
ROADS_ID float \
NUMOFLANES float \
TYPE char(5) \
UNDERCNST char(8) \
DIVIDED char(8) \
TRVLDIR char(6) \
SDO_GID float

--
Route the input Oracle Spatial data to the output TAB file

ORACLE ROADS \
oracle_type oracle_line \
ROADS_ID %ROADS_ID \
NUMOFLANES %NUMOFLANES \
TYPE %TYPE \
UNDERCNST %UNDERCNST \
DIVIDED %DIVIDED \
TRVLDIR %TRVLDIR \
SDO_GID %SDO_GID

MAPINFO ROADS \
mapinfo_type mapinfo_polyline \
ROADS_ID %ROADS_ID \
NUMOFLANES %NUMOFLANES \
TYPE %TYPE \
UNDERCNST %UNDERCNST \
DIVIDED %DIVIDED \
TRVLDIR %TRVLDIR \
SDO_GID %SDO_GID

Oracle SQL Loader Writer

Overview

Oracle® SQL Loader files are text files formatted for loading into relational databases. In particular, the format of
these files works well with the SQL Loader utility supplied by Oracle for use with Oracle databases.

For more information, see the Relational Table chapter, DEF section.

Notes:
This type of file can only be written – it is not possible to read these files.
The Oracle SQL Loader writer does not support spatial data.
The Oracle SQL Loader writer does not create the required table when the ctl file is run. See the paragraph below
for instructions on creating a table.

Creating a Table via the CTL File

The destination Oracle table must exist prior to using SQLLoader to load the CTL file. FME will not create the required
table.

If the table does not exist, then it can be created by opening the CTL file that FME generated. In the comments section
is the SQL statement that will create the table with the correct structure.

To use this SQL, log into SQLPlus. Then copy the SQL from the CTL file (do not include the comment marks, but do
include the semi-colon at the end). Then paste the string into SQLPlus.

The next step is to load the data from the CTL file into the newly created table. This is done through Oracle’s
SQLLoader interface. This image is one example:

OS (GB) NTF Reader

This format is not supported by FME Base Edition.

Overview

The Ordnance Survey (Great Britain) National Transfer Format (OS(GB) NTF) Reader module provides FME with
access to data in the United Kingdom (UK). This format is documented in the British Standard BS 7567.

More information on data products available in the OS(GB) NTF format, and their detailed product specifications, are
found at this website:

http://www.ordnancesurvey.co.uk/oswebsite/

OS(GB) NTF Quick Facts

Format Type Identifier NTF

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type Directory

Feature Type Geometry type

Typical File Extensions .ntf

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type ntf_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

http://www.ordnancesurvey.co.uk/oswebsite/

Geometry Support

Geometry Supported? Geometry Supported?

ellipses no text yes

line yes z values no

none yes

Reader Overview

FME considers a single .NTF file, or a directory containing a set of .NTF files, to be a dataset. Groups of closely
related records within the files are grouped together and transformed into FME features. In addition to geographic fea-
tures such as points, lines, polygons, and text features, this reader also produces features representing the rela-
tionship between short feature code values and longer feature class names.

Reader Directives

The directives that are processed by the OS(GB) NTF reader are listed below. The suffixes shown are prefixed by the
current <ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the OS(GB) NTF reader is
NTF.

DATASET

Required/Optional: Required

This is the name of a directory containing one or more NTF files. Each NTF file must have an extension of .NTF.

The example below identifies an NTF dataset:

NTF_DATASET D:\DATA\LANDFORM

Workbench Parameter: Source OS (GB) NTF File(s)

IDs

Required/Optional: Optional

This optional specification is used to limit the available NTF files read. If no IDs are specified, then all available NTF
files are read.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> ... \
<baseNameN>

The example below selects only theSS68.NTF file for input during a translation:

NTF_IDs SS68

FORCE_GENERIC

Required/Optional: Optional

The FME is programmed to recognize a set of standard Ordnance Survey NTF products and to provide a feature
schema tailored to the data product, with field names appropriate to the data product. However, any NTF file not rec-
ognized as being a specifically targeted product profile, using theDBNAME field of theDBHREC record, is gener-
ically handled, at some cost to efficiency and tailoring of feature schema.

The FORCE_GENERIC keyword can be used to force recognized products to be treated using the generic rules,
rather than the product-specific rules. This could be useful if new versions of standard products are inappropriately
treated by product-specific rules or if you desire that all features from different products be returned using a com-
mon, or generic, schema.

NTF_FORCE_GENERIC ON

DEM_SAMPLE

Required/Optional: Optional

The FME can read Land-Form PANORAMA™ and Land-Form PROFILE™ raster Digital Terrain Model (DTM) products,
translating each pixel into a point feature. This can produce a lot of point features—160000 to 250000 per file. Some-
times it is desirable to extract only a sub-sample of the features, while maintaining a regular grid pattern of points.
The DEM_SAMPLE keyword is used to specify a decimation factor that is applied in the horizontal and vertical direc-
tions. A DEM_SAMPLE value of 3, for instance, returns only one in three points in both horizontal and vertical direc-
tions from the reader, resulting in an 8/9ths reduction in the total number of features.

NTF_DEM_SAMPLE 3

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

Features read from NTF consist of their geometry and a series of attribute values. Some features such as FEATURE_
CLASSES have no geometry. The FME feature type is determined by the type of NTF record and the specific product
from which the feature is extracted.

Product Schemas

The NTF reader considers a directory of NTF files to be a single dataset. All files in the directory are scanned on open
to determine which NTF product they contain. For each particular product listed above, a set of layers are created.
However, these layers may be extracted from several files of the same product.

The layers are based on a low-level feature type in the NTF file, and generally contain features of many different fea-
ture codes (FEAT_CODE attribute). Different features within a given layer may have a variety of attributes in the file,
however, the schema is established based on the union of all possible attributes within features of a particular type.

If an NTF product is read that doesn't match one of the known schemas, it will go through a generic handler that has
only layers of the GENERIC_POINT and GENERIC_LINE types. In such a case, the features will only have a
FEAT_CODE attribute.

Product Types

The following is a list of product types and the FME feature types that they contain. Note that the feature type does not
indicate which specific file the feature came from. For instance, if several Landline files are translated at once, fea-
tures from all the files will be generically treated as LANDLINE_POINT, LANDLINE_LINE, or LANDLINE_
NAME. When necessary, the source tile of a feature can be identified via the TILE_REF attribute attached to almost
all NTF features.

NTF Product Type Feature Type

Landline and Landline Plus LANDLINE_POINT

LANDLINE_LINE

LANDLINE_NAME

FEATURE_CLASSES

Panorama Contours PANORAMA_POINT

PANORAMA_CONTOUR

FEATURE_CLASSES

HEIGHT attribute holds elevation.

Strategi STRATEGI_POINT

STRATEGI_LINE

STRATEGI_TEXT

STRATEGI_NODE

FEATURE_CLASSES

Meridian MERIDIAN_POINT

MERIDIAN_LINE

MERIDIAN_TEXT

MERIDIAN_NODE

FEATURE_CLASSES

Boundary Line BOUNDARYLINE_LINK

BOUNDARYLINE_POLY

BOUNDARYLINE_COLLECTIONS

FEATURE_CLASSES

The _POLY layer has links to links that
allow true polygons to be formed, other-
wise the _POLYs only have a seed point for
geometry.
The collections are collections of polygons,
also without geometry as read. This is the
only product from which polygons can be
constructed.

Boundary Line 2000 BOUNDARYLINE_LINK

BOUNDARYLINE_POLY

BOUNDARYLINE_COLLECTIONS

FEATURE_CLASSES

The _POLY layer has links to links that

NTF Product Type Feature Type

allow true polygons to be formed, other-
wise the _POLYs only have a seed point for
geometry.
The collections are collections of polygons,
also without geometry as read. This is the
only product from which polygons can be
constructed.

BaseData.GB BASEDATA_POINT

BASEDATA_LINE

BASEDATA_TEXT

BASEDATA_NODE

FEATURE_CLASSES

OSCAR Asset/Traffic OSCAR_POINT

OSCAR_LINE

OSCAR_NODE

FEATURE_CLASSES

OSCAR Network OSCAR_NETWORK_POINT

OSCAR_NETWORK_LINE

OSCAR_NETWORK_NODE

OSCAR_COMMENT

FEATURE_CLASSES

OSCAR Route OSCAR_ROUTE_POINT

OSCAR_ROUTE_LINE

OSCAR_ROUTE_NODE

OSCAR_COMMENT

FEATURE_CLASSES

Address Point ADDRESS_POINT

Code Point CODE_POINT

Code Point Plus CODE_POINT_PLUS

Generic—only a subset of these
appears in any given generic dataset

GENERIC_POINT

GENERIC_LINE

GENERIC_TEXT

GENERIC_NAME

GENERIC_NODE

GENERIC_COLLECTION

GENERIC_POLY

NTF Product Type Feature Type

FEATURE_CLASSES

Specific Feature Type Notes

The following list provides information specific to each of the feature types read by the NTF reader.

l *_POINT: Contains a point feature with a POINT_ID attribute containing the identifier (id) for the feature.

l *_LINE: Contains a line feature with a LINE_ID attribute containing the id for the feature.

l *_CONTOUR: Same as _LINE, but specific to contour products. Elevation is in the HEIGHT field and the id is in
the LINE_ID field.

l *_NAME: Contains a textual feature with positioning, size, orientation, and font information. The feature id is in
the NAME_ID field.

l *_TEXT: Similar to _NAME features, but the id is in the TEXT_ID field.

l *_NODE: A point feature with a list of _LINE feature ids starting or ending at the node in the GEOM_ID_OF_
LINK list field. The DIR field indicates the direction of each line. This could potentially be used for routing, but is
generally ignored.

l *_COMMENT: Contains indication of a feature (RECORD_ID) and type (RECORD_TYPE) that have been updated
in this product release, as well as an indication of the change (CHANGE_TYPE).

l *_POLY: Contains a polygon feature. Note that the polygon geometry for these features is generated by the proc-
essing pipeline, and that the “uncooked” features have no geometry or, in some cases, just an inside point.

l BOUNDARYLINE_COLLECTIONS: An aggregate of polygons representing an administrative region.

l GENERIC_COLLECTIONS: The feature contains references to other features and some attributes of the group-
ing. Due to the nature of these collections, it isn't possible to generically aggregate them.

l FEATURE_CLASSES: These features relate a feature code string (FEAT_CODE) such as 4001 with a feature
class description of string. The standard processing pipeline automatically uses these features to add an FC_
NAME attribute to all features with the long description corresponding to their feature code.

l DTM_*: Raster DTM pixels are translated into point features. The FME feature type is established by appending
the tile name, normally part of the file name, to DTM_*. That is, unlike all other NTF features, the feature type of
raster DTM points is based on the file name. The point elevation is in the HEIGHT attribute.

Special Attributes

Several feature types use special attributes to hold source data information. The table below lists the special attribute
names used and provides a description of their contents.

Special Attribute
Name Description

FEAT_CODE This general feature code integer can be used to look up a
name in the FEATURE_CLASSES layer or table.

Special Attribute
Name Description

TEXT_ID

POINT_ID

LINE_ID

NAME_ID

COLL_ID

POLY_ID

GEOM_ID

This is the unique identifier for a feature of the appro-
priate type.

TILE_REF All layers except FEATURE_CLASSES contain a TILE_REF
attribute that indicates from which tile, or file, the fea-
tures came. Generally speaking, the id numbers are only
unique within the tile, so the TILE_REF can be used to
restrict id links within features from the same file.

FONT

TEXT_HT

DIG_POSTN

ORIENT

This provides the detailed information on the font, text
height, digitizing position, and orientation of text, or
name, objects. Review the Ordnance Survey (OS) product
manuals to understand the units and the meaning of these
codes.

GEOM_ID_OF_POINT For _NODE features, this defines the POINT_ID of the point
layer object to which this node corresponds. Generally
speaking, the nodes don't carry a geometry of their own.
The node must be related to a point to establish its posi-
tion.

GEOM_ID_OF_LINK This is a _list_ of _LINK or _LINE features to end or start at
a node. Nodes and this field are generally only of value
when establishing connectivity of line features for network
analysis. Note that this should be related to the target fea-
tures GEOM_ID, not its LINE_ID.
On the BOUNDARYLINE_POLY layer, this attribute contains
the GEOM_IDs of the lines that form the edge of the poly-
gon.

POLY_ID This is a list of POLY_IDs from the BOUNDARYLINE_POLY
layer associated with a given collection in the BOUND-
ARYLINE_COLLECTIONS layer.

Points

ntf_type: ntf_point

Features with ntf_point as their ntf_type contain a two-dimensional (2D) point. There are no other attributes specific
to this feature type.

ntf_type: ntf_point3d

Features with ntf_point3d as their ntf_type contain a three-dimensional (3D) point. There are no other attributes spe-
cific to this feature type.

Nodes

ntf_type: ntf_node

Features with ntf_node as their ntf_type contain a 2D point, which is a node in the dataset. There are no other
attributes specific to this feature type.

Lines

ntf_type: ntf_line

Features with ntf_line as their ntf_type contain a 2D line and there are no other attributes specific to this feature
type.

ntf_type: ntf_line3d

Features with ntf_line3d as their ntf_type contain a 3D line. There are no other attributes specific to this feature
type.

Polygons

ntf_type: ntf_polygon

Features with ntf_polygon as their ntf_type contain a 2D closed polygon. There are no other attributes specific to
this feature type.

Collections

ntf_type: ntf_collection

Features with ntf_collection as their ntf_type contain information pertaining to a collection of features.

Annotations

ntf_type: ntf_text

Features with ntf_text as their ntf_type contain a 2D insert point for an annotation feature. Such features have these
attributes:

Attribute Name Contents

TEXT The annotation string to appear at the insert point

ORIENT The orientation of the text, measured in degrees
counterclockwise from horizontal

TEXT_HT_GROUND The text height, measured in ground units

PenMetrics GRD Reader/Writer

The PenMetrics GRD Reader/Writer provides the Feature Manipulation Engine (FME) with access to PenMetrics GRaph-
ical Drawing (GRD) 32-bit format files. GRD files consist of drawing settings and configuration, as well as a series of
vectors, or graphic elements, organized into layers. The FME provides broad support for GRD vector types and
options. In addition, when GRD data is output, header information may be copied from a supplied template or pro-
totype file.

Overview

The GRD 32-bit file format is the native file format for PenMetrics vector drawings used with applications such as
FieldNotes.

GRD files may contain both two-dimensional (2D) and three-dimensional (3D) features. GRD files store feature geom-
etries as well as user-defined attributes. There are 11 kinds of features as follows: points, lines, polylines (including
polygons), rectangles, circles, ellipses, arcs, inserts, text, ink, and multi-segmented polylines.

The FME looks for an extension of .grd for the input GRD files, but accepts any GRD file as input regardless of the file
name or extension. The FME considers a GRD dataset to be a single PenMetrics GRD file. GRD files are binary files that
consist of a combination of fixed and variable-length binary records.

The information held within the GRD file itself is contained in five separate sections:

l Header

l Linetypes

l Layers

l Blocks

l Layer Vectors

The organization of GRD files closely parallels that of AutoCAD files.

GRD Entity Types and Descriptions

The GRD reader and writer use symbolic names for different entity types stored within a data file. This simplifies fea-
ture type specification. The following table gives a brief description of each of the different GRD entity types currently
supported by the reader and writer. The entities are described in detail in subsequent sections.

FME grd_entity Description

grd_line Linear features stored within the GRD file as a line or
unclosed polyline.

grd_point Point features.

grd_ellipse Features with an elliptical representation.

grd_circle Features with an circular representation.

grd_polygon Features whose geometry is represented by a closed poly-
line.

grd_arc Features whose geometry represents a portion of a cir-
cular arc.

grd_rectangle Features with a closed rectangular geometry. The edges
are vertical and horizontal only — no rotation.

FME grd_entity Description

grd_text Text features.

grd_ink Ink features that store images in binary form in a text
attribute.

grd_mspline A group of associated lines are stored as a multi-seg-
mented polyline feature.

grd_insert Point features that carry insert entity, or block, data.

Layers

GRD files use a layers concept to organize all features they contain. Every feature lies on one of the many layers that
may be defined. Each layer has a unique name and defines colors, line styles, font styles, etc. for use with all features
on that layer that do not have overriding settings. Layers may be either Drawing or Markup types. Every GRD file has
the following twomandatory layers:

l Layer “0” — the drawing layer

l Layer “Markup 0” — the markup, or inking, layer

Any number of other layers may be defined by the user.

Linetypes

Linetypes are used to define the way line work is meant to be displayed. When reading from GRD files, several line-
type specific attributes are given to each feature. Together they define the linetype that it is meant to be displayed
with. When writing GRD files, these linetype specific attributes, if present, are stored as the linetype to use. By
default, a linetype of CONTINUOUS is used when writing GRD files.

A linetype definition has a name and a description that appears to the user. Usually the description shows what the
linetype looks like by using underscores (‘_’) and spaces (‘ ’), for example: ““__ __ ______ . __ __”. The actual line-
type definition consists of a series of dashes. There are a maximum of 12 dashes that can make up a linetype. Here is
how the linetypes are represented:

l Dash: Positive dash length where the length is the length of the dash.

l Space: Negative space length where the length is the absolute value of the space.

l Dot: Dash length of zero.

To represent this linetype ““__ __ ______ . __ __ ”, the following dashes would be necessary: 2, -2, 2, -2, 4, -2, 0, -
2, 2, -2, 2, -2

The details of how this information is represented in FME attributes is found in this section under the heading Line-
types Representation.

GRD Numeric Color Associations

The numeric color values referred to in GRD files have the following associations:

GRD Numeric
Color Value Description

0 black

1 blue

2 green

3 cyan

GRD Numeric
Color Value Description

4 red

5 magenta

6 brown

7 light gray

8 gray

9 light blue

10 light green

11 light cyan

12 light red

13 light magenta

14 yellow

15 white

16 visible (pen) or transparent (brush)

17 use layer’s color

18 use block’s color (valid only for block enti-
ties)

GRD Quick Facts

Format Type Identifier GRD

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Layer name

Typical File Extensions .grd

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type grd_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc yes surface no

ellipses yes text yes

line yes z values yes

none no

Reader Overview

The GRD reader opens the input file, immediately starts reading features, and returns them to the rest of the FME for
processing. The reader has no requirement for definition statements as the user-defined attributes are defined com-
pletely within the GRD file itself.

Each returned feature has its feature type set to either the layer name or the geometric type of the feature, as follows:
point, line, polygon, rectangle, circle, ellipse, arc, insert, text, ink, or mspline.

Reader Directives

The directives processed by the GRD reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the GRD reader is GRD.

DATASET

The value for this keyword is the file containing the GRD dataset to be read.

Required/Optional

Required

Mapping File Syntax

GRD_DATASET /usr/data/PenMetrics/test.grd

Workbench Parameter

Source PenMetrics GRD File(s)

EXPAND_INSERTS

This setting determines whether insert features are output as one or several separate features. With YES, each ele-
ment of the insert blocks are output as separate features. With NO, each insert block is output as a single point fea-
ture.

When the reader expands inserts — also referred to as resolving blocks — it outputs one feature for each of the GRD
vector entities that are part of the block definition. The original insert is not output. This results in the full graphical
representation of the insert transferred through the FME, but the exact insertion point of the insert is lost.

Each insert member feature is given the attribute grd_insert_number set to the same value for each block so the fea-
tures that comprise each insert may be combined in subsequent processing.

If the exact insertion point of the insert is desired, then insert expansion should be turned off. This results in each
insert block being translated into a point feature in the output system.

Required/Optional

Optional

Mapping File Syntax

A typical mapping file fragment specifying that linked features should not be broken looks like:

GRD_EXPAND_INSERTS NO

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The GRD writer creates and writes feature data to the GRD file specified by theDATASET keyword. Any GRD file
with the same name is overwritten with the new feature data.

The GRD writer provides the following capabilities when writing GRD files.

l User-defined Linetypes: New linetypes can be defined on attributes attached to features being written to the
GRD file.

l User-defined Layers: Users must define the layers into which features are stored. The layers can also define the
attributes to be stored within the feature.

l Copy Block Definitions: Often users have existing GRD data files that contain block definitions they want the
translated data to carry. Specifying the TEMPLATE_FILE keyword in the mapping file results in block definitions
being copied from the existing file to the output GRD file. These blocks can then be referred to by insert entities.

l Copy Linetypes: Predefined linetypes within existing GRD files are copied making them available for use by fea-
tures being written to the destination file. Specifying the TEMPLATE_FILE keyword in the mapping file results
in the predefined linetypes being copied from the template file to the output drawing file. Feature entities can then
refer to these linetype definitions.

l Copy Layer Definitions: Layer definitions within an existing GRD file identified by TEMPLATE_FILE enables
layer definitions to be copied to the destination dataset and then referenced.

l Automatic Block Creation:When a feature that cannot be written as a single GRD vector entity is passed to the
writer—such as a donut polygon—the writer automatically defines a GRD block and inserts entities necessary to
represent the feature.

Writer Directives

The directives that are processed by the SDF3 writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the SDF3 writer is SDF3.

DATASET

The value for this keyword is the file containing the GRD dataset to write.

Required/Optional

Required

Mapping File Syntax

GRD_DATASET /usr/data/PenMetrics/output.grd

Workbench Parameter

Destination PenMetrics GRD File(s)

TEMPLATE_FILE

This setting gives the name of the file or files used as templates.

All layer styles, line styles, and block definitions are taken directly from the template files and used in the output GRD
file that the FME produces. Multiple template file names may be listed after the keyword on a single line, or multiple
template file names may be listed on separate lines, each beginning with the TEMPLATE_FILE directive. New layers
can be defined during the translation using the DEF lines and added to those brought in from the template files. If
there are duplicate definitions for the same layer, the DEF line definitions prevail.

Tip: LINETYPE definitions found in the mapping file override any linetype definitions found in the template file.

Required/Optional

Optional

Mapping File Syntax

GRD_TEMPLATE_FILE /usr/data/penmetrics/map.grd

AUTO_CREATE_LAYERS

Required/Optional: Optional

This statement tells the writer to create layers as needed. Normally, all layers must either be defined by _DEF lines
or the template file before they can be used. If AUTO_CREATE_LAYERS is specified as yes, and a feature with a
feature type not previously defined as a layer is sent to the writer, then a new layer will be created. This layer is
created with the properties of the last _DEF line found in the mapping file, if any, or it uses other defaults.

This example sets the writer into a mode where it creates layers as needed. Each created layer has a color of 4 (red)
and a linetype of CONTINUOUS.

GRD_AUTO_CREATE_LAYERS yes
GRD_DEF_DEFAULT \

grd_color 10 \
grd_linetype CONTINUOUS

LINETYPE

Required/Optional: Optional

The GRD writer enables linetypes to be defined within the FME mapping file. This lets the user control how output
lines look in the destination dataset. The linetype definition takes the following form:

<WriterKeyword>_LINETYPE <linetype name> \
[grd_linetype_description <picture>] \
[grd_dash_type <dash type>] \
[<segment values>+]

where:

l <linetype name> is the name used throughout the mapping file to refer to the linetype being defined by this state-
ment. If this is not set, “” (By Layer) is used.

l <picture> is the text or name displayed in FieldNotes when linetypes are displayed. If this is not set, “” is used.

l <dash type> can have the value 0 or 1, where 0=PIXEL and 1=VIRTUAL. This indicates whether the dash
lengths are in real world coordinates or if they represent a length in screen pixels. Virtual linetypes spread out
when you zoom in on them. Pixel linetypes are the same nomatter what scale you are at. If this is not set, 0
(PIXEL) is used.

l <segment values> are the length of each of the segments within the linetype segment. There is a maximum of 12
segments to each linetype. If no segment values are set then by default none are used. The segment values obey
the following rules:

l negative value — pen up length, used to create spaces of varying lengths

l positive value — pen down length, used to make dashes of varying lengths

l zero — used to create a dot

The following example creates a linetype called dash-dot which appears as
“ __ . __ . __ . ” and so on when displayed on the screen.

GRD_LINETYPE dash-dot \
grd_linetype_description “ __ . __ . __ . ” \

grd_dash_type 0 \
2.5 -2.25 0 -2.25

DEF

Required/Optional: Optional if AUTO_CREATE_LAYERS is used

The GRD writer requires that every feature written to the GRD file is stored within a predefined GRD layer. In GRD, the
layers are used to store collections of logically related attributes. Within the FME, the GRD layer and the type of fea-
ture are treated synonymously as there is a one-to-one correspondence between FME feature type and GRD layer.1
The layer statement has the following form:

<WriterKeyword>_DEF <layer name> \
[grd_layer_type <layer type>] \
[grd_is_fixed <boolean>] \
[grd_is_visible <boolean>] \
[grd_pen_color <default color>] \
[grd_brush_color <default color>] \
[grd_pen_width <default width>] \
[grd_pen_width_type <default width type>] \
[grd_brush_type <default brush type>] \
[grd_linetype <default linetype>] \
[<attribute name> <attribute type>]

where:

l <layer name> is the name of the layer being defined and is used throughout the remainder of the FME mapping
files.

l <layer type> is the type of layer being defined. The default is DRAWING. The values are associated with the fol-
lowing types:

l 0 = MARKUP

l 1 = DRAWING

l <boolean> is either True or False. By default, layers are visible and not fixed.

l <default color> is the color number used for all features stored within the layer unless explicitly overridden on the
correlation lines below. Valid values are between 0 and 18. Refer to the discussion under the heading Colors for
the color description. By default, color = 0 (black).

l <default pen width> is the actual width of the pen. This expects a numeric value and is interpreted differently
depending on the pen width type. The default is 1.

l <default pen width type> is the pen width type used for all features stored within the layer unless explicitly over-
ridden on the correlation lines below. The default value is 1 (Hairline). The values are associated with the following
types:

l 1 = HAIRLINE

l 2 = VIRTUAL

l 3 = PIXEL

l <default brush type>: is the numeric brush type used for all features stored within the layer unless explicitly over-
ridden on the correlation lines below. The default is 0 (Solid). The values are associated with the following types:

l 0 = SOLID

l 1 = DIAGONAL #1

l 2 = CROSS

l 3 = DIAGONAL COORD

1Layers can also be defined through the use of a TEMPLATE_FILE.

l 4 = DIAGONAL #2

l 5 = HORIZONTAL

l 6 = VERTICAL

l <default linetype> is the name of the linetype used for the layer if no linetype is specified on the correlation line.
The default value is CONTINUOUS. The linetype specified must be:

l defined in the mapping file,

l copied from a specified template file, or

l be the predefined linetype named CONTINUOUS

l <attribute name> <attribute type> is the definition of an attribute to be stored within the extra entity data of fea-
tures for the layer. If no attributes are defined, then all feature attributes except those that start with grd_ are
stored. The storing of attributes can be turned off by specifying an attribute type of SKIP.

The example below defines a layer called boundary in which entities are drawn using pen color 13 unless otherwise
specified, and a linetype called dash-dot unless otherwise specified, etc. The feature also has several specified attrib-
utes that are written to the extra entity data of each feature within the layer.

GRD_DEF boundary \
grd_pen_color 13 \
grd_brush_color 4 \
grd_brush_type 2 \
grd_pen_width_type 3 \
grd_linetype dash-dot \

FEATCODE char(12)
PPID char(10) \
DATECHNG date \
SURVEYDIST number(8,2)

Feature Representation

GRD features consist of geometry and attribute information. All GRD FME features contain the grd_type attribute that
identifies the geometric type, as well as many common attributes.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), and depending on the geometric type, the feature may contain additional attributes specific to the geo-
metric type. These are described in subsequent sections.

Attribute Name Contents

grd_type The GRD geometric type of this entity.
Range:
grd_point|
grd_line|
grd_polygon|
grd_rectangle|
grd_ellipse|
grd_circle|
grd_arc|
grd_insert|
grd_text|
grd_ink|
grd_mspline

Attribute Name Contents

Default: No default

GRD Attributes

The following table lists all common GRD attributes returned on all features produced by the FME reader. If these
attributes are present on any feature written out to GRD, they will be used to set the appropriate values in the output
file.

Field Name Description

grd_vector_type This is the type of vector. Maximum size is 10 char-
acters. When reading GRD files, the value is one of the
following:
POINT, LINE, PLINE, RECT, CIRCLE, ELLIPSE,
ARC, INSERT, TEXT, INK, or MS-PLINE

grd_pen_width_type This is the type of pen width used to plot the vector. Max-
imum size is 10 characters. The default is 0. The values
are associated with the following types:
0 = USE LAYER
1 = HAIRLINE
2 = VIRTUAL
3 = PIXEL

grd_pen_width This is the width of the pen used to plot the vector. This
value is interpreted differently depending on the pen
width type. The default is 1.
Range: Any real number.

grd_pen_color This is the color of the pen used to plot the vector. Refer
to the information under the heading Colors for a
description of each color. The default is 0 (black).
Range: 0-18

grd_brush_color This is the color of the brush used to plot the vector.
Refer to the information under the heading Colors for a
description of each color. Note that color 16 is TRANS-
PARENT. The default is 0 (black).
Range: 0-18

grd_brush_type This is the type of brush used for this vector. The default
is 0 (solid). The values are associated with the following
types:
0 = SOLID
1 = DIAGONAL #1
2 = CROSS
3 = DIAGONAL COORD
4 = DIAGONAL #2
5 = HORIZONTAL

Field Name Description

6 = VERTICAL
7 = USE LAYER'S BRUSH TYPE
8 = USE BLOCK'S BRUSH TYPE
Range: 0-8

grd_reserved Boolean flag indicating whether the Reserved bit on this
vector is set. The default is False.
Range: True | False

grd_added Boolean flag indicating whether the IsAdded bit on this
vector is set. The default is False.
Range: True | False

grd_has_extra_data Boolean flag indicating whether the HasExtraData bit on
this vector is set. The default is False.
Range: True | False

grd_visible Boolean flag indicating if the IsVisible bit on this vector is
set. The default is True.
Range: True | False

grd_selected Boolean flag indicating whether the IsSelected bit on this
vector is set. Note that this setting is unreliable within
the FieldNotes application. The default is False.
Range: True | False

grd_changed Boolean flag indicating if the IsChanged bit on this vector
is set. The default is False.
Range: True | False

grd_has_annotation Boolean flag indicating if the HasAnnotation bit on this
vector is set. The default is False.
Range: True | False

grd_vector_handle This integer is the vector handle. The default is 0.
Range: 0 - (2^33-1)

grd_annotation_string This string holds the annotation for the vector. Max-
imum size is 254 characters. There is no annotation by
default.

grd_annotation_x

grd_annotation_y

grd_annotation_z

This is the location of the annotation for the vector. The
defaults are all zero.
Range: Any real number.

Field Name Description

grd_linetype_name This is the name of the linetype used to display the vec-
tor. The linetype must be defined in the mapping file or
the template file being used. The default linetype is to
use the layer’s linetype. Maximum size is 50 characters.

grd_database_key This is a key string that links the vector to a database.
The format of, and relationship between, the database
and the feature is beyond the scope of the GRD reader
or writer. Maximum size is 254 characters.

grd_layers_pen_width_type When reading GRD files, this boolean flag indicates
whether the pen width was taken from the layer or if it
was specifically set on the feature. When writing GRD
files, this boolean flag indicates if the feature should use
the layer’s pen width or specifically set its own. The
default is False.
Range: True | False

grd_layers_pen_color When reading GRD files, this boolean flag indicates
whether the pen color was taken from the layer or if it
was specifically set on the feature. When writing GRD
files, this boolean flag indicates if the feature should use
the layer’s pen color or specifically set its own. The
default is False.
Range: True | False

grd_blocks_pen_color When reading GRD files, this boolean flag indicates if
the pen color was taken from the block or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates whether the feature should use
the block’s pen color or specifically set its own. The
default is False.
Range: True | False

grd_layers_brush_color When reading GRD files, this boolean flag indicates if
the brush color was taken from the layer or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates if the feature should use the lay-
er’s brush color or specifically set its own. The default is
False.
Range: True | False

grd_blocks_brush_color When reading GRD files, this boolean flag indicates if
the brush color was taken from the block or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates if the feature should use the
block’s brush color or specifically set its own. The

Field Name Description

default is False.
Range: True | False

grd_layers_brush_type When reading GRD files, this boolean flag indicates if
the brush type was taken from the layer or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates if the feature should use the lay-
er’s brush type or specifically set its own. The default is
False.

Range: True | False

grd_blocks_brush_type When reading GRD files, this boolean flag indicates if
the brush type was taken from the block or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates if the feature should use the
block’s brush type or specifically set its own. The default
is False.
Range: True | False

grd_layers_linetype When reading GRD files, this boolean flag indicates if
the linetype was taken from the layer or if it was spe-
cifically set on the feature. When writing GRD files, this
boolean flag indicates if the feature should use the lay-
er’s linetype or specifically set its own. The default is
False.

Range: True | False

grd_linetype_description This is a text description of the linetype used for this vec-
tor. Refer to the discussion under the heading Linetypes
for detailed descriptions. The linetype must be defined
in either the mapping file or the template file being
used. By default, the layer’s linetype is used. Maximum
size is 80 characters, with a maximum of 12 entries.
Example: “__ __ ______ . __ __”

Points

grd_type: grd_point

GRD point features represent single point features and may be either 2D or 3D. These features have the following spe-
cial attributes associated with them.

Attribute Name Contents

grd_virtual_size This is the size the point should appear when
plotted.
Range: Any real number

grd_point_type This is the symbology of the point when plotted.

Attribute Name Contents

The value here may be the sum of any one of the
internal types and any one of the outline types.
Internal Types:
0 = dot
1 = none
2 = plus
3 = cross
4 = vertical line
Outline Types:
0 = none
32 = circle
64 = square
96 = cirsquare
Range: 0 - 100

grd_type: grd_ink

GRD ink features represent a raster picture or image. Their geometry is a point that indicates the lower-left point
where the ink should be located. Ink features may have the following special attributes associated with them.

Attribute Name Contents

grd_ink_data This attribute contains the ink data. This is usually
binary data stored in a string attribute, so typical
string manipulation with this attribute may not be
appropriate.

grd_width This is the width of the ink data.
Range: Any real number

grd_height This is the height of the ink data.
Range: Any real number

grd_type: grd_insert

GRD insert features represent a block of features linked together. The geometry of this point consists of a point that
indicates the location of the insert block. Inserts may also have any number of attributes associated with them (as
defined in the block definition of the file). These attributes will appear on the feature with the attribute names as
defined. When writing insert attributes to GRD files, attributes with the prefix grd_insert_attribute{N} are first searched
for necessary information. If these attributes are not found, then attributes with the prefix fme_attrib_info{N} are
sought. Insert features may also have the following special attributes associated with them.

Attribute Name Contents

grd_block_name This attribute contains the name of the
insert that holds all associated vectors
together. If used with a <reader keyword>_
TEMPLATE_FILE setting when writing GRD
files, inserts may use blocks that have
already been defined elsewhere. Max-

Attribute Name Contents

imum size is 254 characters.

grd_rotation This is the rotation of the insert block, in
degrees counterclockwise.
Note: Ellipses must have a rotation that
is a multiple of 90 degrees. Therefore,
when writing out to GRD, if an insert
refers to a block that has an ellipse in its
definition, the rotation of the insert is
rounded to the nearest multiple of 90
degrees when it is output.
Range: 0 .. 360.0

grd_scale_x

grd_scale_y

grd_scale_z

This is the scale of the insert block—a scal-
ing factor applied to the ground units that
block is defined in. Either the scale or the
size of inserts must be specified.
Range: Any real number

grd_size_x

grd_size_y

grd_size_z

This is the desired size of the insert
block’s bounding box, in ground units.
Either the scale or the size of inserts must
be specified. If both are specified, the
size settings are ignored.
Range: Any real number

grd_insert_attribute{N}.field_name

fme_attrib_info{N}.field_name

These list attributes hold the name of the
Nth attribute.
Range: text string

grd_insert_attribute{N}.field_type

fme_attrib_info{N}.field_type

These list attributes hold the type of the
Nth attribute.
1=DOUBLE
2=LONG
3=STRING
4=LOGICAL
5=DATE
6=TIME (unsupported)
7=MONEY (unsupported)
8=MEMO
9=BLOB
10=DATETIME (unsupported)
Range: integer
Default: 3

Attribute Name Contents

grd_insert_attribute{N}.field_size

fme_attrib_info{N}.field_size

These list attributes hold the size of the
Nth attribute.
Range: integer

grd_insert_attribute{N}.num_decimal_
places

fme_attrib_info{N}.num_decimal_
places

These list attributes hold the number of
decimal places in the value of the Nth
attribute (if appropriate).
Range: text string

grd_insert_attribute{N}.default_
value

fme_attrib_info{N}.default_value

These list attributes hold the default value
of the Nth attribute.
Range: text string

grd_insert_attribute{N}.isVisible

fme_attrib_info{N}.isVisible

These list attributes indicates whether the
Nth attribute should be displayed or not.
Range: TRUE | FALSE

grd_insert_attribute{N}.color

fme_attrib_info{N}.color.red

fme_attrib_info{N}.color.green

fme_attrib_info{N}.color.blue

These list attributes hold the color of the
Nth attribute. The GRD attribute holds the
color based on GRD color codes. The FME
attributes hold the color in RGB values,
ranged between 0.0 and 1.0.
Range: integer (GRD color); real number
0.0-1.0 (FME color

grd_insert_attribute{N}.locationX

grd_insert_attribute{N}.locationY

grd_insert_attribute{N}.locationZ

fme_attrib_info{N}.location_x

fme_attrib_info{N}.location_y

fme_attrib_info{N}.location_z

These list attributes hold the plotting loca-
tion of the Nth attribute.
Range: real number

grd_insert_attribute{N}.height

fme_attrib_info{N}.height

These list attributes hold the display
height of the Nth attribute.
Range: real number

grd_insert_attribute{N}.rotation

fme_attrib_info{N}.rotation

These list attributes hold the display rota-
tion of the Nth attribute.
Range: real number

grd_insert_attribute{N}.horizontal_
align

This list attribute holds the display hor-
izontal alignment of the Nth attribute.
0=CENTER
1=LEFT
2=RIGHT
Range: integer

Attribute Name Contents

Default: 0

grd_insert_attribute{N}.vertical_
align

This list attribute holds the display ver-
tical alignment of the Nth attribute.
0=CENTER
1=TOP
2=BOTTOM
3=BASELINE
Range: integer
Default: 3

fme_attrib_info{N}.justification This list attribute holds the display jus-
tification of the Nth attribute. The value it
can have is one of the following:
baseline_middle
baseline_right
bottom_right
middle_right
top_right
baseline_left
bottom_left
middle_left
top_left
Range: text string
Default: baseline_middle

Lines

grd_type: grd_line

GRD line features represent linear features and may be either 2D or 3D. These features do not have any special attrib-
utes associated with them.

When writing lines out to GRD, all lines are written as PLINEs. The only exception is if any line to be written out has
exactly two points and also has an attribute grd_vector_type with a value of LINE; in this case, a LINE is written out to
GRD.

grd_type: grd_mspline

GRD multi-segmented polyline features represent an aggregate consisting of linear features, all of which are the
same— either 2D or 3D.Mspline features may have the following special attribute associated with them.

Attribute Name Contents

grd_ordered This indicates whether or not multiple lines are
ordered.
Range: 0 | 1

Arcs (circles)

grd_type: grd_arc

GRD arc features represent circular arc features and are either 2D or 3D. The coordinate on the feature contains the
location of the centre. Arc features may have the following special attributes associated with them.

Attribute Name Contents

grd_rotation The rotation of the arc, in degrees counter-
clockwise.
Range: 0 .. 360.0

grd_primary_axis The radius of the arc.
Range: Any real number

grd_secondary_axis The radius of the arc.
Range: Any real number

grd_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0 .. 360.0

grd_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: Any real number

grd_type: grd_circle

GRD circle features represent closed circular arc features and may be either 2D or 3D. The coordinate on the feature
contains the location of the centre. Circle features may have the following special attribute associated with them.

Attribute Name Contents

grd_primary_axis The radius of the circle.
Range: Any real number

grd_type: grd_ellipse

GRD ellipse features represent closed elliptical arc features and may be either 2D or 3D. The coordinate on the feature
contains the location of the centre. Ellipse features may have the following special attributes associated with them.

Attribute Name Contents

grd_rotation The rotation of the ellipse, in degrees counterclockwise.
Note: All ellipses must have a rotation that is a multiple of
90 degrees. If an invalid rotation is passed in to the GRD
writer, the ellipse is written out as a polygon instead.
Range: 0 .. 360.0

grd_primary_axis The radius of the longest axis of the ellipse.
Range: Any real number

grd_secondary_axis The radius of the shortest axis of the ellipse.
Range: Any real number

Polygons

grd_type: grd_polygon

GRD polygon features represent closed polygonal features and may be either 2D or 3D. These features do not have
any special attributes associated with them.

grd_type: grd_rectangle

GRD rectangle features represent closed polygonal features, containing only four points, that make up a polygon.
These rectangles cannot have any rotation—their edges must be horizontal or vertical. These features may be either
2D or 3D, and do not have any special attributes associated with them.

Text

grd_type: grd_text

GRD text features hold text information. A single 2D or 3D position is associated with the text block. Text features may
have the following special attributes associated with them.

Attribute Name Contents

grd_width The width of the text string.
Range: Any real number

grd_height The height of the text string.
Range: Any real number

grd_rotation The angle of the string, in degrees counter-
clockwise from horizontal.
Range: 0 .. 360.0

grd_italic Boolean flag indicating if the text is to be displayed
in italic type.
Range: True | False

grd_bold Boolean flag indicating if the text is to be displayed
in bold type.
Range: True | False

grd_font_name The name of the font used to display the text. Max-
imum size is 254 characters.

grd_text_font_type The specific kind of type the text is to be displayed
in. The default is 0 (TrueType Font). The values
are associated with the following types:
0 = TrueType Font
1 = NonTrueType Font
3 = Specific Font

grd_text_string The text string of the vector. Maximum size is 254
characters.

PHOCUS PHODAT Reader/Writer

The PHOCUS PHODAT (PHOCUS) Reader module provides the Feature Manipulation Engine (FME) with the ability to
translate PHOCUS data in and out of any FME format. PHOCUS PHODAT is a published ASCII format, output by the
Carl-Zeiss PHOCUS system.

Overview

The PHOCUS files may contain both two-dimensional (2D) and three-dimensional (3D) features. The PHOCUS files do
not explicitly store attribute values but rather use a feature coding approach whereby unique feature codes are
assigned to different types of features stored within the dataset. The FME looks for an extension of .pdt for the input
PHOCUS files, but will accept any PHOCUS file as input regardless of the file name or extension.

The PHOCUS reader module supports the reading of point, line, area, and text geometric data in PHOCUS files.

Each geometric entity present in a PHOCUS file is assigned an object code and an item code. Together these codes
define the type of feature being read.

The FME considers a PHOCUS dataset to be a singlePHOCUS PHODAT file.

PHOCUS PHODAT Quick Facts

Format Type Identifier PHOCUS

Reader/Writer Reader

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Object code

Typical File Extensions .pdt

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type phocus_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon yes

circular arc no raster no

Geometry Support

Geometry Supported? Geometry Supported?

donut polygon yes solid no

elliptical arc no surface no

ellipses yes text yes

line yes z values yes

none no

Reader Overview

The PHOCUS reader opens the input file and immediately starts reading features, returning them to the rest of the
FME for processing. The reader has no requirement for definition statements as there are no user-defined attributes.

Each feature returned has its feature type set to the value of the features object code as defined by PHOCUS.

Reader Directives

The directive processed by the PHOCUS reader are listed below. The suffix shown is prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the PHOCUS reader is PHOCUS.

DATASET

Required/Optional: Required

The value for this keyword is the file containing thePHOCUS dataset to be read. A typical mapping file fragment
specifying an input PHOCUS dataset looks like:

PHOCUS_DATASET /usr/data/phocus/db84.pdt

Workbench Parameter: Source PHOCUS PHODAT File(s)

SPLIT_INVISIBLE_LINES

Required/Optional: Optional

This directive indicates whether lines that have visible and invisible components are to be split apart and returned as
visible and invisible lines. If not specified, or if the value is NO, then lines with visible and invisible components are
not split up.

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

DATASET

Required/Optional: Required

The value for this keyword is the file containing thePHOCUS dataset to be read. A typical mapping file fragment
specifying an input PHOCUS dataset looks like:

PHOCUS_DATASET /usr/data/phocus/db84.pdt

Workbench Parameter: Destination PHOCUS PHODAT File(s)

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

phocus_type The PHOCUS geometric type of this entity.
Range:

phocus_point|

phocus_line|

phocus_area|

phocus_text

Default:No default

phocus_visibility This attribute is specified when the PHOCUS reader
is run with the directive SPLIT_INVISIBLE_LINES
set to Yes. The attribute indicates if the line is
either visible or invisible.
If this attribute is specified when features are
written and the value is invisible, then the feature
is written to the file such that it is not displayed.

Point Cloud XYZ (POINTCLOUDXYZ) Reader/Writer

The Point Cloud XYZ (POINTCLOUDXYZ) Reader/Writer allows FME to read and write point clouds from features into
files in the xyz format.

Overview

XYZ files are ASCII database files, where each column in a row is delimited by some separator character. Each row
represents a point within a point cloud. Each column represents a point component for the point. The data from the
Point Cloud XYZ file is read from or written to a point cloud geometry on an FME feature.

By convention, these files use the .xyz filename extension, but the Point Cloud XYZ reader and writer can use any
extension. The writer will write a gzipped file if the extension of the destination file ends with “.gz”

More Information

About Point Clouds

About Point Clouds

A point cloud is a type of geometry that is useful for storing large amounts of data, typically gathered from LIDAR
applications. The use of LIDAR allows for fast and accurate collection of data, such as for forestry canopy meas-
urements, or landscape modeling. Point cloud geometry allows for quick and efficient processing of a large collection
of vertices in 3D space that represent the external surfaces of objects. Together, these vertices form amodel which
can be transformed, and visualized. Some operations of the point cloud geometry involve thinning, splitting, and com-
bining to produce a more useable set of vertices.

Associated with each vertex are a number of properties called components, which contains a value describing the
point. These component values can be used to classify different sections of the collection of points contained in the
point cloud geometry. The specific set of components stored by the point cloud is referred to as the interpretation.

Interpretation Allowed Values Description
Intensity 1.7E +/- 308 (15 digits) The magnitude of the intensity of the pulse return.

Color 0 to 65,535 The color of the object at the point, in RGB color.

Classification 0 to 65,535 The classification value categorizes the points into
fields, such as ground, building, water, etc.

Returns 1 - 5 The return value is the return number from a pulse.

Number of returns 1 - 5 The total number of detected returns from a single
pulse.

Angle -90 to 90 The angle of the pulse that the point was scanned at.

Flight line 0 to 4,294,967,295 The flight line number the point was detected in.

Scan Direction 0 and 1 The direction in which a scanning mirror was directed
when the point was detected.

Point ID 1 to 65,535 This point ID is indicative of the point origin.

POSIX time 1.7E +/- 308 (15 digits) Used to express the time, as the number of seconds
elapsed since UTC January 1st, 1970.

User data 0 to 65,535 The user data value is for the user to use.

GPS time and

GPS week

GPS Week: 1.7E +/- 308 (15
digits)

GPS Time: 0 to 65,535

Together, these two values express the time since Jan-
uary 6th, 1980. The GPS Week represents a week
number, and the GPS time represents the number of
seconds into a week.

Flight line Edge 1 for points on the edge, 0
otherwise.

The flight line edge value is a flag for points that lie on
the edge of the scan, along the flight line.

Point Cloud XYZ Quick Facts

Format Type Identifier POINTCLOUDXYZ
Reader/Writer Both
Licensing Level Professional
Dependencies None
Dataset Type Directory or File
Feature Type File base name
Typical File Extensions .xyz
Automated Translation Support Yes
User-Defined Attributes No
Coordinate System Support No
Generic Color Support No
Spatial Index Never
Schema Required No
Transaction Support No
Geometry Type pointcloudxyz_type
Encoding Support Yes

Geometry Support
Geometry Supported? Geometry Supported?
aggregate no point no
circles no polygon no
circular arc no raster no
donut poly-
gon

no solid no

elliptical arc no surface no
ellipses no text no
line no z values yes
None no point cloud yes

Point Cloud Components
Point Cloud Component Data Type Notes
fmepc_angle REAL64
fmepc_classification UINT8
fmepc_color_r UINT16
fmepc_color_g UINT16
fmepc_color_b UINT16
fmepc_flight_line_edge UINT8
fmepc_flight_line UINT32
fmepc_gps_time REAL64
fmepc_gps_week UINT16
fmepc_intensity REAL64
fmepc_number_of_returns UINT8
fmepc_point_source_id UINT32
fmepc_posix_time REAL64
fmepc_return UINT8
fmepc_scan_direction UINT8
fmepc_user_data UINT16

Reader Overview

FME considers a single POINTCLOUDXYZ file to be a dataset. Each dataset contains a single FME point cloud feature.

Reader Directives

The directives listed below are processed by the POINTCLOUDXYZ reader. The suffixes shown are prefixed by the cur-
rent <ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the Point Cloud XYZ reader is
POINTCLOUDXYZ.

DATASET

This is the name of one or more XYZ files.

The default extension for Point Cloud XYZ files is .xyz

Required/Optional

Required

Mapping File Syntax

POINTCLOUDXYZ_DATASET /usr/data/filename.xyz

Workbench Parameter

Point Cloud XYZ File(s)

FIELD_NAMES

If the field or column names of the table are specified in the file, set this value to yes and the names will be extracted
from the file. Otherwise, the columns of the table are given default names (that is, col0, col1, ... , colN) with the set-
ting no.

Note: If FIELD_NAMES is set to yes, skip_lines should also be set to skip at least one row. You can also set FIELD_
NAMES_AFTER_HEADER to yes. See FIELD_NAMES_AFTER_HEADER below for details.

Values

yes | no (default)

Required/Optional

Optional

FIELD_NAMES_AFTER_HEADER

If the column/field names are AFTER the header information instead of BEFORE, then you can set FIELD_NAMES_
AFTER_HEADER to yes. Otherwise, by default, the first line of the file will be used as the column/field names.

This parameter is ignored if FIELD_NAMES is not set, or it is set to no.

Note: If FIELD_NAMES_AFTER_HEADER is set to yes, SKIP_LINES should also be set to skip at least one row.

Values

yes | no

Required/Optional

Optional

SEPARATOR

A special field is listed to identify the separator used to divide the fields in the file.

By default, a space is used; however you can also use any of these one-character separators:

l Comma: ,

l Semicolon: ;

l Vertical bar: |

l Tab: indicated by a backslash (\) followed by a “t”; for example:

POINTCLOUDXYZ_SEPARATOR \t

Note: There must be a space between POINTCLOUDXYZ _SEPARATOR and <separator>. The opening and closing
angle brackets are optional.

Required/Optional

Optional

Values

<separator>

SKIP_LINES

This field can be listed to indicate the number of lines to skip at the top of the file. By default, no lines are skipped.
This parameter is useful if the Point Cloud XYZ file contains a header line of field names or other descriptive material
that should be skipped.

Required/Optional

Optional

Values

<number>

Workbench Parameter

Number of Lines to Skip

SKIP_FOOTER

This field can be listed to indicate the number of footer lines to skip at the bottom of the file. By default, no footer lines
are skipped. This parameter is useful if the Point Cloud XYZ file contains a footer line of descriptive material that
should be skipped.

Required/Optional

Optional

Values

<number>

DUPLICATE_DELIMS

This field can be listed to indicate if duplicate delimiters are to be treated as a single delimiter. If set to yes then mul-
tiple contiguous delimiters are treated as a single de-limiter; otherwise, each delimiter is treated as if it delimits a dif-
ferent field.

Required/Optional

Optional

Values

yes | no

Workbench Parameter

Skip Duplicate Delimiters

COLUMN_TO_PCCOMPONENT

This directive maps each data column in the Point Cloud XYZ file to a component of a point within the point cloud.

Values

<component, columnname pairwise list>

Required/Optional

Required

Workbench Parameter

Component Mapping

ENCODING

This directive specifies the file encoding to use when reading.

Values

<encoding>

Encodings
UTF-8
UTF-16LE
UTF-16BE
ANSI
BIG5
SJIS
CP437
CP708
CP720
CP737
CP775
CP850
CP852
CP855
CP857
CP860
CP861
CP862
CP863
CP864
CP865
CP866
CP869
CP932
CP936
CP950
CP1250
CP1251
CP1252
CP1253
CP1254
CP1255
CP1256
CP1257
CP1258
ISO8859-1
ISO8859-2
ISO8859-3
ISO8859-4

ISO8859-5
ISO8859-6
ISO8859-7
ISO8859-8
ISO8859-9
ISO8859-13
ISO8859-15

Required/Optional

Optional

Workbench Parameter

Character Encoding

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The Point Cloud XYZ Writer writes a point cloud geometry to a XYZ file. Optionally, the point components of the cloud
are also output.

Writer Directives

The suffixes shown are prefixed by the current <WriterKeyword> in a mapping file. By default, the <Writ-
erKeyword> for the Point Cloud XYZ reader is POINTCLOUDXYZ.

DATASET

This is the name of a directory containing one or more XYZ files.

The default extension for Point Cloud XYZ files is .xyz. To write gzipped files, use .xyz.gz as the destination file
extension.

Required/Optional

Required

Mapping File Syntax

POINTCLOUDXYZ_DATASET /usr/data/xyz/output

Workbench Parameter

Destination Point Cloud XYZ Directory

DEF

Defines a Point Cloud XYZ file. The definition contains the file’s base name without any of the extensions, followed by
the definitions of the attributes. There may be many DEF lines, one for each file to be written.

The syntax of a Point Cloud XYZ DEF line is:

<WriterKeyword>_DEF <baseName> \

[<attrName> <attrType>]+

The following DEF line directives are supported by the writer:

DEF Line Directives Value Required /
Optional

POINTCLOUDXYZ_INCLUDE_FIELD_
NAME
<yes|no>

See INCLUDE_FIELD_NAME below for
details.

Optional

POINTCLOUDXYZ_SEPARATOR
<separator>

See SEPARATOR below for details. Required

POINTCLOUDXYZ_EXTENSION
<extension>

See EXTENSION below for details. Optional

POINTCLOUDXYZ_ENCODING
<encoding>

See ENCODING for details. Optional

POINTCLOUDXYZ_END_OF_LINE

<yes|no>

See END_OF_LINE for details. Optional

POINTCLOUDXYZ _COLUMN_TO_PCCOM-
PONENT

<pc,colName pairwise list>

See COLUMN_TO_PCCOMPONENT for
details.

Required

POINTCLOUDXYZ_QUOTE_FIELD_
NAMES
<yes|no|if_needed>

See QUOTE_FIELD_NAMES for details Optional

POINTCLOUDXYZ_WRITE_UTF8_BOM
<yes|no>

See WRITE_UTF8_BOM for details Optional

Each of these directives has the samemeaning as the global Point Cloud XYZ writer keyword with the same suffix. Any
value specified on a DEF line will override values defined for equivalent global directives, as they apply to the table
being defined.

Required/Optional

Required

INCLUDE_FIELD_NAME

If set this value to yes, the field names will be written as the first line in the output file. If it is set to no, column
names will not be written to file.

Required/Optional

Optional

Values

Values: <yes (default) | no>

Workbench Parameter

Output Field Names

SEPARATOR

A special field is listed to identify the separator used to divide the fields in the file. By default, a space is used; how-
ever you can also use any of these one-character separators:

l Comma: ,

l Semicolon: ;

l Vertical bar: |

l Tab: indicated by a backslash (\) followed by a “t”; for example:

POINTCLOUDXYZ_SEPARATOR \t

Note: There must be a space between POINTCLOUDXYZ _SEPARATOR and <separator>. The opening and closing
angle brackets are optional.

Required/Optional

Required

Values

<separator>

COLUMN_TO_PCCOMPONENT

This directive specifies the point components to be written and the order of the fields in the output XYZ file.

Values

<component, columnname pairwise list>

Required/Optional

Required

Workbench Parameter

Component Mapping

EXTENSION

This direction specifies the file extension to be written.

Values

<extension>

Default: .xyz

Note: If the extension ends in .gz (e.g., xyz.gz) the writer will output gzipped files.

Required/Optional

Optional

Workbench Parameter

Extension

QUOTE_FIELD_NAMES

This directive specifies whether the field names written on the first row of the file are quoted.

Values

yes | no | if_needed (default)

If set to yes, then field names will be quoted. If set to no, field names will not be quoted. If set to if_needed, field
names will be quoted only if they contain a separator character.

Required/Optional

Optional

Workbench Parameter

Quote Field Names

ENCODING

This directive specifies the file encoding to use when writing.

Values

<encoding>

Default: System

Encodings
UTF-8
UTF-16LE
UTF-16BE
ANSI
BIG5
SJIS
CP437
CP708
CP720
CP737
CP775
CP850
CP852
CP855
CP857
CP860
CP861
CP862
CP863
CP864
CP865
CP866

CP869
CP932
CP936
CP950
CP1250
CP1251
CP1252
CP1253
CP1254
CP1255
CP1256
CP1257
CP1258
ISO8859-1
ISO8859-2
ISO8859-3
ISO8859-4
ISO8859-5
ISO8859-6
ISO8859-7
ISO8859-8
ISO8859-9
ISO8859-13
ISO8859-15

Required/Optional

Optional

Workbench Parameter

Character Encoding

END_OF_LINE

This directive specifies the end of line character to use when writing.

Values

Macintosh | Windows | Unix | System (default)

Required/Optional

Optional

Workbench Parameter

Line Termination

WRITE_UTF8_BOM

This directive specifies whether the byte order mark for UTF-encoded files should be written at the beginning.

This option only has an effect when the encoding is set to a UTF encoding.

Values

yes (default) | no

Required/Optional

Optional

Workbench Parameter

Write UTF-8 Byte Order Mark

PostGIS Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

Overview

PostGIS is a geometric layer over a PostgreSQL Object-Relational Database Management System (ORDBMS) that pro-
vides geometry and Spatial Reference System (SRS) handling. The PostGIS reader/writer module enables FME to read
geometric PostGIS data as well as underlying attribute data stored in PostgreSQL.

The PostGIS reader/writer is specifically designed to handle the geometric and SRS portions of the data. When read-
ing attribute-only tables from PostgreSQL, the PostgreSQL reader/writer should be used instead. The PostGIS read-
er/writer communicates directly with the PostgreSQL libpq interface for maximum throughput.

This chapter assumes familiarity with PostGIS and PostgreSQL, the attribute and geometry types supported, and its
indexing mechanisms.

For more information, please see the PostgreSQL home at

http://www.postgresql.org/

and the PostGIS home at

http://postgis.refractions.net/

PostGIS Quick Facts

Format Type Identifier PostGIS

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions None

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Always

Schema Required Yes

Transaction Support Yes

Geometry Type postgis_type

http://www.postgresql.org/
http://postgis.refractions.net/

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

FME considers a PostGIS dataset to be a database containing a collection of relational tables together with their cor-
responding geometries. The tables must be defined in the mapping file before they can be read. Arbitrary WHERE
clauses and joins are fully supported, as well as an entire arbitrary SQL SELECT statement; however, the user then
assumes responsibility for the correctness of the statement or clause including quoting where necessary. Support for
@SQL and @Relate functions has also been added.

When reading from the PostGIS/PostgreSQL database, each table is considered a feature type in FME and each row of
a table at least one feature in FME. In the case of heterogeneous geometry collections, they may becomemore than
one FME feature.

The basic reading process involves opening a connection to the database, querying metadata, and querying data. The
data is read using a text cursor and rows are fetched to the client machine in batches of 10000 by default. There is
one cursor per input table.

If NULL geometries are read, they are treated as non-geometry features and the attributes are preserved.

Table and column names are truncated at 64 characters. If duplicate names are produced by truncation, the behavior
is undetermined. Please ensure that table names comply with PostgreSQL naming conventions.

Spaces and special characters are permissible in both table and column names. Case sensitivity has also been imple-
mented, so table and column names are no longer changed to lowercase.

Table listing support when using the PostGIS settings boxes has been improved to avoid errors with schemas and
tables that do not exist, or are inconsistent with the PostGIS metadata.

UNICODE support has been added to work with a client’s system encoding. Although there is no way to explicitly spec-
ify the encoding, the client is assumed to have entered data and created tables and columns in the encoding of their
operating system. Multiple system encodings are now supported via the native PostgreSQL conversions between
client and server, particularly if the server encoding is set to UNICODE.

Older schema directives have been removed and qualified table naming is now supported in the form <sche-
maname>.<tablename>. Additionally, the schema search path is now read and interpreted to determine a user’s
default schema when writing and the available schema to read from when reading. Failing a valid schema search
path, the default public schema will be used for newer databases.

Reader Directives

The directives that are processed by the PostGIS reader are listed below. The suffixes shown are prefixed by the cur-
rent <ReaderKeyword>_ in a mapping file. By default, the <ReaderKeyword> for the PostGIS reader is POST-
GIS_IN.

DATASET/DATABASE

This directive specifies the name of the PostGIS-enabled PostgreSQL database. The database must exist in the
ORDBMS.

Required/Optional

Required

Mapping File Syntax

POSTGIS_DATASET testdb

Workbench Parameter

Source PostGIS Dataset

HOST

This directive specifies the machine running the PostGIS/PostgreSQL ORDBMS as either an IP address or host name.
The database must have proper permissions and be set up to accept TCP/IP connections if connecting from a remote
machine.

Required/Optional

Required

Mapping File Syntax

POSTGIS_IN_HOST myserver

Workbench Parameter

Host

PORT

When connecting remotely, this directive specifies the TCP/IP post on which to connect to the ORDBMS service.

The default port is 5432.

Required/Optional

Required

Mapping File Syntax

POSTGIS_IN_PORT 5432

Workbench Parameter

Port

USER_NAME

The name of user who will access the database. The named user must exist with appropriate PostgreSQL per-
missions.

The default user name is postgres.

Required/Optional

Required

Mapping File Syntax

POSTGIS_IN_USER_NAME postgres

Workbench Parameter

Username

PASSWORD

The password of the user accessing the database. This directive is optional when using a trusted connection.

Other authentication types such as password or MD5 require this parameter to be set.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_IN_PASSWORD secret

Workbench Parameter

Password

DEF

The syntax of the definition is:

POSTGIS_DEF <tableName> \
[postgis_where_clause <whereClause>] \

[<fieldName> <fieldType>] +

OR

POSTGIS_DEF <queryName> \
[postgis_sql_statement <sqlQuery>]

The <tableName>must match a PostGIS table in the database. This will be used as the feature type of all the fea-
tures read from the table. The exception to this rule is when using the sql_statement directive. In this case, the DEF
namemay be any valid alphabetic identifier; it does not have to be an existing table name – rather, it is an identifier
for the custom SQL query. The feature type of all the features returned from the SQL query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The exception to this is the geometry field type which is not placed in the DEF. This is stored separately in the
geometry_columns table of the PostgreSQL database which maps geometry information to the database and
table name.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader directives
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

where_clause This specifies the SQL WHERE clause applied to the

Parameter Contents

attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
tuples are returned. This directive will be ignored if
the sql_statement is present.

sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the PostGIS
reader will execute the query, and use the resulting
rows as the features instead of reading from the
table <queryName>. All returned features will have
a feature type of <queryName>, and attributes for
all columns selected by the query.
All parameters that specify a spatial constraint are
ignored if an sql_statement is supplied.
If selecting a geometry column from a PostGIS table,
avoid the use of geometry column format modifiers
such as AsBinary(), AsText(), AsWKT(), or ASWKB()
since this obscures the fact that we have a geometry
column and not just some text or byte attribute col-
umn.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the word “where”.

The PostGIS reader allows one to use the sql_statement parameter to specify an arbitrary SQL SELECT query on
the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the query to
define a feature. Each of these features will be given the feature type named in theDEF line, and will contain attrib-
utes for every column returned by theSELECT. In this case, all DEF line parameters regarding aWHERE clause
or spatial querying are ignored, as it is possible to embed this information directly in the text of the <sqlQuery>.

The following example selects rows from the table ROADS, placing the resulting data into FME features with a feature
type of MYROADS. Imagine that ROADS defines the geometry for the roads, and has a numeric field named ID, a text
field named NAMEand a geometry column named GEOM.

POSTGIS_DEF MYROADS \
sql_statement ‘SELECT id, name, geom FROM ROADS’

Required/Optional

Required

IDs

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs are
specified, then no tables are read. The syntax of the IDs directive is:

POSTGIS_IDs <featureType1> \
<featureType2> \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only the ROADS table for input during a translation:

POSTGIS_IDs ROADS

Required/Optional

Optional

MINX, MINY, MAXX, MAXY

These directives when used together specify the spatial extent of the feature retrieval. Only features that interact with
the bounding box defined by these directive values are returned.

If this is not supplied, all features will be returned. If either min value is greater than the corresponding max value,
the values will be swapped. If less than the entire set of four values are supplied, the supplied values will be ignored
and all features will be returned.

The syntax of the directives is:

POSTGIS_IN_MINX <minX>
POSTGIS_IN_MINY <minY>
POSTGIS_IN_MAXX <maxX>
POSTGIS_IN_MAXY <maxY>

The example below selects a small area for extraction:

POSTGIS_IN_MINX 25.6
POSTGIS_IN_MINY 59.0
POSTGIS_IN_MAXX 79.2
POSTGIS_IN_MAXY 124.5

Required/Optional

Optional

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

Mapping File Example

The example below selects a small area for extraction:

POSTGIS_IN_SEARCH_ENVELOPE 25.6 59.0 79.2 124.5

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

SEARCH_METHOD

This directive is used to specify the spatial relationship between the provided bounding box and the geometries in the
geometry column of the table.

There are two types of operation:

n Maximum Bounding Rectangle (MBR) operations determine adherence to a given spatial relationship using only the
bounding box of the geometry.

n Full spatial operations will use the actual geometry itself.

Full spatial relationship comparisons are only available if GEOS is enabled on the PostGIS server. If not, all envelope
comparisons will be made using the default MBR operation MBR_OVERLAPS.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_IN_SEARCH_METHOD <spatial_relationship>

Workbench Parameter

Search Method

FEATURES_PER_FETCH

To avoid loading all the features in memory at once when reading a large dataset, cursors are used to retrieve the
rows from the database. This optional directive specifies the number or rows to be read at one time from the cursor
for a given query.

The default is 10000 rows and should be sufficient in most cases. However this may need to be lowered or raised
depending on the capabilities of the specific hardware in use and the data being read.

Required/Optional

Optional

Mapping File Syntax

The example below selects a small set of features per extraction:

POSTGIS_IN_FEATURES_PER_FETCH 5000

Workbench Parameter

Number of Records to Fetch at a Time

RETRIEVE_ALL_SCHEMAS

This specification tells tell the reader to retrieve the names and the schemas of all the tables in the source database.

This directive is only applicable when generating a mapping file, generating a workspace, or when retrieving sche-
mas in a FME Objects application.

Values

YES | NO

If this value is not specified, then it is assumed to be No. When set to Yes, indicates to the reader to return all the
schemas of the tables in the database.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

This specification tells the reader to retrieve only the table names of all the tables in the source database.

This directive is only applicable when generating a mapping file, generating a workspace or when retrieving schemas
in a FME Objects application.

Note: If RETRIEVE_ALL_SCHEMAS is also set to Yes, then RETRIEVE_ALL_SCHEMAS takes precedence.

Required/Optional

Optional

Values

YES | NO

If this value is not specified, then it is assumed to be No.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_RETRIEVE_ALL_TABLE_NAMES Yes

DISABLE_COLLECTION_SPLITTING

Specifies that the reader should not split single itemmultis or geometrycollections with any number of parts.

If geometrycollections are split, each part is tagged with postgis_collection_id and postgis_collection_part_id attrib-
utes.

Required/Optional

Optional

Values

YES (default) | NO

Not setting this directive is equivalent to setting it to NO.

Mapping File Syntax

POSTGIS_DISABLE_COLLECTION_SPLITTING Yes

USE_TRUE_POSTGIS_TYPES

Required/Optional

Optional

Values

YES (default) | NO

If not present or not set to YES, only the legacy postgis types (postgis_point, postgis_line, postgis_area, postgis_
geometrycollection) will be attached to features.

If set to YES postgis_line is replaced by postgis_linestring, postgis_area is replaced by postgis_polygon, and types
representing curve supporting geometries are also available.

Mapping File Syntax

POSTGIS_USE_TRUE_POSTGIS_TYPES Yes

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The PostGIS writer module stores both geometry and attributes into an PostgreSQL database. Note that attribute case
is preserved, unless the option to lowercase attributes is set to ‘yes’. The PostGIS writer provides the following
capabilities:

l Transaction Support: The PostGIS writer provides transaction support that eases the data loading process. Occa-
sionally, a data load operation terminates prematurely due to data difficulties. The transaction support provides a
mechanism for reloading corrected data without data loss or duplication.

l Index Creation: The PostGIS writer can set up and populate indexes as part of the loading process. By default, a
GiST index is created on the primary geometry column of a table and not on any other columns. Additional columns
can be individually indexed. Composite column indexes are not supported at this time.

l Bulk Loading: By default, the PostGIS writer uses a bulk loading technique to ensure speedy data loading.

Writer Directives

The directives that are processed by the PostGIS writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the PostGIS writer is POST-
GIS_OUT.

DATASET/DATABASE, HOST, PORT, USER_NAME, PASSWORD

These directives operate in the samemanner as they do for the PostGIS reader.

DEF

Each PostGIS table must be defined before it can be written. The general form of a PostGIS definition statement is:

POSTGIS_DEF <tableName> \
 postgis_type <postgis_type> \
 [postgis_mode (insert|update|delete|inherit_from_writer)] \
 [postgis_spatial_column <column>] \
 [postgis_spatial_column_type (geometry|geography)] \

[postgis_srid <srid>] \
 [postgis_drop_table (yes|no)] \
 [postgis_truncate_table (yes|no)] \
 [postgis_create_with_oids (yes|no] \
 [postgis_create_with_gist_index (yes|no)] \
 [postgis_vacuum_analyze (yes|no)] \
[<fieldName> <fieldType>][,<indexType>]*

The table definition allows control of the table that will be created. If the table already exists, the majority of the post-
gis_ parameters will be ignored and need not be given. If the fields and types are listed, they must match those in the
database.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

Required/Optional

Required

Configuration Parameters

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the spec-
ified name exists, it will be overwritten if either the postgis_
overwrite_table DEF line parameter set to YES or if the global
writer directive type postgis_out_overwrite is set to YES.
Otherwise the table will be appended. Valid values for table
names include any character string devoid of SQL-offensive
characters and less than 32 characters in length.

postgis_type The type of geometric entity to which the created table will
be constrained. The valid values for the type are listed
below:
postgis_point
postgis_multipoint
postgis_linestring
postgis_multilinestring
postgis_circularstring
postgis_compoundcurve
postgis_multicurve
postgis_polygon
postgis_multipolygon
postgis_curvepolygon
postgis_multisurface
postgis_geometrycollection
postgis_none
postgis_geometry (allow anything)
If a collection is written to a table constrained to single
pieces of geometry, the collection will automatically be
broken apart for writing. Conversely, if a single piece of
geometry is written to a table constrained to one of the col-
lection types, it will automatically be wrapped in a col-
lection.

postgis_mode The the default operation mode of the feature type in terms
of the types of SQL statements sent to the database. Valid
values are INSERT, UPDATE, DELETE and INHERIT_FROM_
WRITER. Note that INSERT mode allows for only INSERT oper-
ations where as UPDATE and DELETE can be overwritten at
the feature levels. INHERIT_FROM_WRITER simply indicates
to take this value from the writer level and not to override it
at the feature type level.
Default: INHERIT_FROM_WRITER

postgis_spatial_column This specifies the name of the column to be created that will
hold the spatial data when creating a new PostGIS table.
Default: geom

Parameter Contents

postgis_spatial_column_type This specifies the name of the column to be created that will
hold the spatial data when creating a new PostGIS table.
Valid values are geography and geometry.
Default: geometry

postgis_srid This specifies the spatial referencing information for the
geometry in the table. By default, this value is INHERIT_
FROM_WRITER which uses the conversion of the FME coor-
dinate system of the writer into an SRID as the SRID for the
given table.
Alternatively, a specific integer SRID value may be specified.
Specified SRID values should correspond to an existing the
spatial reference identifier value stored in the (SRID) column
in the global table spatial_ref_sys.
All geometry within a given table must have the same spatial
referencing.
If postgis_srid is not specified, tables will be created with the
SRID of the writer coordinate system.
If empty SRIDs are desired, the value for the SRID field can
be set to -1 indicating no spatial reference system.

postgis_drop_table This specifies that if the table exists by this name, it should
be dropped and recreated before any features are written to
it.
This parameter, along with postgis_truncate_table, dep-
recates the older postgis_overwrite_table parameter.

postgis_truncate_
table

This specifies that if the table exists by this name, it should
be truncated before any features are written to it.
This parameter, along with postgis_drop_table, deprecates
the older postgis_overwrite_table parameter.

postgis_create_with_oids Create the table including a system OID column as a unique
identifier. If set to no, then the OID column is not created.
Default: yes

postgis_create_with_gist_index Create a GiST index on the geometry column of the table (as
long as one exists).The indexing of the geometry column is
required for spatial query performance.
Default: yes

postgis_vacuum_analyze Perform the database function to vacuum and analyze the
table once successfully written. This will build statistics for
the table.
Default: yes

fieldName The name of the field to be written. Valid values for field

Parameter Contents

name include any character string devoid of SQL-offensive
characters and less than 32 characters in length.

fieldType The type of a column in a table. The valid values for the field
type are listed below:
bool
char(width)
bpchar(width)
varchar(width)
int2
int4
int8
text
bytea
oid
serial
float4
float8
money
date
time
timetz
timestamp
timestamptz

indexType The type of index to create on the given field. The valid
values for the index type are listed below:
BTREE (default attribute index)
RTREE
HASH
PRIKEY (primary key)

START_TRANSACTION

This statement tells the PostGIS writer module when to start actually writing features into the database.

The PostGIS writer does not write any features until the feature number of features are skipped, and then it begins
writing the following features. Normally, the value specified is zero – a non-zero value is only specified when a data
load operation is being resumed after failing partway through.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_OUT_START_TRANSACTION 0

Workbench Parameter

Starting Feature

TRANSACTION_INTERVAL

This directive determines the number of features that FME will place in each transaction before a transaction is com-
mitted to the database.

If the POSTGIS_OUT_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used as the trans-
action interval.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_OUT_TRANSACTION_INTERVAL 2000

Workbench Parameter: Features Per Transaction

BULK_COPY

This statement tells the PostGIS writer module to insert data into the database using either SQL INSERT statements
or the SQL COPY command. The default option is the bulk copy using the COPY command, which yields the best per-
formance.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_OUT_BULK_COPY YES

Note: The bulk delimiter escaping has improved, and therefore it is no longer necessary as a backup measure. How-
ever, if individual inserts are desired, this option can be set to NO.

Workbench Parameter

Bulk COPY Insert

WRITER_MODE

This directive informs the PostGIS writer which SQL operations will be performed by default by this writer.

This operation can be set to INSERT, UPDATE or DELETE. The default writer-level value for this operation can be
overwritten at the feature type or table level. The corresponding feature type DEF parameter name is called POST-
GIS_MODE. It has the same valid options as the writer-level mode, as well as the value INHERIT_FROM_
WRITER (which causes the writer-level mode to be inherited by the feature type as the default for features contained
in that table).

The operation can also be set specifically for individual features. Note that when the writer mode is set to INSERT,
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as update or delete features. These are skipped.

Required/Optional

Optional

Mapping File Syntax

POSTGIS_OUT_WRITER_MODE INSERT

If this directive is not specified, then a value of INSERT is given.

Workbench Parameter

Writer Mode

Note: For more information on this directive, see theDatabase Writer Mode.

GENERIC_GEOMETRY

This directive applies at generation time, not at translation time.

The default value of NO indicates that we want the previous behavior of creating geometrically constrained spatial col-
umns on the destination tables. For example, a POINT spatial table would be restricted only to points.

Now we have the option to create generic or non-geometrically constrained spatial columns. This means you can
insert multiple geometry types into one table. Specifically the spatial column is created to have the generic type
GEOMETRY and there are no constraints placed on the geometry types allowed.

Required/Optional

Optional

If the POSTGIS_OUT_GENERIC_GEOMETRY statement is not specified, then a value of NO is given.

Mapping File Syntax

POSTGIS_OUT_GENERIC_GEOMETRY YES

SPATIAL_COLUMN_TYPE

The default value of geometry indicates that we want to create planar (geometry) spatial columns on the destination
tables by default. Setting its value to geography, however, would mean that we want to create geodetic (geography)
spatial columns. This value can also be set specifically for individual feature types.

This directive applies only at generation time.

Required/Optional

Optional

SPATIAL_COLUMN_NAME

The default value of geom indicates that we want to create a spatial column with the name “geom” on the destination
tables by default. This value can also be set specifically for individual feature types.

This directive only applies at generation time.

Feature Representation

Features read from PostGIS consist of a series of attribute values and geometry. The feature type of each feature is as
defined on its DEF line. The geometry object model in PostGIS follows the OGIS Simple Features Specification 1.1. For
more information see http://www.opengis.org.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

http://www.opengis.org/

Attribute Name Contents

postgis_type The type of geometric entity stored within the fea-
ture. The valid values for the object model are listed
below:
postgis_point
postgis_multipoint
postgis_linestring
postgis_multilinestring
postgis_circularstring
postgis_compoundcurve
postgis_multicurve
postgis_polygon
postgis_multipolygon
postgis_curvepolygon
postgis_multisurface
postgis_geometrycollection
postgis_none

Features read from, or written to, PostGIS also have an attribute for each column in the database table. The feature
attribute name will be the same as the source or destination column name. The attribute and column names are case-
sensitive.

No Coordinates

postgis_type: postgis_none

Features with no coordinates are tagged with this value when reading from PostGIS. Note that when reading or writ-
ing attribute-only data tables, the PostgreSQL reader/writer should be used instead. Note also that this is not a valid
OGC type.

Point

postgis_type: postgis_point

Features tagged with this value consist of a single point.

MultiPoint

postgis_type: postgis_multipoint

Features tagged with this value consist of a collection of points.

LineString

postgis_type: postgis_linestring

Features tagged with this value consist of a single line.

MultiLineString

postgis_type: postgis_multilinestring

Features tagged with this value consist of a collection of lines.

CircularString

postgis_type: postgis_circularstring

Features tagged with this value consist of a path of circular arcs.

CompoundCurve

postgis_type: postgis_compoundcurve

Features tagged with this value consist of a path of lines and/or circular arcs.

MultiCurve

postgis_type: postgis_multicurve

Features tagged with this value consist of a collection of lines and paths of circular arcs.

Note that paths containing both lines and circular arcs may not be stored in a MultiCurve.

Polygon

postgis_type: postgis_polygon

Features tagged with this value consist of a linear polygon or donut.

MutiPolygon

postgis_type: postgis_multipolygon

Features tagged with this value consist of a collection of linear polygons and/or donuts.

CurvePolygon

postgis_type: postgis_curvepolygon

Features tagged with this value consist of a linear or curved polygon or donut.

MultiSurface

postgis_type: postgis_multisurface

Features tagged with this value consist of a collection of linear and/or curved polygons and/or donuts.

GeometryCollection

postgis_type: postgis_geometrycollection

Features tagged with this value consist of a possibly heterogeneous aggregate.

When writing to PostGIS, the postgis_type can be manually set to postgis_geometrycollection and features will be
combined into collections based on the postgis_collection_id attribute.

Geometry

postgis_type: postgis_geometry

Although not a valid geometry type on an individual feature, this type may be set for the destination geometry column
type to indicate that any geometry is allowable in that column. If the writer directive GENERIC_GEOMETRY is specified
at generation time, all destination feature types will have geometry columns of this type. Alternatively, although it will
not happen by default, this type can be specified on any one or more destination feature types manually to create
generic geometry columns on those specific tables.

Note that although the geometry column is explicitly determined by the user when writing, the reader will attempt to
determine the geometry column name and type using the PostGIS metadata tables.

In cases where the PostGIS reader is applied to databases lacking the proper metadata tables or entries, then the first
column whose type would allow for geometry storage is taken as the geometry column. This decision may cause the
translation to fail if the column does not indeed contain geometry. To work around this case, please use the Post-
greSQL reader instead, which ignores geometry columns. Alternatively, if there are multiple geometry columns or a
mixture of blob columns and geometry columns and the geometry is still desired, try formatting a custom SQL query
that selects the geometry column the first column.

Note also that geometry columns can be stored in either geometry or blob columns but these may contain other data
as well. Geometry columns that do not correspond to the geometry of the feature will be read as hex-encoded strings
and blobs will be read as raw bytes.

Troubleshooting Tips

Problems sometimes arise when attempting to connect to a PostGIS/PostgreSQL database. This is almost always due
to a misconfiguration in the user’s environment.

The following suggestions can often help detect and overcome such problems.

n Ensure you can connect to the database with the host, port, database, user name, and password using psql or
pgAdmin. See PostgreSQL documentation for proper security and connection information, and for the usage of the
psql utility.

n If you try to list the tables and nothing happens, check the log file. There may have been an underlying error that
didn’t generate a dialog. Usually this means a parameter does not exist or permissions are not sufficient to access
the requested resource.

n In most cases, the POSTGIS_DATABASE directive should be left with blank values, with the POSTGIS_DATASET
directive containing the name of the PostGIS database.

n When using a UNIX operating system, the environment variables PGHOST, PGPORT, PGDATABASE, PGUSER and
PGPASSWORD can be used to specify the PostgreSQL connection parameters.

n If the table list in the PostGIS reader input settings box does not display your table, try typing the name with the
schema prefix (e.g., public.mytable). If this works, then your table may not be properly registered in the
PostGIS metadata tables or it may not have a geometry column.

n If the table list in the PostGIS reader input settings box lists your table, but you receive an error message that the
table does not exist when you run the translation, then it is likely that the PostgreSQL table has been deleted with-
out updating the PostGIS metadata tables. Orphaned metadata may continue to exist in the PostGIS metadata
tables. It is suggested that the PostGIS metadata table for the geometry columns be corrected to match only exist-
ing PostgreSQL tables.

n If your data ends up looking garbled using a given encoding, it may be because the encoding of the data does not
match your system encoding. These must match because FME uses the system encoding to set the encoding of the
PostgreSQL client, and then allows the database to convert encodings if necessary between the client and server.

Connecting to PostgreSQL/PostGIS tables in another user's schema

FME uses the Postgres search path to determine which schemas' tables to show in the table list. To set a user's
search path for a session:

SET search_path TO "$user",public;

SET search_path TO "$user",public,schema2,schema3;

To set a user's search path for all future sessions:

ALTER USER <username> SET search_path TO "$user",public;

ALTER USER <username> SET search_path TO "$user",public,schema2,schema3;

To see the current search path:

show search_path;

PostgreSQL Reader/Writer

Format Notes:
This format is not supported by FME Base Edition.

Overview

PostgreSQL is an Object-Relational Database Management System (ORDBMS) that stores attribute information. The
PostgreSQL reader/writer module enables FME to read and write PostgreSQL attribute data.

The PostgreSQL reader/writer is specifically designed to handle the attribute portion of the data in the database.
When reading geometric or Spatial Reference System (SRS) data stored in a PostGIS layer over PostgreSQL, the Post-
GIS reader/writer module should be used instead. The PostgreSQL reader/writer communicates directly with the Post-
greSQL libpq interface for maximum throughput.

This chapter assumes familiarity with PostgreSQL, SQL, the attribute types supported, and its indexing mechanisms.

For more information, please see the PostgreSQL home at

http://www.postgresql.org/

PostgreSQL Quick Facts

Format Type Identifier PostgreSQL

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions None

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Geometry Type postgis_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

http://www.postgresql.org/

Geometry Support

Geometry Supported? Geometry Supported?

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values no

none yes

Reader Overview

FME considers a PostgreSQL dataset to be a database containing a collection of relational tables together with their cor-
responding geometries. The tables must be defined in the mapping file before they can be read. Arbitrary WHERE
clauses and joins are fully supported, as well as an entire arbitrary SQL SELECT statement; however, the user then
assumes responsibility for the correctness of the statement or clause including quoting where necessary. Support for
the @SQL and @Relate FME functions has also been added.

When reading from the PostgreSQL database, each table is considered a feature type in FME and each row of a table
at least one feature in FME.

The basic reading process involves opening a connection to the database, querying metadata, and querying data. The
data is read using a text cursor and rows are fetched to the client machine in batches of 10000 by default. There is
one cursor per input table.

Table and column names are truncated at 64 characters. If duplicate names are produced by truncation, the behavior
is undetermined. Please ensure that table names comply with PostgreSQL naming conventions.

Spaces and special characters are permissible in both table and column names. Case sensitivity has also been imple-
mented, so table and column names are no longer changed to lowercase.

Table listing support when using the PostgreSQL settings boxes has been improved to avoid errors with schemas.

UNICODE support has been added to work with a client’s system encoding. Although there is no way to specify the
encoding explicitly, the client is assumed to have entered data and created tables and columns in the encoding of
their operating system. Multiple system encodings are now supported via the native PostgreSQL conversions between
client and server, particularly if the server encoding is set to UNICODE.

Older schema keywords have been removed and qualified table naming is now supported in the form <sche-
maname>.<tablename>. Additionally, the schema search path is now read and interpreted to determine a user’s
default schema when writing and the available schema to read from when reading. Failing a valid schema search
path, the default public schema will be used for newer databases.

Reader Directives

The directives that are processed by the PostgreSQL reader are listed below. The suffixes shown are prefixed by the
current <ReaderKeyword>_ in a mapping file. By default, the <ReaderKeyword> for the PostgreSQL reader is
POSTGRES_IN.

DATASET/DATABASE

Required/Optional: Required

This specifies the name of the PostgreSQL database. The database must exist in the ORDBMS.

POSTGRES_DATASET testdb

Workbench Parameter: Source PostgreSQL Dataset

HOST

Required/Optional: Required

This specifies the machine running the PostgreSQL ORDBMS as either an IP address or host name. The database must
have proper permissions and be set up to accept TCP/IP connections if connecting from a remote machine.

POSTGRES_IN_HOST myserver

Workbench Parameter: Host

PORT

Required/Optional: Required

When connecting remotely, this specifies the TCP/IP post on which to connect to the ORDBMS service. The default
port is 5432.

POSTGRES_IN_PORT 5432

Workbench Parameter: Port

USER_NAME

Required/Optional: Required

The name of user who will access the database. The named user must exist with appropriate PostgreSQL per-
missions. The default user name is postgres.

POSTGRES_IN_USER_NAME postgres

Workbench Parameter: User Name

PASSWORD

Required/Optional: Optional

The password of the user accessing the database. This parameter is optional when using a trusted connection. Other
authentication types such as password or MD5 require this parameter to be set.

POSTGRES_IN_PASSWORD secret

Workbench Parameter: Password

DEF

Required/Optional: Required

The syntax of the definition is:

POSTGRES_DEF <tableName> \
[postgres_where_clause <whereClause>] \

[<fieldName> <fieldType>] +

OR

POSTGRES_DEF <queryName> \
[postgres_sql_statement <sqlQuery>]

[<fieldName> <fieldType>] +

The <tableName>must match a PostgreSQL table in the database. This will be used as the feature type of all the
features read from the table. The exception to this rule is when using the sql_statement keyword. In this case, the DEF
namemay be any valid alphabetic identifier; it does not have to be an existing table name – rather, it is an identifier
for the custom SQL query. The feature type of all the features returned from the SQL query are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any of the configuration param-
eters are given, they will override, for that table, whatever global values have been specified by the reader keywords
listed above. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
tuples are returned. This keyword will be ignored if
the sql_statement is present.

sql_statement This specifies an SQL SELECT query to be used as the
source for the results. If this is specified, the Post-
greSQL reader will execute the query, and use the
resulting rows as the features instead of reading
from the table <queryName>. All returned features
will have a feature type of <queryName>, and attrib-
utes for all columns selected by the query.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The PostgreSQL reader allows one to use the sql_statement parameter to specify an arbitrary SQL SELECT query
on the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the query to
define a feature. Each of these features will be given the feature type named in theDEF line, and will contain attrib-
utes for every column returned by theSELECT. In this case, all DEF line parameters regarding aWHERE clause
or spatial querying are ignored, as it is possible to embed this information directly in the text of the <sqlQuery>.

The following example selects rows from the table ROADS, placing the resulting data into FME features with a feature
type of MYROADS. Imagine that ROADS defines the geometry for the roads, and has a numeric field named ID, a text
field named NAMEand a geometry column named GEOM.

POSTGRES_DEF MYROADS \
sql_statement ‘SELECT id, name FROM ROADS’

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables files that will be read. If no IDs
are specified, then no tables are read. The syntax of the IDs keyword is:

POSTGRES_IDs <featureType1> \
<featureType2> \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theROADS table for input during a translation:

POSTGRES_IDs ROADS

FEATURES_PER_FETCH

Required/Optional: Optional

In order to avoid loading all the features in memory at once when reading a large dataset, cursors are used to retrieve
the rows from the database. This optional keyword specifies the number or rows to be read at one time from the cur-
sor for a given query. The default is 10000 rows and should be sufficient in most cases. However this may need to be
lowered or raised depending on the capabilities of the specific hardware in use and the data being read.

The example below selects a small set of features per extraction:

POSTGRES_IN_FEATURES_PER_FETCH 5000

Workbench Parameter: Number Of Features To Fetch At A Time

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

This optional specification is used to tell the reader to retrieve the names and the schemas of all the tables in the
source database. If this value is not specified, then it is assumed to be No. When set to Yes, indicates to the reader to
return all the schemas of the tables in the database.

The syntax of theRETRIEVE_ALL_SCHEMAS directive is:

POSTGRES_RETRIEVE_ALL_SCHEMAS Yes

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS: this optional specification is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to Yes, then RETRIEVE_ALL_
SCHEMAS takes precedence. If this value is not specified, then it is assumed to be No.

The syntax of the RETRIEVE_ALL_TABLE_NAMES directive is:

POSTGRES_RETRIEVE_ALL_TABLE_NAMES Yes

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The PostgreSQL writer module stores both geometry and attributes into an PostgreSQL database. Note that attributes
are always written as lowercase. The PostgreSQL writer provides the following capabilities:

l Transaction Support: The PostgreSQL writer provides transaction support that eases the data loading process.
Occasionally, a data load operation terminates prematurely due to data difficulties. The transaction support pro-
vides a mechanism for reloading corrected data without data loss or duplication.

l Index Creation: The PostgreSQL writer can set up and populate indexes as part of the loading process. By
default, no indexes are created. Additional columns can be individually indexed. Composite column indexes are not
supported at this time.

l Bulk Loading: The PostgreSQL writer uses a bulk loading technique to ensure speedy data load.

Writer Directives

The directives that are processed by the PostgreSQL writer are listed below. The suffixes shown are prefixed by the
current <WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the PostgreSQL writer is
POSTGRES_OUT.

DATASET/DATABASE, HOST, PORT, USER_NAME, PASSWORD

These directives operate in the samemanner as they do for the PostgreSQL reader.

DEF

Each PostgreSQL table must be defined before it can be written. The general form of a PostgreSQL definition state-
ment is:

POSTGRES_DEF <tableName> \
 [postgres_type <postgis_type>] \
 [postgres_writer_mode (insert|update|delete|inherit_from_writer)] \
 [postgres_drop_table (yes|no)] \
 [postgres_truncate_table (yes|no)] \
 [postgres_create_with_oids (yes|no)] \
 [postgres_vacuum_analyze (yes|no)] \
[<fieldName> <fieldType>][,<indexType>]*

The table definition allows control of the table that will be created. If the table already exists, the majority of the post-
gis_ parameters will be ignored and need not be given. If the fields and types are listed, they must match those in the
database.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

Required/Optional

Required

Configuration Parameters

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the spec-
ified name exists, it will be overwritten if either the post-
gres_overwrite_table DEF line parameter set to YES or if
the global writer keyword type postgres_out_overwrite is
set to YES. Otherwise the table will be appended to. Valid
values for table names include any character string devoid
of SQL offensive characters and less than 32 characters in
length.

postgres_type The type of geometric entity stored within the feature. The
valid values for the type are listed below:
postgres_none

postgres_mode The the default operation mode of the feature type in
terms of the types of SQL statements sent to the data-
base.Valid values are INSERT, UPDATE, DELETE and
INHERIT_FROM_WRITER.
Note that INSERT mode allows for only INSERT operations
whereas UPDATES and DELETE can be overwritten at the
feature levels. INHERIT_FROM_WRITER simply indicates to
take this value from the writer level and not to override it
at the feature type level.
Default: INHERIT_FROM_WRITER

postgres_drop_table This specifies that if the table exists by this name, it should
be dropped and recreated before any features are written
to it.
This parameter, along with postgres_truncate_table, dep-
recates the older postgres_overwrite_table parameter.
Default: NO

postgres_truncate_table This specifies that if the table exists by this name, it should
be truncated before any features are written to it.
This parameter, along with postgres_drop_table, dep-
recates the older postgres_overwrite_table parameter.
Default: NO

postgres_create_with_oids Create the table including a system OID column as a
unique identifier. If no, then the OID column is not created.
Default: yes

postgres_vacuum_analyze Perform the database function to vacuum and analyze the
table once successfully written. This will build statistics for
the table.
Default: yes

fieldName The name of the field to be written. Valid values for field

Parameter Contents

name include any character string devoid of SQL offensive
characters and less than 32 characters in length.

fieldType The type of a column in a table. The valid values for the
field type are listed below:
bool
char(width)
bpchar(width)
varchar(width)
int2
int4
int8
text
bytea
oid
serial
float4
float8
money
date
time
timetz
timestamp
timestamptz

indexType The type of index to create on the given field. The valid
values for the index type are listed below:
BTREE (default attribute index)
RTREE
HASH
PRIKEY (primary key)

START_TRANSACTION

Required/Optional: Optional

This statement tells the PostgreSQL writer module when to start actually writing features into the database. The Post-
greSQL writer does not write any features until the feature number of features are skipped, and then it begins writing
the following features. Normally, the value specified is zero – a non-zero value is only specified when a data load oper-
ation is being resumed after failing partway through.

POSTGRES_OUT_START_TRANSACTION 0

Workbench Parameter: Starting Feature

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If thePOSTGRES_OUT_TRANSACTION_INTERVAL statement is not specified, then a value of 1000 is used
as the transaction interval.

POSTGRES_OUT_TRANSACTION_INTERVAL 2000

Workbench Parameter: Features Per Transaction

BULK_COPY

Required/Optional: Optional

This statement tells the PostgreSQL writer module to insert data into the database using either SQL INSERT state-
ments or the SQL COPY command. The default option is the bulk copy using the COPY command, which yields the
best performance. The bulk delimiter is no longer user-adjustable – the escaping of it has improved and is no longer
necessary as a backup measure. However, if individual inserts are desired, this option can be set to NO.

POSTGRES_OUT_BULK_COPY YES

Workbench Parameter: Bulk COPY Insert

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This directive informs the Postgres writer which SQL operations will be performed by default by this writer. This oper-
ation can be set to INSERT, UPDATE or DELETE. The default writer-level value for this operation can be over-
written at the feature type or table level. The corresponding feature type DEF parameter name is called POSTGRES_
MODE. It has the same valid options as the writer-level mode, as well as the value INHERIT_FROM_WRITER (which
causes the writer level mode to be inherited by the feature type as the default for features contained in that table).

The operation can be set specifically for individual feature as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted off individual features and all features are inserted unless otherwise
marked as update or delete features. These are skipped.

If the POSTGRES_WRITER_MODE statement is not specified, then a value of INSERT is given.

POSTGRES_OUT_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

GENERIC_GEOMETRY

Required/Optional: Optional

This directive is unique in that it only applies at generation time and not at translation time. The default value of NO
indicates that we want the previous behavior of creating geometrically constrained geometry columns on the des-
tination tables. For example, a POINT geometry table would be restricted only to points. Now we have the option to
create generic or non-constrained geometry column types.

Effectively this means you can insert multiple geometry types into one table. Specifically the geometry column is
created to have the generic type GEOMETRY and there are no constraints placed on the geometry types allowed.

If the POSTGIS_OUT_GENERIC_GEOMETRY statement is not specified, then a value of NO is given.

POSTGIS_OUT_GENERIC_GEOMETRY YES

Feature Representation

Features read from PostgreSQL consist of a series of attribute values only and no geometry. The feature type of each
feature is as defined on its DEF line but the only type used is postgis_none. Underlying PostgreSQL geometries are not
read as geometries but are interpreted as strings.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Attribute Name Contents

postgres_type The type of geometric entity stored within the fea-
ture. The valid values for the object model are
listed below:
postgres_none

Features read from, or written to, PostgreSQL have an attribute for each column in the database table. The feature
attribute name will be the same as the source or destination column name. The attribute and column names are case-
sensitive.

No Coordinates

postgres_type: postgres_none

Features with no coordinates are tagged with this value when reading or writing to or from PostgreSQL. This is the
default.

Troubleshooting

Problems sometimes arise when attempting to connect to a PostgreSQL database. This is almost always due to a mis-
configuration in the user’s environment.

The following suggestions can often help detect and overcome such problems.

n Ensure you can connect to the database with the host, port, database, user name, and password using psql. See
PostgreSQL documentation for proper security and connection information, and for the usage of the psql utility.

n In most cases, the POSTGRES_DATABASE keyword should be left with blank values, with the POSTGRES_DATASET
keyword containing the name of the PostgreSQL database.

n When using a UNIX operating system, the environment variables PGHOST, PGPORT, PGDATABASE, PGUSER and
PGPASSWORD can be used to specify the PostgreSQL connection parameters.

n If the table list in the PostgreSQL reader input settings box does not display your table, try typing the name with
the schema prefix, i.e. public.mytable. If this works, then your search path for schemas may not be set to the
desired values.

n If your data ends up looking garbled using a given encoding, it may be because the encoding of the data does not
match your system encoding. These must match because FME uses the system encoding to set the encoding of the
PostgreSQL client, and then allows the database to convert encodings if necessary between the client and server.

Connecting to PostgreSQL/PostGIS tables in another user's schema

FME uses the Postgres search path to determine which schemas' tables to show in the table list. To set a user's
search path for a session:

SET search_path TO "$user",public;

SET search_path TO "$user",public,schema2,schema3;

To set a user's search path for all future sessions:

ALTER USER <username> SET search_path TO "$user",public;

ALTER USER <username> SET search_path TO "$user",public,schema2,schema3;

To see the current search path:

show search_path;

Regional Geographic Information System (REGIS) Read-
er/Writer

The REGIS Reader and Writer provides FME with access to the REGIS file format.

Overview

The following files are associated with the REGIS Reader and Writer. The topology file, however, is supported only by
the Reader.

The following extensions are added to the basename of the REGIS files.

File Name Extension Contents

.fea The feature file contains the Geometric
data.

.top This file contains the topological infor-
mation of the feature file. This is sup-
ported only by the Reader.

The REGIS Reader and Writer support the storage of point, line, text and polygon in its data files. Additional user-
defined attributes are not supported.

FME considers a REGIS dataset to be a collection of REGIS files in a single directory.

REGIS Quick Facts

Format Type Identifier REGIS

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Directory or File

Feature Type File base name

Typical File Extensions .fea

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type regis_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none no

Reader Overview

The REGIS Reader first scans the directory it is given for the requested REGIS files. For each feature file found , the
Reader checks to see if the corresponding topology file exists. If it does not exist, a warning message is given. If it
does exist, all the features in the file are processed. The Reader extracts features from the file one at a time, and
passes them on to the rest of the FME for further processing. When the file is exhausted, the REGIS Reader moves on
to the next file in the directory. Optionally a single REGIS file can be specified. If this is the case, only that REGIS file is
read.

Reader Directives

The directives processed by the REGIS reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the REGIS reader is REGIS.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the REGIS files to be read, or the name of a single REGIS file to
be read. A typical mapping file fragment specifying an input REGIS dataset looks like:

REGIS_DATASET /usr/data/REGIS

Workbench Parameter: Source Regional Geographic Information System (REGIS) File(s)

DEF

Required/Optional: Required

Each REGIS file must be defined before it is read. The definition specifies only the base name of the file, the type of
geometry it contains, and the names and the types of all attributes. The syntax of a REGISDEF line is:

<ReaderKeyword>_DEF <baseName> \
[<attrName> <attrType>]+

Field Type Description

char(<width>) Character fields store fixed-length strings.
The width parameter controls the maximum
characters that can be stored by the field.
When a character field is written, it is right-
padded with blanks, or truncated, to fit the
width. When a character field is retrieved,
any padding blank characters are stripped

Field Type Description

away.

date Date fields store dates as character strings
with the format YYYYMMDD.

logical Logical fields store TRUE/FALSE data. Data
read to or written from such fields must
always have a value of either true or false.

number(<width>,<decimals>) Number fields store single and double pre-
cision floating point values. The width param-
eter is the total number of characters
allocated to the field, including the decimal
point. The decimals parameter controls the pre-
cision of the data and is the number of digits
to the right of the decimal.

The following mapping file fragment defines a sample REGIS line file.

REGIS_DEF landcover regis_type regis_line

IDs

Required/Optional: Optional

This optional specification is used to limit the available REGIS files read. If no IDs are specified, then all defined and
available REGIS files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> … \
<baseNameN>

The base names correspond to those used in theDEF lines. The example below selects only the roads REGIS file for
input during a translation:

REGIS_IDs roads

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The REGIS Writer creates and writes features to REGIS files in the directory specified by theDATASET keyword. As
with the Reader, the directory must exist before the translation occurs. Any existing REGIS files in the directory are
overwritten by the new data. As features are routed to the Writer, it determines the file into which the features are
written based on the feature type of the feature. Many REGIS files can be written during a single FME session.

Topology files are not supported by the Writer.

Writer Directives

The directives that are processed by the REGIS writer are listed below. The suffixes shown are prefixed by the cur-
rent <WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the REGIS writer is REGIS.

DATASET, DEF

These directives are processed as described in the Reader Directives section.

Feature Representation

REGIS features consist of geometry and predefined attributes only. It does not make use of any user-defined attri-
bution. All REGIS features contain a regis_type attribute, which identifies its geometric type. In addition to the
generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature Attributes), REGIS
features also contain additional attributes specific to the geometric type. These are described in subsequent sections.

Attribute Name Contents

regis_type The type of the geometry supported by REGIS file.
This attribute will contain one of:
regis_point
regis_line
reigs_polygon
regis_text

Default: No default

Point

regis_type: regis_point

This is the point feature. There are no additional attributes for this geometric type.

Line

regis_type: regis_line

This specifies a line feature. At least two distinct coordinates have to be specified in order for FME to process the fea-
ture correctly. There are no additional attributes for this geometric type.

Polygon

regis_type: regis_polygon

This is a polygon feature. In this version of the REGIS Reader and Writer, only simple polygons are supported (donut
features are not supported). REGIS polygons consist of at least four coordinates, where the first and last coordinates
are exactly the same. There are no additional attributes for this geometric type.

Text

regis_type: regis_text

This is a text feature. Exactly one coordinate must be specified for this text feature.

The following table lists the special FME attribute names used to control the REGIS text settings.

Attribute Name Contents

regis_rotation Degrees by which the text string is rotated.
Range: 0...360
Default: 0

regis_text_string The text string of the text feature.
Range: Maximum 176 characters
Default: Blank

regis_text_size The size of the text string.
Range: 32-bit floating point number
Default: 10

S-57 (ENC) Hydrographic Data Reader

Format Notes
• This format is not supported by FME Base Edition.
• This chapter also contains information applicable to theAdditional Military Layers (AML) reader.

Overview

The S-57 Reader module provides the Feature Manipulation Engine (FME) with access to data in International Hydro-
graphic Organization (IHO) S-57 formatted file sets. While any S-57 dataset should be supported, this reader has
only been fully tested with S-57 Electronic Navigational Chart (ENC) profile products. Note that S-57 Editions 3.0 and
3.1 are supported.

The S-57 format is a standard published by IHO and more information can be found at:

http://www.iho.shom.fr/

An online, browsable web interface to the S-57 Object and the Attribute Catalog can be found on the Universal Sys-
tems website at:

http://www.universal.ca/S-57/frames/S57catalog.htm

Some aspects of an S-57 transfer, such as data quality information, is not accessible via the S-57 reader, however, a
user well-versed in the S-57 format can extract it using the ISO8211 reader.

S-57 Quick Facts

Format Type Identifier S57

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File/Catalog

Feature Type Object class

Typical File Extensions .000, 030

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support Yes

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type s57_type

Encoding Support Yes

../../../../../Content/aml/aml.htm
../../../../../Content/aml/aml.htm
../../../../../Content/aml/aml.htm
../../../../../Content/aml/aml.htm
../../../../../Content/aml/aml.htm
http://www.iho.shom.fr/
http://www.universal.ca/S-57/frames/S57catalog.htm
http://www.universal.ca/S-57/frames/S57catalog.htm

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The S-57 Reader module produces FME features for all S-57 features in one or more related S-57 data files. An S-57
dataset can be an S-57 catalog file in which case, all files referred to from the catalog are selected, or an individual S-
57 data file.

S-57 feature objects are translated into FME features. S-57 geometry objects are automatically collected and formed
into geometries on the features. Geometry objects are not separately accessible with the S-57 reader.

The FME S-57 reader supports S-57 update files. S-57 update files contain information on how to update a dis-
tributed S-57 data file. Update files have a file extension of 001, 002, etc.

Reader Directives

The directives processed by the S-57 reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the S-57 reader is s57.

DATASET

Required/Optional: Required

The dataset may be specified as an S-57 data file or S-57 catalog file. If a single data file is selected, only that file will
be in the dataset. If an S-57 catalog file – normally called CATALOG.030 – is selected, all S-57 data files listed in it
will be selected.

For example:

S57_DATASET NEWFILES\I

or

S57_DATASET NEWFILES\I\CA39995I.000

or

S57_DATASET NEWFILES\I\CATALOG.030

Workbench Parameter: Source S-57 (ENC) Hydrographic Data File(s)

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined S-57 files read. If no IDs are specified, then all
available S-57 files in the dataset are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> ... \
<baseNameN>

The example below selects only theCA39995I.000 file for input during a translation:

S57_IDs CA39995I

Workbench Parameter: Feature Types to Read

FORCE_GENERIC

Required/Optional: Optional

The FME is programmed to recognize all feature object classes defined as part of the S-57 standard and to provide a
feature schema for each object class with the set of attributes defined in the standard. However, in some cases it may
be convenient to discard object class specific attributes and group all features in a small set of feature types based on
the geometry type, rather than the S-57 object class.

The FORCE_GENERIC keyword can be used to force all features to be treated as one of the feature types Point,
Line, Area or Meta depending on their geometry. In this case, object-class-specific attributes are discarded, but the
attributes GRUP, OBJL, RVER, AGEN, FIDN, DSNM, LNAM, and LNAM_REFS common to all features are
still generated.

For example:

S57_FORCE_GENERIC ON

If the $FME_HOME/s57/*.csv files used to define the S-57 object classes cannot be found at run-time, the FORCE_
GENERIC flag will automatically be turned on and an appropriate warning will be generated in the reader’s log out-
put.

Workbench Parameter: <WorkbenchParameter>

UPDATES

Required/Optional: Optional

The S-57 reader will by default apply all updates available for the datasets read. That is, if there are files ending in
.001, .002 and so on, in the same directory with base datasets (ending in .000), these update files will be read
and applied to the base feature set in accordance with S-57 update rules. TheUPDATES directive in the mapping
file may be set to IGNORE to ignore all updates. The default value is APPLY indicating that updates should be
applied.

Workbench Parameter: Action to take on update files

FULL_STRUCTURE

Required/Optional: Optional

This keyword allows primitives to be read as individual features whereby each feature has some extra information
which could be used in future for writing to a S-57 dataset (not available yet). By default, this keyword is OFF.

For example:

S57_FULL_STRUCTURE ON

Workbench Parameter: <WorkbenchParameter>

PROFILE

Required/Optional: Optional

This specifies which enhanced version of S-57 dataset to read. This is used only during schema generation (mapping
file or workspace generation) and has no effect during normal reading. The original specifications for S-57 could be
modified by adding additional object classes or adding more attributes therefore marking it as a different flavor of

original S-57. By setting this keyword to either Default, Additional_Military_Layers or Inland_
Waterways the reader can then process the schema accordingly. By default, this keyword is set to Default
which means the dataset is interpreted as the original S-57.

For example:

Generate S57 NULL "<source datase>" "<mapping file name>" ----
Source_PROFILE_IN "Inland_Waterways"

Note: PROFILE_IN is the macro to use to set the value for the keyword PROFILE.

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

Normally, all features read from S-57 are assigned a feature type based on the name of the object class (OBJL) to
which they belong. For instance, with an OBJL value of 2, the feature is an Airport/airfield and has a short name of
AIRARE which is used as the FME feature type. A typical S-57 transfer may have in excess of 100 feature types.

Each feature type has a predefined set of attributes as defined by the S-57 standard. For instance, the airport
(AIRARE) object class can have the the AIRARE, CATAIR, CONDTN, CONVIS, NOBJNM, OBJNAM, STATUS, INFORM, NIN-
FOM, NTXTDS, PICREP, SCAMAX, SCAMIN, TXTDSC, RECDAT, RECIND, SORDAT, and SORIND attributes. These short
names can be related to longer, more meaningful names using an S-57 object/attribute catalog, such as the S-57
standard document itself or the files in the fme/s57 directory. Such a catalog can also be used to establish all avail-
able object classes and their attributes.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes) the following common attributes are also added – these include generic attributes that appear on all fea-
tures, regardless of whether object class is turned on.

Attribute Name Description Defined On

s57_type Geometry type of this feature. One of
the S57_point, s57_point3d, s57_line,
s57_polygon or s57_no_geom files.

Note that this relates closely to the S-57 PRIM field.

All features

s57_update_file{} List of file names that have been used to up¬date
the current feature. These list entries are paired
with the s57_update_type field so that together
they specify a list update operations from a list of
files. For example, s57_update_file{0} =

Updated features

Attribute Name Description Defined On

mys57file.001 s57_update_type{0} = INSERT

s57_update_type{} The list of update types that have been performed
on the feature. Possible values are INSERT, MOD-
IFY or DELETE. These list entries are paired with
the s57_update_type field so that together they
specify a list update operations from a list of files.
For example, s57_update_file{0} = mys57file.001
s57_update_type{0} = MODIFY s57_update_
file{1} = mys57file.002 s57_update_type{1} =
MODIFY

Updated features

COLOUR FME will interpret the color value and set
the fme_color attribute. COLOUR is a list
type attribute (i.e. the value may be
“2,6,2”). FME will select the first color
value in the list as the default color for
the feature.

Some features

GRUP Group number All features

OBJL Object label code
This number indicates the object class of
the features.

All features

RVER Record Version All features

AGEN Numeric agency code, such as 50 for the
Canadian Hydrographic Service.
A potentially outdated list is available in
$FMEHOME/s57/agencode.txt.

All features

FIDN Feature identification number All features

FIDS Feature identification subdivision All features

LNAM Long name. An encoding of AGEN, FIDN,
and FIDS used to uniquely identify these
features within an S-57 file.

All features

LNAM_REFS{} List of LNAM values of other features
related to this feature.

Some features

DSNM Dataset name. The file name where the
feature came from. Used with LNAM to
form a unique dataset wide identifier for
a feature.

All features

INFORM Informational text Some features

NINFOM Informational text in national language Some features

OBJNAM Object name Some features

Attribute Name Description Defined On

NOBJNM Object name in national language Some features

SCAMAX Maximum scale for display Some features

SCAMIN Minimum scale for display Some features

SORDAT Source date Some features

The S-57 reader also depends on CSV text files with definitions of S-57 object classes, and their attributes. These are
located in the files s57attributes.csv, s57objectclasses.csv, and s57expectedinput.csv.
These CSV files are installed in $FME_HOME/s57. If, for some reason, they aren’t found, the reader will default to
reading all objects using the FORCE_GENERIC ON schema.

The S-57 ENC format supports “list” attributes. FME represents list attributes as a comma-separated list for the attrib-
ute value. For example, COLOUR is a list type attribute and may have a value “2,6,2”.

Soundings

Depth soundings are handled somewhat specially in the S-57 format to efficiently represent the many available data
points. In S-57, one sounding feature can have many sounding points. The FME S-57 reader splits each of these out
into its own feature type, SOUNDG feature, with an s57_type of s57_point3d. All soundings from a single feature
record have the sameAGEN, FIDN, FIDS, and LNAM values.

Feature Relationships (LNAM)

The S-57 format has a concept of features being related to one another by way of the LNAM subfield of the FFPT
(Feature to Feature Object Pointer) field. These relationships are encoded in the LNAM_REFS{} list attribute of FME
features when such relationships exist.

In the S-57 format, these relationships are marked as being master, slave, or peer-to-peer. In practice, though, the
only values that exist aremaster-to-slave pointers, so the explicit relationship is not preserved.

Each feature is also tagged with an LNAM value, which is the unique identifier for the feature within a single file. The
FME ReferenceFactory can be used to associate the geometry of slave features with their master as shown in
this example.

#==
Collect geometries for C_AGGR objects.

FACTORY_DEF * TeeFactory \
FACTORY_NAME AggrGeomDuplicate \
INPUT FEATURE_TYPE * s57_type s57_point \
INPUT FEATURE_TYPE * s57_type s57_line \
INPUT FEATURE_TYPE * s57_type s57_polygon \
OUTPUT FEATURE_TYPE * \
OUTPUT FEATURE_TYPE GeomSource \
@KeepAttributes(LNAM,DSNM)

FACTORY_DEF * ReferenceFactory \
FACTORY_NAME AggrCollector \
INPUT REFERENCEE FEATURE_TYPE GeomSource \
INPUT REFERENCER FEATURE_TYPE C_AGGR \
REFERENCEE_FIELDS LNAM \
REFERENCER_FIELDS LNAM_REFS{} \
REFERENCE_INFO GEOMETRY \
GROUP_BY DSNM \
AGGREGATE_ONLY \
OUTPUT COMPLETE FEATURE_TYPE * \
OUTPUT INCOMPLETE FEATURE_TYPE *

Scalable Vector Graphics (SVG) Writer

The Scalable Vector Graphics (SVG) Writer enables FME to write documents that conform to the World Wide Web Con-
sortium’s (W3C) SVG 1.1 specification. This chapter assumes familiarity with the specification.

Overview

FME’s SVG output is optimal for scripting and spatial information display. Specific features include:

l coordinate preservation;

l layered spatial geometry with adjustable paint order;

l template processing for incorporation of predefined scripts, style sheets, images and other SVG entities;

l single SVG element output for each FME feature (including features with donut and aggregate geometry)

l international character support.

l gzip compression support.

SVG Quick Facts

Format Type Identifier SVG

Reader/Writer Writer

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type group ID attribute name

Typical File Extensions .svg, .svgz

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support Yes

Spatial Index Not applicable

Schema Required Optional

Transaction Support No

Geometry Type svg_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid no

Geometry Support

Geometry Supported? Geometry Supported?

elliptical arc yes surface no

ellipses yes text yes

line yes z values no

none yes

Writer Overview

The SVG writer converts a set of FME features into geometric SVG elements. These elements are output in a document
with three sections: the template section, the layer section and the geometric section.

l The template section is composed of a single non-extended SVG document.

l The layer section is embedded in the template section, and is composed of zero to more SVG group elements

l The geometric section is embedded in the layer section, and is composed of zero to more geometric SVG elements.

In the layer section, one SVG group element is produced for each unique feature type in a writer’s feature set. The id
attribute on this group element is set equal to the feature type name. The layer is inserted immediately before the tem-
plate document’s closing root element tag.

The document’s geometric section contains a single SVG element for each FME feature that is sent to the writer.
These elements are grouped according to their feature type and embedded under the group element with a matching
ID in the layer section.

The SVG writer does not check FME attribute name characters that are invalid XML attribute name characters. FME
attribute names are transcoded from the operating system’s local code page to UTF-8 and written directly to the SVG
document; the writer does not escape any attribute name characters into character entities. It is the responsibility of
the user to ensure the FME attribute names are valid XML attribute names.

Writer Directives

The directives listed below are processed by the SVG writer. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the SVG writer is SVG.

DATASET

Required/Optional: Required

The value for this keyword is the pathname for the output SVG file. If a file with this pathname already exists, then it
will be overwritten. A typical mapping file fragment specifying an output SVG dataset looks like:

SVG_DATASET /tmp/outputFile.svg

If the output filename’s extension is svgz then the output document will be compressed using gzip compression.

Note that all SVG documents are written using UTF-8 encoding.

Workbench Parameter: Destination SVG File

TEMPLATE

Required/Optional: Optional

This optional parameter directs the writer to the location of the SVG document to use as the outline of the output data-
set.

The syntax for this keyword’s value is:

<WriterKeyword>_TEMPLATE <value>

(where <value> is location of the template path)

If this keyword is not provided in the mapping file, then the file named defaultTemplate.svg under the svg directory in
the FME home directory is used.

The template document has several uses including: the insertion of predefined geometric elements, the inclusion of
Cascading Style Sheets, and the embedding of scripting information. There are a few issues that must be considered
to ensure proper template processing. The template must conform to the non-extended SVG language defined by the
SVG 1.1 specification. The encoding of the template must be one of the following: ASCII, UTF-8, UTF-16, UCS4, ISO-
8859-1 or Windows-1252. Note that the encoding of the output SVG document is always UTF-8. Any document type
declaration provided in the template will be overridden in the output document.

Two placeholder macros have been defined for use in the SVG template in order to retreive information specified in
other keywords:

l $(FME_SVG_ATTR_NS_PREFIX) will be replaced with the value of the ATTR_NAMESPACE_PREFIX key-
word, and

l $(FME_SVG_ATTR_NS_URI) will be replaced with the value of the ATTR_NAMESPACE_URI keyword.

These macros will only work inside CDATA sections (<![CDATA[...]]>) of the SVG template. If they are found
outside a CDATA section, they will remain unchanged.

Workbench Parameter: Template File

COORDINATE PRECISION

Required/Optional: Optional

This optional parameter specifies the number of decimal digits to use when writing an SVG element coordinate’s
value. The default is 6. Specifying a larger value increases coordinate precision and may increase rendering pre-
cision.

Workbench Parameter: Precision

NORMALIZE

Required/Optional: Optional

This optional parameter will normalize the lower coordinate bounds of the writer’s feature set to (0,0). Normalization
can reduce rendering inaccuracies by SVG viewers with small coordinate precision capability. A normalized doc-
ument’s file size is typically smaller than a non-normalized version.

Workbench Parameter: Normalize

DEF

Required/Optional: Optional

The syntax for DEF is:

<WriterKeyword>_DEF <FeatureType>
SVG_PAINT_ORDER [0-9]+
SVG_LAYER_STYLE string

<UserAttributeName0> char([0-9]+)
...
<UserAttributeNameN> char([0-9]+)

The SVG_PAINT_ORDER parameter on a DEF line is used to determine the order of feature output. Features in layers
that have a higher value for this parameter will be output last. Following SVG’s “painter” algorithm, features that are
in layers with higher values will be painted last when the SVG document is rendered.

The SVG_LAYER_STYLEparameter on a DEF line is used to specify the value to set the layer’s STYLE attribute in the
output layer group.

The user attribute keywords specify which FME attributes to extract from an incoming FME feature. The extracted
FME attributes are embedded in the geometric element’s attribute list.

If there are no user attribute DEF line parameters specified, then no FME user attributes will be inserted in any SVG
element’s attribute list, and no SVG DTD extension is produced.

ABSOLUTE_COORDINATES

Required/Optional: Optional

Allows absolute instead of relative coordinates to be used for lines and polygons that are written out as <path> ele-
ments. The valid values for this keyword are Yes and No; its default value is No.

Workbench Parameter: Use absolute Coordinate

WHITE_STROKES_TO_BLACK

Required/Optional: Optional

Determines whether the SVG writer should automatically switch white fme_color specifications into black. This
directive does not affect the svg_color (that is, the svg_color attribute takes precedence over the fme_
color). The valid values for this keyword are Yes and No; its default value is Yes.

Workbench Parameter: Automatically turn white strokes into black

DOCTYPE_EXTERNAL

Required/Optional: Optional

Determines if the SVG file depends on an external SVG DTD. The valid values for this keyword are Yes (default value)
and No. When set to Yes the document type declaration’s public and system identifier for SVG 1.1 are used by
default, but these default identifiers can also be overwritten with the DOCTYPE_PUBLIC_ID and DOCTYPE_SYS-
TEM_ID keywords.

Workbench Parameter: Reference external SVG DTD

DOCTYPE_PUBLIC_ID

Required/Optional: Optional

This keyword only applies when the DOCTYPE_EXTERNAL keyword is set to Yes. It specifies the public identifier
for the document type declaration. This keyword must be used in conjunction with the DOCTYPE_SYSTEM_ID key-
word, that is, a system identifier must also be simultaneously specified; otherwise, this keyword has no effect.

Workbench Parameter: DOCTYPE public identifier

DOCTYPE_SYSTEM_ID

Required/Optional: Optional

This keyword only applies when the DOCTYPE_EXTERNAL keyword is set to Yes. It specifies the system identifier
for the document type declaration. This keyword can be used alone or in conjunction with the DOCTYPE_SYSTEM_
ID keyword.

Workbench Parameter: DOCTYPE system identifier

ATTR_NAMESPACE_PREFIX

Required/Optional: Optional

This directive specifies the prefix which will be used to identify the namespace of all user attributes in the SVG doc-
ument.

Each user attribute written to the SVG file will be written as an XML attribute with the format namespace_prefix:user_
attr = “value”.

The default namespace prefix is “fme”.

Workbench Parameter: Attributes Namespace Prefix

ATTR_NAMESPACE_URI

Required/Optional: Optional

This directive specifies the URI with which the namespace prefix (specified by ATTR_NAMESPACE_PREFIX) will
be associated. This will be the namespace URI for all user attributes in the SVG document. (Note that the writer does
not check if this is a valid URI that complies with XML standards.)

The namespace will be defined as follows, where namespace_prefix is the value defined by ATTR_NAMES-
PACE_PREFIX and namespace_uri is defined by xmlns:namespace_prefix=“namespace_uri”

The default value is “http://www.safe.com/fme”

Workbench Parameter: Attributes Namespace URI

VIEWBOX_MINX, VIEWBOX_MINY, VIEWBOX_WIDTH, VIEWBOX_HEIGHT

Required/Optional: Optional

These directives allow the user to set viewbox size when writing to SVG format. By default, the viewbox is not avail-
able. Only when the user has set all four parameters (listed below), the viewbox will be displayed.

Syntax for the values is:

<WriterKeyword>_VIEWBOX_MINX<value>
<WriterKeyword>_VIEWBOX_MINY<value>
<WriterKeyword>_VIEWBOX_WIDTH<value>
<WriterKeyword>_VIEWBOX_HEIGHT<value>

All values must be specified in decimal, integer or scientifc notation.

Workbench Parameter: Viewbox - Min x, Viewbox - Min y, Viewbox - Width, Viewbox - Height

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Any feature that is sent to the SVG writer has several attributes that the writer uses to determine that feature’s geo-
metric representation in SVG. The start of this processing occurs when the writer examines the feature’s svg_type
attribute. Once the writer determines this attribute’s value, it can process the other attribute information required to
complete the geometric conversion process. If, for example, the feature has an svg_type of svg_arc, then the writer
will retrieve the svg_primary_axis, svg_secondary_axis, svg_start_angle and svg_rotation attributes to deter-
mine what geometric attribute values will exist in the feature’s path element representation.

All format-specific attributes begin with svg_ and are predefined in this section’s tables. In addition to format attrib-
utes, the SVG writer can process user-defined attributes. The writer extracts these user attributes from the incoming
features and inserts them the output element’s attribute list. To determine which attributes to extract, the writer
examines its mapping file’s DEF lines. The feature’s feature type must match the DEF lines type for this extraction to
occur. The user-defined attributes are defined in the SVG element’s attribute list under the qualified name prefix
fme. An extension to the SVG DTD is produced to accommodate these user-defined attributes. This extension is
defined in the document’s internal document type declaration.

When producing an element’s attribute list, the writer will examine the contents of the attribute values to determine if
there are any < or " characters. If these values are present, they are output using < and " respectively. Attrib-
ute values are embedded in an element’s attribute list using the quote (") delimiter.

The following table lists the format attributes that are common to all features sent to the SVG writer. Other than svg_
color and svg_fill_color, all attributes in this table have a direct mapping to the attribute names that can be set on individ-
ual SVG elements. Selected SVG elements attribute names have been prepended with a svg_ string to produce the
FME attribute names.

Attribute Name Contents

svg_color The color used to stroke an element. The string is for-
matted with three comma-separated values rep-
resenting the ordered intensities red, green, and
blue. The individual intensity values are character
decimal character strings that can range in value
from 0 to 1 with 1 being the highest. See note on
color below.
Range:
string

0.0..1.0, 0.0..1.0, 0.0..1.0
Default: None

svg_fill_color The color used to fill an element. The string is for-
matted with three comma-separated values rep-
resenting the ordered intensities red, green, and
blue. The individual intensity values represent dec-
imals that can range in value from 0 to 1 with 1 being
the highest. This value is not applicable to svg_line or
svg_arc features. See note on color below.
Range:
string
0.0..1.0, 0.0..1.0, 0.0..1.0
Default: None

svg_id An element’s unique identifier. Directly maps to an
element’s id attribute. Refer to the XML 1.0 spec-
ification for applicable values. It is strongly rec-
ommended that users not create IDs that begin with
“FME_”.
Range: string
Default: None

svg_class Assigns a class name or set of class names to an ele-
ment.
Directly maps to an element’s class attribute. Refer
to the SVG 1.1 specification for applicable values.
Range: string
Default: None

svg_style Specifies style information for an element. Directly
maps to an element’s style attribute. Refer to the
SVG 1.1 specification for applicable values.
Range: string
Default: None

svg_onfocusin Identifies the script method to call when an element

Attribute Name Contents

recieves focus. Directly maps to an element’s onfo-
cusin attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onfocusout Identifies the script method to call when an element
loses focus. Directly maps to an element’s onfo-
cusout attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onclick Identifies the script method to call when a pointing
device button is clicked over an element. Directly
maps to an element’s onclick attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onmousedown Identifies the script method to call when a pointing
device button is pressed over an element. Directly
maps to an element’s onmousedown attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onmouseup Identifies the script method to call when a pointing
device button is release over an element. Directly
maps to an element’s onmouseup attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onmouseover Identifies the script method to call when a pointing
device button is moved on to an element. Directly
maps to an element’s onmouseover attribute.
Range: string (must match an available script
method ID)
Default: None

svg_onmousemove Identifies the script method to call when a pointing
device button is moved while it is over an element.
Directly maps to an element’s onmousemove attrib-
ute.
Range: string (must match an available script

Attribute Name Contents

method ID)
Default: None

svg_onmouseout Identifies the script method to call when a pointing
device button is moved away from an element.
Directly maps to an element’s onmouseout attribute.
Range: string (must match an available script
method ID)
Default: None

Note:

The attributes fme_color and svg_color can both be used to set the value on an element’s stroke attribute.
fme_color and svg_color are translated to SVG’s RGB function syntax. For the case where more than one color attrib-
ute is specified on a feature, order of precedence is svg_color, and then fme_color.

The same processing occurs for the attribute fme_fill_color, svg_fill_color,except both values can be used to set the
element’s ‘fill’ attribute.

In addition, if the values for the svg_color or svg_fill_color do not match the FME color specification, i.e., “r,g,b”
where r,g,b are in [0..1], then the writer will plainly transfer the value specified into the SVG stroke and fill attributes
respectively. This is useful if the user needs to by pass the FME “r,g,b” syntax, for example, to use the SVG’s prede-
fined color names, “red”, “black”, etc..., or if the user wants to use gradient fill. A user-defined SVG template (see the
writer’s TEMPLATE keyword) could define several gradients to be referenced by the FME feature’s svg_fill_color
attribute.

Consider the following TEMPLATE for the SVG writer. It defines theMyGradient linearGradient that can be ref-
erenced by FME features by setting their svg_fill_color attribute to the value, url(#MyGradient):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg">

<defs>
<linearGradient id="MyGradient">
<stop offset="5%" stop-color="#F60" />
<stop offset="95%" stop-color="#FF6" />

</linearGradient>
</defs>

</svg>

Points

svg_type: svg_point

Point features can have one or more coordinates. All point features are usually output as SVG path elements. Single,
non-aggregate, point features may also be output by an SVG use element that references another element whose
graphical content is to be drawn at the position of the single point:

Attribute Name Contents

svg_use This format attribute only applies to single point fea-
tures. If it is present and non-empty in a single
point feature then the point feature is written out
with a SVG use rather than a SVG path element. The
value of the svg_use attribute must be a valid href
location because this value is directly copied into

Attribute Name Contents

the use element’s xlink:href attribute. The single
coordinate of the point is also transferred onto the
use element’s x and y attributes. The element ref-
erenced by the the SVG use element may be prede-
fined in an FME SVG writer template file, see the
writer’s TEMPLATE keyword.
Range: string
Default: Empty String

Lines

svg_type: svg_line

Polyline features must have at least two coordinates. Line features are output as SVG path elements

Polygons

svg_type: svg_polygon

Polygon features must have at least two coordinates. Polygon feature are output as SVG path elements, and are auto-
matically closed if the first and last coordinate of a polygon segment do not match.

Text

svg_type: svg_text

Text features must have exactly one coordinate. Text features are output as SVG text elements, and have the following
additional attributes:

Attribute Name Contents

svg_text_string The text string may contain blanks and there is no
limit on its length. This attribute must be present for
all svg_text features.
Range: string
Default: Empty String

svg_text_size The size of the text in ground units.
Range: Any real number > 0
Default: 0

svg_rotation The rotation of the text, as measured in degrees
counterclockwise from the horizontal.
Range: -360.0...360.0
Default: 0

Ellipse

svg_type: svg_ellipse

Ellipse features must have exactly one coordinate. Ellipse features are output as SVG ellipse elements and have the fol-
lowing additional attributes:

Attribute Name Contents

svg_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: 0

svg_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: 0

svg_rotation The rotation of the ellipse, as measured in degrees
counterclockwise from the horizontal.
Range: -360.0...360.0
Default: 0

Arc

svg_type: svg_arc

Arc features must have exactly one coordinate. Arc features are output as SVG path elements, and have the following
additional attributes:

Attribute Name Contents

svg_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: 0

svg_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: 0

svg_start_angle The start angle defines the counterclockwise dis-
tance from the primary axis to the starting point of
the arc. It is measured in degrees.
Range: 0.0...360.0
Default: 0

svg_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from the hori-
zon.
Range: -360.0...360.0
Default: 0

Rectangle

svg_type: svg_rectangle

The extends of this feature are calculated using its bounding box. Rectangle features are output as SVG rect ele-
ments.

Rounded Rectangle

svg_type: svg_rectangle

The extents of this feature are calculated using its bounding box. Rounded Rectangle features are output as SVG rect
elements.

Attribute Name Contents

svg_rounding Contains the diameter, in ground units, of the circle
used to produce the rounded corners.
Range: Any real number > 0
Default: 0

Spatial Archive and Interchange Format (SAIF) Read-
er/Writer

The Spatial Archive and Interchange Format (SAIF) features a powerful object-oriented data model described in an
easy-to-use data definition language called Class Syntax Notation (CSN).

SAIF is the standard archive and interchange format for geographic data in the province of British Columbia. SAIF was
developed to address both data interchange and data archival issues.1 As a result, SAIF is an excellent format for stor-
ing geographic data in a vendor-neutral manner. FME enables data stored in SAIF to be easily translated to any of the
popular vendor formats.

Overview

SAIF uses the latest paradigm in data modeling. It employs an object-oriented data model supporting multiple inher-
itance. SAIF was designed to be user-extensible allowing users to easily create new class definitions. While designed
with spatial data in mind, SAIF can be used just as effectively to model any type of data.

SAIF also supports other advanced data modeling concepts not found in any of the other formats.

l Object Referencing: SAIF enables objects within a single dataset to reference component objects. For example,
if the geometry of a linear feature defines both a river bank and a lot boundary, then SAIF enables both the river
and the lot boundary to reference the same linear feature.

l Direct Support for Multimedia Datatypes: SAIF enables multimedia datatypes such as JPEG, Graphic Inter-
change Format (GIF), Sound Files, or any other type of file to be stored directly within a dataset. Attributes which
describe the embedded information are also stored in the file.

l Object Linking: SAIF enables objects within a SAIF dataset to refer to other objects and to associate attributes
with these links.

SAIF datasets have the following structure.

1SAIF datasets are self-contained. A single SAIF dataset contains both the data and the data model which describes
the data.

SAIF Directory

SAIF datasets are composed of a collection of addressable objects. Each addressable object is identified with a unique
identifier stored in the SAIF directory, along with the object’s class information and the object’s location within the
dataset.

Unlike other file-based data storage formats, SAIF uses the directory to support random retrieval of data. For exam-
ple, if a SAIF dataset contains Roads, Railroads, Rivers, and so on, you can quickly retrieve theRoads objects
from the dataset without having to read features of any other type. Each addressable object in SAIF is generally used
to hold a collection of features of the same type. For example, one addressable object may hold all of theRoads while
another addressable object holds theRailroads, and a third addressable object contains theRivers. This organ-
ization of data fits well with that used by most Geographical Information Systems (GIS) products.

Tip: If a user wishes to read every feature in a SAIF dataset, then the IDs keyword can be
omitted.

The <ReaderKeyword>_IDs statement within an FME mapping file is used to identify the objects to be retrieved from
a SAIF dataset.

Upon opening a SAIF dataset, the SAIF reader logs the contents of the SAIF dataset to the FME log file.

SAIF Schema

The second major component of a SAIF dataset is the SAIF Schema. The SAIF Schema contains the class definitions
for all objects stored within the SAIF dataset. Every SAIF feature within the dataset is defined by the data model
stored in this portion of the dataset. The class definitions are specified the Class Syntax Notation (CSN). CSN is an
easy to read notation, used specifically for defining classes in SAIF. See the Spatial Archive and Interchange Format:
Formal Specification Release 3.2 for a complete description of SAIF and CSN.

SAIF Object Definitions

The third, and final, component of a SAIF dataset contains the feature data. The feature data within SAIF is stored in
Object Syntax Notation (OSN). OSN is used specifically for defining objects in SAIF. See the Spatial Archive and Inter-
change Format: Formal Specification Release 3.2 for a complete description of SAIF and OSN.

The object definitions are broken down into smaller units called object sets. Each object set contains a collection of
objects. For discussion purposes, it is assumed that there is a one-to-one correspondence between addressable
objects and object sets, and you can use them interchangeably. The distinction between these two concepts is
beyond the scope of this document.

For a more detailed description of the organizations of a SAIF dataset, see the SAIF Toolkit API Programmer’s Ref-
erence Manual Release 1.1.

SAIF Quick Facts

Format Type Identifier SAIF

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Class name

Typical File Extensions .saf, .zip

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type as per SAIF class definition

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

The SAIF reader module produces FME features from the features held in a SAIF dataset. The SAIF reader first opens
the SAIF dataset, retrieving the coordinate system and directory information. Then it determines the objects to be
read from the dataset by comparing the objects held in the dataset with those specified on the IDs statement of the
FME mapping file. If no IDs are specified, then the SAIF reader module returns all objects in the SAIF dataset. The
SAIF reader then extracts features from the SAIF dataset, one at a time, and passes them on to the rest of the FME.
Each feature has its coordinate system tagged with the coordinate system read from the SAIF file.

Reader Directives

The directives processed by the SDL reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the SDL reader is SDL.

DATASET

Required/Optional: Required

The value for this keyword is the name of the SAIF dataset file. A typical mapping file fragment specifying an input
SAIF dataset looks like:

SAIF_DATASET /usr/data/SAIF/92i080.zip

Workbench Parameter: Source SAIF File(s)

IDs

Required/Optional: Optional

This optional specification is used to limit which of the available and defined SAIF addressable objects are read. If
there are no IDs specified, then all defined and available addressable objects are read.

Tip: The SAIF Utilities package can be used to list the IDs present in a SAIF dataset.

The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <SAIF ID1> \
<SAIF ID2> … \
<SAIF ID3>

The list of IDs can also be specified across multiple <ReaderKeyword>_IDs statements, in which case the union of
all IDs statements are used.

The example below selects only the roads for input during a translation:

SAIF_IDs roads

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The SAIF writer creates and writes feature data to the SAIF archive identified by SAIF_DATASET. If the output SAIF
dataset existed before the writer was run, then it is overwritten with the new data. The SAIF writer is able to have
many different SAIF object sets open at a single time. As features are routed to the SAIF writer by the FME, it deter-
mines the object set into which the feature is destined and writes the feature out to that object set. The writer will
also output the coordinate system of the features to the output SAIF dataset.

Writer Directives

The directives that are processed by the SAIF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the SAIF writer is SAIF.

Tip: The SAIF Utilities package can be used to check the syntax and validate the definitions
held in the CSN before they are used by the FME.

DATASET

Required/Optional: Required

The value for this keyword is the name of the SAIF dataset file. A typical mapping file fragment specifying an output
SAIF dataset looks like:

SAIF_DATASET /usr/data/SAIF/92i080.zip

DEF

Required/Optional: Required

Before any SAIF data can be written, the SAIF addressable object, in which the features are contained, must be spec-
ified. The syntax of the SAIFDEF line is:

SAIF_DEF <membertype> \
[SAIF_COMPOSITE_CLASS <composite type>] \
[SAIF_IDENTIFIER <identifier>] \
[SAIF_OBJECTSET <object set id>] \
[SAIF_AGGREGATE <aggregate spec>] \
[SAIF_COMPONENT_PATH <componentPath>] \
[<geoComponents spec>]* \
[<attr path> <attr value>]*

Each of the components of theSAIF_DEF statement are described below. The DEF line attempts to make SAIF as
easy to define as possible by generating defaults that can be used in the majority of cases. See the points below for
the values of these defaults and a discussion of what they mean and when to override them.

<membertype>:This is the feature type of the objects stored within the SAIF object being defined. In SAIF it is
strongly suggested that all class names consist of two parts; a <class name>, and <domain name> separated by a
double colon (::).

<class name>: A unique class name within the current domain.

<domain name>: Each CSN definition set, except the base set, must use a domain name. The domain name choice
is left up to you.

The example below defines the member type of objects to beRoads::TRIM. Roads is the <class name> component
and TRIM is the <domain name> component.

SAIF_DEF Roads::TRIM

SAIF_COMPOSITE_CLASS

This is the name of the composite class into which the SAIF objects of type <membertype> are stored. This is the
actual SAIF class which is addressable. Each DEF line defines a single addressable object of the type specified here.
If this is not specified, then a default value is generated which inserts the word Composite immediately before the dou-
ble :: specified in <membertype>.

Using the above example, the default value of SAIF_COMPOSITE_CLASS is RoadsComposite::TRIM. This
value can be overridden simply by specifying theSAIF_COMPOSITE_CLASS parameter. The example below over-
rides the default value instead specifying RoadsCollection::TRIM.

SAIF_COMPOSITE_CLASS RoadsCollection::TRIM

SAIF_IDENTIFIER

This is the identifier used to identify the SAIF addressable object being defined by this SAIF_DEF line. If not spec-
ified, the default value for the identifier is the same as the <membertype> with the double colon and the domain
name removed.

Using the example above, the default value of SAIF_IDENTIFIER is Roads. This value can be overridden by spec-
ifying theSAIF_IDENTIIFIER parameter. The example below overrides the default value specifying TRIMRoads.

SAIF_IDENTIFIER TRIMRoads

SAIF_OBJECTSET

This defines the object set into which the addressable object being defined is to be stored. If not specified, the
default value for the identifier is generated using the first 4 characters of the <membertype> followed by the last
two characters before the double colon (::). If the <class name> portion of the <membertype> is less than 6 char-
acters, the object set name is taken to be equal to <class name>.

Using the example above, the default value of SAIF_OBJECTSET is roads. This value can be overridden by spec-
ifying theSAIF_OBJECTSET parameter. The example below overrides the default value specifying troads.

SAIF_OBJECTSET troads

SAIF_AGGREGATE

This defines the aggregate into which the objects are to be placed. This parameter is only used when the features
being defined are stored within a SAIF aggregate, which is itself stored within another aggregate. An example of
when this occurs is the SAIF DEM into which DEMpoints, Breaklines, and other aggregates are stored. See the SAIF
Formal Specification for a description of SAIF aggregates. The example below shows how to specify the aggregate for
storing DEMpoints.

SAIF_AGGREGATE geoComponents{0}.position.geometry.masspoints

The statement above gives the full path to where the features belonging to this SAIF_DEF line are placed. They are
placed within the aggregate identified by position.geometry.masspoints which itself is stored as the first element
within the aggregate geoComponents.

Usually, this line follows immediately after one or more <geoComponents spec> lines, which are described
below.

SAIF_COMPONENT_PATH

The SAIF component path defines the path to the aggregate into which the features belonging to this SAIF_DEF are
placed. By default, the value of this parameter is geoComponents as this is the value used in the majority of cases.
An example of when the value needs to be overridden is when the feature represents a SAIF text object. In this case,
theSAIF_COMPONENT_PATH should be specified as annotationComponents. The example below overrides the
default value and specifies a component path of annotation components.

SAIF_COMPONENT_PATH annotationComponents

<geoComponents spec>

This portion of theSAIF_DEF line is required only when theSAIF_AGGREGATE line is used. These spec-
ifications define the geoComponent aggregate classes before the first feature arrives. This statement configures the
aggregates so that the features associated with this SAIF_DEF line can be inserted into SAIF. The example below
continues the example given for theSAIF_AGGREGATE line above, and defines the two aggregates required
beforeDEMpoints can be stored within the SAIF dataset.

geoComponents{0}.Class PointsAndBreaklines::TRIM \
geoComponents{0}.position.geometry.Class MeasuredSurface

The first line defines the type of aggregate for the first element of the geoComponents aggregate. It is defined to be of
the typePointsAndBreaklines::TRIM. The first part of this statement geoComponents{0} defines the path name of
the aggregate. The .Class suffix instructs the underlying SAIF Toolkit, which the SAIF writer uses, that this is the
name of the class for the object that has a path of geoComponents. See the SAIF Toolkit documentation for a full dis-
cussion of the .Class notation and the meaning of path names in SAIF.

The second line defines the type of aggregate for the object with the path name position.geometry within the aggre-
gate geoComponents{0}. It is defined to be of the typeMeasuredSurface.

Once this is defined, the SAIF_AGGREGATE line follows to define the aggregate where the DEMpoints will be stored.

<attr path> <attr value>

These lines are used to simply specify attribute path and attribute value pairs. The first part of the line identifies the
attribute path to be set and the second part of the line specifies the value to be assigned to the attribute. These attrib-
ute values are used to set any attribute values at the aggregate level. The SAIF_DEF line cannot be used to set any
attribute values for the features actually stored within the SAIF dataset.

CSN

Required/Optional: Required

The FME mapping file will have one or more SAIF_CSN file lines which define the CSN files that contain the SAIF class
definitions for the objects to be stored within the SAIF dataset. If an attempt is made to define any object not of a
class specified in the CSN files, then an error results and the FME session is stopped.

The example below defines two CSN files. The first file is the SAIF base set of classes and must always be the first
CSN file specified. The second CSN file is a file that contains a set of domain-specific definitions.

SAIF_CSN saif32.csn
SAIF_CSN forest32.csn

XCOORD_TYPE

Required/Optional: Required

This is the numeric domain of the x coordinate. All coordinates stored within the SAIF dataset will have their x value in
the domain specified on this line. The example below instructs the SAIF writer module that all x coordinates are of the
type integer.

SAIF_XCOORD_TYPE STK_INT32

YCOORD_TYPE

Required/Optional: Required

This is the numeric domain of the y coordinate. All coordinates stored within the SAIF dataset will have their y value in
the domain specified on this line. The example below instructs the SAIF writer module that all y coordinates are single
precision floats.

SAIF_YCOORD_TYPE STK_REAL32

ZCOORD_TYPE

Required/Optional: Required

This is the numeric domain of the z coordinate. All coordinates stored within the SAIF dataset will have their z value in
the domain specified on this line. The example below instructs the SAIF writer module that all z coordinates are dou-
ble precision floats.

SAIF_ZCOORD_TYPE STK_REAL64

Feature Representation

SAIF features consist of a feature type, a geometry or text class, attribute path and attribute value pairs, and coor-
dinates. A typical FME correlation line for SAIF has two forms: geometric entity form and text entity form.

Geometric Entity Form

This form of FME correlation line is used for all SAIF geometric entities. The line first specified is the <member
type>. The value specified for <member type> must match a value specified in aSAIF_DEF line. The line then stip-
ulates the type of geometry that the feature contains. The FME supports all SAIF geometries permitted by SAIF-Lite.
Finally, the <attribute path> <attribute value> pairs are specified, as they are for any other formats.
The only difference with SAIF is that the <attribute path> values may be of arbitrary depth. See the SAIF
Toolkit Application Programming Interface (API) document for a discussion of attribute paths.1

1The SAIF-Lite specification and SAIF Toolkit API document describe the allowed geometry types and the attribute
path syntax used by SAIF.

SAIF <member type> \
position.geometry.Class <geometry class> \
[<attribute path> <attribute value>]*

Text Entity Form

This form of the FME correlation line is used for all SAIF text entities. The line is almost the same as the geometric
entity above, except that instead of specifying a <geometry class>, a <text class> is specified. See the SAIF Formal
Specification for a list of all the different SAIF text classes that can be specified.

SAIF <member type> \
textOrSymbol.Class <text class> \
[<attribute path> <attribute value>]*

Spatial Data Transfer Standard (SDTS) Reader

This chapter provides the Feature Manipulation Engine (FME) with access to Spatial Data Transfer Standard (SDTS)
formatted file sets.

Overview

While the SDTS reader should be able to import at least some data from any SDTS data source, it has been tested with
USGS DLG dataset which adheres to the SDTS Topological Vector Profile (TVP) and USGS Digital Elevation Model
(DEM) datasets that adhere to the SDTS Raster Profile.

More information on the SDTS Format can be found at:

http://mcmcweb.er.usgs.gov/sdts/

Some aspects of an SDTS transfer, such as data quality information, is not accessible via the SDTS reader, but can be
extracted using the ISO 8211 reader by a user well versed in the SDTS format.

SDTS Quick Facts

Format Type Identifier SDTS

Reader/Writer Reader

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Feature role

Typical File Extensions .ddf

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type sdts_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

http://mcmcweb.er.usgs.gov/sdts/

Geometry Support

Geometry Supported? Geometry Supported?

elliptical arc no surface no

ellipses no text no

line yes z values yes

none yes

Reader Overview

The SDTS Reader module produces FME features for all data within one SDTS transfer, a group of .DDF files iden-
tified by the *CATD.DDF file. Each vector object (point, line or polygon), attribute record of an attribute module or
pixel within a raster image is translated into an FME feature.

Reader Directives

The directives processed by the SDTS reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the SDTS reader is SDTS.

DATASET

Required/Optional: Required

The file name of the catalog file relating the files of a single SDTS transfer. This will normally end in CATD.DDF, and
binds together all the files with a common prefix. For instance, a USGS hypsography transfer might be accessed as
shown. All files starting with HP01would be part of the same transfer.

SDTS_DATASET PALO_ALTO\HP01CATD.DDF

Workbench Parameter: Source SDTS CATD File(s)

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

All features read from SDTS transfers are assigned a feature type based on the SDTS module of the file they came
from. Typically this module name is also part of the file name, so for instance, a line feature read from
HP01LE01.DDF would have a feature type of LE01 indicating it came from the 1st line module.

The types of SDTS modules supported are:

l Point-Node: A node in a topology, polygon label or freestanding point. Will have an sdts_type of sdts_point, a
PNTS attribute, and possibly an ARID attribute. May have zero or moreATID{n] attributes.

l Line: A line, possibly part of a topology. It will have an sdts_type of sdts_line, and a unique identifier in the
LINE attribute. If it is part of a topology, it will have aPIDR, PIDL, SNID and ENID. It may have one or more
ATID{n} attributes.

l Polygon: A polygon. It will have an sdts_type of sdts_polygon, and a unique identifier in thePOLY attribute. It
may have one or moreATID{n} attributes. The polygon does not have any geometry as it emerges from the reader;
however, the standard processing pipeline will assemble this from the related lines.

l Attribute Primary: A geometries attribute record with an sdts_type of sdts_attr_primary. It will contain addi-
tional attributes specific to the module based on the data product it is a part of, for instance theELEVATION and
ENTITY_LABEL specifically mentioned below. It will also have an ATPR attribute containing it's unique iden-
tifier. Most primary attribute records are consumed by the default SDTS pipeline, sdts_read.fmi, as they are
appended to their referencing point, line and polygon features.

l Attribute Secondary: A geometryless attribute record with an sdts_type of sdts_attr_secondary. It will contain
additional attributes specific to the module based on the data product it is a part of, some of which will be keys into
attributes on primary attribute records such as COUNTY and STATE. It will also have an ATSC attribute con-
taining its unique identifier.

l Cell or Raster: Each pixel of data in a raster cell is translated into a point with an sdts_type of sdts_point_dem,
but noPNTS attribute. The elevation of the point is in an attribute called ELEVATION.

Attribute Name Description Defined On

sdts_type The type of this geometry. One of sdts_
point, sdts_line, sdts_polygon or sdts_attr.

All features

PNTS A unique identifier for the point in the cur-
rent transfer.

sdts_point

ARID A unique identifier for the area that this
point labels.

sdts_point (optional)

LINE A unique identifier for the line in the cur-
rent transfer.

sdts_line

PIDL Identifier for the left polygon from the cur-
rent line. Relates to the POLY attribute.

sdts_line (optional)

PIDR Identifier for the right polygon from the cur-
rent line. Relates to the POLY attribute.

sdts_line (optional)

SNID Identifier for the start node of the current
line. Relates to the PNTS attribute.

sdts_line (optional)

ENID Identifier for the end node of the current
line. Relates to the PNTS attribute.

sdts_line (optional)

Attribute Name Description Defined On

POLY A unique identifier for the polygon in the
transfer.

sdts_polygon

ATID{n} Identifier for an attribute record that
applies to the current object. Relates to the
ATPR attribute of the attribute records.

sdts_point (optional)

sdts_line (optional)

sdts_polygon
(optional)

ATPR A unique identifier for the primary attribute
record within a transfer.

sdts_attr_primary

ATSC A unique identifier for the secondary attrib-
ute record within a transfer. Not normally
useful for any purpose.

sdts_attr_secondary

ELEVATION The elevation of the feature. Will be found
on points from DEM raster transfers. It is
also found in a primary attribute record
related to hypsography features such as
contour lines and is attached to the fea-
tures by the default pipeline.

sdts_point_dem

sdts_attr_primary
(optional)

ENTITY_LEVEL USGS DLG transfers have this primary
attribute for most features. A detailed list-
ing of meaningful values and other DLG-3
specific attributes is contained in the USGS
document DLG-3 SDTS Transfer Descrip-
tion which may be found at the following
website address:
ftp://sdts.er.usgs.gov/pub/sdts/data
sets/tvp/dlg3/dlg3sdts.ps

sdts_attr_primary
(optional)

The following is an example of the attributes on a polygon feature from a vegetation surface cover DLG transfer, after
edge geometry has been merged and primary attribute records have been attached by the standard processing pipe-
line (sdts_read.fmi).

Feature Type: PC01'
ATID' is ASCF_86'
ATPR' is ASCF_86'
BEST_ESTIMATE' is '
ENTITY_LABEL' is 0700101'
POLY' is PC01_123'
POLY_OBRP' is PC'
fme_geometry' is fme_polygon'
sdts_type' is sdts_polygon'
Geometry Type: Polygon (4)
Number of Coordinates: 38 -- Coordinate Dimension: 2 -- Coordinate System: 0'

Secondary Attributes

Some SDTS transfers include secondary attribute modules. These are essentially tables related to data fields in one or
more primary attribute tables. One example of this is DLG-3 1:2000000 boundary datasets which keep the county
names in secondary tables along with the state, and county numbers.

The default SDTS pipeline, sdts_read.fmi, does not include factories to append these secondary records to their tar-
get features because the names of the key fields vary depending on the data product.

By default, secondary records are passed through and are available as output features to write to an output file. For
instance, the following definition is produced for county names.

SDrobert-findlerBFPC \
sdts_type sdts_attr_secondary \
ATSC %ATSC \
COUNTY %COUNTY \
STATE %STATE \
AREA_NAME %AREA_NAME

TheATSC field is a record identifier but isn't generally useful for anything, since it doesn't relate to fields in any
other records. TheCOUNTY and STATE values are numeric identifiers and can be related to theCOUNTY and
STATE fields that get attached to political polygons from a primary attribute module using a factory like that shown
in the following example. It could be placed in a mapping file in order to append county names to polygon features
after processing by the default pipeline.

FACTORY_DEF * ReferenceFactory \
FACTORY_NAME CountyNameAppender \
INPUT REFERENCEE FEATURE_TYPE * \

sdts_type sdts_attr_secondary \
INPUT REFERENCER FEATURE_TYPE * \

sdts_type sdts_polygon \
REFERENCEE_FIELDS STATE COUNTY \
REFERENCER_FIELDS STATE COUNTY \
REFERENCE_INFO ATTRIBUTES \
OUTPUT COMPLETE FEATURE_TYPE * sdts_type sdts_polygon \
OUTPUT NO_REFERENCES FEATURE_TYPE * \
OUTPUT INCOMPLETE FEATURE_TYPE * \
OUTPUT UNREFERENCED FEATURE_TYPE *

SQLite Reader/Writer

Overview

The SQLite reader and writer modules provide FME with access to attribute data held in sqlite3 database tables. This
data may not necessarily have a spatial component to it. FME provides read and write access to sqlite3 databases.

Tip: See the @SQL function in the FME Functions and Factories manual. This function allows
arbitrary Structured Query Language (SQL) statements to be executed against any database.

SQLite Quick Facts

Format Type Identifier SQLITE3

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Database

Feature Type Table name

Typical File Extensions .db .sl3

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support Yes

Encoding Support Yes

Geometry Type db_none

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

FME considers a database data set to be a collection of relational tables. The tables must be defined in the mapping
file before they can be read. Arbitrary WHERE clauses and joins are fully supported.

Reader Directives

The suffixes listed are prefixed by the current <ReaderKeyword> in a mapping file. By default, the <Read-
erKeyword> for the SQLite3 reader is SQLITE3.

DATASET

Required/Optional: Required

This is the file name of the SQLite3 Database.

For example,

SQLITE3_DATASET c:/data/citySource.db

Workbench Parameter: Source SQLite3 Database File(s)

DEF

Required/Optional: Required

The syntax of the definition is:

SQLITE3_DEF <tableName> \
[sqlite3_sql_statement <sqlQuery>] \

[sqlite3_where_clause <whereClause>] \
[<fieldName> <fieldType>] +

OR

SQLITE3_DEF <queryName> \
[sqlite3_sql_statement <sqlQuery>] \

The <tableName>must match the name of an existing SQLite3 table in the database. This will be used as the fea-
ture type of all the features read from the table. The exception to this rule is when using the sqlite3_sql_statement key-
word. In this case, the DEF namemay be any valid alphabetic identifier; it does not have to be an existing table name
– rather, it is an identifier for the custom SQL query. The feature type of all the features returned from the SQL query
are given the query name.

The <fieldType> of each field must be given, but it is not verified against the database definition for the field. In
effect, it is ignored.

The definition allows specification of separate search parameters for each table. If any of the per table configuration
parameters are given, they will override, for that table, whatever global values have been specified by the reader key-
words such as the WHERE_CLAUSE. If any of these parameters is not specified, the global values will be used.

The following table summarizes the definition line configuration parameters:

Parameter Contents

sqlite3_where_clause This specifies the SQL WHERE clause applied to the
attributes of the layer’s features to limit the set of
features returned. If this is not specified, then all the
rows are returned. This keyword will be ignored if
the sql3_sql_statement is present.

sqlite3_sql_statement This specifies an SQL SELECT query to be used as the

Parameter Contents

source for the results. If this is specified, the SQLite3
reader will execute the query, and use the resulting
rows as the features instead of reading from the
table <queryName>. All returned features will have
a feature type of <queryName>, and attributes for
all columns selected by the query. The sqlite3_
where_clause is ignored if sqlite3_sql_statement is
supplied. This form allows the results of complex
joins to be returned to FME.

If no <whereClause> is specified, all rows in the table will be read and returned as individual features. If a
<whereClause> is specified, only those rows that are selected by the clause will be read. Note that the <where-
Clause> does not include the wordWHERE.

The SQLite3 reader allows one to use the sqlite3_sql_statement parameter to specify an arbitrary SQL SELECT query
on the DEF line. If this is specified, FME will execute the query, and use each row of data returned from the query to
define at least one feature. Each of these features will be given the feature type named in the DEF line, and will con-
tain attributes for every column returned by theSELECT. In this case, all DEF line parameters regarding aWHERE
clause or spatial querying are ignored, as it is possible to embed this information directly in the text of the
<sqlQuery>.

In the following example, all the records whose ID is less than 5 will be read from the supplier table:

SQLITE3_DEF supplier \
 sqlite3_where_clause "id < 5" \
 ID integer \
 NAME text \
 CITY text

In this example, the results of joining the employee and city tables are returned. All attributes from the two tables
will be present on each returned feature. The feature type will be set to complex.

SQLITE3_DEF complex \
sqlite3_sql_statement \

"SELECT * FROM EMPLOYEE, CITY WHERE EMPLOYEE.CITY = CITY.NAME"

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined database tables that will be read. If no IDs are
specified, then all tables are read. The syntax of the IDs keyword is:

SQLITE3_IDs <featureType1> \
<featureType2> … \
<featureTypeN>

The feature types must match those used in DEF lines.

The example below selects only theHISTORY table for input during a translation:

SQLITE3_IDs HISTORY

RETRIEVE_ALL_SCHEMAS

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

When set to “Yes”, indicates to the reader to return all the schemas of the tables in the database.

If this value is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

RETRIEVE_ALL_TABLE_NAMES

Required/Optional: Optional

This specification is only applicable when generating a mapping file, generating a workspace or when retrieving sche-
mas in a FME Objects application.

Similar to RETRIEVE_ALL_SCHEMAS; this optional directive is used to tell the reader to only retrieve the table
names of all the tables in the source database. If RETRIEVE_ALL_SCHEMAS is also set to “Yes”, then
RETRIEVE_ALL_SCHEMAS will take precedence. If this value is not specified, it is assumed to be “No”.

Range: YES | NO

Default: NO

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The SQLite3 writer module stores attribute records into a live relational database. The SQLite3 writer provides the fol-
lowing capabilities:

l Transaction Support: The SQLite3 writer provides transaction support that eases the data loading process. Occa-
sionally, a data load operation terminates prematurely due to data difficulties. The transaction support provides a
mechanism for reloading corrected data without data loss or duplication.

l Table Creation: The SQLite3 writer uses the information within the FME mapping file to automatically create data-
base tables as needed.

l Writer Mode Specification: The SQLite3 writer allows the user to specify what database command should be
issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE. The writer mode can be
specified at three unique levels: at the writer level, on the feature type, or on individual features.

Writer Directives

The directives listed below are processed by the SQLite3 writer. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the SQLite3 writer is SQLITE3.

DATASET

Required/Optional: Required

TheDATASET directive operates in the samemanner as it does for the SQLite3 reader.

Workbench Parameter: Destination SQLite3 Database File

DEF

Required/Optional: Required

Each SQLite3 table must be defined before it can be written. The general form of a SQLite3 definition statement is:

SQLITE3_DEF <tableName> \
[sqlite3_update_key_columns <keyColumns>] \
[sqlite3_drop_table (yes|no)] \
[sqlite3_truncate_table (yes|no)] \
[sqlite3_table_writer_mode (inherit_from_writer|insert|

update|delete)] \
[<fieldName> <fieldType>[,<indexType>]]+

The table definition allows control of the table that will be created. If the fields and types are listed, the types must
match those in the database. Fields which can contain NULL values do not need to be listed - these fields will be filled
with NULL values.

If the table does not exist, then the field names and types are used to first create the table. In any case, if a <field-
Type> is given, it may be any field type supported by the target database.

The configuration parameters present on the definition line are described in the following table:

Parameter Contents

tableName The name of the table to be written. If a table with the spec-
ified name exists, it will be overwritten if the sqlite3_drop_table
DEF line parameter is set to YES, or it will be truncated if the
sqlite3_truncate_table DEF line parameter is set to YES. Other-
wise the table will be appended. Valid values for table names
include any character string devoid of SQL-offensive char-
acters(the “ is the only SQL-offensive character in SQLite)
and less than 255 characters in length.

sqlite3_table_writer_
mode

The default operation mode of the feature type in terms of
the types of SQL statements sent to the database.Valid
values are INSERT, UPDATE, DELETE and INHERIT_FROM_
WRITER. Note that INSERT mode allows for only INSERT oper-
ations where as UPDATE and DELETE can be overwritten at the
feature levels. INHERIT_FROM_WRITER simply indicates to
take this value from the writer level and not to override it at
the feature type level.
Default:INHERIT_FROM_WRITER

sqlite3_update_key_
columns

This is a comma-separated list of the columns which are
matched against the corresponding FME attributes’ values to

Parameter Contents

specify which rows are to be updated or deleted when the
writer mode is either UPDATE or INSERT.
For example:
sqlite3_update_key_columns ID

would instruct the writer to ensure that the ID attribute is
always matched against the column with the same name.
Also, the target table is always the feature type specified in
the DEF line.
Each column listed with the sqlite3_update_key_columns key-
word must be defined with a type on the DEF line, in addition
to the columns whose values will be updated by the oper-
ation.

sqlite3_drop_table This specifies that if the table exists by this name, it should
be dropped and replaced with a table specified by this def-
inition.
Default: NO

sqlite3_truncate_table This specifies that if the table exists by this name, it should
be cleared prior to writing.
Default: NO

fieldName The name of the field to be written. Valid values for field
name include any character string devoid of SQL-offensive
characters (the “ is the only SQL-offensive character in
SQLite) and less than 255 characters in length.

fieldType The type of a column in a table. The valid values for the field
type are listed below:
blob
float
integer
real(width, decimal)
text
varchar(width)

indexType The type of index to create for the column.
If the table does not previously exist, then upon table cre-
ation, a database index of the specified type is created. The
database index contains only the one column.
The valid values for the column type are listed below:
indexed: An index without constraints.
unique: An index with a unique constraint.

START_TRANSACTION

Required/Optional: Optional

This statement tells the SQLite3 writer module when to start actually writing features into the database. The SQLite3
writer does not write any features until the feature is reached that belongs to <last successful transaction> + 1.
Specifying a value of zero causes every feature to be output. Normally, the value specified is zero – a non-zero value
is only specified when a data load operation is being resumed after failing partway through.

Parameter Contents

<last successful transaction> The transaction number of the last suc-
cessful transaction. When loading data for
the first time, set this value to 0.
Default: 0

Example:

SQLITE3_START_TRANSACTION 0

Workbench Parameter: Start transaction at

TRANSACTION_INTERVAL

Required/Optional: Optional

This statement informs the FME about the number of features to be placed in each transaction before a transaction is
committed to the database.

If theSQLITE3_TRANSACTION_INTERVAL statement is not specified, then a value of 500 is used as the trans-
action interval.

Parameter Contents

<transaction_interval> The number of features in a single trans-
action.
Default: 500

If theSQLITE3_TRANSACTION_INTERVAL is set to zero, then feature based transactions are used. As each fea-
ture is processed by the writer, they are checked for an attribute called fme_db_transaction. The value of this attrib-
ute specifies whether the writer should commit or rollback the current transaction. The value of the attribute can be
one of COMMIT_BEFORE, COMMIT_AFTER, ROLLBACK_AFTER or IGNORE. If the fme_db_transaction
attribute is not set in any features, then the entire write operation occurs in a single transaction.

Example:

SQLITE3_TRANSACTION_INTERVAL 5000

Workbench Parameter: Transaction interval

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

This directive informs the SQLite3 writer which SQL operations will be performed by default by this writer. This oper-
ation can be set to INSERT, UPDATE or DELETE. The default writer level value for this operation can be over-
written at the feature type or table level. The corresponding feature type DEF parameter name is called sqlite3_table_
writer_mode. It has the same valid options as the writer level mode and additionally the value INHERIT_FROM_
WRITER which causes the writer level mode to be inherited by the feature type as the default for features contained
in that table.

The operation can be set specifically for individual features as well. Note that when the writer mode is set to INSERT
this prevents the mode from being interpreted from individual features and all features are inserted unless otherwise
marked as UPDATE or DELETE features. These are skipped.

If the SQLITE3_WRITER_MODE statement is not specified, then a value of INSERT is given.

Parameter Contents

<writer_mode> The type of SQL operation that should be per-
formed by the writer. The valid list of values
are below:
INSERT
UPDATE
DELETE
Default: INSERT

Example:

SQLITE3_WRITER_MODE INSERT

Workbench Parameter:Writer Mode

BEGIN_SQL{n}

Occasionally you must execute some ad-hoc SQL prior to opening a table. For example, it may be necessary to ensure
that a view exists prior to attempting to read from it.

Upon opening a connection to read from a database, the reader looks for the directive <ReaderKeyword>_
BEGIN_SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the data-
base connection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER keyword,
embedded at the beginning of the SQL block. The single character following this keyword will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute Before Translation

END_SQL{n}

Occasionally you must execute some ad-hoc SQL after closing a set of tables. For example, it may be necessary to
clean up a temporary view after writing to the database.

Just before closing a connection on a database, the reader looks for the directive <ReaderKeyword>_END_
SQL{n} (for n=0,1,2,...), and executes each such directive’s value as an SQL statement on the database con-
nection.

Multiple SQL commands can be delimited by a character specified using the FME_SQL_DELIMITER directive,
embedded at the beginning of the SQL block. The single character following this directive will be used to split the
SQL, which will then be sent to the database for execution. Note: Include a space before the character.

For example:

FME_SQL_DELIMITER ;
DELETE FROM instructors;
DELETE FROM people
WHERE LastName='Doe' AND FirstName='John'

Multiple delimiters are not allowed and the delimiter character will be stripped before being sent to the database.

Any errors occurring during the execution of these SQL statements will normally terminate the reader with an error. If
the specified statement is preceded by a hyphen (“-”), such errors are ignored.

Required/Optional

Optional

Workbench Parameter

SQL Statement to Execute After Translation

INIT_TABLES

Required/Optional: Optional

This directive informs the SQLite3 writer when each table should be initialized. Initialization encompasses the actions
of dropping or truncating existing tables, and creating new tables as necessary.

When INIT_TABLES is set to IMMEDIATELY, the SQLite3 writer will initialize all tables immediately after parsing
the DEF lines and opening the database file. In this mode, all tables will be initialized, even if the SQLite3 writer
receives no features for a given table.

When INIT_TABLES is set to FIRSTFEATURE, the SQLite3 writer will only initialize a table once the first feature
destined for that table is received. In this mode, if the SQLite3 writer does not receive any features for a given table,
the table will never be initialized.

Workbench Parameter: Initialize Tables

Writer Mode Specification

The SQLite3 writer allows the user to specify a writer mode, which determines what database command should be
issued for each feature received. Valid writer modes are INSERT, UPDATE and DELETE.

Writer Modes

In INSERTmode, the attribute values of each received feature are written as a new database record.

In UPDATEmode, the attribute values of each received feature are used to update existing records in the database.
The records which are updated are determined via the sqlite3_update_key_columns DEF line parameter, or
via the fme_where attribute on the feature.

In DELETEmode, existing database records are deleted according to the information specified in the received fea-
ture. Records are selected for deletion using the same technique as records are selected for updating in UPDATE
mode.

Writer Mode Constraints

In UPDATE and DELETEmode, the fme_where attribute always takes precedence over the sqlite3_update_
key_columns DEF line parameter. If both the fme_where attribute and the sqlite3_update_key_col-
umns DEF line parameter are not present, then UPDATE or DELETEmode will generate an error.

When the fme_where attribute is present, it is used verbatim as the WHERE clause on the generated UPDATE or
DELETE command. For example, if fme_where were set to ‘id<5’, then all database records with field ID less than
5 will be affected by the command.

When the fme_where attribute is not present, the writer looks for the sqlite3_update_key_columns DEF
line parameter and uses it to determine which records should be affected by the command. Please refer toDEF for
more information about the sqlite3_update_key_columns DEF line parameter.

Writer Mode Selection

The writer mode can be specified at three unique levels. It may be specified on the writer level, on the feature type or
on individual features.

At the writer level, the writer mode is specified by the WRITER_MODE keyword. This keyword can be superseded by
the feature type writer mode specification. Note: For more information on this directive, see the chapter Database
Writer Mode.

At the feature type level, the writer mode is specified by the sqlite3_writer_mode DEF line parameter. This
parameters supersedes the WRITER_MODE keyword. Unless this parameter is set to INSERT, it may be super-
seded on individual features by the fme_db_operation attribute. Please refer to the DEF line documentation for
more information about this parameter.

At the feature level, the writer mode is specified by the fme_db_operation attribute. Unless the parameter at the
feature type level is set to INSERT, the writer mode specified by this attribute always supersedes all other values.
Accepted values for the fme_db_operation attribute are INSERT, UPDATE or DELETE.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Features read from a database consist of a series of attribute values. They have no geometry. The attribute names are
as defined in theDEF line if the first form of theDEF line was used. If the second form of theDEF line was used,
then the attribute names are as they are returned by the query, and as such may have their original table names as
qualifiers. The feature type of each SQLite3 feature is as defined on its DEF line.

Features written to the database have the destination table as their feature type, and attributes as defined on the
DEF line.

Standard Linear Format (SLF) Reader

The Standard Linear Format (SLF) Reader module provides the Feature Manipulation Engine (FME) with the capability
to read SLF files. This chapter assumes familiarity with the SLF format.

Overview

SLF data sets are ASCII format files that use the chain-node—also referred to as link-node or segment-node—data
structure. This means that regardless of the number of features a segment might belong to, that segment is stored
only once in the data set. By not storing repeated segments, the SLF format simplifies updates and corrections. It also
avoids overlap and gap problems, as well as being responsive to thinning and generalization algorithms.

An SLF file logically consists of these four sequential records:

l the Data Set Identifier (DSI) record

l the Segment (SEG) record

l the Feature (FEA) record

l the Text (TXT) record

The DSI, SEG, and FEA records are required for each SLF data set, whereas the TXT record is optional. The con-
tents of the TXT record are product-specific and the only type of TXT record recognized by the SLF reader is when
SLF is used to implement Interim Terrain Data (ITD) in two-dimensional (2D) format.

The FME accepts any valid SLF file as input, regardless of file name or extension.

This section outlines the features and attributes produced directly by the SLF reader. The slf_point, slf_lin-
ear, and slf_areal features produced by the SLF reader only contain references to the segments that make up
the feature. By themselves, these features do not contain any coordinates. Through using a sequence of FME fac-
tories, specially designed to process the SLF features, the FME can re-assemble the sequence of coordinates that
make up each feature from the segments. This sequence of factories is described at the end of this chapter, under
the heading Features Created by the FME Factories.

SLF Quick Facts

Format Type Identifier SLF

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type Geometry based name

Typical File Extensions .slf

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Not applicable

Transaction Support No

Geometry Type slf_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

Reader Overview

The SLF reader opens the input file and returns a feature to represent the data from each SLF logical record it
encounters. The reader does not have any requirement for definition statements.

Each feature returned by the SLF reader has its FME feature type set to one of the following: slf_segment, slf_
point, slf_linear, slf_areal, slf_txt or slf_dsi.

Reader Directives

The directives processed by the SLF reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the SLF reader is SLF.

DATASET

Required/Optional: Required

The value for this keyword is the file containing the SLF data set to be read. A typical mapping file fragment specifying
an input SLF file looks like:

SLF_DATASET /usr/slfdata/slffile

Workbench Parameter: Source Standard Linear Format (SLF) File(s)

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Feature Representation

All SLF features contain the slf_type attribute. The value for this attribute is set identically to the value of the feature’s
feature type.

Attribute Name Contents

slf_type Specifies what type of data the feature represents.
Range:
slf_segment |
slf_point |
slf_linear |
slf_areal |
slf_txt |
slf_dsi

Default: No default

Segments

slf_type: slf_segment

The SLF segments contain the coordinate sequence that make up the SLF point, linear, and areal features.

These attributes are specific to the segment features.

Attribute Name Contents

slf_seg_segment This is the unique identification number given to the
segment.

slf_seg_feature_count A segment can be referenced by various features.
This number keeps a count of the number of features
referencing the segment.

slf_seg_point_count The number of coordinates contained in this seg-
ment.

Points

slf_type: slf_point

The slf_point features do not have any coordinate. An slf_point feature is allowed to reference more than one segment.
That is, an slf_pointmay be a collection of points having all attributes in common except for their geographical location.

The following table lists the attributes common to all slf_point, slf_linear, and slf_areal features.

Attribute Name Contents

slf_fea_feature_id This is the unique identification number given to the
feature.

Attribute Name Contents

slf_fea_feature_
header_block_count

The slf_feature_header is made up of a sequence
of 40 byte blocks. This attribute counts the number
of 40 byte blocks that make up the slf_feature_
header.
For ITD data, the value of this attribute is 7.

slf_feature_header Contains descriptive information for the feature. In
the case of ITD data, the length for the value of this
attribute is 280 bytes.

slf_fea_segment_count Counts the number of segments that make up the
feature.

slf_segmentID{#}.id A list of unique segment IDs that make up the fea-
ture.

Linear

slf_type: slf_linear

Linear features output by the SLF reader do not have any coordinates. The attributes for linear features are identical
to the attributes found for slf_point features.

Areal

slf_type: slf_areal

Areal1 features output by the SLF reader do not have any coordinates. The attributes for areal features are identical to
the attributes found for slf_point features.

Text

slf_type: slf_txt

At this time, only the TXT records for ITD data are recognized and processed. If the SLF data set is not ITD, then the
TXT record is ignored.

The SLF reader outputs two types of slf_txt features when reading ITD data, distinguishable by the value of their slf_
txt_type attribute. The slf_txt_type attribute may contain the following values:

l misc_or_not_eval—these are features output when processing the Miscellaneous/Not Evaluated TXT record

l surface_material—these are features output when processing the Surface Roughness Information TXT record

The following table lists the attributes for txt features having misc_or_not_eval as the value of their slf_txt_type attrib-
ute.

Attribute Name Contents

slf_txt_feature_type Indicates whether the feature is a miscellaneous
feature (9D010) or a not evaluated feature
(9D020). There is no default.

1An areal feature is just a polygon. The SLF‘s specification always refers to these features as areal features therefore,
to assist those readers familiar with the SLF, it is referred to as areal throughout this section.

Attribute Name Contents

slf_txt_feature_id This is the feature slf_point, slf_linear, or slf_areal to
which this slf_txt feature is referred.

slf_txt_
feature_description

This is where you find descriptive information
about this feature.

The following table lists the attributes for txt features having surface_material as the value of their slf_
txt_type attribute.

Attribute Name Contents

slf_srq_value Surface roughness quality value

slf_srq_description Description of surface roughness type

DSI

slf_type: slf_dsi

There is exactly one feature of this type for every SLF file processed. The slf_dsi feature contains no geometry. It
is a place holder for all descriptive information common to all data. The data is contained in the DSI record of the SLF
file.

The following table lists the attributes that the slf_dsi feature contains. Values for some attributes listed may be blank.
This is dependent on the actual information contained in the DSI record. Only relevant DSI attributes, as described
in Appendix M, Implementing Interim Terrain Data (ITD) in 2-D SLF, of theMIL-STD-2413 document, are listed here.

Tip: AnyDSI fields not listed in the following table are still attributes in the slf_dsi feature. A log of the fea-
ture shows all attributes that the feature contains.

Attribute Name Contents # of
Bytes

slf_dsig_product_type Specifies the product type. Possible values
are: Digital Interim Terrain Data/Tactical
(DITDT) or Digital Interim Terrain
Data/Planning (DITDP).

5

slf_dsig_data_set_id This is the data set identification.
Range: String

20

slf_dsig_edition Edition number of the data set. For a new
data set, the edition number is 1.
Range: 1..999

3

slf_dsig_compilation_date Date the data set was compiled.
Range: YYMM

4

slf_dsig_maintenance_date Date the data set was updated. Set to 0000
for new data.
Range: YYMM

4

slf_dsig_SLF_version_date Date of the SLF version that applies to the
data set.

6

Attribute Name Contents # of
Bytes

Range: YYMMDD

slf_dsig_DMAFF_version_date The Defense Mapping Agency Feature For-
mat (DMAFF) version date that applies to
the data set.
Range: YYMMDD

6

slf_dssg_security_
classification

This is the security classification code.
Range:
T (Top Secret)
S (Secret)
C (Confidential)
F (For Official Use Only)
R (Restricted)
U (Unclassified)

1

slf_dssg_security_release Security control and release code based on
source and ancillary materials.

2

slf_dssg_downgrading_
declass_date

Downgrading and declassification date.
Range:
DDMMYY |OADR

(originating agency’s determination
required)|
blank spaces

6

slf_dssg_security_handling Security handling description. 21

slf_dspg_data_type The data type is set to GEO for ITD.
Range: GEO (geographic coordinate data)

3

slf_dspg_horizontal_units_of_
measure

Measuring system for the horizontal coor-
dinates.
Range: SEC (geographic seconds)

3

slf_dspg_horizontal_
resolution_units

Number of units of measure that constitute
the least count of the horizontal coordinate
system.
Range:
0.010 (for 1:50,000 scale ITD) |
0.020 (for 1:250,000 scale ITD)

5

slf_dspg_geodetic_datum Reference system code for horizontal posi-
tions.
Range:
World Geodetic System 1984 (WGE)
or

3

Attribute Name Contents # of
Bytes

a local datum from Appendix B, Datums, of
MIL-STD_2413 when no conversion to WGE
exists.

slf_dspg_ellipsoid Ellipsoid to which the horizontal datum is
referenced.
Range:
WGE | Ellipsoid codes from Appendix E,
Ellipsoids of MIL-STD-2413

3

slf_dspg_vertical_resolution_units Number of units of measure that constitute
the least count of the vertical coordinate
system.
Range: b.bbb (where b is a blank)

5

slf_dspg_vertical_reference_
system

Set to Mean Sea Level (MSL) for ITD.
Range: MSL

4

slf_dspg_latitude_of_origin Latitude to which all geographic coor-
dinates in the data set are referenced.
Range: DDMMSSSSH

9

slf_dspg_longitude_of_origin Longitude to which all geographic coor-
dinates in the data set are referenced.
Range: DDDMMSSSSH

10

slf_dspg_latitude_of_SW_
corner

Southernmost latitude of the data set.
Range: DDMMSSSSH

9

slf_dspg_longitude_of_
SW_corner

Westernmost longitude of the data set.
Range: DDDMMSSSSH

10

slf_dspg_latitude_of_
NE_corner

Northernmost latitude of the data set.
Range: DDMMSSSSH

9

slf_dspg_longitude_of_
NE_corner

Easternmost longitude of the data set.
Range: DDMMSSSSH

10

slf_dspg_total_number_of_
features

The total number of features in the data
set.
Range: Integer >= 0

6

slf_dspg_number_of_point_
features

The total number of point features in the
data set.
Range: Integer >= 0

6

Attribute Name Contents # of
Bytes

slf_dspg_number_of_linear_
features

The total number of linear features in the
data set.
Range: Integer >= 0

6

slf_dspg_number_of_areal_
features

The total number of areal features in the
data set.
Range: Integer >= 0

6

slf_dspg_total_number_of_
segments

The total number of segments in the data
set.
Range: Integer >= 0

6

slf_dshg_edition_code The first two digits of the edition code is
the recompilation code. The third digit is
the revision count. The edition code is set
to 000 for first-time coverage of a geo-
graphic area.

3

slf_dshg_project Project Specification.
Range: String

15

slf_dshg_spec_date Product specification date.
Range: YYMM

4

slf_dshg_spec_amendment_
number

Product specification amendment number.
Range: 1..999

3

slf_dshg_producer Producer of the data.
Range: String

8

slf_dshg_digitizing_system The system used to digitize the data set.
Range: String

10

slf_dshg_processing_system The system used to process the data set.
Range: String

10

slf_dshg_data_generalization The data generalization code is set to 0 for
ITD.

1

slf_dshg_north_match_merge_
number

Number of times that this data set has
merged with the adjacent data to the north
side The value is zero-filled for new data.
Range: Integer

1

slf_dshg_east_match_merge_
number

Number of times that this data set has
merged with the adjacent data to the east
side. The value is zero-filled for new data.
Range: Integer

1

Attribute Name Contents # of
Bytes

slf_dshg_south_match_merge_
number

Number of times that this data set has
merged with the adjacent data to the south
side. The value is zero-filled for new data.
Range: Integer

1

slf_dshg_west_match_merge_
number

Number of times that this data set has
merged with the adjacent data to the west
side. The value is zero-filled for new data.
Range: Integer

1

slf_dshg_north_match_merge_
date

North match merge date. The value is
zero-filled for new data.
Range: YYMM

4

slf_dshg_east_match_merge_
date

East match merge date. The value is zero-
filled for new data.
Range: YYMM

4

slf_dshg_south_match_merge_
date

South match merge date. The value is
zero-filled for new data.
Range: YYMM

4

slf_dshg_west_match_merge_
date

West match merge date. The value is
zero-filled for new data.
Range: YYMM

4

slf_dshg_yy_mm_of_earliest_
source

Year and month of the earliest source
material.
Range: YYMM

4

slf_dshg_yy_mm_of_latest_
source

Year and month of the latest source mate-
rial.
Range: YYMM

4

slf_dshg_data_conversion_code Set to 001 for ITD (1:50,000 scale). Other-
wise, it is NULL.

3

Features Created by the FME Factories

The geometric information for the slf_point, slf_linear, and slf_areal features are indirectly coded into the features by
their slf_segmentID{#}.id list attribute. This section describes the sequence of factories used in the mapping
file to pull in the geometric information from the slf_segment features for these features.

SLF features returned by the SLF factory pipeline have their FME feature type set to one of the following: slf_point,
slf_linear, slf_areal, slf_txt or slf_dsi. Features of the slf_segment type are not present any more
because after factory processing, the point, linear, and areal features contain their own coordinates. The special
attribute slf_type still has its value identically set to the feature’s feature type.

Each slf_point feature that references more than one slf_segment feature is split into several slf_point features. Each of
the resulting slf_point features has a different coordinate taken from each segment referenced by the original point. All
resulting points share the same attributes as the original point.

Some SLF point, linear or areal features may be classified as “miscellaneous” or “not evaluated”. More information
about these features can be found in the attributes of the slf_txt features having a slf_text_type of misc_or_not_
eval. After exiting the sequence of factories, the SLF miscellaneous or not evaluated features contain the attributes of
the slf_txt features that referenced them.

The sequence of factories that show the factory pipeline that some features from the SLF reader must enter can be
found in the slf/slf_factories.fmi file in the FME installation directory.

Using the Multi-Reader and the SLF Reader for ITD 2D Data

The sequence of factories that show the FME factories needed when ITD 2D data is read with the Multi-Reader and the
SLF Reader can be found in the slf/slf_multi_factories.fmi file in the FME installation directory. The
Comma-Separated Value (CSV) table used in the CorrelationFactory can also be found in the FME installation directory
in the slf/itd_FN_attr.csv file.

STAR-APIC Mercator MCF Reader/Writer

Format Notes: MERCATOR, formerly developed by Esko-Graphics, is now part of STAR-APIC
(http://www.star-apic.com).

The Mercator MCF Reader/Writer module provides FME with access to the Mercator MCF format.

Overview

The Mercator MCF format is a collection of different types of data which include lines, areas, points, text, externals,
and jobs. Each type of data is stored in a separate file, often with all the files of a particular dataset residing in the
same directory. The files are stored in DTO format, have the extension .dto and are named <dataset name>_
<file type identifier>.dto. The file type identifier is “l” for lines, “a” for areas, “p” for points, “e” for
externals, “t” for text, and “j” for jobs.

The FME considers a Mercator MCF dataset to be a set of files in the same directory with the same dataset name. The
FME is able to determine the type of data by the <file type identifier>.

Mercator MCF Quick Facts

Format Type Identifier MCF

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Directory

Feature Type File name

Typical File Extensions .dto

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index No

Schema Required Yes

Transaction Support No

Geometry Type mcf_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

http://www.star-apic.com/
http://www.star-apic.com/

Geometry Support

Geometry Supported? Geometry Supported?

elliptical arc no surface no

ellipses no text yes

line yes z values no

none yes

Reader Overview

The MCF reader produces FME features for all feature data held in files that reside in a particular directory. For each
file, the reader checks to see if that file is requested by looking at the list of IDs specified in the mapping file. If a
match is made or no IDs were specified in the mapping file, then that file is opened to be read. The MCF reader
extracts features one at a time and passes them on to the rest of the FME for further processing. When the file is
exhausted, the MCF reader starts on the next file. When all MCF files in the directory have been read, then the reader
is closed.

MCF uses an upper-left origin for its coordinates and FME uses a bottom-left origin. To compensate for this, all y
values are multiplied by -1 to “flip” them over the x-axis.

Reader Directives

The directives processed by the MCF reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the MCF reader is MCF.

DATASET

Required/Optional: Required

The value for this keyword is the directory containing the DTO files to be read. A typical mapping file fragment spec-
ifying an input MCF dataset looks like:

MCF_DATASET /usr/data/mexico/

Workbench Parameter: Source STAR-APIC Mercator MCF File(s)

DEF

Required/Optional: Optional

The definition specifies only the base name of the file, the type of geometry it contains, and names and types of all
attributes. The syntax of an MCFDEF line is:

<ReaderKeyword>_DEF <baseName> \
mcf_type mcf_line| \

mcf_area| \
mcf_point|\
mcf_text| \
mcf_external| \
mcf_job
[<attrName> <attrType>]+

All MCF data is two-dimensional.

The attribute types created by the MCF format are listed below.

Field Type Description

char(<width>) Character fields store fixed-length strings. The
width parameter controls the maximum characters

Field Type Description

that can be stored by the field. When a character
field is written, it is right-padded with blanks, or
truncated, to fit the width. When a character field is
retrieved, any padding blank characters are
stripped away.

decimal(<width>,<decimals>) Decimal fields store single and double precision
floating point values. The width parameter is the
total number of characters allocated to the field,
including the decimal point. The decimals parameter
controls the precision of the data and is the number
of digits to the right of the decimal.

IDs

Required/Optional: Optional

This optional specification is used to limit the available and defined MCF files to be read. If no IDs are specified, then
all defined and available files are read. The syntax of the IDs keyword is:

<ReaderKeyword>_IDs <baseName1> \
<baseName2> … \
<baseNameN>

The base names must match those used in DEF lines.

The example below selects only the area and line DTO file for input during a translation:

MCF_IDs mexico_a \
mexico_l

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

Writer Directives

The directives that are processed by the MCF writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the MCF writer is MCF.

DATASET

Required/Optional: Required

The value for this keyword is the directory where the DTO files are to be written. A typical mapping file fragment spec-
ifying an output MCF directory looks like:

<WriterKeyword>_DATASET /usr/data/mexico/output

Workbench Parameter: Destination STAR-APIC Mercator MCF Directory

DEF

Required/Optional: Optional

The definition specifies only the base name of the file, the type of geometry it contains, and names and types of all
attributes. The syntax of an MCFDEF line is:

<WriterKeyword>_DEF <baseName> \
mcf_type mcf_line| \

mcf_area| \
mcf_point| \
mcf_text| \
mcf_external| \
mcf_job
[<attrName> <attrType>]+

The attribute types created by the MCF format are listed below.

Field Type Description

char(<width>) Character fields store fixed-length strings. The width
parameter controls the maximum characters that can be
stored by the field. When a character field is written, it is
right-padded with blanks, or truncated, to fit the width.
When a character field is retrieved, any padding blank
characters are stripped away.

decimal(<width>,
<decimals>)

Decimal fields store single and double precision floating
point values. The width parameter is the total number of
characters allocated to the field, including the decimal
point. The decimals parameter controls the precision of the
data and is the number of digits to the right of the dec-
imal.

HORIZ_SIZE

Required/Optional: Optional

The value for this keyword is the horizontal size of the dataset to be output into the job file. This value is in Mercator
units. One Mercator unit is 1/256000 of an inch. If a feature of type mcf_job comes into the writer and this key-
word is not set, then the job file will have the largest horizontal size from all of the job features. If this keyword is not

specified and there are no input job features, the job file output will have the value shown below (A4 width in Mer-
cator units). The syntax of an MCF HORIZ_SIZE line is:

<WriterKeyword>_HORIZ_SIZE 2956651

Workbench Parameter: Horizontal Size [optional]

VERT_SIZE

Required/Optional: Optional

The value for this keyword is the vertical size of the dataset to be output into the job file. This value is in Mercator
units. One Mercator unit is 1/256000 of an inch. If a feature of type mcf_job comes into the writer and this key-
word is not set, then the job file will have the largest vertical size from all of the job features. If this keyword is not
specified and there are no input job features, the job file output will have the value shown below (A4 width in Mer-
cator units). The syntax of an MCF VERT_SIZE line is:

<WriterKeyword>_VERT_SIZE 2118144

Workbench Parameter: Vertical Size [optional]

OFFSET_X

Required/Optional: Optional

The value for this keyword is the value by which all x-coordinates will be offset. This is a floating point value. For MCF-
to-MCF translations, this value is set to 0. If this value is not set, then the writer will calculate its own offset to bring
the coordinates to the origin of (0,0). The syntax of an MCF OFFSET_X line is:

<WriterKeyword>_OFFSET_X 0

All MCF data is two-dimensional.

Workbench Parameter: Offset(X)

OFFSET_Y

Required/Optional: Optional

The value for this keyword is the value by which all y-coordinates will be offset. This is a floating point value. For MCF-
to-MCF translations, this value is set to 0. If this value is not set, then the writer will calculate its own offset to bring
the coordinates to the origin of (0,0). The syntax of an MCF OFFSET_Y line is:

<WriterKeyword>_OFFSET_Y 0

Workbench Parameter: Offset(Y)

SCALE_X

Required/Optional: Optional

The value for this keyword is the value by which all x-coordinates will be scaled. This is a floating point value. A value
of 1 will leave the x-coordinates of the incoming features as is. For MCF-to-MCF translations this value defaults to 1
but can be changed in the mapping file. If this value is not specified, then the writer calculates its own scale factor
that is as large as possible to minimize the loss of precision when decimal coordinates are stored as integers in MCF
when writing Version 6.4. The syntax of an MCF SCALE_X line is:

<WriterKeyword>_SCALE_X 1

Workbench Parameter: Scale(X)

SCALE_Y

Required/Optional: Optional

The value for this keyword is the value by which all y-coordinates will be scaled. This is a floating point value. For MCF
to MCF translations this is default to 1 but can be changed in the mapping file. The writer flips the y-coordinates over
the x-axis because of MCF’s origin. If this value is not specified, then the writer calculates its own scale factor that is
as large as possible to minimize the loss of precision when decimal coordinates are stored as integers in MCF when
writing version 6.4. The syntax of an MCF SCALE_Y line is:

<WriterKeyword>_SCALE_Y 1

Workbench Parameter: Scale(Y)

VERSION

Required/Optional: Optional

The value for this keyword determines the version of Mercator MCF that is to be output. Version 7.0 allows decimal
values, unlike Version 6.4 which allows only integer values. When 7.0 is specified, the default values for SCALE_X,
SCALE_Y, OFFSET_X, OFFSET_Y are 1, 1, 0, 0 respectively.

Note: It is possible that the version number may be called something other than 7.0.

The syntax of a version line is:

<WriterKeyword>_VERSION

Workbench Parameter: MCF Version Out

Feature Representation

MCF features consist of geometry and attribute information. All MCF FME features contain the mcf_type attribute
that identifies the geometric type.

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Lines

mcf_type:mcf_line

MCF line features are two dimensional and represent linear features. These features have the following special attrib-
utes associated with them. If there are multiple vectors in a particular group, these vectors will be returned as an
aggregate of vectors.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the DTO
dictionary. If this is not specified, then a
default value of <DEFAULT> is used.

Optional

mcf_data_file The data file where the feature is to be
output.

Optional

mcf_group_num The group number of the feature within
the key specified by mcf_key.

Optional

Polygons

mcf_type:mcf_area

MCF area features represent closed polygonal features that are two dimensional. These features have the following
special attributes associated with them. If there are multiple polygons in a particular group, these polygons will be
returned as an aggregate of polygons.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the DTO
dictionary. If this is not specified, then a
default value of <DEFAULT> is used.

Optional

mcf_data_file The data file where the feature is to be
output.

Optional

mcf_group_num The group number of the feature within
the key specified by mcf_key.

Optional

Text

mcf_type:mcf_text

MCF text features hold text information. A single two-dimensional position is associated with the text block. Text fea-
tures may have the following special attributes associated with them.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the DTO
dictionary. If this is not specified, then a
default value of <DEFAULT> is used.

Optional

mcf_text_string The text string to be represented. Required

mcf_rotation The rotation of the text string in degrees
clockwise from the horizontal axis. Rota-
tion in MCF is clockwise from the x-axis,
whereas in FME rotation is counter-
clockwise from the x-axis. The reader and
writer take care of these conversions.

Optional

mcf_scaleY The size of the text string in the y direction
in GRA file units.

Optional

mcf_scaleX The size of the text string in the x direction
in GRA file units.

Optional

mcf_data_file The data file where the feature is to be out-
put.

Optional

mcf_group_num The group number of the feature within the
key specified by mcf_key.

Optional

mcf_slant A number defining a slant angle in degrees. Optional

mcf_kern The kerning expressed as a percentage of
the normal spacing.

Optional

mcf_quad The quadding mode referring to the posi- Optional

Attribute Name Contents Required/Optional

tion of the text box that is at the point spec-
ified by they x,y point

mcf_bgfont The Barco sequence number of the font or
string descriptor of other formats.

Optional

mcf_ltext A Boolean flag to signify if it is a live text
object.

Optional

mcf_offset The offset of the first character from the
start of the curve.

Optional

mcf_distance The orthogonal distance of characters from
the curve.

Optional

Points

mcf_type:mcf_extern

MCF external features represent external entity features that are two-dimensional. These features have the following
special attributes associated with them.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the DTO
dictionary.

Optional

mcf_external_file_name The filename containing the external
entity to go at this point.

Required
(external only)

mcf_scale1 A scale factor. If this is not specified, a
default of 1 is used.

Optional

mcf_rotation The rotation angle of the external sym-
bol. If this is not specified, a default
value of 0 is used. Rotation in MCF is
clockwise from the x-axis, whereas in
FME, rotation is counterclockwise from
the x-axis. The reader and writer take
care of these conversions.

Optional

mcf_distortion The distortion factor. A value of 0.0
means no distortion.

Optional

mcf_scale2 The ratio between the vertical and hor-
izontal scale.

Optional

mcf_data_file The data file where the feature is to be
output.

Optional

mcf_group_num The group number of the feature within
the key specified by mcf_key.

Optional

mcf_type:mcf_point

MCF point features represent point features that are 2D. These features have the following special attributes asso-
ciated with them.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the DTO dic-
tionary.

Optional

mcf_scale1 A scale factor. If this is not specified, a
default of 1 is used.

Optional

mcf_rotation The rotation angle of the point symbol. If
this is not specified, a default value of 0 is
used. Rotation in MCF is clockwise from the
x-axis, whereas in FME rotation is counter-
clockwise from the x-axis. The reader and
writer take care of these conversions.

Optional

mcf_distortion The distortion factor. A value of 0.0 means
no distortion.

Optional

mcf_scale2 The ratio between the vertical and hor-
izontal scale.

Optional

mcf_data_file The data file where the feature is to be out-
put.

Optional

mcf_group_num The group number of the feature within the
key specified by mcf_key.

Optional

No_Geometry

mcf_type:mcf_job

MCF job features represent job features that have no geometry. These features have the following special attributes
associated with them.

Attribute Name Contents Required/Optional

mcf_key The key value for the feature in the
DTO dictionary.

Optional

mcf_vertical_size The vertical size for the job file in
Mercator units.

Required

mcf_horizontal_size The horizontal size for the job file
in Mercator units.

Required

mcf_data_file The data file where the feature is to
be output.

Optional

Swedish KF85 Reader/Writer

The Swedish KF85 Reader and Writer modules allow the Feature Manipulation Engine (FME) to read and write Swed-
ish KF85 files. KF85 is a published ASCII format used by the KF85 product. The KF85 Reference Manual describes the
KF85 format and all constants it uses.

Overview

KF85 is a two-dimensional (2D) or three-dimensional (3D) system.

KF85 files store both feature geometry and attributes. Both standard attributes and user-defined attributes are sup-
ported. All user-defined attributes require integer attribute names. A logical KF85 file consists of one physical file that
can have any file extension. The extension .k85 is added to the base name of the KF85 file when writing files.

The KF85 reader and writer support the storage of point, line, arc, and text geometric data in KF85 files. The KF85 for-
mat can also store features with no geometry. Features that have no geometry are referred to as having a geometry of
none.

The FME automatically recognizes standard KF85 coordinate systems from the header when reading and can convert
these projections automatically. When writing KF85, the correct coordinate system string is written to the header and
may be overridden with theCOORDINATE_SYSTEM_STRING directive.

The FME considers a KF85 dataset to be a single KF85 file.

KF85 Quick Facts

Format Type Identifier KF85

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Geometry type

Typical File Extensions .k85 (.klf, .kfp, .apt and others)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Enhanced Geometry Yes

Geometry Type kf85_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles yes polygon no

circular arc yes raster no

donut polygon no solid no

elliptical arc yes surface no

ellipses no text yes

line yes z values yes

none yes

Reader Overview

The KF85 reader opens the input file and immediately starts reading features, returning them to the rest of the FME
for processing. The reader does not have any requirement for definition statements as there are no user-defined
attributes.

Reader Directives

The directives that are processed by the KF85 reader are listed below. The suffix shown is prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the KF85 reader is KF85.

DATASET

Required/Optional: Required

The value for this directive is the file name of the KF85 file to be read. A typical mapping file fragment specifying an
input KF85 dataset looks like:

KF85_DATASET /usr/data/KF85/roads.k85

Workbench Parameter: Source Swedish KF85 File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The KF85 writer creates and writes feature data to a KF85 file specified by the DATASET directive. Unlike the reader,
the file may or may not exist before the translation occurs. An existing file with the same path and name is overwritten
with new feature data. Only one KF85 file may be written to in a single FME session (one translation).

Writer Directives

The directives that are processed by the KF85 writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the KF85 writer is KF85.

DATASET

Required/Optional: Required

The value for this directive is the file name of the KF85 file to be written. A typical mapping file fragment specifying an
output KF85 dataset looks like:

KF85_DATASET /usr/data/KF85/roads.k85

Workbench Parameter: Destination Swedish KF85 File

X_ORIGIN

Required/Optional: Optional

The value for this directive is the mathematical X coordinate1 of the false origin in the destination KF85 file. If this
directive is not present in the mapping file, a default value of 0 will be used. A typical mapping file fragment spec-
ifying an output KF85 X origin coordinate looks like:

KF85_X_ORIGIN 100

Y_ORIGIN

Required/Optional: Optional

The value for this directive is the mathematical Y coordinate2 of the false origin in the destination KF85 file. If this
directive is not present in the mapping file, a default value of 0 will be used. A typical mapping file fragment spec-
ifying an output KF85 Y origin coordinate looks like:

KF85_Y_ORIGIN 300

SCALE

Required/Optional: Optional

The directive value is the scale of the destination KF85 file. If this directive is not present in the mapping file, a default
value of 1 will be used. A typical mapping file fragment specifying an output KF85 scale looks like:

KF85_SCALE 500

TEXT_LENGTH

Required/Optional: Optional

The value for this directive is the maximum length of the text strings appended to the lines and points output to KF85.
The maximum value for this directive is 20. If this directive is not present, the default of 20 is used. This does not set
the length of text on a text feature. A typical mapping file fragment specifying an output KF85 text length looks like:

KF85_TEXT_LENGTH 15

MANAGER

Required/Optional: Optional

The value for this directive sets theMANAGER field in the J header of the output KF85 file. If this directive is not
present, the field is left blank. A typical mapping file fragment specifying an output KF85 manager header field looks
like:

KF85_MANAGER "BJÖRN"

COORDINATE_SYSTEM_STRING

Required/Optional: Optional

The value for this directive sets the coordinate system field in theG header of the output KF85 file, even when using
the FME reprojection capabilities. This only overrides the output field and does not affect the data projection. If this
directive is not present, the coordinate system string is automatically set to the correct value based on the recognized
coordinate system. A typical mapping file fragment specifying an output KF85 coordinate system string looks like:

KF85_COORDINATE_SYSTEM_STRING "RT 90 2.5 gon V RH 70"

1This is the horizontal component.

2This is the vertical component.

Feature Representation

KF85 features consist of geometry and attributes. When reading KF85 files, several predefined attributes hold the
data from the file. When writing KF85 files, the values in these predefined attributes are written out to the file. If the
feature does not have these predefined attributes, appropriate default values will be used.

Free Attributes or User-Defined Attributes

KF85 files also support free attributes, also known as user-defined attributes. These attributes must have an integer
as an attribute name. When a KF85 file is read, each of these attributes is added to the individual features it is asso-
ciated with. As well, a special attribute kf85_attribute_list is attached, whose value is a comma-separated list of all
the user-defined attribute names and values present.

When writing KF85 files, all attributes with integer names are interpreted as user-defined attributes and are written
out—associated with the appropriate feature. As well, if any feature contains the special attribute kf85_attribute_list,
this attribute is parsed, looking for attribute name and value pairs. Each of these attributes is written to the KF85 out-
put file as user-defined attributes, associated with the appropriate feature.

Predefined Attributes

All KF85 FME features contain the kf85_type attribute to identify the geometric type. All features also have a special
KF85 code contained in the kf85_code attribute. Depending on the geometric type, the feature contains additional
attributes specific to the geometric type. These are described in subsequent sections.

Attribute Name Contents

kf85_type The KF85 geometric type of this entity.
Required:
kf85_point
kf85_line
kf85_arc
kf85_text
kf85_common_info
kf85_comment
kf85_symbol
kf85_none
Default: NULL

kf85_code The feature's special code.
Required: any 9 digit integer
Default: 0

kf85_attribute_list An alphanumeric comma-separated list of all
user-defined attribute names and values present
on the feature.
Range:maximum 255 character string
Default: NULL string

Points

kf85_type: kf85_point

A KF85 point feature specifies a single 2D or 3D coordinate and the mean error in both x and y. The point feature may
also have text (a label) and/or a symbol associated with the point.

Attribute Name Contents

kf85_internal_name An alphanumeric code for the feature.
Range: maximum 9 character string
Default: NULL string

kf85_mean_error_plane The mean error in the X coordinate of the point
measured in millimetres (mm).
Range: 0 … 32767
Default: 0.0

kf85_mean_error_height The mean error in the Y coordinate of the point
measured in mm.
Range: 0 … 32767
Default: 0.0

kf85_text_string The optional text string associated with the point.
Range:maximum 20 character string
Default: NULL string

kf85_rotation The rotation of the text, measured in degrees
counterclockwise from horizontal. (Note that the
value actually stored in the file is converted from
this into GON.)
Range: any real number
Default: 0.0

kf85_text_height The height of the text measured in mm.
Range: any real number
Default: 1

kf85_text_width The width of the text measured in mm.
Range: any real number
Default: 1.0

kf85_text_pos_x The X coordinate of the point’s text.
Range: any real number
Default: 0.0

kf85_text_pos_y The Y coordinate of the point’s text.
Range: any real number
Default: 0.0

Attribute Name Contents

kf85_text_position The justification of the point’s text. Specifically,
the point on the text’s bounding box where the
position is given, as shown below. 0 is an unspec-
ified position. If the value is 0, then the other
values relating to the point’s text must also be 0.
Range: 0 ... 9
Default: 7

kf85_symbol_rotation The rotation of the symbol, measured in degrees
counterclockwise from horizontal. (Note that the
value actually stored in the file is converted from
this into GON.)
Range: any real number
Default: 0.0

kf85_symbol_height The height of the symbol measured in mm.
Range: any real number
Default: 1.0

kf85_symbol_width The width of the symbol measured in mm.
Range: any real number
Default: 1.0

Lines

kf85_type: kf85_line

KF85 line features contains 2D or 3D coordinates, as well as an internal name and a text string. This text also has a
position, justification, rotation, width, and height.

When reading a KF85 line; its vertices can be defined in two ways. They can be defined by their x,y (and z) co-ordi-
nates. Or they can be defined by specifying the internal_name of another point in the same file. The KF85 Reader sup-
ports both methods. The resulting line is the same regardless of which way it is defined.

Attribute Name Contents

kf85_internal_name An alphanumeric code for the feature.
Range: maximum 9 character string
Default: NULL string

kf85_text_string The optional text string associated with the line.
Range:maximum 20 character string
Default: NULL string

kf85_rotation The rotation of the text, measured in degrees
counterclockwise from horizontal. (Note that the
value actually stored in the file is converted from
this into GON.)
Range: any real number
Default: 0.0

Attribute Name Contents

kf85_text_height The height of the text measured in mm.
Range: any real number
Default: 1.0

kf85_text_width The width of the text measured in mm.
Range: any real number
Default: 1.0

kf85_text_pos_x The X coordinate of the line’s text, relative to the
midpoint of the line.
Range: any real number
Default: 0.0

kf85_text_pos_y The Y coordinate of the line’s text, relative to the
midpoint of the line.
Range: any real number
Default: 0.0

kf85_text_position The justification of the line’s text. Specifically, the
point on the text’s bounding box where the position
is given, as shown below. 0 is an unspecified posi-
tion. If the value is 0, then the other values relating
to the line’s text must also be 0.
Range: 0 ... 9
Default: 7

Arcs

kf85_type: kf85_arc

Arc features are partial ellipse boundaries with two additional angles that control the portion of the ellipse boundary
that is drawn.

Note: The function @Arc() can be used to convert an arc to a linestring. This is useful for storing arcs in systems
that do not support them directly.

Attribute Name Contents

kf85_primary_axis The length of the semi-major axis in ground units.
Range: Any real number > 0
Default: No default

kf85_secondary_axis The length of the semi-minor axis in ground units.
Range: Any real number > 0
Default: No default

kf85_rotation The rotation of the major axis. The rotation is meas-
ured in degrees counterclockwise up from hor-
izontal.
Range: -360.0..360.0

Attribute Name Contents

Default: 0

kf85_start_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of start_angle.

Range: 0.0..360.0
Default: No default

kf85_sweep_angle Refer to the @Arc (function) in the FME Functions and Fac-
tories manual for a detailed definition of sweep_angle.

Range: Any real number > 0
Default: No default

kf85_orientation The orientation of the arc. As the sweep angle is
always returned as positive, this field can be used
to determine the original orientation of the arc.
Range: clockwise | counterclockwise
Default: none

Text

kf85_type: kf85_text

KF85 text features contain 2D coordinates and a text string, along with the justification, rotation, height, width, font,
and distance between lines of the text.

Attribute Name Contents

kf85_internal_name An alphanumeric code for the feature.
Range:maximum 9 character string
Default: NULL string

kf85_text_string The text string.
Range: maximum 62 character string
Default: NULL string

kf85_rotation The rotation of the text, measured in degrees counter-
clockwise from horizontal. (Note that the value actu-
ally stored in the file is converted from this into GON.)
Range: any real number
Default: 0.0

kf85_text_height The height of the text measured in mm.
Range: any real number
Default: 1.0

kf85_text_width The width of the text measured in mm.
Range: any real number
Default: 1.0

kf85_text_position This is the justification of the line’s text. Specifically,

Attribute Name Contents

the point on the text’s bounding box where the position
is given, as shown below. 0 is an unspecified position.
If the value is 0, then the other values relating to the
line’s text must also be 0.
Range: 0 ... 9
Default: 7

kf85_text_spacing The spacing between the text lines.
Range: any real number
Default: 1.0

kf85_font The font type for the text. There is no documented
standard for this field and, therefore, it must be inter-
preted by the user.
Range:maximum 2 character string
Default: NULL string

Common Info

kf85_type: kf85_common_info

KF85 common info features result from common info records that can occur anywhere within a KF85 file. These fea-
tures contain no geometry. They are used to store an ID code and string information not associated with any geo-
graphic location within the KF85 file.

Attribute Name Contents

kf85_common_code The ID code present on the common info.
Range: maximum 3 digit integer
Default: 0

kf85_common_string The text string present on the common info.
Range: maximum 62 character string
Default: NULL string

Comment

kf85_type: kf85_comment

KF85 comment features result from comment records that can occur anywhere within a KF85 file. These features
contain no geometry. They are used to store string information not associated with any geographic location within the
KF85 file.

Attribute Name Contents

kf85_comment_string The text string present on the comment.
Range: maximum 62 character string
Default: NULL string

Symbol

kf85_type: kf85_symbol

KF85 symbol features contain 2D coordinates to indicate the location of a symbol. The symbol’s height, width, and
rotation are also indicated.

Attribute Name Contents

kf85_rotation The rotation of the symbol, measured in degrees
counterclockwise from horizontal. (Note that the value
actually stored in the file is converted from this into
GON.)
Range: any real number
Default: 0.0

kf85_symbol_height The height of the symbol measured in mm.
Range: any real number
Default: 1.0

kf85_symbol_width The width of the symbol measured in mm.
Range: any real number
Default: 1.0

Swedish Masik Reader/Writer

The Masik reader and writer modules provide the FME with the ability to read and write Swedish Masik files. The
Masik file format is an ASCII format used mainly in Sweden.

Overview

Masik data is strictly two-dimensional (2D).

Masik data is stored in a data set that consists of a number of files. A logical Masik data set consists of any number of
files in the same directory. There are no conventions concerning file extensions.

The Masik reader and writer support the storage of symbol (point), line, text, and polygon data. Each Masik file can
contain either text, symbols, or linework (polygons and lines), and cannot mix these types.

Masik Quick Facts

Format Type Identifier MASIK

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type Directory

Feature Type File base name

Typical File Extensions N/A

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required Yes

Transaction Support No

Geometry Type MASIK_GEOMETRY

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

Geometry Support

Geometry Supported? Geometry Supported?

line yes z values no

none no

Reader Overview

The Masik reader first scans the directory it is given for Masik files that have been defined in the mapping file. The
Masik reader then extracts features from the files one at a time, and passes them on to the rest of the FME for further
processing.

Reader Directives

The directives processed by the Masik reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the Masik reader is MASIK.

DATASET

Required/Optional: Required

The value for this directive is the directory containing the Masik files to be read. A typical mapping file fragment spec-
ifying an input Masik data set looks like:

MASIK_DATASET /usr/data/cityinfo

Workbench Parameter: Source Swedish MASIK Directory

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The Masik writer outputs each feature type into a separate file to comply with Masik file regulations. Each feature has
the appropriate geometry associated with it – symbols also have an optional symbol type and vectors (lines and poly-
gons) have an optional text attribute.

Writer Directives

The directives that are processed by the Masik writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the Masik writer is MASIK.

DATASET

Required/Optional: Required

The value for this keyword is the name of the created Masik directory. If a directory of this name exists, it is replaced
by the new Masik data. A typical mapping file fragment specifying an output Masik dataset looks like:

MASIK_DATASET /tmp

Workbench Parameter: Destination Swedish MASIK Directory

DEF

Required/Optional: Required

To define files to write features to, the Masik writer uses MASIK_DEF lines. The feature type used in theMASIK_DEF
line is used as the file name. The dot character ‘.’ used to separate the basename from the extension must be
replaced with an underscore. For example, to read or write using the file name symbols.fyr, the feature type on the
MASIK_DEF line must be symbols_fyr. A typical mapping file fragment specifying an output Masik file in this type of
example looks like:

MASIK_DEF symbols_fyr masik_symbol_type char(254)

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

A special FME feature attribute called MASIK_GEOMETRY directs the Masik writer on how to interpret the feature. The
correct values for MASIK_GEOMETRY aremasik_symbol, masik_text, masik_line, and masik_polygon. Any further param-
eters specified to each of these four types are described in the following subsections.

Symbols

masik_type:masik_symbol

The Masik writer outputs a symbol object containing the point as specified in the input file. Also, the Masik reader and
writer associate the symbol type for the object with a specific attribute.

Attribute Name Contents

masik_symbol_type A text attribute that specifies the symbol type for
the feature.
Required:No
Default:NULL

Text

masik_type:masik_text

The Masik writer outputs a text object containing the point as specified in the input file. The Masik reader and writer
also associate the text string for the object with a specific attribute.

Attribute Name Contents

masik_text_string A text attribute that specifies a the text string for
the feature.
Required: No
Default: NULL

Lines

masik_type:masik_line

The Masik writer outputs a line object containing the points as specified in the input file. The Masik reader and writer
also associate the optional attribute for the object with a specific attribute called namn.

Attribute Name Contents

namn A text attribute that specifies value of the optional attrib-
ute for the feature.
Required:No
Default:NULL

Polygons

masik_type:masik_polygon

The Masik writer outputs a polygon object containing the points as specified in the input file. The Masik reader and
writer also associate the optional attribute for the object with a specific attribute called namn.

Attribute Name Contents

namn A text attribute that specifies value of the optional attrib-
ute for the feature.
Required:No
Default:NULL

Text File Reader/Writer

Overview

The Text File Reader/Writer allows the Feature Manipulation Engine (FME) to read and write any arbitrary text file one
line at a time.

Although it is possible to use this reader and writer in a generic translation, this usually will not produce a useful
result by itself. Instead, this format is typically used as part of a customized format or custom workspace.

In such a case, the lines read are parsed using FME transformers into data elements which are further transformed
or combined before output is produced. The reader can directly read from gzip file with .txt.gz extension and the
writer can write a compressed gzip file if the extension of the output file is .gz.

Text File Quick Facts

Format Type Identifier TEXTLINE

Reader/Writer Both

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Fixed (text_line)

Typical File Extensions *.txt, *.txt.gz

Automated Translation Support Yes

User-Defined Attributes N/A

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Encoding Support Yes

Geometry Type textline_type

End of line type preservation Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point no

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

Geometry Support

Geometry Supported? Geometry Supported?

ellipses no text no

line no z values n/a

none yes

Reader Overview

The Text File reader module produces an FME feature for each line of text in the text file except when READ_WHOLE_
FILE_AT_ONCE is specified. In this case, only a single feature containing the text_line_data attribute is
produced per input file.

Reader Directives

READ_BOTTOM_UP

This optional directive specifies whether the input file should be read backwards, from the end of the file to the top.
This feature is useful when only a few features from the end of a large file are required to be read.

Required/Optional

Optional

Workbench Parameter

Read Bottom up

Writer Overview

The Text File writer writes one text line per feature.

Writer Directives

The directives listed below are processed by the Text File writer. The suffixes shown are prefixed by the current
<WriterKeyword> in a mapping file. By default, the <WriterKeyword> for the Text File writer is TEXTLINE.

DATASET

The value for this directive is a text file (*.txt), or a compressed text file. (*.txt.gz).

Required/Optional

Required

Workbench Parameter

Destination Text File

OVERWRITE_FILE

This optional directive specifies whether the output file should be overwritten or appended to. The default is for the
destination file to be overwritten.

Values

YES | NO

Required/Optional

Optional

Workbench Parameter

Overwrite Existing File

END_OF_LINE

Specifies the format of line terminators to be used for the output file.

Values

Windows| UNIX | Macintosh

Values

YES | NO

Required/Optional

Optional

Workbench Parameter

Line Termination

ENCODING

This optional specification controls which character encoding is used when writing the output file.

If the value is not set, then the character encoding will be automatically detected from the system on which trans-
lation is being performed.

Values

UTF-8, UTF-16LE, UTF-16BE, ANSI, BIG5, SJIS, CP437, CP708, CP720, CP737, CP775, CP850, CP852, CP855, CP857,
CP860, CP861, CP862, CP863, CP864, CP865, CP866, CP869, CP932, CP936, CP950, CP1250, CP1251, CP1252,
CP1253, CP1254, CP1255, CP1256, CP1257, CP1258, ISO8859-1, ISO8859-2, ISO8859-3, ISO8859-4, ISO8859-5,
ISO8859-6, ISO8859-7, ISO8859-8, ISO8859-9, ISO8859-13, ISO8859-15

Workbench Parameter

Character Encoding

MIME_TYPE (FME Server use only)

This directive is only of interest to users who are authoring for FME Server's streaming service, and would like to be
able to create HTML files on the fly for streaming into the browser (as opposed to streaming plain text back to the
browser).

By adjusting this setting, the user is communicating to and storing in the workspace information on how the text file
will be streamed back if it is used in the streaming service.

The valid values for this directive are text/plain and text/html.

Required/Optional

Optional

WRITE_UTF8_BOM

This directive specifies whether the byte order mark for UTF-8 encoded file should be written at the beginning. This
option applies only when the encoding is set to UTF-8.

Required/Optional

Optional

Values

YES (default) | NO

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), a Text File feature consists of the following attributes:

Attribute Name Contents

text_line_data The line of text read from the file.

text_line_length Total number of bytes in text_line_data attrib-
ute. (Reader only)

text_line_number Line number of the text line within the file.
(Reader only)

Trimble JobXML Reader

The Trimble JobXML Reader provides FME with access to data in the JobXML file format. This file format is produced
by Trimble Equipment and used mostly for survey work.

Overview

A JobXML file can be divided into three components:

1. The Environment: This contains a variety of information about the environment in which the data was
created. Some information is important only for the actual hardware (such as the display settings) and some
is directly relevant for interpreting the data (such as the coordinate system definition). All portions of the envi-
ronment are made available as attributes, so even information about the display or job settings is available to
the user

2. The Reductions: This section contains all the point elements after various corrections have been done. Each
of these points is constructed with all of its attributes, and a point geometry based on these attributes is
created.

IMPORTANT: The coordinate system has not been defined, so the point geometries created here have no associated
coordinate system. You can set the coordinate systemmanually either by selecting from one of FME’s predefined
coordinate systems, or by creating one in the MyCoordSysDefs.fme file in the FME_HOME/Reproject/ directory.
Searchwww.fmepedia.com for advice on constructing coordinate systems.

3. The Fieldbook: This component contains all the recordings that were made during this job. While FME encap-
sulates each Fieldbook entry into a feature, not all will be of interest. Some track the users’ changing of dis-
play settings, while others include the raw observation data (UnitRecords and PointRecords, respectively).
Based on the XML schema, there are currently 43 possible FieldBook entries, but more may be created in the
future. Each FieldBook entry type will be mapped to a distinct feature type.

JobXML Quick Facts

Format Type Identifier JOBXML

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type n/a

Typical File Extensions .jxl

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

http://www.fmepedia.com/

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The JOBXML reader module produces an FME feature for each line in each the data file.

Reader Directives

The directives processed by the JOBXML reader are listed below. The suffixes shown are prefixed by the current
<ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the JOBXML reader is JOBXML.

DATASET

Required/Optional: Required

An example of the DATASET keyword in use is:

JOBXML_DATASET /usr/data/input.jxl

Workbench Parameter: Source Trimble JobXML File(s)

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

JobXML is based on the XML reader, so all features have XML specific format attributes (there are no JobXML format
specific attributes).

U.S. Environmental Protection Agency (EPA) Geospatial
Data Reader

EPA Geospatial is an XML-based file format produced by the United States Environmental Protection Agency.

More information about this format is available at:

http://www.epa.gov/enviro/geo_data.html

The XML schema file for this format can be located at:

http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd

Overview

An EPA Geospatial XML file is divided into two components:

1. Header: This section contains some general information about the EPA and the purpose of the XML document,
including the date it was produced.

2. Facility List: This section contains a list of facilities compiled by the EPA. The information that can be pro-
vided for each facility includes: name, address, (including street address, ZIP code, state), electronic
address (typically a URL), latitude/longitude and CRS datum name. Additionally, each facility is accompanied
by a list of EPA programs that are in effect at the facility.

EPA Geospatial Quick Facts

Format Type Identifier EPA_GDXML

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type n/a

Typical File Extensions .xml

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

http://www.epa.gov/enviro/geo_data.html
http://www.epa.gov/enviro/geo_data.html
http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd
http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd
http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd
http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd
http://www.epa.gov/enviro/html/frs_demo/geospatial_data/EPA_GEODATA_v1.0.xsd

Geometry Support

Geometry Supported? Geometry Supported?

circles no polygon no

circular arc no raster no

donut polygon no solid no

elliptical arc no surface no

ellipses no text no

line no z values n/a

none yes

Reader Overview

The EPA Geospatial reader module produces an FME feature for each facility in the data file. The header information is
ignored by the FME reader.

Reader Directives

The directives processed by the EPA Geospatial XML reader are listed below. The suffixes shown are prefixed by the
current <ReaderKeyword> in a mapping file. By default, the <ReaderKeyword> for the EPA Geospatial XML
reader is EPA_GDXML.

DATASET

Required/Optional: Required

An example of the DATASET keyword in use is:

EPA_GDXML_DATASET /usr/data/input.xml

Workbench Parameter: Source EPA Geospatial XML Dataset

SEARCH_ENVELOPE

This directive specifies a bounding box used to filter the input features. Only features that interact with the bounding
box are returned.

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

If all four coordinates of the search envelope are specified as zero, the search envelope will be disabled

Required/Optional

Optional

Workbench Parameter

Minimum X, Minimum Y, Maximum X, Maximum Y

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Vector Markup Language (VML) Writer

The Vector Markup Language (VML) Format Writer module enables the Feature Manipulation Engine (FME) to be used
in conjunction with the world wide web to translate vector data on-the-fly for display in web browsers. VML is an
Extensible Markup Language (XML) based exchange, editing, and delivery format for vector graphics on the web.
This section assumes familiarity with the VML format and the XML standard.

Overview

VML, which is written using the XML syntax, is a text-based markup language used for describing vector graphics
that can be viewed and edited by a wide variety of tools. It provides for the description of lines, polygons, curves,
images, and text objects. Positioning and layout of the vector graphics are accomplished by using the Cascading Style
Sheets, Level 2 (CSS2) visual rendering model. For more information on VML, XML, CSS1, and CSS2 see the World
Wide Web ConsortiumWeb site at http://www.w3.org.

The two primary objects that VML describes are the shape and group elements. The shape element is used to define a
visible vector graphic element whereas the group element is used to group together several shapes so that they may
be transformed together as one unit. These are top-level elements that may define their own local coordinate system.
The shape and group coordinate spaces define a CSS2 block level box.

In addition, VML defines several auxiliary top-level elements to help make the editing and representation of graphical
information more compact and convenient. These auxiliary elements are the shapetype element and the predefined
shape elements line, polyline, curve, rect, roundrect, oval, arc and image. The usage of some of these VML ele-
ments currently supported by FME are explained in subsequent sections.

VML Quick Facts

Format Type Identifier VML

Reader/Writer Writer

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Layer

Typical File Extensions .vml

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Not applicable

Schema Required No

Transaction Support No

Geometry Type vml_type

Encoding Support No

http://www.w3.org/

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none no

Writer Overview

The VML Format writer creates a single VML top-level group element that is used as the containing block for all feature
data. This top-level group element defines the coordinate space for all of its sub-elements. The coordinate space for
the top-level group element may be specified with the FME COORDSIZEand COORDORIGIN mapping file directives.
These directives are described under theWriter Directives. All features are drawn relative to its containing block’s —
the top-level group element—top left corner. The specified coordinate space has its positive x and y axis in the lower
right quadrant.

The VML writer creates a single HyperText Markup Language (HTML) file with the VML data contained in the <body>
region of the HTML. At the time of this writing, the only browser supporting VML is Internet Explorer 5 (IE5) and, as a
result, the header of the HTML file produced contains information specific to this browser. This information is needed
in the header to let other browsers know that the embedded VML data is to be handed off to the browser’s VML-spe-
cific processor.

Writer Directives

The directives listed below are processed by the VML writer. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the VML writer is VML.

DATASET

Required/Optional: Required

The value for this directive is the name of the VML file to be created. You may want to add the .html extension to the
file name since the file produced is an HTML file. If a file with this name already exists, then the file will be over-
written. A typical mapping file fragment specifying an output VML data set looks like:

VML_DATASET /tmp/outputFile

Workbench Parameter: Destination Vector Markup Language (VML) File

LEFT

Required/Optional: Optional

This directive specifies the left position on the web page for the top-level group element. The top-level group element
is the container for all VML features that are drawn.

The syntax for VML LEFT is:

<WriterKeyword>_LEFT <value> (where <value> is in CSS length units)

The default value for this directive is 100pt.

Note: CSS length values are formed by an optional + or -, followed by a number, followed by a two-letter abbre-
viation that indicates the unit. There are two types of length units—relative and absolute. Relative length units give
a length relative to another length property. The following relative units are available: em—ems, the height of the
element’s font; ex—x-height, the height of the letter ‘x’; and px—pixels, relative to the canvas resolution. Absolute
length units are highly dependent on the output medium. The following absolute units are available: in—inches;
cm—centimetres; mm—millimetres; pt—points; and pc—picas. For more information on CSS units, please see the
CSS1 or CSS2 specifications on the http://www.w3.org website.

TOP

Required/Optional: Optional

This directive specifies the top position on the web page for the top-level group element.

The syntax for VML TOP is:

<WriterKeyword>_TOP <top> (where <top> is in CSS length units)

The default value for this directive is 100pt.

Note: The values for the LEFT and TOP directive are written out to be the values for the CSS “left” and “top” style
attributes of the top-level group element, respectively. You can modify these two CSS style attributes, with any text
editor, to reposition the drawing on the web page. Note that the CSS “left” and “top” style attributes are ignored by
web browsers if the CSS position style for a shape is not set to absolute. By default, the VML writer sets the top-
level group CSS position style to absolute. If this is not suitable, you may use a text editor to change the position
style attribute to be either static or relative.

WIDTH

Required/Optional: Optional

This directive sets the width, in CSS units, of the containing block for the top-level group element.

The syntax for VMLWIDTH is:

<WriterKeyword>_WIDTH <width> (where <width> is in CSS length units)

The default value for this directive is 512pt.

HEIGHT

Required/Optional: Optional

This directive sets the height, in CSS units, of the containing block for the top-level group element.

The syntax for VML HEIGHT is:

<WriterKeyword>_HEIGHT <height> (where <height> is in CSS length units)

The default value for this directive is 512pt.

Note: The values for theWIDTH and HEIGHT directives are written out to be the values for the CSS width and height
style attributes of the top-level group element, respectively. These CSS style attributes for the group may be mod-
ified in the translated output file to change the size of the vector drawing on the web page. Changing these does
not affect the local coordinate space set by the top-level group element.

COORDSIZE

Required/Optional: Optional

This directive defines the number of units along the width and height of the containing block for the top-level group
element.

The syntax for VML COORDSIZE is:

<WriterKeyword>_COORDSIZE <width> <height>

http://www.w3.org/

Note: The value for this directive becomes the value for the VML coordsize attribute in the top-level group element.
This value should not be modified after the VML output file has been written. Modifying this in the VML output file
produces a malformed vector drawing because the position of all elements within the group were calculated based
on the original values given by the COORDSIZE and COORDORIGIN directives.

COORDORIGIN

Required/Optional: Optional

This directive defines the coordinate at the top left corner of the containing block for the top-level group element. The
positive y-axis is downwards.

The syntax for VML COORDORIGIN is:

<WriterKeyword>_COORDORIGIN <left> <top>

Note: The value for this directive becomes the value for the VML coordorigin attribute in the top-level group ele-
ment. The y-axis is inverted; positive is downwards.

SPATIAL_EXTENT

Required/Optional: Optional

This directive fixes the spatial extent that the VML output covers, in ground units. The specified spatial extent must
be greater than or equal to the minimum bounding rectangle of the feature data. This directive when used in con-
junction with theCOORDSIZE and COORDORIGIN directives is useful for maintaining the same VML coordinate
space for different output VML files that were translated at different times. Assuming that theSPATIAL_EXTENT,
COORDSIZE and COORDORIGIN were kept invariant for all translations, the contents of the output VML files
may then be combined into one file by copying and pasting the shapes from the different groups into a single group.
If this directive is not specified, then the spatial extent will be set equal to the minimum bounding rectangle of the fea-
ture data.

The syntax for VML SPATIAL_EXTENT is:

<WriterKeyword>_SPATIAL_EXTENT <min-x> <min-y> <max-x> <max-y>

KEEP_ASPECT_RATIO

Required/Optional: Optional

This directive directs the VML writer to maintain the original aspect ratio—determined by spatial extent in ground
units—of the input feature data.

The syntax for VML KEEP_ASPECT_RATIO is:

<WriterKeyword>_KEEP_ASPECT_RATIO (YES|NO)

The default value for this directive is YES.

PRETTY_PRINT

Required/Optional: Optional

This directive gives the option for the VML writer to print the output file in a more attractive format.

The syntax for VML PRETTY_PRINT is:

<WriterKeyword>_PRETTY_PRINT (YES|NO)

The default value for this directive is NO.

Note: Enabling this option produces a considerably larger VML output file due to extra blank spaces.

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Special attributes direct the VML writer as it writes the features into the VML file. The most important of these is the
vml_type attribute which controls the interpretation of the feature. Acceptable values for vml_type are vml_text,
vml_polyline, vml_polygon, and vml_point.

User-defined attributes are ignored by the VML writer. Limited user attribution can be output in the VML file by using
the vml_title attribute or the vml_url attribute allowing a feature to have a URL link which may point to some external
data source.

Some VML feature attributes have data typeVML boolean, VML number, or VML color. The value for these attrib-
utes are copied directly from the FME mapping file to the VML output file, and therefore must conform to the VML spec-
ification. The following table lists the VML data type specification for these attributes.

Data Type Description

VML boolean An attribute which can take true and false values.
The following directives are defined for VML.
Value for true:true | yes | on | t | 1
Value for false: false | no | off | f | 0

VML number Numeric data used for values that are integer
or fractional numbers and for values that spec-
ify lengths. Lengths and numbers follow the lex-
ical form defined for CSS with a suffix
indicating a scale factor.

VML color The full set of values are taken from HTML,
CSS1, and VML specification.
Example: HTML defines the following 16
colours.
black | silver | gray | white | maroon
| red | purple | fuchsia | green | lime
| olive | yellow | navy | blue | teal |
aqua

Example: Using the CSS1 rgb form
“rgb(red,green,blue)” where red, green, and
blue are values in the range of 0..255.

The following table lists the attributes that are common to all VML features:

Attribute Name Contents

vml_color The color of the brush used to stroke the feature.
Range: VML color
Default: black

Attribute Name Contents

vml_weight The width of the brush used to stroke the feature.
Range: VML number
Default: 0.75pt

vml_title The title of the feature that may be displayed by the
VML viewer.
Range: string
Default: None

vml_url The URL to jump to if this feature is clicked on.
Range: string
Default: None

vml_target The target frame in an URL.
Range: string
Default: None

vml_z_index The z-index of the feature in the output VML file. Positive
numbers are in front of the screen. Negative numbers
are behind the screen. Features having a higher z-index
obscure features with lower z-index.
Range: integer
Default:
0 (for vml_polygon features)
10 (for vml_polyline features)
11 (for vml_point features)
12 (for vml_text features)

vml_fill_color The color of the brush used to fill the feature. This attrib-
ute is not applicable for vml_polyline features.
Range: VML color
Default:
black for points and text
No Default for polygons

vml_fill_attr{#} This list attribute allows the feature to be filled with cus-
tomized effects. If a feature has this list attribute the
VML element that represents the feature in the output
file will contain a VML fill sub-element. The contents of
the vml_fill_attr{#} list attribute must be of the following
form: <attribute-name>=<attribute-value>
Where <attribute-name> is a name of an attribute for the
VML fill sub-element, and <attribute-value> is one of the
possible values for that attribute name. Please refer to
the VML specification for all the possible attributes that
the VML fill sub-element may contain. The VML spec-
ification may be found at http://www.w3.org.

Attribute Name Contents

For example, to specify that a feature is filled with a gra-
dient and blue color add the following vml_fill_attr{#} list
attribute with the following values to the feature:
vml_fill_attr{0} “type=gradient”
vml_fill_attr{1} “color=blue”
NOTE: If the above string values contain spaces then
they must be enclosed between double quotes.
Also note that the index for the vml_fill_attr{0}must start
from 0. The order in which the attributes are listed in
the list attribute is of no importance.
Range:
<attribute-name>=<attribute-value>
as described above
Default: No Default

vml_stroke_attr{#} This list attribute allows the feature to be render with a
customized outline. The values for this list attribute is
similar to the vml_fill_attr{#} described above with the
values for the <attribute-name> and <attribute-value> taken
from the VML stroke sub-element instead.
Example, to specify that a feature should be render with
a dotted blue line add the following vml_stroke_attr{#} list
attribute with the following values to the feature:
vml_stroke_attr{0} "color=blue" vml_stroke_attr{1}
"dashstyle=dot"
Range: <attribute-name>=<attribute-value>
Default: No Default

vml_shadow_attr{#} This list attribute allows the feature to be render with a
shadow effect. The values for this list attribute is similar
to the vml_fill_attr{#} described above with the values for
the <attribute-name> and <attribute-value> taken from the
VML shadow sub-element instead.
Example, to specify that a feature should be render with
a dotted blue line add the following list attribute with the
following values to the feature:
vml_shadow_attr{0} "on=true" vml_shadow_attr{1}
"type=perspective"
Range: <attribute-name>=<attribute-value>
Default: No Default

vml_imagedata_attr{#} This list attribute allows the feature to have a picture
render on top of it. The values for this list attribute is
similar to the vml_fill_attr{#} described above with the
values for the <attribute-name> and <attribute-value> taken

Attribute Name Contents

from the VML imagedata sub-element instead.
Example, to specify that a feature should be rendered
with the sample ‘s.jpg’ image on top add the vml_image-
data_attr{#} list attribute with the following values to the
feature:
vml_imagedata_attr{0} "src=c:\temp\s.jpg"
Range: <attribute-name>=<attribute-value>
Default: No Default

Points

vml_type: vml_point

Point features must have exactly one coordinate. The VML writer uses the predefined VML oval element to generate
round point features. Point features have their vml_fill_color set to black by default.

VML point features have the following additional attribute:

Attribute Name Contents

vml_point_size The size of the point in ground units.
Range: real>0
Default: x, where x=0.006*deltaY. deltaY is the y-coor-
dinate range of the spatial extent of the input data in
ground units.

Polylines

vml_type: vml_polyline

Polyline features must have at least two coordinates. The VML writer writes out a vml_polyline feature in the VML out-
put file as a predefined VML polyline element. The writer also writes out the z-index attribute to 10 so that, by
default, the polylines only obscure the polygons.

Polygon

vml_type: vml_polygon

Polygon features must have at least four coordinates, with the last coordinate equal to the first coordinate. The vml_
polygon features may not contain holes. The VML writer writes out a vml_polygon feature in the output file as a prede-
fined VML polyline element. By default, the VML writer does not set the z-index attribute. When it’s not set, the web
browser interprets the polygon—the VML filled polyline element—to the have a z-index of 0. Polygons produced by
the VML writer, therefore, by default do not obscure other objects with the exception of overlapping polygons with the
same z-index value. Objects drawn later with equal z-indexes obscure earlier ones.

Text

vml_type: vml_text

Text features must have exactly one coordinate. The vml_text_string attribute must also be present in the vml_text fea-
ture. Text is drawn in the output file by placing a VML textpath sub-element inside of a VML shape element. By
default, vml_text features have their vml_fill_color attribute set to black.

VML text features have the following additional attributes:

Attribute Name Contents

vml_text_string The text string may contain blanks and there is no
limit on its length. This attribute must be present for
all vml_text features.
Range: string
Default: None

vml_text_size The size of the text in ground units.
Range: real>0
Default: x, where x=0.008*deltaY.
deltaY is the y-coordinate range of the spatial
extent of the input data in ground units.

vml_text_justification The justification of the text.
Range: left | center | right
Default: left

vml_rotation The rotation of the text, as measured in degrees
counterclockwise from the horizontal.
Range: -360.0...360.0
Default: 0

vml_font_family The CSS1 font family name.
Range: CSS1 font family name.
Default: Times New Roman

vml_font_style The style of the font.
Range: normal | italic | oblique
Default: normal

vml_font_weight The weight of the font.
Range:
normal | bold | bolder | lighter |
100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900
Default: normal

vml_rotate_letters Rotate the letters of the text by 90 degrees.
Range: VML boolean
Default: f

vml_same_letter_heights Stretches lowercase letters to the height of upper-
case letters.
Range: VML boolean
Default: f

Vector Product Format (VPF) Coverage and Database Read-
er/Writer

Format Notes:
This format is not supported by FME Base Edition.
The VPF1 Writer is an extra-cost format available from Safe Software.

Overview

The Vector Product Format (VPF™) is a standard format, structure, and organization for large geographic databases.
VPF data is stored in a structure described in theMilitary Standard, Vector Product Format, MIL-STD-2407. The Stand-
ard specifies the structure for directories, tables, table columns, table join relationships, and media exchange con-
ventions for all VPF data. While the Standard describes the structure, it does not describe the contents of a set of VPF
data; this is the role of "VPF Product Specifications."

The VPF Reader module provides the Feature Manipulation engine (FME) with access to data in any of the number of
formats that follow the VPF specification. This includes, but is not limited to, data that adheres to the Digital Chart of
the World (DCW), Digital Nautical Chart (DNC), VMap Level 0, VMap Level 1, VMap Level 2, and UVMap database
standards.

The VPF Writer enables FME to write to VPF product database. Product database types include Vector Smart Map Level
0, 1 and 2 (VMap0, VMap1, VMap2); Digital Nautical Chart (DNC), Urban Vector Map (UVMAP); and Foundation Fea-
ture Data (FFD).

1VPF is a trademark of the National Geospatial-Intelligence Agency.

VPF Reader Quick Facts

Format Type Identifier VPF, VPF_DB (see note*)

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type Directory or File

Feature Type Feature class name
Metadata table name

Typical File Extensions *.*ft, dht (see note*)

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index None

Schema Required Not applicable

Transaction Support No

Geometry Type vpf_type
Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster

donut polygon yes solid no

elliptical arc no surface no

ellipses no text yes

line yes z values no

none no

Note: The VPF reader is capable of reading a VPF dataset from the database level or the coverage level. The keyword
VPF invokes the reader in the coverage mode; the keyword VPF_DB invokes the reader in database mode. The typ-
ical file extension for the reader in coverage mode is *.*ft, and the typical file extension for the reader in database
mode is dht.

VPF Writer Quick Facts

Format Type Identifier VPF_DB

Reader/Writer Writer

Licensing Level Professional

Dependencies Extra-cost plug-in required

Dataset Type Directory

Feature Type N/A

Typical File Extensions N/A

Automated Translation Support No

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index No

Schema Required No

Transaction Support No

Geometry Type vpf_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster

donut polygon no solid no

elliptical arc no surface no

ellipses no text yes

line yes z values yes

none yes

Reader Overview

The VPF reader module produces FME features for metadata and feature class features in a VPF database.

VPF databases are implemented using a hierarchy of file system directories. The root of this hierarchy is the database
directory, which contains a subdirectory for each library in the database. Each library contains a subdirectory for
every coverage in that library. Coverages contain one or more feature classes, and these feature classes are imple-
mented as feature table files (*.*ft).

When the reader is invoked in database mode (VPF_DB), it examines feature classes in every coverage of every
library in a database and produces an FME feature for each row in each feature table file. The reader also examines
the metadata tables available at each level in the hierarchy and produces non-geometric metadata features that con-
tain the table’s data.

When the reader is invoked in coverage mode (VPF), the set of features produced is restricted to only those feature
classes in the input coverage directory.

The feature set produced by the reader can be further restricted by specifying a subset of feature classes. This sub-
set can be specified using either a list of IDs or multiple DEF line entries. The specification of DEF or ID param-
eters restricts the feature classes that the reader will open and produce FME features for. Note that if both the DEF
and ID parameters are specified for an instance of a reader, then the intersection of these two sets will be used as
the restriction set.

The tiles that the reader produces for its feature set can be restricted by specifying a tile subset value using the
TILES parameter.

Reader Directives

This section describes the directives that are recognized by the VPF reader. Each directive is prefixed by the current
<ReaderKeyword>_ when placed in a mapping file. By default, the <ReaderKeyword> for the VPF reader is
VPF.

DATASET

Required/Optional: Required

In database mode (VPF_DB), the value for this directive is the path to the DHT file. The directory where this file
exists is the root directory of the VPF database. This directory directly and indirectly contains all the libraries, cov-
erages, feature classes and related metadata for the database. A typical mapping file fragment that selects a VMap
database from drive e: would be:

VPF_DATASET e:/vmaplv0/dht

In coverage mode (VPF), the value for this directive defines the coverage directory that the reader will read from. A
typical mapping file fragment that selects a VMap database from drive ‘e:’ would be:

VPF_DATASET e:/vmaplv0/noamer/hydro

Workbench Parameter: Source Vector Product Format Database File(s)

READ_UPPER_CASE

Required/Optional: Optional

If set to YES, all the attributes are read in uppercase; otherwise, the attributes are read in lowercase.

TILES

Required/Optional: Optional

This optional specification is used to limit geometric features that are produced. Only feature class features that exist
in the specified tiles will be output. If no value is specified, then all the tiles in the library will be used. If a tiled subset
is specified for a nontiled library, then this specification is ignored.

The syntax for the TILES directive used in a database mode reader (VPF_DB) is:

<ReaderKeyword> _TILES \
<libName0>{ <tileId0>, <tileId1>,...}\
... \
<libNameN>{ <tileId0>, <tileId1>,...}

Note that you must specify libName.

Example:

VPF _DB_TILES H1316010{30} A1316080{50, 30, 31, 32, 33, 34}
VPF_DB_TILES EURNASIA{1-5}

An option to listing a sequence of tile IDs is to specify a range of tiles. The syntax for a tile range is:

<tileId0>-<tileIdN>

The following example, using a tile range, is semantically equivalent to the previous example:

VPF_DB _TILES H1316010{30} A1316080{50, 30-34}

Note: In Database Mode reader (VPF_DB), if no IDs or DEFs are specified then tiles specified will only apply to cov-
erages that are tiled. If a coverage is not tiled, then all the features from that coverage will be returned.

The syntax for the TILES directive used in a Coverage Mode reader (VPF) is:

<ReaderKeyword> _TILES \
<tileId0>, <tileId1>,...<tileIdN>

Note that this syntax is different from the one in DB Mode as it does not require that tile IDs be contained within curly
braces. An example that selects tiles 30, 31, 32, 33, 34 and 50 :

VPF _TILES 50,30-34

Workbench Parameter: Tile IDs

TILE_EXTENTS

Required/Optional: Optional

This option specifies the regional extents of the tiled subsection. Note that this directive is ignored if the data is not
tiled.

<ReaderKeyword>_TILE_EXTENTS [xmin, ymin, xmax, ymax]

Workbench Parameter: Tile Extents

DEF

Required/Optional: Optional

This optional specification is used to limit the available feature classes that are read. A feature class definition spec-
ifies the name of the feature class and the library and coverage where the class is located. Feature attribute infor-
mation is ignored by the reader. The syntax for aDEF line used in a database mode reader (VPF_DB) is:

<ReaderKeyword>_DEF <libName>\<coverageName>\<featClass>

The syntax for aDEF line used in a coverage mode reader (VPF) is:

<ReaderKeyword>_DEF <featClass>

Any additional declarations in theDEF line parameter are ignored by the reader.

Note: If both DEF lines and IDs are used to specify feature class, then the intersect of these sets determines the
actual feature classes to read.

IDs

Required/Optional: Optional

This optional specification is used to limit the available feature classes that are read. If no IDs are specified, then all
available feature classes are read. The syntax of the IDs directive in a database mode reader (VPF_DB) is:

<ReaderKeyword>_IDs <libName>\<coverageName>\<featClass> \
...\...\... \
<libNameM>\<coverageNameN>\<featClassO>

The syntax for aDEF line used in a coverage mode reader (VPF) is:

<ReaderKeyword>_IDs <featClass1> \
... \
<featClassN>

Note: If both DEF lines and IDs are used to specify feature class, then the intersect of these sets determines the
actual feature classes to read.

FEAT_TYPE_SEP

Required/Optional: Optional

The value for this parameter is the character that is used in a feature’s feature type to separate the library and cov-
erage names from the metadata table and feature class names. If this attribute is not specified, then the ‘\’ separator
is used.

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation (VPF Reader)

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The VPF reader produces FME features for VPF feature class features as well as VPF metadata table entries when a
reader is invoked in database mode (VPF_DB).

The VPF reader produces FME features for VPF feature class features as well as VPF metadata table entries when a
reader is invoked in database mode (VPF_DB).

There are many types of FME features produced for metadata at every level of a VPF database.

At the root level of the database, FME features are produced for the Database Header Table (DHT); the Library Attrib-
ute Table (LAT); and, if exists, the Data Quality Table (DQT).

At the library level, FME features are produced for the Coverage Attribute Table (CAT); the Library Header Table
(LHT); the Geographic Reference Table (GRT) and, if they exist, the Data Quality(DQT) and Lineage Document (LINE-
AGE.DOC) Tables.

At the coverage level, FME features are produced for: the Character and Integer Value Description Tables (CHAR.VDT)
and (INT.VDT); the Symbol and Notes Related Attribute Tables (SYMBOL.RAT) and (NOTES.RAT); the Feature Class
Attribute and Schema Tables (FCA) and (FCS); the Data Quality Table (DQT); the coverage document table (<cov-
erage name>.DOC); and feature class document tables (<feature class name>.DOC).

With the exception of the feature class schema table (FCS), all coverage metadata tables are optional and FME fea-
tures are only produced for metatables that exist.

A FME feature is produced for each row in each metadata table that is processed. For each column in a metadata
table, there is one attribute in an FME feature with the same name and type as the column. The value of each attribute
will be the same as the row from which the feature was produced. No geometric information is attached to features
that are produced frommetadata tables.

The other type of FME features that this reader produces result from VPF feature class features. This type of feature
can have zero or more geometries attached to it. For this reason, all of the FME features produced for these VPF fea-
tures contain an aggregate of geometries. For most feature class geometry types, all geometries in the resulting fea-
tures are the same type—the type of the table. For complex feature classes, a single feature can contain any mixture
of text, point, line, and area features.

The attributes for each geometry are given by the attribute component{<n>}.<attrName>, where <n> is the posi-
tion of the geometry in question with the first one being at position 0, and <attrName> is the geometry-specific
attribute in question.

The attributes defined for each geometry are totaled in the following table.

Attribute Name Description Defined On

vpf_type The type of this specific geometry. This
has one of the following values: vpf_
area, vpf_line, vpf_point, or vpf_
text.

All geom-
etries

vpf_database_name The name of the database the feature
belongs to.

vpf_library_name The name of the library the feature
belongs to.

vpf_coverage_name The name of the coverage the feature
belongs to.

vpf_feature_class The name of the feature class the feature
belongs to.

vpf_tile_name The name of the tile the feature lies in.
The tile_name also depicts relative tile
path.

vpf_containing_face This attribute is present for entity nodes
for level 3 topology. It contains the
face_id of the area containing the node.

vpf_first_edge This attribute contains the edge_id of
the first_edge of a connected node.
This attribute will be present for level 1
and higher topology

component{#}.attributeName

e.g.,

component{#}.vpf_type

List attributes of the parts of the geome-
try and defines the geometry-specific
attributes on the feature. For example,
component{0}.vpf_typemeans the vpf_
type of the first component of the fea-
ture.

vpf_text_string The string to be displayed for a vpf_text
geometry.

vpf_text

Attribute Name Description Defined On

vpf_text_height The height of a vpf_text geometry. This
is automatically extracted from the SYM-
BOL_RAT{0}.SIZE attribute. Although the
VPF standard does nto explicitly specify
this attribute it is used to preserve the
point size of the text feature when spec-
ified. It s used in combination with vpf_
text_scale to calculate the text height in
ground units stored in fme_text_size. This
attribute will be automatically deleted in
case the fme_text_size is modified. (See
the information under the heading Spe-
cial Attribute Handling.)

vpf_text

vpf_text_font The font used to display vpf_text
geometry. This is automatically
extracted from the SYMBOL_RAT{0}.FONT
or SYMBOL_RAT{0}.FON attribute. (See
the information under the heading Spe-
cial Attribute Handling.)

vpf_text

vpf_text_color The color used to display vpf_text
geometry. This is automatically
extracted from the SYMBOL_
RAT{0}.COLOR or SYMBOL_RAT{0}.COL
attribute. (See the information under the
heading Special Attribute Handling.)

vpf_text

vpf_text_style The style used to display vpf_text
geometry. This is automatically
extracted from the SYMBOL_
RAT{0}.STYLE or SYMBOL_RAT{0}.STY
attribute. (See the information under the
heading Special Attribute Handling.)

vpf_text

vpf_rotation The rotation at which the text is to be dis-
played. This is calculated from the lower
left and lower right coordinates of the
text line, and is expressed in degrees
counterclockwise from due east. It
defaults to 0.0 if the text geometry has
only one coordinate in the VPF data.

vpf_text

vpf_text_scale The scale read from the Library Header
Table (LHT) in the library containing the
feature. A default scale of 0, 1000000
will be used if no scale is specified. Scale

vpf_text

Attribute Name Description Defined On

is used in comnbination with vpf_text_
height to calculate the fme_text_size.

vpf_original_geometry Optional. The original geometry as read
by the VPF Reader in the Well Known
Text (WKT) format for when text geom-
etries are not a simple single point. Used
to preserve the original text geometry.
This attribute will be deleted if fme_rota-
tion is modified.

This attribute is only present if the shape line con-
tains more than one coordinate pair.

The order of coordinate pairs follows the specs
found in VPF: the first coordinate pair represents
the lower left coordinate, and the second coor-
dinate pair defines the lower right of the string.
Third and subsequent coordinate pairs define con-
trol points in a shape line, i.e the points in between
the first and second pairs.

vpf_text

vpf_sequenced_geometry Optional. It is similar to vpf_original_geome-
try except for the order of the coordinate pairs.
The list of coordinate pairs in this attribute is
sequenced, i.e., the second coordinate pair in
vpf_original_geometry is moved to the end
of the list in vpf_sequenced_geometry. This
attribute is only present if the shape line contains
more than one coordinate pair.

vpf_text

The following example lists the attributes that appear on a feature within a complex feature class, containing both a
line and a text attribute:

ID 234
NOAMER\TRANS\ROADL MR001
component{0}.vpf_type vpf_line
component{1}.vpf_type vpf_text
component{1}.vpf_text_string “23rd Street”
component{1}.vpf_rotation 14.012
component{1}.vpf_text_font 12
component{1}.vpf_text_color 3
component{1}.vpf_text_style 5
component{1}.vpf_text_height 14.12

The features read from the feature class are normally pushed through a DeaggregateFactory to extract the
individual geometries. This is defined as:

FACTORY_DEF VPF DeaggregateFactory \
INPUT FEATURE_TYPE * fme_geometry fme_aggregate \
LIST_NAME component{} \
OUTPUT LINE FEATURE_TYPE * \
OUTPUT DONUT FEATURE_TYPE * \
OUTPUT POINT FEATURE_TYPE * \
OUTPUT POLYGON FEATURE_TYPE *

FME Text Feature Creation

FME and VPF represent text differently. FME classic geometry allows for only single point geoemtries on text fetures
and additionally can supply a text string, rotation and text size (height in ground units). VPF represents text primitive
geometries as lines (one or more points, first being lower left corner and last being lower right corner) and an
optional text size (height in typographical point size, as defined in the SYMBOL.RAT table).

The FME point geometry is simply extracted from the first point of the VPF line geometry, both of them being located
at the lower left bound of the string.

The FME rotation, in degrees, is calculated from the first and the last coordinate of the VPF line geometry. If only one
point is present, it defaults to zero.

The FME text size, in ground units, is calculated from the VPF text size, in typographical point size. In the special case
of a VPF text primitive with only one point and no VPF text size, the conversion will be done using a default VPF text
size of 2. Otherwise, in case the VPF text size is not present, the FME text size is approximated by using the width of
the string in ground units and the approximation that the height of a character in ground units is half its size.

To avoid inconsistencies between VPF specific attributes and FME generic ones, the FME text size is entangled with
the VPF text height and the FME rotation is entangled with the VPF original geometry. Attempts to modifiy the FME
generic attribute will delete the VPF specific attribute. However, modification of the VPF specific attributes will not
delete the FME generic attribute in order to maintain a valid FME feature while allowing the possibility to force the
reader to use certain VPF specific attribute values.

Feature Type Values

When a reader is invoked in database mode (VPF_DB), all FME feature types are scoped to reflect their level in the
database hierarchy. As an example, an FME feature produced from a row in a Library Header Table (LHT) will have a
feature type that contains both the local name LHT and the library name where the table is found. FME features
produced from a LHTmetadata file in the NOAMER library will have a feature type of NOAMER\LHT.

Special Attribute Handling

The structuring of VPF data allows for a very expressive schema definition, which is somewhat difficult to capture
using traditional typing information. The following variations, from a flat table structure, are of particular interest.

l VPF may contain attributes that are arrays of two-dimensional (2D) and three-dimensional (3D) coordinates.

l Any integer or text attribute in a VPF table may be associated with a value descriptor table, giving a more verbose
textual description of the attribute.

l Feature classes in VPF are defined by joining various tables together, leading to a hierarchy of attribute values.

l Text primitives do not themselves contain any colour, style, size, or font information, but the features often define
these attributes by relating in a symbology table, such as SYMBOL.RAT.

Value Descriptor Tables

VPF coverages typically contain two value descriptor tables, INT.VDT and CHAR.VDT. It is possible for any
number of *.VDT tables, with any names, but these are typical. The purpose of the Value Descriptor Table (VDT) is to
define, for each feature class-attribute name pair using the VDT, a mapping of an integer or short text string with lim-
ited number of values, and a longer text description of the attribute value.

For example, VDTs are used to assign an English description to a feature code. An airport might have a feature code
attribute of AF001meaning an International Air Field. The feature table for the feature would contain a code of
AF001 and a reference to the value descriptor table. The value descriptor table then provides the mapping from
AF001 to International Air Field.

The lookups into value descriptor tables are handled automatically by the VPF reader. An attribute named
<attrName> corresponding to an entry in a VDT results in two attributes being defined on the FME feature:
<attrName> and <attrName>desc.

In the above example, the feature code would be defined in an attribute such as FCOD in the feature table. The
resulting FME feature would contain two attributes for this:

FCOD “AF001”
FCODdesc “International Air Field”

Table Relations

Every VPF feature class contains a feature table to define the attributes appearing on features of that class. It is also
possible for a VPF feature class to include related attributes from another table, by specifying that a particular column
of the feature class table relates to a primary column of another table.

Consider, for example, a mythical database which includes a list of the families of a street and if they have a fire
hydrant on their lawn. This database also allows for many families to reside at one address. The feature class is
defined as follows:

l The feature table contains a special column, STRADDR.RAT_ID, used to join to the identifier column of the
STRADDR.RAT table.

l TheSTRADDR.RAT table defines the street addresses and contains a column, OCCUPANT.RAT_ID, that
links into theOCCUPANT.RAT table.

The schema for the street feature class is something like:

Class name: STREETL
Geometry type: vpf_line
Feature table: STREETL.LFT

TableSTREETL.LFT attributes:

ID int (Row identifier)
STRADDR.RAT_ID int (Link to STRADDR.RAT table.)
EDG_ID int (Link to edge primitive table.)
STRCODE int (Code for street name; refers to a value lookup in the

INT.VDT table.)

TableSTRADDR.RAT attributes:

ID int (Row identifier)
ADDRESS int (Street number)
HYDRANT char(3) (Does it have a hydrant on its lawn; 'Yes' or 'No ').
OCCUPANT int (Link to “occupants” table.)

TableOCCUPANT.RAT attributes:

ID int (Row identifier)
FAM_NAME text(40) (Family name)
NUM_RES int (Number of residents)
CLUST_ID int (Identifies “cluster” of occupants.)

The feature class table relates the tables according to the following structure:

Table Foreign Attribute Related Table Join Attribute

STREET.LFT EDG_ID EDG ID

STREETL.LFT STRADDR.RAT_ID STRADDR.RAT ID

STRADDR.RAT OCCUPANT OCCUPANT.RAT CLUST_ID

A small cul-de-sac containing two properties, one of which has two families living in it, might be represented in the
STREETL feature class with the following feature. Note the use of nested lists and enhanced values from VDTs. The
HYDRANT attribute would normally come from a value attribute table as well.

Feature class: STREETL
Geometry: Aggregate containing one line
Attributes on feature:
ID 12
STRADDR.RAT_ID 5
EDG_ID 19
STRCODE 5
STRCODEdesc “29th Avenue”
STRADDR_RAT{0}.ID 5
STRADDR_RAT{0}.ADDRESS 1234
STRADDR_RAT{0}.HYDRANT “Yes”
STRADDR_RAT{0}.OCCUPANT 23
STRADDR_RAT{0}.OCCUPANT{0}.ID 1
STRADDR_RAT{0}.OCCUPANT{0}.FAM_NAME “Smith”
STRADDR_RAT{0}.OCCUPANT{0}.NUM_RES 4
STRADDR_RAT{0}.OCCUPANT{0}.CLUST_ID 23
STRADDR_RAT{0}.OCCUPANT{1}.ID 2
STRADDR_RAT{0}.OCCUPANT{1}.FAM_NAME “Jones”
STRADDR_RAT{0}.OCCUPANT{1}.NUM_RES 2
STRADDR_RAT{0}.OCCUPANT{1}.CLUST_ID 23
STRADDR_RAT{0}.ID 6
STRADDR_RAT{0}.ADDRESS 2345
STRADDR_RAT{0}.HYDRANT “No”
STRADDR_RAT{0}.OCCUPANT 14
STRADDR_RAT{1}.OCCUPANT{0}.ID 3
STRADDR_RAT{1}.OCCUPANT{0}.FAM_NAME “Murray”
STRADDR_RAT{1}.OCCUPANT{0}.NUM_RES 2
STRADDR_RAT{1}.OCCUPANT{0}.CLUST_ID 14

Note: It is important to note that the author is not certain that the VPF standard allows databases to be structured in
this way. However, the VPF reader interprets such structures and it provides a reasonable example to explain how
related attribute tables are expressed in FME features. If the VPF standard calls for a flatter structure, this attribute
naming scheme still applies.

Text Primitive Attributes

The display attributes one expects to find for text strings – colour, size, style and font – are not actually defined any-
where in the VPF specification.

They are usually handled by assigning a symbology identifierattribute to the text feature classes’ feature
table, and relating this ID to a symbology attribute table, typically SYMBOL.RAT. The VPF reader currently defines
these text properties according to the values in the SYMBOL.RAT table. The following attributes are currently being
used to define these values and are searched in the specified order, and the first value found is taken as the value.

Text Attribute Attributed Symbology Used to Define It

text_color SYMBOL_RAT{0}.COLOR, SYMBOL_RAT{0}.COL

text_height SYMBOL_RAT{0}.SIZE, SYMBOL_RAT{0}.SIZ

text_font SYMBOL_RAT{0}.FONT, SYMBOL_RAT{0}.FON

text_style SYMBOL_RAT{0}.STYLE, SYMBOL_RAT{0}.STY

Writer Overview

The VPF writer converts a set of FME features into a VPF database. DEF lines defined in a writer’s mapping file are
ignored since all feature class user attributes are statically defined by its product specification.

Writer Directives

This section describes the directives processed by the VPF writer module. Each of the directives is prefixed by the cur-
rent <WriterKeyword>_ when they are placed in a mapping file. By default, the <WriterKeyword> for the
VPF writer is VPF_DB.

DATASET

Required/Optional: Required

The value for this parameter is the path to where the output databases’s root directory is created. A typical mapping
file fragment is:

VPF_DATASET /vpf_output/my_vmap0/

Workbench Parameter: Destination Vector Product Format Database (VPF_DB) Directory

FEAT_TYPE_SEP

Required/Optional: Optional

The value for this parameter is the character that is used in a feature’s feature type to separate the library and cov-
erage names from the metadata table and feature class names. If this attribute is not specified, then the ‘\’ separator
is assumed.

Workbench Parameter: VPF Feature Class Separator

LOG_ALL_MESSAGES

Required/Optional: Optional

The VPF writer module uses FME factory pipeline to write features. Factories in the pipeline generate many infor-
mation messages which may or may not be desirable to the user. The value for this directive will determine whether
or not to log messages generated by FME factory pipeline used within the writer. If YES, then all the messages includ-
ing messages from factory pipeline and the writer itself will be logged. If NO, then only messages coming from the
writer module will be logged. Any messages generated by factory pipeline within the writer will not be logged.

Workbench Parameter: Log all messages

PRODUCT

Required/Optional: Optional

The value for this parameter is the type of VPF product database to produce. The writer provides 6 possible choices:
VMAP0, VMAP1, VMAP2, DNC, UVMAP and FFD. It is possible to add your own product type. To do so, copy
the schema template for your product into FME_HOME/vpf. See one of the other schema templates in FME_
HOME/vpf for an idea of what is expected. Secondly, open the file FME_HOME/metafile/vpf_db.fmf and
add your product type on the line:

GUI CHOICE PRODUCT DNC%FFD%VMAP0%VMAP1%VMAP2%UVMAP VPF Product Name:

byadding%<product_type>after UVMAP. An example of this is:

GUI CHOICE PRODUCT DNC%FFD%VMAP0%VMAP1%VMAP2%UVMAP%NEW_PRODUCT VPF Product Name:

The name of the product type in the metafile must be the same as the folder containing the schema template within
FME_HOME/vpf, although the case of the letters can be different. Contact Safe Software support if you experience dif-
ficulties trying to use a specific product.

Workbench Parameter: VPF Product Name

SKIP_TILE_CLIPPING

Required/Optional: Optional

If this directive is given, the data is assumed to be already clipped to the tiles given; this can be used for a per-
formance increase when the source dataset is also VPF and the data has not been modified in such a way as to violate
the integrity of the tiling.

Workbench Parameter: Skip tile clipping

WRITER_MODE

Required/Optional: Optional

Note: For more information on this directive, see the chapter Database Writer Mode.

In UPDATEmode, the destination dataset may contain previously written coverages; existing entries in the data-
base-level Coverage Attribute Table (CAT) will be left intact. Note that each coverage being written by the current
translation will still be overwritten in this mode; the point of this mode is to allow separate coverages to be written by
distinct translations and for the destination database to be valid as a whole.

In OVERWRITEmode, the destination directory tree is cleared at the beginning of the translation. Use caution with
this mode, since any existing data in the destination directory will be lost.

Valid values: UPDATE and OVERWRITE

Default: UPDATE

Workbench Parameter:Writer MODE

Feature Representation (VPF Writer)

The features in a VPF writer’s feature set can be classified as either metadata or feature class features.

Metadata features are used to supply values for entries in a VPF database’s metadata tables. There is a simple map-
ping from a FME metadata feature to VPF metadata table: each metadata feature represents one row in the VPF meta-
data table.

Feature class features are geometric entities that carry all the information necessary to populate the VPF tables
related to a feature class. A typical feature class is composed of a feature table, a set of primitive tables, a primitive
join table and a set of related attribute tables. When writing a geometric feature, the VPF writer breaks an incoming
feature down into primitives, populates its primitive tables, feature table and related attribute tables, and then cal-
culates the indices related to the these tables.

Attributes in VPF products are case-sensitive. All the output products that the writer supports use lowercase attrib-
utes and all FME feature attributes must also be lowercase. The following table lists the format attributes that are
used by the VPF writer to write geometric information.

Valid attribute values for feature attributes can be found in a product specification. When a fea-
ture is written to a table, a default value is often used.

Attribute Name Description Defined On

vpf_type A feature class feature has one of the fol-
lowing geometric types: vpf_area, vpf_line, vpf_
point, or vpf_text. A metadata feature has the
geometric type vpf_none.

All features

vpf_text_string The character string to be used for a feature
with type vpf_text.

vpf_text

vpf_text_height The height of a vpf_text feature. See Note
below.

vpf_text

vpf_text_font The font used to display vpf_text feature. See
Note below.

vpf_text

vpf_text_color The colour used to display vpf_text feature.
See Note below.

vpf_text

vpf_text_style The style used to display vpf_text geometry.
See Note below.

vpf_text

vpf_rotation The rotation at which the text is to be dis-
played. This is calculated from the lower left
and lower right coordinates of the text line,
and is expressed in degrees counterclockwise
from due East. It defaults to 0.0 if the text
geometry has only one coordinate in the VPF
data.

vpf_text

vpf_text_scale The scale read from the Library Header Table
(LHT) in the library containing the feature.
Used to calculate a new height from the fme_
text_size if the vpf_text_height is not present. For
all other purposes, this attribute is ignored by
the writer.

vpf_text

vpf_original_geometry Optional. The original geometry as read by the
VPF Reader in the Well Known Text (WKT) for-
mat. It is only present if the original vpf text
primitive had more than 1 coordinate. If the
text feature has the same geometry as when it
was read, then this attribute will provide the
geometry to the writer.

vpf_text

Note: Only VMap0, VMap1, VMap2 and UVMAP product types support the storage of this symbolic information in
symbol.rat table. DNC does not support symbol.rat tables. Text features must have the same symbolic information
for each unique symbol identifier symbol_id supplied on a feature. The writer will ignore the symbolic information
from features with no symbol_id attribute.

VPF Text Feature Creation

In addition to the Note given above, the VPF Writer will try to honor as much as possible the original VPF specific attrib-
utes.

If a vpf_text_height is present, it will be used to write the SYMBOL.RAT size attribute. If none is present but a vpf_
text_scale is present, then a vpf_text_height will be guessed from the fme_text_size. If no vpf_text_height and no
vpf_text_scale are present, then a default value of 2 will be used, as long as the text feature has a symbol_id attrib-
ute.

If a vpf_original_geometry attribute is present and the point geometry of the FME text feature is still identical to the
first coordinate of the original geometry, then the original geometry will be written. If the vpf_original_geometry
attribute is not present or the point geometry of the FME text feature is not identical to the first coordinate of the orig-
inal geometry, then the current point coordinate will be written with a second point to express the current rotation,
provided it is not zero. That second point, representing the lower right corner of the string, will be guessed using the
fme_text_size (height in ground units) and the approximation that the width of a character in ground units is half its
size.

Feature Type Values

A feature’s feature type plays an important role in writing a VPF database. The feature type on a feature class feature
tells the writer what feature class a feature belongs to; what coverage that feature class exists in; and what library
the coverage belongs to. Since it is possible to have same table name under the same coverage belonging to different
libraries but with different schemas, the only way a feature type can defined as unique is by using a combination of
library name, coverage name and feature class name. The syntax for a feature class feature’s feature type is:

<library name>\<coverage name>\<feature class>

For example:

DNC : H001\CUL\TRANSL
VMAP0 : SASAUS\TRANS\ROADL

Note that the ‘\’ separator can be changed to another character by specifying a value for the FEAT_TYPE_SEP
parameter in the writer’s mapping file.

Recognized library, coverage and feature class types will vary according to the writer’s product type. For example, if
a writer’s product type is DNC and the writer finds a feature with the feature type browse\libref\libref, it will know that all
the incoming features belong to the libref feature class in the libref coverage for the browse library in the
DNC database.

The feature type for a metadata feature tells where in the database the metatable exists. A metadata feature’s feature
type may have one or no separators depending on where the underlying metadata table exists in the database. Fea-
tures destined for a metadata table at the root level of a database will have no separators and the following syntax.:

<metatable name>

For example, if an incoming feature is destined for the database header table named dht the feature type for these fea-
tures will simply be dht.

Features destined for a metadata table that exists at the library level of a database will have the syntax:

<library name>\<metatable name>

For example, if an incoming feature is destined for the library header table named lht in the browse library of a DNC
database, the feature type for these features will be browse\lht.

VPF Topology

All VPF products have four recognized levels of topology ranging from level 0 to level 3. (See theMilitary Standard,
Vector Product Format, MIL-STD-2407, for details.) Text features do not participate in topology building. Since topol-
ogy is defined at the coverage level, the VPF writer accumulates all the features belonging to one coverage and then
throws them in the topology pipeline. Based on the topology level the coverage belonged to, the topology pipeline

splits features into primitives and builds all the topological relationships. After the topology has been built, primitives
are written to respective primitive tables and the features to the feature tables.

Note that the writer expects that the data given to it is topologically clean (that is, it is in conformance with the VPF
spec on topology). The writer is not responsible for doing any topological cleaning. Any topologically unclean data
may result in incorrect output data.

Tiling

VPF data can be tiled or untiled. When data is tiled, the features are first clipped for every tile and then thrown into
the pipeline for topology building. This process is repeated for every tile, since topology for every tile is supposed to
be independent from those of other tiles. It is possible to skip tile clipping using the directive SKIP_TILE_CLIPPING to
improve performance. However, this directive is recommended only in certain specified conditions. (See the par-
agraph on SKIP_TILE_CLIPPING above.)

For the features that cross tile boundaries, the information of the current primitive ID, the external tile and the prim-
itive ID in that tile are stored as triplet IDs on the primitives. By default, VPF writer does not calculate the triplet IDs
due to immense overhead involved in the process.

To activate clipping in the writer, SKIP_TILE_CLIPPING must be set to ‘no’ and the TILEREF feature type for each of
the libraries must be written.

Using the VPF Writer

In order to use the VPF writer, users should be familiar with not only theMilitary Standard, Vector Product Format,
MIL-STD-2407, but also the specific product specifications (DNC, VMAP0, etc.). Each VPF product is defined by a dif-
ferent product specification. Each specification describes the specific implementation of the general VPF structures
that are defined in the VPF Military Standard.

The VPF writer uses the schema templates installed in the FME_HOME directory to create and populate default meta-
data tables and their attributes (i.e., dht, lat, etc.)

VPF writer uses the product name as the default database_name if one is not specified (e.g., vmap0,dnc). To
specify the database name, set the database_name attribute on the dht feature type. For the tilerefmeta-
data table, set the tile_name attribute.

When writing attributes, the required attribute values or codes must match the relevant product specification. For
example, for the Culture Transportation line feature type (<libname>\CUL\TRANSL) the f_code attribute
values must match the allowed FCC codes defined in the product specification.

In general, VPF writer follows these rules:

1. Allows writing multiple libraries at a time.

2. Allows adding a library to an existing database (Note thatWRITER_MODE should be UPDATE to achieve this)

3. Allows adding coverage to an existing library (Note thatWRITER_MODE should be UPDATE to achieve this).

The VPF writer does not, however, allow adding a feature class to an existing coverage. Once a coverage gets written,
it cannot be updated. This is because the topology is built at the coverage level and adding a feature class to a cov-
erage would require rebuilding of the topology, thus making all the existing primitive tables invalid.

Note that following metadata tables are created internally by the writer and the user has no control over them. An
attempt to modify the following metadata tables will be ignored.

1. lat (Library Attribute Table) – since the library name is dictated by the feature type

2. lht (Library Header Table) – since the library name is dictated by the feature type

3. cat (Coverage Attribute Table)

4. fcs (Feature Class Schema) – independent of WRITER_MODE since feature class updating is not supported

5. fca (Feature Class Attribute) – independent of WRITER_MODE since feature class updating is not supported

The dht table, however, can be updated. For instance, dht feature types can be used to set the database name, as
described earlier. Note that the VPF specification limits the length of database name to 8 characters.

Value Description Tables

Both of the value description tables int.vdt and char.vdt are created internally by the writer and the user has
no control over them. The scope of both the tables is limited to coverage level, therefore the tables are independent of
WRITER_MODE since feature class updating is not supported (that is, once they are written, they can never be
updated).

Note that the contents of int.vdt and char.vdt for each coverage are defined by the VPF product specification.
The value description tables as provided with other schema templates contain an exhaustive list of values as allowed
by their respective product specifications. When a coverage is written, int.vdt and char.vdt are created with
the values actually used by the feature classes being written to that particular coverage. However, these values have
to be one of those provided in the list for that coverage.

Each coverage is provided with an exhaustive list of all the coded values and descriptions for each feature class as
allowed by the VPF product specification. The specification does not allow creating new values (codes) in general with
the exception of those attributes which have “null”, “unk” or “unknown” values in the vdt’s. Each feature class should
get coded values as allowed by the coverage’s vdt. For example:

The character vdt of vmap1\bnd coverage allows only following values for f_code for polbdnl.lft

l FA000 Administrative Boundary

l FA020 Armistice Line

l FA030 Cease-Fire Line

l FA050 Convention Line/Mandate Line

l FA060 De Facto Boundary

l FA110 International Date Line

If an attempt is made to assign, say AL070, to f-code to any feature belonging to polbndl.lft, though the value
gets written but the writer warns the user that it could not find it in the vdt table. Also the char.vdt never gets
updated with this value.

On the other hand, polbdl.lft has the attributes “nm3” and “nm4” containing “UNK” values. These attributes
can have any values, say “Vancouver”. Note these values will show only in the feature class table and vdt’s will neither
have these values nor its description.

Since the description can appear in the vdt only and the users are not allowed to create vdt’s directly, any attempt of
writing a description of any code (value) gets ignored by the writer. Note that the vdt’s are also provided along with
the schema templates which conform to the respective product specifications. The writer actually uses these vdt tem-
plates as guidelines to create vdt for the coverage being written. The vdt which gets created with the coverage will
contain only the values got used in the coverage.

For a detailed list of all possible contents in char.vdt in BND coverage, see the Boundaries Character Value Descrip-
tion Table in Appendix F of the VMAP1 Specification.

VPF Writing Tips

1. Copy the schemas of different VPF products under the ../install directory as described earlier. All these
schemas are in conformance with VPF spec. Therefore, when writing to VPF, make sure that the destination
feature type bears the full path name starting from the library. For instance, for DNC writing, the feature type
should look like a11\cul\buildnga.aft

Note that all the VPF products allow a predefined database schema with little flexibility. There is flexibility with
the library only. For example, for a DNC database, we can pick library names starting with letters a
(approach), c (coastal), g (general), h (harbour) or b (browse). You can append any suffix to these library
names. For instance a101, abc or a6 are all valid names provided the length does not exceed 8 characters but
names like k1 or t1 would be invalid for DNC. Also, lib1 can be a valid library name for product VMAP1 but not
for DNC.

Make sure that destination feature class falls under the correct directory according to the VPF database struc-
ture. For example, a11\cul\buildnga.aft would be a valid destination feature type, but a11\dqy\buildnga.aft

would not, since dqy coverage is not supposed to have the table buildnga.aft. However, a11\dqy\dqyarea.aft
would be acceptable.

2. When translating from a non-VPF format to VPF, make sure that the features end up in the correct destination
feature type that geometrically makes sense. All area features should be directed to *.aft tables, line fea-
tures to *.lft tables, and so on.. This mapping is automatically done from VPF to VPF.

3. Writing to VPF database may involve a huge number of feature classes and there is no automatic way of gen-
erating a mapping file or workspace which has all the destination feature types in the format <lib_
name>\<coverage_name>\<feature_class_name>. Feature type names of all the destination
feature classes have to be brought into this format manually. However, there is a work-around to this tedious
exercise by using the Merge Feature Type option in Workbench.

Mapping File Example

Here is an example mapping file extract showing how to write a two feature types: dht and SASAUS\BND\B-
ARRIERL.

READER_TYPE SHAPE
READER_KEYWORD SHAPE
WRITER_TYPE VPF_DB
WRITER_KEYWORD VPF_DB

SHAPE_DATASET "G:\SampleData\shape\LOTLINES.shp"

VPF_DB_DATASET "G:\vpf\out"
VPF_DB_PRODUCT VMAP0
VPF_DB_LOG_ALL_MESSAGES NO

LOG_FILENAME "G:\vpf\shape2vpf_db.log"
LOG_APPEND NO

--
SHAPE_DEF LOTLINES \
SHAPE_GEOMETRY shape_polyline \
LOTLINE_ID number(5,0)

--
FACTORY_DEF * TeeFactory \

FACTORY_NAME "Source -> Generic" \
INPUT FEATURE_TYPE * \
OUTPUT FEATURE_TYPE * \

@Transform(SHAPE,FME_GENERIC,PRESERVE_GEOMETRY)

--
FACTORY_DEF * CreationFactory \

FACTORY_NAME NULLGEOMETRYCREATOR \
CREATE_AT_END no \
NUMBER_TO_CREATE 1 \
OUTPUT FEATURE_TYPE NULLGEOMETRYCREATOR_CREATED \

@SupplyAttributes(?,creation_instance,0)

--
FACTORY_DEF * TeeFactory \

FACTORY_NAME "NULLGEOMETRYCREATOR_CREATED -> dht Correlator" \
INPUT FEATURE_TYPE NULLGEOMETRYCREATOR_CREATED \
OUTPUT FEATURE_TYPE dht \

@Transform(FME_GENERIC,VPF_DB) \
@SupplyAttributes(database_name,test_db)

--
FACTORY_DEF * TeeFactory \

FACTORY_NAME "LOTLINES -> SASAUS\BND\BARRIERL Correlator" \
INPUT FEATURE_TYPE LOTLINES \

OUTPUT FEATURE_TYPE SASAUS\BND\BARRIERL \
@Transform(FME_GENERIC,VPF_DB)

--
SHAPE *
VPF_DB *

--
VPF_DB_DEF dht \
VPF_GEOMETRY All \
libraryname char(10)

--
VPF_DB_DEF SASAUS\BND\BARRIERL \
VPF_GEOMETRY All

**

Virtual Reality Modeling Language (VRML) Writer

The Virtual Reality Modeling Language (VRML) Writer module enables FME to generate VRML97 files. At the time of
this writing, VRML97 (ISO 14772) is the most recent revision of the VRML specification. This section assumes famil-
iarity with this format.

Overview

VRML is the standard file format for specifying dynamic and interactive three-dimensional (3D) virtual worlds on the
Internet. VRML browsers are widely available for many different platforms.

VRML Quick Facts

Format Type Identifier VRML

Reader/Writer Writer

Licensing Level Base

Dependencies None

Dataset Type File

Feature Type Any***

Typical File Extensions .wrl

Automated Translation Support No

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Not applicable

Schema Required No

Transaction Support No

Geometry Type vrml_type

Encoding Support No

Geometry Support

Geometry Supported? Geometry Supported?

aggregate no point yes

circles no polygon yes

circular arc no raster no

donut polygon yes solid yes

elliptical arc no surface yes

ellipses no text yes

line yes z values yes

none no

Writer Overview

The FME VRML writer creates a single .wrl file. The viewpoint of this VRML-created world is initially set so the viewer
is directly centred above the translated features which allows all translated features to be seen. The centrepoint of all
features is dependent on the features been translated.

The VRML writer provides the option to color features according to their height using theCOLOR_LEVEL_DEF
directive. When this option is enabled, features are automatically colored, based on their z-coordinate. Individual fea-
tures may override this scheme by specifying their own colors. This provides a convenient way to specify the colors
for the final output. The mechanism to do this is explained over the next several sections.

Besides translating geographical information, the VRML writer also provides the option for displaying user-defined
attributes for features by using theDISPLAY_ATTRIB directive. This option is discussed in the next section.

Writer Directives

The directives listed below are processed by the VRML writer. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the VRML writer is VRML.

DATASET

Required/Optional: Required

The value for this directive is the name of the VRML file to be created. If a file with this name already exists, then the
file will be overwritten. A typical mapping file fragment specifying an output VRML data set looks like:

VRML_DATASET /tmp/347v35.wrl

Workbench Parameter: Destination Virtual Reality Modeling Language (VRML) File

ZMULTIPLIER

Required/Optional: Optional

This directive controls the Z exaggeration for the output VRML file. The value for this directive is any real number. The
syntax of a VRML ZMULTIPLIER line is:

<WriterKeyword>_ZMULTIPLIER <realNumber>

The default value for this directive is 1.0.

Workbench Parameter: Z Exaggeration

DISPLAY_ATTRIB

Required/Optional: Optional

The syntax of a VRML DISPLAY_ATTRIB line is:

<WriterKeyword>_DISPLAY_TEXT_SIZE (YES|NO)

If the value of this directive is set toNO, then all user-defined attributes will be ignored and not written out to the
VRML file.

This directive gives the option for each VRML feature that has an attribute of vrml_tip_over or vrml_tip_click to have
their user-defined attributes written out to the VRML file. This option is enabled by setting the value of the directive to
YES.

Each VRML feature has the following characteristics when a VRML browser is used to view the output file:

l When a user moves the cursor over the feature and the vrml_tip_over attribute was specified for the feature, the
value of the attribute will be displayed. By setting the value of this attribute to vrml_all_attrs, all user-defined
attributes for the feature are displayed.

l When the mouse button is clicked while the cursor is over the feature and with the vrml_tip_click attribute spec-
ified, the value of the attribute will be displayed. By setting the value of this attribute to vrml_all_attrs, all user-
defined attributes for the feature are displayed.

Either one or both attributes may be given to the feature, thereby giving a different effect for each cursor event.

Note: Enabling this option produces a considerably larger VRML output file. It may also cause a performance pen-
alty when using a VRML browser to view the output file.

Workbench Parameter: Display Attributes

DISPLAY_TEXT_SIZE

Required/Optional: Optional

The syntax of a VRML DISPLAY_TEXT_SIZE line is:

<WriterKeyword>_DISPLAY_TEXT_SIZE <textSize>

where textSizemust be any real number greater than zero.

This directive defines the text size of the attributes that would be displayed when theDISPLAY_ATTRIB directive
was enabled. TheDISPLAY_TEXT_SIZE directive only has an effect on the VRML output file when the value of the
DISPLAY_ATTRIB directive is set toYES.

Workbench Parameter: Text Size

COLOR_LEVEL_DEF

Required/Optional: Optional

The syntax of a VRML COLOR_LEVEL_DEF line is:

<WriterKeyword>_COLOR_LEVEL_DEF <height> <red> <green> <blue>

The heightmust be any real number greater than or equal to zero, whereas red, green, and bluemust be real
numbers in the close interval of 0.0 to 1.0.

This directive defines the color to be used for features starting from a particular height. It provides the convenience
for features to be automatically colored based on their z-coordinate. Several COLOR_LEVEL_DEF directives may
be defined one after another so that, in effect, a height interval coloring scheme is specified.

A typical mapping file fragment specifying several COLOR_LEVEL_DEF directives looks like:

MACRO BrightRed 1.0 0.0 0.0
MACRO BrightGreen 0.0 1.0 0.0
MACRO BrightBlue 0.0 0.0 1.0

VRML_COLOR_LEVEL_DEF 0 $(BrightRed)
VRML_COLOR_LEVEL_DEF 100 $(BrightGreen)
VRML_COLOR_LEVEL_DEF 200 $(BrightBlue)

For this example, features with heights from 0 to 99 will beBrightRed, from 100 to 199 BrightGreen, and from 200
onwards the features will be colored BrightBlue.

There is no limit on the number of COLOR_LEVEL_DEF directives.

PRETTY_PRINT

Required/Optional: Optional

This directive gives the option for the VRML writer to print the output file in a more attractive format.

The syntax of a VRML PRETTY_PRINT line is:

<WriterKeyword>_PRETTY_PRINT (YES|NO)

The default value for this directive is NO.

Tip: Enabling this option produces a considerably larger VRML output file due to the extra
blank spaces.

FACE_SET_ATTR

Required/Optional: Optional

Features having their vrml_type set to vrml_face are written in the output dataset as a VRML IndexedFaceSet nodes. Nor-
mally one IndexedFaceSet node corresponds to one vrml_face feature. This directive allows an IndexedFaceSet node to
represent more than one vrml_face feature. The directive allows vrml_face features carrying a common value for the
specified attribute to be grouped into one IndexedFaceSet node.

If we are writing out the provinces of Canada, each of them represented as a vrml_face, and each of them con-
taining a code attribute whose value is made common among polygons belonging to the same province, then a spec-
ification of

<WriterKeyword>_FACE_SET_ATTR code

instructs the VRML writer to group all the polygons from the same province into a single IndexedFaceSet node. In addi-
tion, this IndexedFaceSet will be named by the value of the code attribute. Using the VRML DEF, for example, all vrml_
face features containing the code attribute with value CA10 will be written into the following indexedFaceSet node:

geometry DEF CA10 IndexedFaceSet {
...
}

Workbench Parameter: Face Grouping Attribute

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), special FME feature attributes direct the VRML writer as it writes the feature into the VRML file. The
most important of these is the vrml_type attribute because it controls the overall interpretation of the feature. The
acceptable values for vrml_type are vrml_text, vrml_line, vrml_face, vrml_point, vrml_surface, and vrml_solid.
The parameters specified to each of these are described in subsequent sections.

The VRML features may have their individual colors specified with the following attributes. These colors take prec-
edence over the COLOR_LEVEL_DEF colors.

Attribute Name Contents

vrml_mat_diffuseColor_r The amount of red color to be mixed with the other
RGB components for the final color of the feature.
Range: 0.0 .. 1.0
Default: 0.8

vrml_mat_diffuseColor_g The amount of green color to be mixed with the
other RGB components for the final color of the fea-
ture.
Range: 0.0 .. 1.0
Default: 0.8

vrml_mat_diffuseColor_b The amount of blue color to be mixed with the
other RGB components for the final color of the fea-
ture.
Range: 0.0 .. 1.0

Attribute Name Contents

Default: 0.8

vrml_mat_emissiveColor_r The amount of red color to be mixed with the other
RGB
components for the final glow color of the feature.
Range: 0.0 .. 1.0
Default: 0.0

vrml_mat_emissiveColor_g The amount of green color to be mixed with the
other RGB
components for the final glow color of the feature.
Range: 0.0 .. 1.0
Default: 0.0

vrml_mat_emissiveColor_b The amount of blue color to be mixed with the
other RGB
components for the final glow color of the feature.
Range: 0.0 .. 1.0
Default: 0.0

vrml_mat_transparency Specifies the transparency factor for the feature—a
factor of 0.0 creates opaque shapes, a factor of 1.0
makes a shape completely transparent.
Range: 0.0 .. 1.0
Default: 0.0

The following table lists other attributes for the VRML features:

Attribute Name Contents

vrml_tip_over

vrml_tip_click

The vrml_tip_over and vrml_tip_click attributes are
used in conjunction with the DISPLAY_ATTRIB directive.
If this directive is set to YES, then features with this
attribute will have all user-defined attributes displayed
by the VRML browser, as described in the Writer Direc-
tives section, under the heading DISPLAY_ATTRIB.

vrml_url VRML features may have a Uniform Resource Locator
(URL) bound to them. To specify the URL for a feature,
include a vrml_url attribute for that feature. The value
of the vrml_url attribute should specify the URL of a des-
tination web page to which the viewer travels when the
viewer clicks on that feature.
Note: If the feature already contains vrml_tip_over or
vrml_tip_click attributes, the vrml_url attribute will
have no effect when writing out the VRML output file.

Faces

vrml_type: vrml_face

VRML face features are used to represent solid polygons. Face features must have at least three points. Solid geome-
try will be written out as the decomposed faces of that solid. The VRML writer writes out a vrml_face feature as a
VRML IndexedFaceSet node.

Lines

vrml_type: vrml_line

Linear features must have at least two points. The VRML writer writes out a vrml_line feature as a VRML Index-
edLineSet node.

Points

vrml_type: vrml_point

Point features must have exactly one coordinate. The VRML writer writes out a vrml_point feature as a VRML PointSet
node.

Solid

vrml_type: vrml_solid

Solid features can have a geometry that is a box or a collection of faces.

Box geometries have a position and values for the width, height and length of the box. The VRML writer writes out a
box geometry by first translating to the center of the box’s coordinates and then writing a VRML Box node.

If the feature does not have a box then the solid will be written as multiple vrml_face features.

Surface

vrml_type: vrml_surface

Surface features are 3D geometries that may or may not form a solid. The geometry will be written as multiple vrml_
face features.

Text

vrml_type: vrml_text

Text features must have exactly one coordinate. The vrml_text features are written to the output file first by trans-
lating by the text coordinate, then by writing out a VRML Text node.

VRML text features have the following attributes:

Attribute Name Contents

vrml_text_string The text string to be drawn in the VRML file. It may con-
tain blanks and there is no limit on its length.
This attribute must be present for all vrml_text features.

vrml_font_family The name of the font used to draw the text.
Range:
SERIF |
SANS |
TYPEWRITER

Attribute Name Contents

Default: SERIF

vrml_font_style The text style to use.
Range:
PLAIN |
BOLD |
ITALIC |
BOLDITALIC

Default: PLAIN

vrml_font_size The height of the characters measured in VRML units.
Range: real number > 0
Default: 1.0

vrml_rotation The rotation of the text about the z axis, measured in
degrees counterclockwise from horizontal.
Range: -360.0..360.0
Default: 0.0

Wavefront OBJ Reader/Writer

The Obj Reader and Writer module enables FME to read and write the Wavefront Obj format.

The Obj format, originally developed for use with Wavefront's Advanced Visualizer, is now used primarily to exchange
3D models between different modeling and rendering applications.

Overview

An Obj file consists of a main .obj file, that can reference an optional Material (.mtl) file. A format specification for Obj
and the optional mtl file can be found here:

l www.fileformat.info/format/wavefrontobj

l www.fileformat.info/format/material

Supported OBJ File Syntax

The obj file format supports both polygonal and free-form surface objects. The Obj Reader/Writer currently supports
polygonal face (f) objects (l) line and (p) point. Free-form surfaces are typically not used in .obj file exchange and are
not supported at this time. For completeness, the syntax supported at this time is summarized below.

Syntax and Description

v <x> <y> <z>
Vertex position. Coordinates are floating point numbers.

vn <i> <j> <k>
Vertex normal. Coordinates are floating point numbers.

vt <u> <v> <w>
Texture coordinate.
<u> is the horizontal direction,
<v> is the vertical direction (optional in the case of a 1D raster/texture, and
defaults to 0),
<w> is the depth in the case of a 3D raster/texture map (optional in the case of a 2D
raster/texture, and defaults to 0).

f <v1>/<vt1>/<vn1> <v2>/<vt2>/<vn2> <v3>/<vt3>/<vn3> ...
Faces are stored as a series of three or more vertices in clockwise order. Vertices
are described by their position, optional texture coordinate, and optional normal,
encoded as an integer index into the respective coordinate lists. A face is generally
limited to triangle or quad planar surface.

l <v1>/<vt1> <v2>/<vt2> <v3>/<vt3> ...
Lines are stored as a series of one ore more vertices and optional texture coor-
dinate. Textures are generally not mapped to lines but may be used to store tabular
data or an index.

p <v1> <v2> <v3> ...
Points are stored as a series of one or more vertices.

mtllib <filename.mtl>

http://www.fileformat.info/format/wavefrontobj
http://www.fileformat.info/format/material

Syntax and Description

Material (.mtl) file references the material file that defines the materials used in the
object that follow. Material files contain color illumination components and texture
filename references.

usemtl <mtlname>
Material name string tag that references the material to use for the faces that follow
in the obj file.

g <groupname1> <groupname2> ...
Group name string tag for the elements (faces) that follow.

o <objectname>
Object name string tag for the elements (faces) that follow.

s <smoothgroup>
Smoothgroup number to group elements together for smooth shading operations.

File Name Extension Contents

.obj Geometric data

A single .obj file can contain many types of geometry. However, in practice obj files generally contain only faces.

Obj files generally contain three-dimensional geometry. 2D data will be represented with one of the coordinates (gen-
erally y or z) being 0.0 for all geometry.

Wavefront OBJ Quick Facts

Format Type Identifier OBJ

Reader/Writer Both

Licensing Level Professional

Dependencies None

Dataset Type Reader: File
Writer: Directory

Feature Type “OBJ_ELEMENT”

Typical File Extensions .obj

Automated Translation Support Yes

User-Defined Attributes No

Coordinate System Support No

Generic Color Support No

Spatial Index Never

Schema Required No

Transaction Support No

Enhanced Geometry Yes

Encoding Support No

Geometry Type obj_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc no raster no

donut polygon no solid no

elliptical arc no surface yes

ellipses no text no

line yes z values yes

none no

Reader Overview

The Obj reader produces FME features for geometry data in an obj file. The obj reader extracts all the geometry in an
Obj file and then presents the elements one at a time to FME for further processing. Each obj element will create an
FME feature.

Reader Directives

The directives processed by the OBJ reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the Obj reader is OBJ.

DATASET

Required/Optional: Required

The value for this directive is the path to the obj file.

OBJ_DATASET /usr/data/obj/teapot.obj

Workbench Parameter: Source Wavefront OBJ File

MOVE_TO_WORLD_COORDSYS

Required/Optional: Optional

Possible values are 'Yes' and 'No' with default value being 'No'. If the value is 'Yes', the companion ‘.prj’ and ‘.wld’
files (having the same name as the ‘.obj’ file) will be read in order to acquire the coordinate system and the data nec-
essary in order to convert points to the world coordinate system. Note that in the absence of a companion ‘.wld’ file
with the same name as the ‘.obj’ file, a file named ‘global.wld’ will be looked for in the same directory. Similarly for the
companion ‘.prj’ file, only in that case we will only look for a file named ‘global.prj’.

Workbench Parameter: Move to World Coordinate System

MERGE_MESH_PARTS

If the value is Yes, the group name, object name, and smoothing group information will be lost for each face in the
source file, and the corresponding FME feature will contain only one mesh that contains all of the faces from the
source file. This results in a more efficient representation of the data if the user does not wish to keep the additional
face information.

The OBJ writer will maintain this information so it is recommended to leave this option set to "No" for OBJ to OBJ trans-
lations. If the value is set to 'No', in the case that multiple group names, object names or smoothing groups are used,
this information will be preserved as traits on multiple meshes containing faces that have been grouped by these
values.

Values

Yes | No (default)

Workbench Parameter

Merge Mesh Parts

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

Writer Overview

The Obj writer creates and writes feature data to an obj file.

Any old Obj file in the directory is overwritten with the new Obj file with the same name. If the Obj file can not be
written the translation fails.

Note: The maximum number of digits allowed after the decimal is 6. The writer will automatically truncate any extra
digits.

Note: Some viewers may not correctly render OBJ files containing 64-bit precision of coordinates. The data within
the OBJ file is still correct; however, if the primary concern is visualization instead of data precision, then offsetting
the x,y,z coordinates such that the model's origin is moved to (0,0,0) or another point close to this should resolve
the display issue.

Writer Directives

The directives that are processed by the Obj writer are listed below. The suffixes shown are prefixed by the current
<WriterKeyword>_ in a mapping file. By default, the <WriterKeyword> for the Obj writer is OBJ.

DATASET

The value for this directive is the path to the output directory. If the output directory does not exist, then the writer
will create a new directory.

An output .obj file will be created for each feature type within the specified directory.

For example, if you are writing to feature types named house and barn to dataset c:\data\obj then you will have files
c:\data\obj\house.obj and c:\data\obj\barn.obj.

One common mtl file will be created for the writer and shared by all output files. Feature type fanout is supported.

Mapping File Syntax

OBJ_DATASET c:\data\obj

MATERIAL_LIB

Required/Optional: Optional

This option specifies a full path to a mtl file to use as the Material Library (mtllib) when creating an obj file during writ-
ing. Leave this blank if you do not have an existing material library or do not use materials in your obj model.

Note: Some obj viewer applications have been known to require that there are no spaces in the material file name.

Default: Blank

Workbench Parameter: Material Library File

MATERIAL_LIB_LINKAGE

Required/Optional: Optional

This option specifies how the material library (.mtl) file is referenced during writing.

Range: Relative | Absolute | Copy

Default: Relative

l Relative - references the mtl file relative to the obj file.

In this case, the mtl file will need to be placed in a directory that is relative to the obj file being created. The mtllib
directive in the obj file will reference the mtl file using a relative path.

l Copy - makes a copy of the mtl file and places it in the same directory with the obj file. The mtllib directive in the
obj file will reference this copy with no directory in the mtl path reference.

Note: This option will copy the .mtl file. However, if there are additional files referenced from the .mtl file such
as texture files, they will not be copied and will need to be manually copied.

l Absolute - references the mtl file using a absolute location. The mtllib directive in the obj file will reference the
template file using an absolute path.

Note: The Absolute reference will use the mtl file name as is specified with the MATERIAL_LIB key word which
should itself specify an absolute path the the .mtl file.

Workbench Parameter: Material Library Linkage

REVERSE_FACE_ORDER

Required/Optional: Optional

This option forces faces and lines to be written in a reverse order. This option is useful when faces are all back faced
when rendering only the front side and you need to reverse all faces.

Range: Yes | No

Default: No

Workbench Parameter: Reverse Face Order

TRIANGULATE_FACES

This option forces faces to be broken into triangles. Donuts and concave faces are always triangulated, regardless of
whether this option is set.

Required/Optional

Optional

Values

Yes (default) | No

Workbench Parameter

Triangulate Faces

WRITE_FME_VERSION

Required/Optional: Optional

This option controls whether the writer creates a comment line specifiying the FME version that was used to create
the resulting output obj file. Disabeling writing version information is useful to support regression tests.

Range: Yes | No

Default: Yes

Workbench Parameter:Write FME Version to OBJ File Header

WRITE_POINTS_AND_LINES

Required/Optional: Optional

This option controls whether the writer includes points and lines when writing to the output file. When this is set to
‘No’, point and line features will be silently dropped. Some applications do not render points and lines and others do
not accept the file if it contains them (eg. Autodesk 3ds Max).

Range: Yes | No

Default: No

Workbench Parameter:Write Points and Lines

MOVE_TO_LOCAL_COORDSYS

Required/Optional: Optional

Possible values are 'Yes', 'No' and ‘PRJ_ONLY’ with default value being 'No'. If the value is 'PRJ_ONLY', a companion
‘.prj’ file containing the coordinate system and having the same name as the ‘.obj’ file will be written in the same
directory as the ‘.obj’ file. If the value is ‘Yes’, in addition to writing the ‘.prj’ file as in the ‘PRJ_ONLY’ option, a com-
panion ‘.wld’ file with the same name as the ‘.obj’ file will be written in the same directory as the ‘.obj’ file and the
coordinates of all the points in the written features will be normalized to the interval [-0.5, 0.5] on the largest side of
their XY-bounding box. The other dimensions will be scaled proportionally. This can be used to improve precision of
the written coordinates.

Workbench Parameter: Move To Local Coordinate System

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

Obj elements (features) consist of geometry and geometry attributes. All obj elements have one predefined attribute,
obj_type, which identifies the type of the geometry. Geometry types are 3D (x,y,z) and obj_face can contain texture
and normal coordinates. See the FME Fundamentals help file (FME Architecture > FME 3D Support > Vertex
Normalsand FME Architecture > FME 3D Support > Texture Coordinates).

The format-specific data obj_group, obj_material_ref, obj_object, and obj_smooth_group are treated as traits.

All obj geometry attributes are optional.

Attribute Name Value

obj_type The type of geometry read from the table. This attribute
will contain one of:
obj_point
obj_line
obj_face
obj_collection
Default: No default

FME Geometry Attributes Supported

These are attributes that map to the FME geometry model.

Attribute Name Value

fme_texture_coordinate_x

fme_texture_coordinate_y

fme_texture_coordinate_z

These are named measures that hold texture coor-
dinates on the vertices of obj_face.

fme_vertex_normal_x

fme_vertex_normal_y

fme_vertex_normal_z

These are the named measures that hold obj_face
vertex normal components.

WFS (Web Feature Service) Reader

The Web Feature Service (WFS) Reader enables FME to retrieve geographic information from aWFS-compliant server.

Overview

WFS is an OpenGIS® Implementation Specification. The WFS specification defines the request and response rules for
the retrieval of geographic information using Hypertext Transfer Protocol (HTTP).

The WFS reader adheres to versions 1.0.0 and 1.1.0 of this specification, which can be found at the OpenGIS Con-
sortium websitewww.opengis.org.

WFS Quick Facts

Format Type Identifier WFS

Reader/Writer Reader

Licensing Level Professional

Dependencies None

Dataset Type Universal Resource Locator

Feature Type layer name

Typical File Extensions Not applicable

Automated Translation Support Yes

User-Defined Attributes Yes

Coordinate System Support No

Generic Color Support No

Spatial Index Not applicable

Schema Required Optional

Transaction Support No

Geometry Type xml_type

Encoding Support Yes

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles no polygon yes

circular arc yes raster no

donut polygon yes solid no

elliptical arc no surface no

ellipses no text no

line yes z values no

none yes

http://www.opengis.org/

Reader Overview

At minimum, all compliant WFS servers are required to encode their geodata using the OpenGIS Geography Markup
Language (GML). The WFS reader invokes FME’s GML reader for processing of this data.

Messages that are logged during a WFS read session are produced by both the GML reader and the WFS reader. All
requests that originate from the WFS reader are prepended with a <WFS> string.

Reader Directives

The directives processed by the WFS reader are listed below. The suffixes shown are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the WFS reader is WFS.

DATASET

The value for this directive is the URL for the WFS server.

A typical URL specifying a WFS server looks like:

WFS_DATASET http://www.mywfs.com/wfs_service_path/

Required/Optional

Required

Workbench Parameter

Web Feature Service URL

MINX, MINY, MAXX, MAXY

These optional directives are used to specify the value of the rectangular bounding box parameter value that is sub-
mitted during a request for feature information.

Required/Optional

Optional

Mapping File Syntax

The syntax for the values of these directives is:

<ReaderKeyword>_MINX <value>
<ReaderKeyword>_MINY <value>
<ReaderKeyword>_MAXX <value>
<ReaderKeyword>_MAXY <value>

All values must be specified in decimal, integer or scientific notation.

If all values for MINX, MINY, MAXX and MAXY have a value of 0, then no bounding box parameter will be submitted in
the WFS server feature request.

Workbench Parameter

Search Envelope Min X, Search Envelope Min Y, Search Envelope Max X, Search Envelope
Max Y

DEF

Mapping File Syntax

The syntax for a WFS DEF line is the same as a GML DEF line:

<ReaderKeyword>_DEF <elementName> \
xml_type <xml_type> \
[<attrName> <attrType>]*

Required/Optional

Optional

HTTP_AUTH_USER

This optional directive specifies the user name when accessing a password protected HTTP server.

The directive has no default value.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_AUTH_USER someusername

Workbench Parameter

Http Authentication User

HTTP_AUTH_PASSWORD

This optional directive specifies the password when accessing a password protected HTTP server. The directive has
no default value.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_AUTH_PASSWORD my123secret

Workbench Parameter

Http Authentication Password

HTTP_AUTH_METHOD

This optional directive specifies the authentication method when accessing a password protected HTTP server.

Note that the HTTP basic access authentication is a mechanism designed to allow a client to provide credentials to a
server on the assumption that the connection between them is trusted and secure. That is, any credentials passed
from client to server can be easily intercepted through an insecure connection.

Values

Basic (default) | Digest | NTLM

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_AUTH_METHOD Digest

Workbench Parameter

Http Authentication Method

HTTP_PROXY

This optional directive specifies the HTTP proxy to be used for network fetches. The port number may be specified at
the end the proxy by appending :[port number] or through the HTTP_PROXY_PORT directive.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_PROXY www.someproxy.net

or

<ReaderKeyword>_HTTP_PROXY www.someproxy.net:8081

Note: Users may bypass the HTTP_PROXY and HTTP_PROXY directives and still have http proxy support by spec-
ifying the http_proxy environment variable.

The value for this environment variable should be of the form [protocol://][user:password@]machine[:port],
where components within [] are optional.

An example value for the http_proxy environment variable is: www.someproxy.net:8081.

Workbench Parameter

Http Proxy Address

HTTP_PROXY_PORT

This optional directive is used if the HTTP proxy port was not specified in the HTTP_PROXY directive.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_PROXY_PORT 8081

Workbench Parameter

Http Proxy Port

HTTP_PROXY_USER

This optional directive specifies the user name when accessing a password protected proxy server. The directive has
no default value.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_PROXY_USER someusername

Workbench Parameter

Http Proxy User

HTTP_PROXY_PASSWORD

This optional directive specifies the password when accessing a password protected proxy server. The directive has
no default value.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_HTTP_PROXY_PASSWORD my123secret

Workbench Parameter

Http Proxy Password

HTTP_PROXY_AUTH_METHOD

Required/Optional: Optional

This optional directive specifies the authentication method when accessing a password protected proxy server.

Required/Optional

Optional

Values

Basic (default) | Digest | NTLM

Mapping File Syntax

<ReaderKeyword>_HTTP_PROXY_AUTH_METHOD Digest

Workbench Parameter

Http Proxy Authentication Method

XSD_DOC

This optional directive allows the reader to bypass the WFS DescribeFeatureType operation by allowing the user to
explictly specify a locally stored GML application schema.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword> XSD_DOC c:\gml\schemas\roads.xsd

Workbench Parameter

Application Schema

FILTER_EXPRESSION

This directive allows the reader to send a custom OGC XML fragment filter for the GetFeature operation.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_FILTER_EXPRESSION <Filter><PropertyIsEqualTo><PropertyName>NAME
</PropertyName><Literal>Swan Lake</Literal></PropertyIsEqualTo></Filter>

Workbench Parameter

XML Filter Expression

MAX_RESULT_FEATURES

This optional directive is used to limit the number of features that a WFS GetFeature request retrieves.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_MAX_RESULT_FEATURES 200

Workbench Parameter

Max Features

FME_FEATURE_IDENTIFIER

This directive may be used when the WFS reader is used in a third-party application that requires each feature in a
layer be identified by a numeric identifier.

The directive allows the user to specify the attribute name for this numeric identifier.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_FME_FEATURE_IDENTIFIER feature_id

Workbench Parameter

Numeric Identifier Attribute

SRS_AXIS_ORDER

This optional directive overrides the axis order when reading a coordinate tuple in a GML <pos> or <posList> ele-
ment.

Values

1,2 | 2,1 | 1,2,3 | 2,1,3

The default value, blank, uses the coordinate system's axis order.

Required/Optional

Optional

Mapping File Syntax

For example, if the srsName is set to "urn:ogc:def:crs:EPSG:6.6.4326", and the user is sure that the coordinate
order in the document is lon-lat and not lat-lon order, then this directive should be set to "1,2" so that the reader
reads the data in lon-lat order:

<ReaderKeyword>_SRS_AXIS_ORDER 1,2

Workbench Parameter

SRS Axis Order

READ_PREDEFINED_GML_PROPERTIES

This directive specifies whether the default and optional GML feature properties, name and description, should be
read.

Values

YES | NO (default)

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_READ_PREDEFINED_GML_PROPERTIES YES

Workbench Parameter

Read Predefined Properties

COMPLEX_PROPERTIES_AS_NESTED_LISTS

This directive specifies whether GML properties that are defined as a complex type with complex content (that is,
those that have embedded children elements) should be mapped as nested list attributes within FME features.

Some complex properties, such as those that are recursively defined, cannot be mapped as nested lists. These com-
plex properties will always be mapped as XML fragments, regardless of the value of this directive.

Values

YES (default) | NO

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_COMPLEX_PROPERTIES_AS_NESTED_LISTS NO

Workbench Parameter

Complex Properties as Nested Lists

XML_FRAGMENTS_AS_DOCUMENTS

This directive specifies whether GML properties that are mapped as XML fragments should be converted into XML doc-
uments.

The conversion will add missing namespace declarations to the fragments, it will maintain CDATA sections, and it will
also prefix an XML header declaration to the fragment. Converting the XML fragments into XML documents allows
XML-based parsers, e.g., XSLT and XQuery based processors, to further process the fragments.

Values

YES (default) | NO

Required/Optional

Optional

Mapping File Syntax

<Reader_Keyword>_XML_FRAGMENTS_AS_DOCUMENTS NO

Workbench Parameter

Map XML Fragments as XML Documents

MAP_GEOMETRY_COLUMNS

This directive specifies whether the GML geometric properties should be represented as individual, and possibly mul-
tiple, geometry columns in FME feature type definitions.

A geometric column in an FME data feature is represented either as a single named geometry, or, if multiple geometry
columns are present, as an aggregate geometry with multiple named geometry components, this aggregate geometry
will also have its “Contains Individual Geometries” interpretation flag set.

A new attribute type has also been introduced for specifying the order and/or position of a geometric column in the
feature type definition. If an attribute X has its type set to “xml_geometry” then this attribute X becomes a place-
holder in the feature type definition. It is a placeholder because actual data features for the feature type definitions
will not have this attribute; instead, the data features will have a geometry named “X”.

Values

YES (default) | NO

Required/Optional

Optional

Mapping File Syntax

<Reader_Keyword>_MAP_GEOMETRY_COLUMNS NO

Workbench Parameter

Map Geometry Columns

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Feature Representation

All processing for geodata returned from aWFS server is performed by the GML reader; therefore, all feature rep-
resentation information is equivalent to the GML features. See theGML Reader/Writer chapter for further details.

XML (Extensible Markup Language) Reader/Writer

Note: This format is not supported by FME Base Edition.

The XML modules allow FME to read and write XML (Extensible Markup Language) documents.

This chapter assumes familiarity with XML.

Overview

XML is a recommendation of the World Wide Web Consortium (W3C), and is a meta-language for defining markup lan-
guages. This means that it allows specific markup languages to be created for specific data. More information on XML
can be found in the W3C website, www.w3.org.

XML Quick Facts

Format Type Identifier XML

Reader/Writer Reader/Writer

Licensing Level Professional

Dependencies None

Dataset Type File

Feature Type .xml

Typical File Extensions Yes - if an xfMap for a particular XML
format already exists.

Automated Translation Support Varies: it depends on the xfMap doc-
ument.

User-Defined Attributes Yes

Coordinate System Support Yes

Generic Color Support Yes, but it depends on the xfMap doc-
ument.

Spatial Index Never

Schema Required No

Transaction Support No

Geometry Type xml_type

Geometry Support

Geometry Supported? Geometry Supported?

aggregate yes point yes

circles yes polygon yes

circular arc yes raster no

donut polygon yes solid yes (reader only)

elliptical arc yes surface yes (reader only)

Geometry Support

Geometry Supported? Geometry Supported?

ellipses yes text yes

line yes z values yes

none yes

Reader Overview

The XML Reader works by mapping XML elements into FME features. These mappings are defined by an XML appli-
cation called xfMap. By extracting these mapping strategies into an xfMap document, the XML Reader is not tied to
any particular XML format. Because of this, the XML Reader can read many disparate XML applications, ranging from
GIS data to purchase orders. xfMap is described in more detail in xfMap.

Reader Directives

The following directives are processed by the XML reader. The suffixes listed are prefixed by the current <Read-
erKeyword> in a mapping file. By default, the <ReaderKeyword> for the XML reader is XML.

DATASET

Required/Optional: Required

This keyword specifies the location of the input XML document. The XML Reader is capable of reading XML documents
that are gzipped.

Workbench Parameter: Source XML File(s)

Example:

XML_DATASET http://www.safe.com/data/points1.xml

or

XML_DATASET C:\tmp\data\points1.gz

SYSTEM_ENCODING

This directive specifies the system’s encoding. Its default value is the system encoding.

Required/Optional

Optional

Mapping File Syntax

XML_SYSTEM_ENCODING ISO-8859-3

Workbench Parameter

System Encoding

XFMAP

This directive specifies the location of the xfMap document.

Multiple XFMAP keywords may be specified within a mapping file. Each xfMap will map features from the same input
dataset. Alternatively, multiple xfMaps may be specified in a single value quoted XFMAP directive by separating each
xfMap path with a semicolon.

Required/Optional

Optional

Mapping File Syntax

XML_XFMAP C:\tmp\data\features.xmp

or

XML_XFMAP “C:\tmp\drainages.xmp;C:\tmp\pits_pipes.xmp”

or

XML_XFMAP C:\tmp\drainages.xmp
XML_XFMAP C:\tmp\pits_pipes.xmp

Workbench Parameter

XML Map File

XFMAP_FEATURE_PATHS

This directive specifies whitespace separated xfMap match expressions.

The match expressions specify which XML elements in the dataset should be extracted into XML fragments. The frag-
ments will be held in non-geometrical FME features under their “xml_fragment” attribute.

Two additional attributes are added to the feature. One records the element that was matched (the “xml_matched_ele-
ment” attribute); the other holds an ID for that element (the “xml_id” attribute):

n The “xml_matched_element” may be used to identify which element matched the expression in the case that the
last component of the matched expression is a wildcard, “*”. Note the value for the “xml_matched_element” is also
set as the feature type for the features.

n The “xml_id” attribute is not globally unique but is guarantee to be unique only in the context of the dataset.

The XFMAP_FEATURE_PATHS directive is useful for decomposing large XML documents into parts, where these parts
may be further operated on via downstream XML, XQuery, XSLT or text processing Workbench Transformers.

See the “Match and Except Expression” section in the xfMap documentation for details regarding the match expres-
sion.

Required/Optional

Optional

Mapping File Syntax

This example extracts the <dc:metadata> element from the dataset into an XML fragment:

XML_XFMAP_FEATURE_PATHS “csw:SearchResults/dc:metadata”

XFMAP_FEATURE_PATHS_STRUCTURE

This directive is to be used in conjunction with XFMAP_FEATURE_PATHS and allows children of the matched elements
to be exposed as attributes on FME Features.

See the “Structure Element” section in the xfMap documentation for details regarding the options available and more
examples.

Required/Optional

Optional

Mapping File Syntax

This example extracts the children of the elements into attributes on FME Features:

XML_XFMAP_FEATURE_PATHS_STRUCTURE <structure/>

VALIDATE_XFMAP

This directive specifies whether the input xfMap document should be validated against its Document Type Definition
(DTD).

Required/Optional

Optional

Values

auto | yes | no (default)

Mapping File Syntax

XML_VALIDATE_XFMAP yes

Workbench Parameter

Validate XML Map File

VALIDATE_DATASET

This directive specifies whether the input XML document should be validated against a DTD or an XML schema.

Required/Optional

Optional

Values

auto | yes | no (default)

Mapping File Syntax

XML_VALIDATE_DATASET yes

Workbench Parameter

Validate XML Dataset File

FEATURE_ENCODING

This directive specifies which encoding the mapped FME features should be in.

Required/Optional

Optional

Values

The default value is the system encoding.

Mapping File Syntax

XML_FEATURE_ENCODING Shift-JIS

MAPPING_FILE_ENCODING

This directive specifies which encoding the FME mapping file is in.

Required/Optional

Optional

Values

When not specified, the FME mapping file is assumed to be encoded in the system encoding.

Mapping File Syntax

XML_MAPPING_FILE_ENCODING ISO-8859-3

DOCUMENT_STREAM

This directive specifies as its value the input XML document to parse; that is, the XML document is specified inline in
the FME mapping file.

Note: If present, this directive overrides the DATASET directive.

Required/Optional

Optional

XFMAP_STREAM

This directive specifies as its value an inline xfMap document in the FME mapping file.

Note: If present, it overrides the XFMAP directive.

Required/Optional

Optional

XFMAP_SCHEMA

This directive specifies the xfMap(s) that are to be used when reading schema features. Multiple XFMAP_SCHEMA
directives may also be specified as per the XFMAP directive.

Required/Optional

Optional

Mapping File Syntax

XML_XFMAP_SCHEMA C:\tmp\data\schema_features.xmp

or

XML_XFMAP_SCHEMA “C:s_drainages.xmp;C:s_pits_pipes.xmp”

or

XML_XFMAP_SCHEMA C:\tmp\schema_drainages.xmp
XML_XFMAP_SCHEMA C:\tmp\schema_pits_pipes.xmp

XRS

This directive specifies the path for an XRS document. An XRS (XML Reader Switch) document allows the XML Reader
to automatically configure itself to read “known” XML datasets without the need to specify in advance the appropriate
xfMaps.

The directive only applies when both the XFMAP and XFMAP_STREAM directives are absent or empty. A default XRS
document is also provided, so the XRS directive is optional even when it is applicable.

The default XRS document is named xrs.xml, and it is located in the xml/xrs subdirectory of the FME installation direc-
tory.

The documentation for the XRS can be found in the xml/xrs/xrs_doc.txt file.

Required/Optional

Optional

Mapping File Syntax

XML_XRS C:\tmp\my_xrs.xml

Workbench Parameter

XRS File

XR_PIPELINE

The XML reader allows several xfMaps to be specified on the same document stream. Each xfMap may construct its
own feature representations for the input stream, for example by deconstructing the hierarchy of the input stream
into a flattened structure. The XR_PIPELINE directive allows an FME factory pipeline to be applied on features con-
structed across xfMaps.

For example, an XML format may define their areas in a hierarchy such that XML representation of an area element
contains, either directly or by reference, line children, and each line contains, either directly or by reference, point
elements. An xfMap can only construct one feature at a time, so if an xfMap is mapping the area elements to construct
area features, then additional xfMaps are required to map line and point elements to construct line and point features,
respectively. The XR_PIPELINE directive can then be used to apply a factory pipeline on the areas, lines, and point fea-
tures for further processing before these are output to FME, say to assemble their topology, if the XML format was top-
ologically based.

Required/Optional

Optional

Mapping File Syntax

XML_XR_PIPELINE C:\tmp\my_topology_assembler.fmi

XFMAP_KEYWORD

This directive allows the specification for name-value pairs that become accessible in an xfMap with the <keyword>
expression wherever expression sequences are allowed. See the xfMap <keyword> expression section documentation
for more information about its usage.

This directive may occur a multiple number of times in the FME mapping file for multiple name-value pairs.

Required/Optional

Optional

Mapping File Syntax

XML_XFMAP_KEYWORD key0 value0
XML_XFMAP_KEYWORD key1 “my other value”

XFMAP_KEYWORD_FILE

This directive is similar to XFMAP_KEYWORD, but it allows name-value pairs to be specified in an external file.

The XFMAP_KEYWORD_FILE is an XML document. Each keyword name-value pair in the document is specified with a
<keyword> element:

<keyword name=”...” value=”...”/>

Each keyword may in addition belong to a named group, thereby allowing keyword names to repeat when these
belong to different groups. A keyword belongs to a named group if it is a child of the <group> element:

<group name=”...”>
<keyword .../>
<keyword .../>
...
<keyword .../>

</group>

Keywords that are not specified as children of a group are in the default group. Keywords that belong to the default
group must be children of the root element. The root element for a XFMAP_KEYWORD_FILE document is the <key-
words> element.

Note that the keywords defined in the FME mapping file with XFMAP_KEYWORD are also in the default group, and they
will take precedence over keywords defined in the XFMAP_KEYWORD_FILE document if a keyword clash occurs.

Required/Optional

Optional

Mapping File Syntax

sample_keyword_file.xml:

<?xml version=”1.0” encoding=”UTF-8”?>
<keywords>

<group name=”MyGroup”>
<keyword name=”key1” value=”val-1”/>
<keyword name=”key2” value=”val-2”/>

</group>
</keywords>

XML_XR_PIPELINE C:\tmp\sample_keyword_file.xml

SEARCH_ENVELOPE

This keyword specifies the spatial extent of the feature retrieval. Only features that intersect this bounding box are
returned by the reader. If this directive is not specified, then all features are returned.

Note that this directive is only honoured by the MITAB-based MapInfo reader in FME. This is the only MapInfo reader
available on the UNIX platforms supported by FME, and can optionally be enabled on Windows platforms by renaming
the mitab.dll in the FME home directory to mapinfo.dll.

The syntax of the MAPINFO_SEARCH_ENVELOPE directive is:

 MAPINFO_SEARCH_ENVELOPE <minX> <minY> <maxX> <maxY>

The coordinate values specified are measured in the ground units of the input data.

The example below selects a small area in a lat/long dataset for extraction:

 MAPINFO_SEARCH_ENVELOPE -130 49 -128 50.1

SEARCH_ENVELOPE_COORDINATE_SYSTEM

This directive specifies the coordinate system of the search envelope if it is different than the coordinate system of
the data.

The COORDINATE_SYSTEM directive, which specifies the coordinate system associated with the data to be read, must
always be set if the SEARCH_ENVELOPE_COORDINATE_SYSTEM directive is set.

If this directive is set, the minimum and maximum points of the search envelope are reprojected from the SEARCH_
ENVELOPE_COORDINATE_SYSTEM to the reader COORDINATE_SYSTEM prior to applying the envelope.

Required/Optional

Optional

Mapping File Syntax

<ReaderKeyword>_SEARCH_ENVELOPE_COORDINATE_SYSTEM <coordinate system>

Workbench Parameter

Search Envelope Coordinate System

CLIP_TO_ENVELOPE

This directive specifies whether or not FME should clip features to the envelope specified in the SEARCH_ENVELOPE
directive.

Values

YES | NO (default)

Mapping File Syntax

<ReaderKeyword>_CLIP_TO_ENVELOPE [yes | no]

Workbench Parameter

Clip To Envelope

EXPOSED_ATTRS

This directive allows the selection of format attributes to be explicitly added to the reader feature type.

This is similar to exposing format attributes on a reader feature type once it has been generated; however, it is even
more powerful because it enables schema-driven applications other than Workbench to access and leverage these
attributes as if they were explicitly on the schema as user attributes.

The result of picking a list of attributes is a comma-separated list of attribute names and types that will be added to
the schema features. Currently all reader feature types will receive the same set of additional schema attributes for a
given instance of the reader.

Required/Optional

Optional

Workbench Parameter

Additional Attributes to Expose

Writer Overview

The XML Writer allows the FME to write out XML documents. The XML Writer can work in three modes: TABLES_
ATTRIBUTES_ONLY, TABLES, and XFMAPmode. Currently only the TABLES_ATTRIBUTES_ONLYmode is imple-
mented. In this mode, the FME features are written as rows, which are represented as XML elements in the output
document belonging to a particular table, and defined through an XML DEF line.

Writer Directives

The directives processed by the XML Writer are listed below. The suffixes shown are prefixed by the current <Writ-
erKeyword> in a mapping file. By default, the <WriterKeyword> for the XML writer is XML.

DATASET

Required/Optional: Required

This keyword specifies the location for the output XML document.

Workbench Parameter: Destination XML (ExtensibleMarkupLanguage) File

Example:

XML_DATASET c:\data\purchases.xml

WRITER_MODE

Note: For more information on this directive, see the chapter Database Writer Mode.

This controls the XML writer operation mode. The valid values are:

l TABLES_ATTRIBUTES_ONLY: In this mode, the XML Writer creates an XML document containing XML elements rep-
resenting tables and rows. Each table is defined by a DEF line, an each FME feature corresponding to that DEF line
defines a row for the table. Geometry is not supported in this mode.

Two documents are created in this mode: An XML Schema document, whose contents are controlled through the
DEF lines, and an instance document that conforms to the schema document; the instance document is specified
by the DATASET keyword.

A third XML document is also created if the GENERATE_XFMAP is set to yes. This document can be used by the XML
Reader to read back the output dataset into the FME. See the GENERATE_XFMAP directive for details.

l TABLES: This mode has not yet been implemented.

l XFMAP: This mode has not yet been implemented.

If it is not specified then the WRITER_MODE defaults to TABLES_ATTRIBUTES_ONLY.

Required/Optional

Required

XSD_DOC

Required/Optional: Optional if WRITER_MODE is XFMAP, otherwise Required

Specifies the location for the XML Schema document. This keyword is optional. If the keyword is not specified or if it
does not contain a path, then the XML Schema document is generated in the same directory as the one specified
through the DATASET keyword. If this keyword is set to a URI, then XSD output will be suppressed.

Workbench Parameter: XML Schema Document

Example:

XML_XSD_DOC c:\data\purchases.xsd

#
#
#

TARGET_NS_URI

Required/Optional: Optional

This keyword allows the specification of the target namespace URI for the generated XML Schema document. All ele-
ments in the XML Schema document will reside in this namespace.

The default value for this keyword is:

http://www.safe.com/xml/xmltables

Workbench Parameter: Target Namespace URI

Example:

XML_TARGET_NS_URI http://www.mytables.com/purchases

TARGET_NS_PREFIX

This directive allows the specification of the target namespace prefix for the generated XML Schema document.

The default value depends on the value of TARGET_NS_URI. If TARGET_NS_URI is using the default value, the default
value for this directive is fme. If TARGET_NS_URI is not using the default value, the default value for this directive
becomes the default prefix, which is the empty string.

Required/Optional

Optional

Mapping File Syntax

XML_TARGET_NS_PREFIX ps

Workbench Parameter

Target Namespace Prefix

TABLES_SEQUENCE

Required/Optional: Optional

The sequence order for the rows in the output DATASET defaults to following the order of the XML DEF line spec-
ification in the FME mapping file. This keyword allows the user to change that order by specifying a sequence of table
names; the sequence must be a subset of the tables defined by the DEF lines.

Example:

If the XML DEF lines define four tables with names – state, river, city, and road – then the TABLES_SEQUENCEmay
be used to control the output sequence order to be city, state, river, and road by specifying:

XML_TABLES_SEQUENCE ‘city state river road’

or

XML_TABLES_SEQUENCE ‘city state’

The second alternative is valid since the remaining tables that are not listed will be output following the order of the
mapping file XML DEF lines.

The value of the XML_TABLES_SEQUENCE keyword must be enclosed in quotes if more than one
table is listed.

TABLES_ROOT_ELEMENT

Required/Optional: Optional

Allows the specification of the root element name for the output DATASET. If it is not specified, the root element name
defaults to xml-tables.

Workbench Parameter: Tables Root Element Name

Example:

XML_TABLES_ROOT_ELEMENT purchases

WRAP_TABLES

Required/Optional: Optional

The valid values for this keyword are yes and no.When this keyword is set to yes, the elements which represent the
rows for a particular table within the output DATASET document will be wrapped by a container element. The default
value for this keyword is yes.

The wrapper element name will be the name of the rows prepended by the value of the TABLE_WRAPPER_PREFIX and
suffixed by the value of the TABLE_WRAPPER_SUFFIX.

Workbench Parameter:Wrap Table Elements

Example:

XML_WRAP_TABLES yes

TABLE_WRAPPER_PREFIX

Required/Optional: Optional

This keyword is to be used in conjunction with theWRAP_TABLES keyword, and will take effect only if that keyword is
set to yes. The default value for this keyword is the empty string.

Workbench Parameter: Table Wrap Prefix

Example:

XML_TABLE_WRAPPER_PREFIX prefix-

TABLE_WRAPPER_SUFFIX

Required/Optional: Optional

This keyword is to be used in conjunction with theWRAP_TABLES keyword and will take effect only if that keyword is
set to yes. The default value for this keyword is -table.

Workbench Parameter: Table Wrap Suffix

Example:

XML_TABLE_WRAPPER_SUFFIX -mytables

SUPPRESS_XML_DOCUMENT

Required/Optional: Optional

The valid values for this keyword are yes and no. This keyword allows the suppression of the actual XML document.
The default value for this keyword is no.

Workbench Parameter: Suppress XML Document

Example:

XML_SUPPRESS_XML_DOCUMENT no

SUPPRESS_XSD_DOCUMENT

Required/Optional: Optional

The valid values for this keyword are yes and no. This keyword allows the suppression of the XML Schema document.
If the XSD_DOC keyword is set to a URI, XSD output is suppressed regardless of this value. The default value for this
keyword is no.

Workbench Parameter: Suppress XSD Output

Example:

XML_SUPPRESS_XSD_DOCUMENT no

GENERATE_XFMAP

Required/Optional: Optional

The valid values for this keyword are yes and no. This keyword allows the generation of a tailored xfMap document
that can be used by the XML Reader to read the output DATASET document back to the FME. The default value for this
keyword is yes.

Workbench Parameter: Generate XML Map Document

Example:

XML_GENERATE_XFMAP no

XFMAP

Required/Optional: Optional

This keyword takes effect only if GENERATE_XFMAP is set to yes; it specifies the location and filename for the xfMap
document to be generated. If it is not specified, then the location defaults to the same directory as the one in DATA-
SET, and the filename becomes the basename DATASET plus the .xmp extension.

Workbench Parameter: XML Map Document

Example:

XML_XFMAP c:\data\purchases.xmp

GENERATE_ROW_ID

Required/Optional: Optional

The valid values for this keyword are yes and no. When this keyword is set to yes, an ID attribute of XML Schema type
ID will be generated for each element that represents a row of a table. The name of the attribute can be controlled by
the ROW_ID_ATTR_NAME keyword. The values generated for the ID attribute will be unique for the entire output
DATASET. The unique values are simply generated from a positive integer number count starting from 1, and since
the XML Schema ID type does not allow an ID to start with a digit, the ROW_ID_PREFIX keyword’s value is used to pre-
fix the ID. The default value for this keyword is no.

Workbench Parameter: Generate Row ID Attributes

Example:

XML_GENERATE_ROW_ID yes

ROW_ID_ATTR_NAME

Required/Optional: Optional

This keyword only takes effect if GENERATE_ROW_ID is set to yes. It specifies the name for an ID attribute for each ele-
ment that represents a row of a table. The default value for this keyword is “row-id”.

Workbench Parameter: Row ID Attribute Name

Example:

XML_ROW_ID_ATTR_NAME myID

ROW_ID_PREFIX

Required/Optional: Optional

This keyword only takes effect if GENERATE_ROW_ID is set to yes. It specifies the prefix for the unique positive
integers that are generated as the values for the row IDs. This value may not start with a digit and its default value is
“id”.

Workbench Parameter: Row ID Prefix

Example:

XML_ROW_ID_PREFIX fid

Will generate ID values: fid1, fid2, fid3,

APPLY_STYLESHEET

Required/Optional: Optional

This keyword allows an XSLT style sheet to be applied to the final output DATASET document. The STYLESHEET_
RESULT keyword may be used in conjunction with this keyword to specify the location and filename of the resulting
transformation. There are no default values for this keyword.

Workbench Parameter: XSLT Style Sheet to Apply

Example:

XML_APPLY_STYLESHEET c:\data\myTransform.xsl

STYLESHEET_RESULT

Required/Optional: Optional

This keyword only takes effect if APPLY_STYLESHEET is specified. When this keyword is not present or its value is the
empty string, then the resulting XSLT transformation will have the same location and filename as the output DATASET
with the exception that the filename will be prefixed with transformed_.

Workbench Parameter: Style Sheet File to Write

Example:

XML_STYLESHEET_RESULT c:\data\myTransformedDoc.xml

OUTPUT_ENCODING

Required/Optional: Optional

Specifies the encoding for the output DATASET document. The default value for this keyword is UTF-8.

Workbench Parameter: Output Dataset Encoding

Example:

XML_OUTPUT_ENCODING UTF-16

XSD_ENCODING

Required/Optional: Optional

Specifies the encoding for the generated XML Schema document. The default value for this keyword is the encoding
value for the OUTPUT_ENCODING.

Workbench Parameter: Output XML Schema Encoding

Example:

XML_XSD_ENCODING ISO-8859-1

XFMAP_ENCODING

Required/Optional: Optional

Specifies the encoding for the generated xfMap document. The default value for this keyword is the encoding value
for the OUTPUT_ENCODING.

Workbench Parameter: Output XML Map Encoding

Example:

XML_XFMAP_ENCODING UTF-8

SYSTEM_ENCODING

Required/Optional: Optional

Specifies what the system encoding should be. The default value for this keyword is the default system encoding.

Workbench Parameter: System Encoding

Example:

XML_SYSTEM_ENCODING Windows-1252

FEATURE_ENCODING

Required/Optional: Optional

Specifies the encoding for which the FME feature attribute and feature type information are stored. The default value
for this keyword is the encoding value for the SYSTEM_ENCODING.

Example:

XML_FEATURE_ENCODING ISO-8859-2

MAPPING_FILE_ENCODING

Required/Optional: Optional

Specifies the encoding of the FME mapping file. The default value for this keyword is the encoding value for the SYS-
TEM_ENCODING keyword.

Example:

XML_MAPPING_FILE_ENCODING ISO-8859-1

DEF Lines

The DEF lines control the generation of the XML Schema document. The interpretation of a DEF line depends on the
value of theWRITER_MODE keyword.

TABLES_ATTRIBUTES_ONLY Mode

When the XML Writer is in the TABLES_ATTRIBUTES_ONLYmode, the syntax of the XML DEF line is:

<WriterKeyword>_DEF <table name> \
[<attribute name> <attribute type>]*

The valid values for <attribute type> are: xml_char(width), xml_int32, xml_real32, xml_decimal(width, decimal), xml_boolean,
and xml_real64; these are mapped into the XML Schema built-in types: string, int, float, long, boolean, and double, respec-
tively.

A DEF line specifies the form an element takes in the output XML document that represents a table row. The element
type is defined in the generated XML Schema document as a Complex Type definition.

For example, the following DEF line:

XML_DEF row \
area xml_real64 \
code xml_char(5) \
num xml_decimal(3,0)

generates in the XML Schema document the following XML Schema Complex Type:

<complexType name=”rowType”>
<sequence>

<element name=”area” type=”double”/>
<element name=”code”>

<restriction base=”string”>
<maxLength value=”5”/>

</restriction>
</element>
<element name=”num”>

<restriction base=”decimal”>
<totalDigits value=”3”/>
<fractionDigits value=”0”/>

</restriction>
</element>

</sequence>
</complexType>

An FME feature corresponding to the DEF line, that is, a feature with feature type row, will be written in the output
DATASET document as:

<fme:row>
<fme:area>28002.325</fme:area>
<fme:code>MX02</fme:code>
<fme:num>345</fme:num>

</fme:row>

Note: The example assumes that the TARGET_NS_PREFIX has been set to fme which is the default value.

Example 1

The following FME mapping file reads from an ESRI Shapefile and translates into XML using the XML Writer in
TABLES_ATTRIBUTES_ONLY mode.

READER_TYPE SHAPE
WRITER_TYPE XML

SHAPE_DATASET C:\work\data\shape\MEXICO

XML_DATASET C:\tmp\out.xml

XML_WRITER_MODE TABLES_ATTRIBUTES_ONLY
XML_WRAP_TABLES yes
XML_TABLE_WRAPPER_PREFIX prefix-
XML_TABLE_WRAPPER_SUFFIX -suffix
XML_TARGET_NS_PREFIX xf
XML_GENERATE_ROW_ID yes
XML_ROW_ID_ATTR_NAME myid
XML_ROW_ID_PREFIX someid
XML_TABLES_SEQUENCE "states cities"
XML_APPLY_STYLESHEET C:\tmp\stylesheet.xsl

XML_DEF cities \
NAME xml_char(51) \
CAPITAL xml_char(1) \
STATE_NAME xml_char(25) \
POPULATION xml_decimal(11,0)

XML_DEF rivers \
NAME xml_char(40) \
SYSTEM xml_char(40)

XML_DEF roads \
LENGTH xml_decimal(16,3) \
TYPE xml_char(40) \
ADMN_CLASS xml_char(20) \
TOLL_RD xml_char(1) \
RTE_NUM1 xml_char(3) \
RTE_NUM2 xml_char(3) \
ROUTE xml_char(40)

XML_DEF states \
AREA xml_decimal(16,3) \
CODE xml_char(4) \
NAME xml_char(25) \
POP1990 xml_decimal(11,0) \
POP90_SQMI xml_decimal(20,6) \
P_URBAN90 xml_decimal(20,6) \
P_ING_LANG xml_decimal(20,6) \
P_EMPL_SEC xml_decimal(20,6) \
HSE_UNIT90 xml_decimal(11,0)

SHAPE cities \
NAME %NAME \
CAPITAL %CAPITAL \
STATE_NAME %STATE_NAME \
POPULATION %POPULATION

XML cities \
xml_type xml_point \
NAME %NAME \
CAPITAL %CAPITAL \
STATE_NAME %STATE_NAME \
POPULATION %POPULATION

SHAPE rivers \
NAME %NAME \
SYSTEM %SYSTEM

XML rivers \
xml_type xml_line \
NAME %NAME \
SYSTEM %SYSTEM

SHAPE roads \
LENGTH %LENGTH \
TYPE %TYPE \
ADMN_CLASS %ADMN_CLASS \
TOLL_RD %TOLL_RD \
RTE_NUM1 %RTE_NUM1 \
RTE_NUM2 %RTE_NUM2 \
ROUTE %ROUTE

XML roads \
xml_type xml_line \
LENGTH %LENGTH \
TYPE %TYPE \
ADMN_CLASS %ADMN_CLASS \
TOLL_RD %TOLL_RD \
RTE_NUM1 %RTE_NUM1 \
RTE_NUM2 %RTE_NUM2 \
ROUTE %ROUTE

SHAPE states \
AREA %AREA \
CODE %CODE \
NAME %NAME \
POP1990 %POP1990 \
POP90_SQMI %POP90_SQMI \
P_URBAN90 %P_URBAN90 \
P_ING_LANG %P_ING_LANG \
P_EMPL_SEC %P_EMPL_SEC \
HSE_UNIT90 %HSE_UNIT90

XML states \
xml_type xml_area \
AREA %AREA \
CODE %CODE \
NAME %NAME \
POP1990 %POP1990 \
POP90_SQMI %POP90_SQMI \
P_URBAN90 %P_URBAN90 \
P_ING_LANG %P_ING_LANG \
P_EMPL_SEC %P_EMPL_SEC \
HSE_UNIT90 %HSE_UNIT90

Feature Representation

In addition to the generic FME feature attributes that FME Workbench adds to all features (seeAbout Feature
Attributes), this format adds the format-specific attributes described in this section.

The geometry of an FME XML feature may be identified by its xml_type attribute. The valid values for this attribute
are:

xml_type Description

xml_no_geom FME Feature with no geometry.

xml_type Description

xml_point Point feature or an aggregate of point features.

xml_line Linear feature or an aggregate of linear features.

xml_area Areal feature; may be a donut, or an aggregate of
areal features.

xml_text Text feature.

xml_surface Surface feature, may contain gaps.

xml_solid Solid feature, may contain voids.

xml_aggregate A feature whose geometry is a possibly het-
erogenous aggregate.

Other attributes, including the feature’s feature type, are dependent on the mappings that are defined in an xfMap
document.

No Geometry

xml_type: xml_no_geom

Features output by the XML Reader having its xml_type attribute set to xml_no_geom do not contain any geometry
data.

Points

xml_type: xml_point

Features output by the XML Reader having its xml_type set to xml_point are single coordinate features or an aggre-
gate of single coordinate features.

Lines

xml_type: xml_line

Features output by the XML Reader having its xml_type set to xml_line are polyline features and have at least two coor-
dinates, or an aggregate of polyline features.

Area

xml_type: xml_area

Features output by the XML Reader having its xml_type set to xml_area are either a single closed polyline feature (sim-
ple closed polygon), a donut, or an aggregate of donuts and/or simple polygons). A simple closed polygon contains at
least four coordinates, with the first and last coordinate being equal.

Text

xml_type: xml_text

These are annotation features. Text features have the following special attributes associated with them.

Attribute Name Content

xml_text_string The text string.

Attribute Name Content

xml_rotation The rotation of the text measured in degrees counter-
clockwise from the horizontal.
Range: 0...360

xml_text_size The size of each character in ground units.
Range: Any real number >=0

Surfaces

xml_type: xml_surface

Features output by the XML Reader having its xml_type set to xml_surface are either simple, topologically contiguous
surfaces or aggregates of surface features. Surfaces may contain gaps.

Solids

xml_type: xml_solid

Features output by the XML Reader having its xml_type set to xml_solid are either simple, topologically contiguous sol-
ids or aggregates of solid features. Solids may contain voids.

Aggregate

xml_type: xml_aggregate

Features output by the XML Reader having its xml_type set to xml_aggregate have an aggregate geometry where the
members of the aggregate may be heterogenous. For example, it is possible to create an aggregate consisting of a
polygon, a point, and an aggregate of lines.

xfMap

The xfMap document contains instructions for the XML Reader to interpret XML elements into FME features. This sec-
tion describes the xfMap and its relation to the XML Reader.

Reading the Input XML Document

The XML Reader reads the input document sequentially in a streaming fashion, so that the entire XML document is not
kept in memory at one time. This means that very large documents may be processed.

The input document is processed according to instructions, called mapping rules.

Mapping Rules

An xfMap document contains mapping rules that specify the construction of certain objects, with the most important
one being an FME feature. Other objects that may be constructed are group and reference objects, but these are just
“helper” objects that the XML Reader uses to construct its FME features.

A feature is a generic container capable of holding attribute and geometric information. The FME contains a variety of
feature processing facilities such as functions and factories. These functions and factories are available internally to
the XML Reader through xfMap group objects. The XML Reader may further process the FME features with these
group objects before outputting them to the FME.

The advantage of a streaming reader is the ability to read very large XML documents. A streaming reader does not
hold an entire XML document in memory, so problems may arise if the current element being read requires infor-
mation from previously read elements. This inherent streaming limitation may be overcome by using xfMap reference
objects. Reference objects can hold information needed by the construction of features and groups when these
require data from elements that were seen much earlier in the input XML document stream.

The XML Reader can currently construct three types of objects: FME features, xfMap groups, and xfMap references.
Each type of object is specified through its corresponding xfMap mapping rule type.

Types of Mapping Rules

A mapping rule must be defined inside an <X-map> or <X-content-map> element, where Xmay be substituted by either
feature, group, or reference. This means that the containing element determines the mapping rule’s type.

All mapping rules, regardless of their type, are represented in xfMap by the <mapping> element. A mapping rule has
the following form:

<mapping match="...">
<!-- mapping rule contents -->

</mapping>

The types of mapping rule and their corresponding containing elements are:

l feature mapping rules: These specify the construction of FME features, and they must be defined inside the
<feature-map> or <feature-content-map> elements.

l group mapping rules: These specify the construction of xfMap groups, and they must be defined inside the
<group-map> or <group-content-map> elements.

l reference mapping rules: These specify the construction of xfMap references, and they must be defined inside
the <reference-map> or <reference-content-map> elements.

Each mapping rule type will be described in separate sections: Feature Mapping Rules, Group Mapping
Rules, and Reference Mapping Rules.

The following section describes the mapping rule’s match expression and states. Every mapping rules may also con-
tain some optional elements, which are discussed inMapping Rules (Optional Elements).

Match and Except Expression

A mapping rule has a match expression that specifies which elements from the input XML document streammay
trigger its activation. The except expression has precisely the same syntax as the match expression, but serves to
limit which elements trigger the mapping rule activation. The match expression has the mechanism to identify a
desired element based on the element’s:

l name

l ancestors, and/or

l attribute names and/or values.

Thematch expression is represented, in xfMap, by the <mapping> element’s match attribute. The syntax for the
match expression’s value is:

(ancestorElement/)*element({index})?([booleanExpr])?

Where element specifies the QName of an element E in the input document stream. E is called thematch QName.

Note: Since element specifies a QName the prefix for the QNamemust be bound to a particular URI. All XML Names-
pace declarations in an xfMap must appear at the root of the xfMap document, i.e., in the <xfMap> element.

But if the prefix is found not to have a corresponding XML Namespace declaration, then the prefix will be ignored in
comparisons, i.e., only the local-name of the element becomes significant. This is to keep backward compatibility
with existing xfMaps written before supporting XML Namespaces.

Thematch QNamemay be optionally prefixed by the QName of its ancestor elements ancestorElement with each
ancestor QName separated by the forward slash /. This prefix is called thematch ancestors.

Thematch QNamemay be followed by an index, a positive number, that is enclosed within ‘{‘ and ‘}’. The number
enclosed within the curly braces is called thematch index. The match index it indicates, not the position, but the
count of that particular element, in the context of its parent.

Thematch QNamemay be suffixed by a Boolean expression, booleanExpr, that evaluates on E’s attributes. When
present, the Boolean expression must be enclosed in square brackets []. This suffix is called thematch condition.

The following illustrates the grammar of thematch condition:

booleanExpr = attrCondition
|andExpr
|orExpr
|‘(‘ booleanExpr ‘)’

andExpr = booleanExpr ‘and’ booleanExpr

orExpr = booleanExpr ‘or’ booleanExpr

attrCondition =‘@’attrName(’+’|’-’)
|‘@’attrName(‘=’|’!=’)(‘"’|"’")attrValue(‘"’|"’")

Note: The XML Reader evaluates the Boolean expression in a right associative way. For complex Boolean expres-
sions, the use of parentheses is recommended to indicate the intended precedence of evaluation.

Thematch condition is a Boolean expression booleanExpr. A Boolean expression may be a single attribute condition
attrCondition, or it may be a sequence of parenthesized logically connected attributes conditions. The value of the
match condition then depends on the individual attribute conditions in the Boolean expression.

From the grammar above, an attribute condition production attrCondition may be specified in four different ways;
assume that E is the element referred to by thematch QName and match ancestors then:

a. @attrName+ evaluates to true if E contains an attribute with the name attrName, else the production evaluates
to false.

b. @attrName- evaluates to true if E does not contain an attribute with the name attrName, else the production
evaluates to false.

c. @attrName = ’attrValue’ evaluates to true if E contains an attribute with the name attrName and the value
attrValue, else the production evaluates to false.

d. @attrName != ‘attrValue’ evaluates to true if E contains an attribute with the name attrName and the value of
that attribute does not equal attrValue; else the production evaluates to false.

If the enclosing quote of the whole match expression value was a single quotation mark, then the attrValue in c)
and d) should be enclosed in double quotation marks.

We are now ready to state the conditions for which an element in the input XML document may trigger the activation
of a mapping rule.

A mapping ruleMmatches an element E when all of the following three conditions are satisfied:

1. if M’s match QName equals E’s element QName; and

2. if M contains an optionalmatch index i, then E must be the ith child type refer to in 1) in the context of its par-
ent.

3. if M contains the optionalmatch ancestors prefix, then E’s ancestors must equal, in the same order, as the
ones listed in the prefix; and

4. if M contains the optionalmatch condition suffix, then the suffix must evaluate to true according to the E’s
attributes.

5. if M’s except expression does notmatch under the previous three rules.

2, 3 and 4 are also satisfied when the match expression does not contain a match index, match ancestors prefix or
a match condition suffix, respectively.

Using wildcards: In addition, each QName either in the match QName or in the match ancestors may be substituted
by a wildcard, *, that matches any QName. The wildcard can also be specified either in the prefix and/or the local-
name of a QName: *:local-name, or prefix:*, or *:* (which is the same as a single *).

When a match expression Mmatches an element E in the input XML document stream, we also say that the mapping
rule R containing Mmatches E. That is, R matches E.

Consider, for example, the following input XML document fragment:

<player gender="female" name="Laura" id="3453" position="defense">
<coach> <id>1234</id> </coach>
<coach> <id>5678</id> </coach>
<manager> <id>7889</id> </manager>

</player>

<player gender="male" name="Juan" id="1234" position="forward">
<coach> <id>1234</id> </coach>
<coach> <id>5678</id> </coach>
<manager> <id>7889</id> </manager>

</player>

<player gender="male" name="Lucas" id="1234">
<coach> <id>1234</id> </coach>
<coach> <id>5678</id> </coach>
<manager> <id>7889</id> </manager>

</player>

The following mapping rules matches various elements from the above XML document fragment:

<mapping match="player">
<!-- matches all player elements -->

</mapping>

<mapping match="player{3}">
<!-- matches the 3rd player element -->

</mapping>

<mapping match="coach/id">
<!-- matches all id elements having a parent coach element -->

</mapping>

<mapping match="coach{2}/id">
<!-- matches the id for the second child coach of a player -->

</mapping>

<mapping match="manager/id">
<!-- matches all id elements having a manager parent -->

</mapping>

<mapping match="manager{1}/id">
<!-- matches the first manager’s id in a player element, note that we don’t set the

match
index to 3 since the index does not specify the position (manager is the 3rd child
of every player). ->
</mapping>

<mapping match="player[@gender=’female’ or @position=’forward’">
<!-- matches all player elements that are female in gender

playing a forward position -->
</mapping>

<mapping match="player[@position-]">
<!-- matches all player elements containing no position

attribute -->
</mapping>

<mapping match="player[@gender=’male’ and @position=’backward’
and @name!=’Juan’]">

<!-- matches all players that are male, playing a backward
position and are not named Juan -->

</mapping>

<mapping match="player/*">
<!-- matches any element having a player element as its parent -->

</mapping>

<mapping match="player/*{2}">
<!-- matches the second element having a player element as its parent -->

</mapping>

Specifying several match expressions for one mapping rule

A mapping rule can have more than onematch expression. The syntax for multiplematch expressions in the <map-
ping> element’s match attribute is:

(ancestorElement/)*element({index})?([booleanExpr])?
[<whitespace>(ancestorElement/)*element({index})?([booleanExpr])?]*

The match expressions are evaluated in order and a mapping rule R matches an element E if any of thematch
expressions in the mapping rulematches element E.

For example, consider the following rule XML file:

<?xml version="1.0"?>
<c:colours xmlns:c="http://my.colours.com/colours"

xmlns:p="http://my.colours.com/primary"
xmlns:o="http://my.colours.com/other">

<p:red>255,0,0</p:red>
<p:green>0,255,0</p:green>
<p:blue>0,0,255</p:blue>
<o:orange category="oranges">255,165,0</o:orange>
<o:DarkOrange category="oranges">255,140,0</o:DarkOrange>
<o:pink>255,192,203</o:pink>
<o:brown category="browns">165,42,42</o:brown>
<o:beige category="browns">245,245,220</o:beige>

</c:colours>

And the following mapping rule fragments:

<xfMap xmlns:c="http://my.colours.com/colours"
xmlns:p="http://my.colours.com/primary"
xmlns:o="http://my.colours.com/other">

<!-- Note that we bounded the ‘c’, ‘p’, and ‘o’ prefixes to their corresponding URIs
in the namespace
declarations in the xfMap root element. -->
...
<mapping match="c:colours/p:red c:colours/p:green">
<!-- Matches either the red or the green element; notice that

the match expressions are whitespace separated. -->
</mapping>
...
<mapping match="c:colours/o:*[@category='oranges' or @category='browns']

c:colours/p:*">
<!-- Matches any element that belong to the oranges or brown categories or any ele-
ment that

belong to the primary colours namespace. i.e, the ‘orange’, ‘DarkOrange’, ‘brown’,
‘beige’, ‘red’, ‘green’ and ‘blue’ elements -->

</mapping>
...
<mapping match="c:colours/*[@category-]>
<!-- Matches any element having no category attribute, i.e., the ‘red’, ‘green’,
‘blue’, and

‘pink’ elements. -->
</mapping>
...
<mapping match="c:colours/o:*[@category-]>
<!-- Matches any element in the “http://my.colours.com/other” having no category
attribute,

i.e., the ‘pink’ element. -->
</mapping>

...
<xfMap>

Limiting mapping rule activation with except expressions.

A mapping rule can have one or more except expression. The syntax for except expressions in the <mapping> ele-
ment’s except attribute is identical to match expressions, i.e:

(ancestorElement/)*element([booleanExpr])?
[<whitespace>(ancestorElement/)*element([booleanExpr])?]*

The except expressions are evaluated in order and a mapping rule R fails to match an element E if any of the
except expressions in the mapping rulematches element E.

For example, consider the following rule XML file and mapping rule fragments:

<?xml version="1.0"?>
<family-tree>

<grandparent> ...</grandparent>
<grandparent> ...</grandparent>
<grandparent> ...</grandparent>
<grandparent> ...</grandparent>
<parent>

<name>Tristan Read</name>
<gender>m</gender>
<age>40</age>

</parent>
<parent>

<name>Danielle Read</name>
<gender>f</gender>
<age>43</age>

</parent>
<child>

<name>Grifffen Read</name>
<gender>M</gender>
<age>12</age>

</child>
<family-tree>

Then the following mapping rule would match only the children and parents:

<mapping match=”family-tree/*” except=”grandparent”>
...matches all family members except the grandparents

</mapping>

This is quite useful when it is easier/briefer to define a match set negatively (everything but ...) rather than positively
(the match is a, or b, or c, or d, ...).

Mapping Rule States (activation, execution, suspension, and de-activation)

This section describes the different states of a mapping rule. A mapping rule can either be activated, suspended,
executing, or de-activated.

Let E be the element in the input XML document whose start-tag is being read,

let C be the context element; we define the context element to be the most recently read element for which its end-
tag is yet to be read, and

let R be a mapping rule in the xfMap document that is considered for matching (see the search-sets section below,
which describes when a mapping rule can be considered for matching),

then the following lists the possible states for a mapping rule R:

a. R is activated, if Rmatches E.

b. R is executing as long as it is activated and E equals C.

c. R is suspended as long as it is activated and E does not equal C.

d. R is de-activated after E’s end-tag is read.

Note: All mapping rules in the xfMap document are initially deactivated.

Using Force Elements During Mapping Rule Activation and Deactivation

In order to provide hooks directly into the mapping rules, There are force elements which allow you to evaluate an
expression when a mapping rule is activated, deactivated or both. The force element also provides a way to halt
execution of the translation. While the expression evaluated will not be used, some expressions have side effects
(such as logging, or arbitrary TCL scripts) which will only be activated when the expression is evaluated.

The force element must be an immediate child of the mapping element. There are four possible attributes:

a. onActivation: the legal values are “true” or “false”

b. onDeactivation: the legal values are “true” or “false”

c. halt: the legal values are “true” or “false”

d. halt-on: where the legal value is any, including the empty, string

The halt attribute defaults to false if it is not specified.

The onActivation and onDeactivation attributes specify when the contained expression should be evaluated. At least
one of onActivation or onDeactivation must be set to ‘true’ or the expression will not be evaluated. It is possible to
specify that an expression be evaluated both when the mapping rule is activated and when it is deactivated. This is
often useful when combined with the <logexpr> element (discussed later) to determine when various mapping rules
match.

There is no default values for the halt-on attribute, this attribute provides the ability for a <force> element to con-
ditionally halt the xfMap. The attribute will cause the xfMap to halt, if it is present and the expression sequence within
the <force> element evaluates exactly to the string set on the halt-on attribute.

The following example will halt the reader when a <Tablet> element is matched, the message “’Tablet’ – is not sup-
ported” will also be printed as an error to the FME logfile.

<mapping match=”Tablet”>

<force onActivation=”true” halt=”true”>

<logexpr severity=”error”>

<arg>

<literal expr=”’”/>

<matched expr=”qname”/>

<literal expr=”’ – is not supported“/>

</arg>

</logexpr>

</force>

...

</mapping>

Note: There is one significant limitation on <force> elements if the contained XML expression sequence has an
‘extract’ element. Since the XML reader is a streaming reader, then when a mapping rule is activated, the entire con-
tent of the XML element that triggered it is not yet read. In fact, only attributes of the triggering element will be
available for extracting during the activation phase. Extract elements which attempt to reference child elements of
the triggering element will evaluate to the empty string on activation of the mapping rule. No such restriction is
imposed on mapping rule deactivation.

Search-sets

The XML Reader partitions the mapping rules that are specified in an xfMap document into subsets. A subset of map-
ping rules is called a search-set. Every search-set is not examined for matching mapping rules when an element is
being read. The XML Reader only looks into a search-set when that search-set becomes an active-search-set.

The XML Reader maintains several active-search-sets:

a. one or more feature-search-set(s): themulti-feature-construction attribute on the <feature-map> element con-
trols the number of feature-search-sets. By default only one feature-search-set exist, several feature-search-
set may exist at a time when themulti-feature-construction attribute is set to true. The XML reader allows multiple
features to be constructed at a time by always having an additional feature-search-set set to the <feature-
map>, only the activation of the mapping rules in the <feature-map> trigger the construction of a new FME fea-
ture.

b. one group-search-set: the active-search-set containing group mapping rules.

c. one reference-search-set: the active-search-set containing reference mapping rules.

The next section describes how the contents, i.e., the mapping rules, of an active-search-set change.

Contents of an active-search-set (Default Contents)

The contents of an active-search-set change as mapping rules activate and de-activate. This section describes only
the default contents of an active-search-set; however, it is possible for an executing mapping rule to override the
defaults. The section titledMapping Rules (Optional Elements) describes how the default contents of an
active-search-set may be explicitly changed.

When nomapping rules are activated, the active-search-sets contain the following default contents:

a. feature-search-set: contains all the mapping rules defined under the <feature-map> element.

b. group-search-set: contains all the mapping rules defined under the <group-map> element.

c. reference-search-set: contains all the mapping rules from the <reference-map> element.

Note: If any of the <feature-map>, <group-map> or <reference-map> elements are not present in the xfMap doc-
ument, then their corresponding active-search-sets will always be empty.

When activated mapping rules exist, the active-search-sets contain the following default contents:

a. feature-search-set: if at least one feature mapping rule is activated, then it contains all the mapping rules
defined under the <feature-content-map> element.

b. group-search-set: if at least one group mapping rule is activated, then it contains all the mapping rules
defined under the <group-content-map> element.

c. reference-search-set: if at least one reference mapping rule is activated, then it contains all the mapping
rules defined under the <reference-content-map> element.

Note: If any of the <feature-content-map>, <group-content-map> or <reference-content-map> elements are not
present in the xfMap document, then their corresponding active-search-set will be empty.

For example, if a feature mapping rule is activated, the feature-search-set can only contain mapping rules that are
defined under the feature-content-map element.

Expression Elements (Extract and Literal)

Many of the elements that make up a mapping rule need some kind of information as input. The xfMap provides a gen-
eral input mechanism with expression elements. We can therefore start to discuss these expression elements
regardless of the xfMap elements that may use them.

Expression elements are so called because they contain an expr attribute whose value we call the expression string.
This section describes two types of expression elements: the extract and literal expressions. Other types of expres-
sion elements are described in later sections.

Extract Expressions

The extract expression provides a mechanism to locate and extract data from elements in the input XML document
stream.

When we define a mapping rule R, we intend it to match an element E in the input stream. An extract expression that
is defined inside R, allows R to locate and extract data from E or E’s children.

The extract expression is represented in xfMap by the <extract> element. Its expr attribute holds the value of its
expression string:

<extract expr="..."/>

The expression string allows the following to be extracted from the input XML document:

a. the matched element’s text content – when the expression string is the sole: ‘.’

b. any of the matched element’s attribute values – when the expression string is of the form:
‘@’attributeName

c. any of the matched element’s descendant text content – when the expression string is of the form:
‘./’immediateChild(‘/’descendants)+

d. any of the matched element’s descendant attribute values – when the expression string is of the form:
‘./’immediateChild(‘/’descendants)+’[@’attributeName’]’

Note: ImmediateChild and descendants in c and d above are QNames. Therefore as in the match expressions the
prefixes for the QNames if any must be bound in the namespace declarations in the xfMap’s root element, i.e., the
<xfMap> element.

An element may contain many child elements at the same level with the same name – if this is the case, then the
first encountered child element will be the one from which data will be extracted. Currently, the extract expression
does not support indexed access to the matched element’s children.

The example below illustrates the usage of the extract expression. Consider the following input XML document frag-
ment:

<pfx:Test xmlns:pfx="my-test-uri">
<pfx:myElement a1="val1" a2="val2" ... an="valN">

this is the text context.
</pfx:myElement>
<pfx:myOtherElement>

<pfx:someChild>the child value</pfx:someChild>
</pfx:myOtherElement>

</pfx:Test>

First, we define a mapping rule R in the xfMap document that matches <myElement> element. Rmay contain any
number of extract expressions, e0,e1,...,en, in its definition. (We’ll ignore how R is defined - for now we only need to
know that some elements in R use these extract expressions.)

<xfMap xmlns:pfx:"my-test-uri">
...
<!-- call this mapping rule R -->
<mapping match="pfx:myElement">

...
<!-- call this e0 -->
<extract expr="."/>

...
<!-- call this e1 -->
<extract expr="@a1"/>

...
<!-- call this en -->
<extract expr="@an"/>

...
<!-- call this c0 -->
<extract expr="./pfx:someChild"/>

</mapping>
...

<xfMap>

The expression string in e0, “.”, refers to the text content of <pfx:myElement>, therefore e0 extracts “this is the text
content.”

The expressions strings in e1,...,en refer to the values of the attributes a1,...,an, therefore each of the e1,...,en, extract
val1,...,valn, respectively.

The expression string in c0, “./pfx:someChild”, refers to the text content of the <pfx:someChild> element, therefore c0
extracts “the child value”

A default value may be specified for the extract expression when the data pointed to by the expression string is not
present in the input XML document stream. This default value is represented in xfMap as the default attribute of the
<extract> element.

<extract expr="..." default="some default value"/>

The extract expression may also specify the optional as-xml, preserve-cdata, escape-charactersand declare-names-
paces attributes. This is done as in the following:

<extract expr="..."
as-xml="[true|false]"
escape-characters="[true|false]"
declare-namespaces="[true|false]"
write-xml-header="[true|false]"/>

When the as-xml attribute is set to true, the target of the extract expression will be extracted as an XML fragment
with the target as the root. By default, when retrieving this XML fragment, preserve-cdata is set to true.

When the preserve-cdata attribute is set to true, the extract expression will be handled typically, with the exception
that CDATA entities will not be ignored. That is, the opening and closing CDATA tags will be treated as text.

The escape-characters attribute defaults to false, when set to true the reader will escape characters that coincide
with the XML markup, e.g., “<” and “&” are escaped to “<” and “&”, respectively. Note that it is not necessary
to escape these characters when the data is used outside the context of an XML document.

The declare-namespaces attribute defaults to false and it is only applicable when as-xml is set to true, i.e., when
the extract expression is being used to mapped an XML subtree from the source document into an XML fragment.
Because of XML Namespace scoping the XML fragments mapped from the source document may not have all their pre-
fixes bound, setting this attribute to true instructs the extract expression to add any missing namespace declarations
in the resulting XML fragments. These XML namespace valid fragments may then be further consumed by alternate
XML processes, e.g., XSLT and XQuery processors.

Thewrite-xml-header attribute defaults to false and it is only applicable when as-xml is set to true, i.e., when the
extract expression is being used to mapped an XML subtree from the source document into an XML fragment.

Literal Expressions

We can also provide literal data to a mapping rule with a literal expression.

The literal expression is represented in xfMap by the <literal> element, its expr attribute holds the value of its expres-
sion string:

<literal expr="some literal value"/>

Example

The following example illustrates the usage of extract and literal expressions. Consider the following element:

<parent>
<child1 desc="first child">

child1 text content
</child1>
<child2 desc="second child">

<grandchild1 desc="first grandchild"/>

<grandchild2 desc="second grandchild">
second grand child text content
<grandgrandchild>

grand grand child text content
</grandgrandchild>

</grandchild2>
</child2>

</parent>

Let the following mapping rule match the <parent> element above. (Again, we do not specify which elements the map-
ping rule contains – for the purpose of this example, we only need to know that some of these elements use the
expression elements.)

<mapping match="parent">
...

<!-- e1 -->
<extract expr="./child1"/>

...
<!-- e2 -->
<extract expr="./child1[@desc]"/>

...
<!-- e3 -->
<extract expr="./child2[@desc]"/>

...
<!-- e4 -->
<extract expr="./child2/grandchild1[@desc]"/>

...
<!-- e5 -->
<extract expr="./child2/grandchild2[@desc]"/>

...
<!-- e6 -->
<extract expr="./child2/grandchild2"/>

...
<!-- e7 -->
<extract expr="./child2/grandchild2/grandgrandchild"/>

...
<!-- e8 -->
<extract expr="@an-optional-attr" default="myDefVal"/>

...
<!-- l -->
<literal expr="this is literal data"/>

</mapping>

Then:

e1 extracts child1 text content.

e2 extracts first child.

e3 extracts second child.

e4 extracts first grandchild.

e5 extracts second grandchild.

e6 extracts second grandchild text content.

e7 extracts grand grand child text content.

e8 extracts myDefVal.

l has the literal value this is literal data.

Expression Sequence

An expression sequence is a sequence of expression elements. The value of an expression sequence is the
appended value of all its expression elements.

Feature Mapping Rules

Feature mapping rules specify the construction for FME features, and they must be defined inside the <feature-map>
or <feature-content-map> elements.

All feature mapping rules, whether they are defined under the <feature-map> element or the <feature-content-map> ele-
ment, have the same structure, but only mapping rules defined under the <feature-map> element can specify the con-
struction of brand-new FME features.

FME Feature Construction

To construct an FME feature, a mapping rule, say R0, that is defined under the <feature-map> element must be acti-
vated. The feature is considered to be completely constructed when R0 de-activates (see the section titledMapping
Rule States (activation, execution, suspension, and de-activation) for the possible states of an xfMap
mapping rule).

We’ll use the following input XML document, points1.xml, to illustrate how a feature mapping rule from the xfMap doc-
ument, features.xmp, directs the XML Reader to construct FME features.

points1.xml

<?xml version="1.0"?>
<points>

<point name="myPoint" num="0">
<color>

<red>0.324</red>
<green>0.233</green>
<blue>0.596</blue>

</color>
<location x="10.0" y="0.0"/>

</point>
<point name="myPoint" num="1">

<color>
<red>0.874</red>
<green>0.948</green>
<blue>0.554</blue>

</color>
<location x="5.0" y="5.0"/>

</point>
</points>

The above XML document contains two <point> elements for which we want FME features to map into. To do this, we
must define a feature mapping rule under the <feature-map> element that activates when a <point> element start-tag is
read.

Recall that a mapping rule R, from an active-search-set, is activated when the XML Reader reads the start-tag of an
element E, in the input XML document stream, when Rmatches E.

The following xfMap document, features.xmp, contains a feature mapping rule Rp, defined in the <feature-map> ele-
ment, that matches a <point> element.

features.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<feature-map>
<!-- call this mapping rule Rp -->
<mapping match="point">
</mapping>

</feature-map>
</xfMap>

When the above XML (points1.xml) and xfMap (features.xmp) documents are fed into the XML Reader two FME fea-
tures are constructed. The following is a FME log for the constructed features:

+++
Feature Type: '
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: '
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===

Here is what happens:

Step

feature-
search-set
contents
(after step)

state of map-
ping rule Rp
(after step)

1. The feature-search-set is initialized:
No feature mapping rules are activated, so all mapping
rules defined in the <feature-map> element are included
in the feature-search-set.

{Rp} de-acti-
vated

2. The XML Reader reads the start-tag of the <points> ele-
ment:
No mapping rules in the feature-search-set matches the
<points> element. No mapping rules are activated. The
reader continues reading the contents of the <points> ele-
ment.

{Rp} de-acti-
vated

3. The XML Reader reads the start-tag a <point> element:
The mapping rule Rp in the feature-search-set matches
the <point> element. Rp is activated. Rp is also in the
state of execution because the <point> element is cur-
rently the context element.
Since Rp was defined under the <feature-map> element,
Rp directs the XML Reader to start the construction of a
new FME feature.
Now that a feature mapping rule is activated, the fea-
ture-search-set is modified to contain mapping rules
from the <feature-content-map> element. (The fea-
tures.xmp xfMap document has no <feature-content-map>
element, the feature-search-set then becomes the
empty set).

{} activated,
executing

4. The XML Reader reads the start-tag of a <color> ele-
ment. No mapping rules in the feature-search-set match
the <color> element (the feature-search-set is empty).

{} activated,
suspended

5. The XML Reader reads the start-tag of a <red> element.
Again, no mapping rules are activated.

{} activated,
suspended

Step

feature-
search-set
contents
(after step)

state of map-
ping rule Rp
(after step)

6. The <red> element is end-tag is read. The <red> ele-
ment did not cause the activation of any mapping rules,
therefore no mapping rules are de-activated.

{} activated,
suspended

7. 5) and 6) are repeated for the <green> and <blue> ele-
ments.

{} activated,
suspended

8. The <color> element end-tag is read. The <color> ele-
ment did not cause the activation of any mapping rules,
therefore no mapping rules are de-activated.

{} activated,
executing

9. The XML Reader the start-tag of the <location> element.
No feature mapping rules are activated (the feature-
search-map is empty).

{} activated,
suspended

10. The <location> element end-tag is read. The <location>
element did not cause activation of any mapping rules,
therefore no mapping rules are de-activated.

{} activated,
executing

11. The <point> element end-tag is read.
Rp is de-activated (see the mapping rule states section).
The XML Reader considers the FME feature under con-
struction to be complete when Rp de-activates.
There are now no feature mapping rules activated so
the feature-search-set now contains all the mapping
rules that defined in the <feature-map> element (i.e, Rp).

{Rp} de-acti-
vated

12. Steps 3) through 11) are repeated for the second
<point> element of the input stream. A blank FME fea-
ture is again output by the XML Reader.

... ...

13. The <points> element end-tag is read. The XML Reader
has finished reading the input XML document.

{} de-acti-
vated

FME features constructed by the XML Reader always carry an xml_type attribute. This attribute is always initialized to
xml_no_geom. Until now, the XML Reader has only constructed blank features: for the reader to construct other parts
of an FME feature, a feature mapping rule should contain the following elements:

1. feature-type element: is an optional element that directs the XML Reader to set the feature type of an FME
feature.

2. attributes element: is an optional element that directs the XML Reader to set one or more attributes for an
FME feature.

3. geometry element: is an optional element that directs the XML Reader to construct the geometry of an FME.

Feature-type Element

Every feature mapping rulemay (this is an optional element) contain one feature-type element, the contents of this
element is an expression sequence whose value becomes the feature type of the constructed FME feature. This is rep-
resented in xfMap by the <feature-type> element:

<feature-type>
<!-- the content is some expression sequence -->

</feature-type>

The feature type for the FME feature that is under construction is set only by the first activated feature mapping
rule that contains a <feature-type> element. Subsequent feature mapping rules with <feature-type> elements for
the same FME feature under construction are ignored by the XML Reader.

The following xfMap document, feature_type.xmp, contains a mapping rule Rp that matches a <point> element from
the input points1.xml document. Here Rp has a <feature-type> element that instructs the XML Reader to set the feature
type for the FME feature that is under construction.

feature_type.xmp

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<feature-map>
<!-- Call this mapping rule Rp -->
<mapping match="point">

<feature-type>
<!-- the feature-type element has as its

contents an xfMap expression sequence.
An expression sequence is a sequence
of expression elements. -->

<extract expr="@name"/>
<literal expr="_"/>
<extract expr="@num"/>

</feature-type>
</mapping>

</feature-map>
</xfMap>

When the points1.xml and the above feature_type.xmp documents are fed into the XML Reader, the following FME fea-
tures are constructed:

++
Feature Type: myPoint_0'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==
++
Feature Type: myPoint_1'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==

Attributes Element

A feature mapping rule can contain optional attributes that specifies one or more attributes for the FME feature that is
under construction.

The attributes is composed by one or more attribute, and each attribute has a name and a value that have expression
sequences as their values. They are represented in xfMap by the <attributes>, <attribute>, <name>, and <value> ele-
ments:

<attributes>
<attribute>

<name> <!-- an expression sequence --> </name>
<value> <!-- an expression sequence --> </value>

</attribute>
...
<attribute> ... </attribute>
...

</attributes>

Note: In a feature mapping rule, the definition of the <attributes> element must appear after the definition of the
<feature-type> element.

The following xfMap document, attributes.xmp, contains the mapping rule Rp, which matches a <point> element from
the points1.xml document. Rp contains an <attributes> element which directs the XML Reader to set some attributes for
the FME feature that is under construction.

attributes.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<feature-map>
<mapping match="point">

<feature-type>
<extract expr="@name"/>
<literal expr="_"/>
<extract expr="@num"/>

</feature-type>

<attributes>

<!-- a1 -->
<attribute>

<name> <literal expr="red"/> </name>
<value> <extract expr="./color/red"/> </value>

</attribute>

<!-- a2 -->
<attribute>

<name> <literal expr="green"/> </name>
<value> <extract expr="./color/green"/> </value>

</attribute>

<!-- a3 -->
<attribute>

<name> <literal expr="blue"/> </name>
<value> <extract expr="./color/blue"/> </value>

</attribute>

<!-- a4 -->
<attribute>

<name> <literal expr="color"/> </name>
<value>

<!-- the expression sequence below
construct the value of this attribute
to be: "r=x,g=y,b=z" where x,y,z are reals -->
<literal expr="r="/>
<extract expr="./color/red"/>
<literal expr=",g="/>
<extract expr="./color/green"/>
<literal expr=",b="/>
<extract expr="./color/blue"/>

</value>
</attribute>

<!-- a5 -->
<attribute>

<name> <literal expr="location"/> </name>
<value>

<!-- the expression sequence below construct
the value of this attribute to
be: "x:a y:b", where a,b are reals -->
<literal expr="x:"/>
<extract expr="./location[@x]"/>

<literal expr=" y:"/>
<extract expr="./location[@y]"/>

</value>
</attribute>

</attributes>
</mapping>

</feature-map>
</xfMap>

When the points1.xml and the above attributes.xmp documents are fed into the XML Reader the following FME fea-
tures are constructed:

++
Feature Type: ~myPoint_0'
Attribute: ~blue' has value 0.596'
Attribute: ~color' has value r=0.324,g=0.233,b=0.596'
Attribute: ~green' has value 0.233'
Attribute: ~location' has value x:10.0 y:0.0'
Attribute: ~red' has value 0.324'
Attribute: ~xml_type' has value xml_no_geom'
Geometry Type: Unknown (0) ==
++
Feature Type: ~myPoint_1'
Attribute: ~blue' has value 0.554'
Attribute: ~color' has value r=0.874,g=0.948,b=0.554'
Attribute: ~green' has value 0.948'
Attribute: ~location' has value x:5.0 y:5.0'
Attribute: ~red' has value 0.874'
Attribute: ~xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==

FME Feature Construction
(defining mapping rules under the <feature-content-map> element)

A mapping rule R1 from the <feature-map> element that matches an element E might not be able to perform all the nec-
essary mappings for E’s child elements. When this is the case, additional mapping rules that match E’s children
should be specified under the <feature-content-map> element.

Recall that when an FME feature is under construction (i.e., at least one feature mapping rule is activated) then the
feature-search-set can only include the mapping rules from the <feature-content-map> element. When activated, these
mapping rules will work on the current feature that is under construction; they do not specify the construction of a
new FME feature.

Consider the following input XML document, points2.xml:

points2.xml

<?xml version=”1.0”?>
<points>

<point name=”myPoint” num=”0”>
<color type=”red” value=”0.324”/>
<color type=”green” value=”0.233”/>
<color type=”blue” value=”0.596”/>

</point>
<point name=”myPoint” num=”1”>

<color type=”red” value=”0.874”/>
<color type=”green” value=”0.948”/>
<color type=”blue” value=”0.554”/>

</point>
</points>

A mapping rule R1, defined under the <feature-map> element, that matches the <point> element will have difficulty
extracting information from all the <color> elements.

Recall that the extract expression does not currently support index access for the matched element’s children. All R1
is able to do now, is to extract data from the first <color> element.

An extract expression defined in a mapping rule matching the <point> element will be unable to reach the other <color>
elements, since its expression string can only refer to the first <color> element. To overcome this limitation, we need
to define mapping rules in the <feature-content-map> element that matches a <color> element.

Let R2 be a mapping rule under the <feature-content-map> element that matches a <color> element. When R2 activates it
will suspend R1, and work with the same FME feature that R1 created. The following xfMap document, feature_con-
tent.xmp, does this exactly:

feature_content.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<!-- Call this mapping rule R1 -->
<mapping match="point">
</mapping>

</feature-map>
<feature-content-map>

<!-- Call this mapping rule R2 -->
<mapping match="color">

<attributes>
<attribute>

<name>
<literal expr="color."/>
<extract expr="@type"/>

</name>
<value>

<extract expr="@value"/>
</value>

</attribute>
</attributes>

</mapping>
</feature-content-map>

</xfMap>

When the points2.xml and feature_content.xmp documents are fed into the XML Reader, the FME features output are:

+++
Feature Type: '
Attribute: color.blue' has value 0.596'
Attribute: color.green' has value 0.233'
Attribute: color.red' has value 0.324'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: '
Attribute: color.blue' has value 0.554'
Attribute: color.green' has value 0.948'
Attribute: color.red' has value 0.874'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===

Here is what happens:

Step
feature-search-set
contents (after
step)

state of mapping rule Rp
(after step)

1. The feature-search-set is initialized:
No feature mapping rules are execut-
ing, so the mapping rules defined in

{R1} R1: de-activated
R2: de-activated

Step
feature-search-set
contents (after
step)

state of mapping rule Rp
(after step)

<feature-map> element in the feature_
content.xmp document are added to
the feature-search-set.

2. The XML Reader reads the start-tag
of the <points> element:
No mapping rules in the feature-
search-set matches the <points> ele-
ment. The reader continues reading
the contents of the <points> element.

{R1} R1: de-activated
R2: de-activated

3. The XML Reader reads the start-tag
of a <point> element:
The mapping rule R1 in the feature-
search-set matches the <point> ele-
ment. R1 is activated. R1 is also in
the state of execution because the
<point> element is currently the con-
text element.
Since at least one feature mapping
rule is activated (i.e., R1), the con-
tents of the feature-search-set will
then default to contain the mapping
rules under the <feature-content-map>
element, in this case, it is just R2.

{R2} R1: activated, executing
R2: de-activated

4. The XML Reader reads the start-tag
of a <color> element:
The mapping rule R2 in the feature-
search-set matches the <color> ele-
ment. R2 is activated. No brand new
FME features is created because R2
was defined in the <feature-content-
map> element. The <color> element is
also the context element so that R1
is suspended, and R2 is now execut-
ing.
The feature mapping rule R2 has an
<attributes> element, R2 provides
these attributes to the FME feature
that is being constructed.

{R2} R1: activated, suspended
R2: activated, executing

5. The <color> element end-tag is read.
This <color> element initially trig-
gered the activation of R2, so R2 is

{R2} R1: activated, executing
R2: de-activated

Step
feature-search-set
contents (after
step)

state of mapping rule Rp
(after step)

de-activated (see the section titled
mapping rule states).
The feature-search-set does not
change, since there is least one acti-
vated feature mapping rule, that is
R1.

6. Step 4) and 5) are repeated for the
next two <color> elements.

{R2} ...

7. The <point> element end-tag is read.
R1 is de-activated. The XML Reader
considers the FME feature under con-
struction to be complete when R1 de-
activates, this is because R1 is a fea-
ture mapping rule defined in the <fea-
ture-map> element.
No feature mapping rules are acti-
vated, so the mapping rules defined
in <feature-map> element in the fea-
ture_content.xmp document
becomes the feature-search-set.

{R1} R1: de-activated
R2: de-activated

8. Steps 3) through 7) are repeated for
the second <point> element.

... ...

9. The <points> element end-tag is
read. The XML Reader has finished
reading the input XML document.

{} R1: de-activated
R2: de-activated

Consider another example:

points3.xml

<?xml version="1.0"?>

<points>
<point name="myPoint" num="0">

<outline>
<color type="red" value="1.0"/>
<color type="green" value="1.0"/>
<color type="blue" value="1.0"/>

</outline>
<fill>

<color component="red">0.324</color>
<color component="green">0.233</color>
<color component="blue">0.596</color>

</fill>
<location x="10.0" y="0.0"/>

</point>
<point name="myPoint" num="1">

<outline>
<color type="red" value="0.5"/>
<color type="green" value="0.5"/>
<color type="blue" value="0.5"/>

</outline>
<fill>

<color component="red">0.874</color>
<color component="green">0.948</color>
<color component="blue">0.554</color>

</fill>
<location x="5.0" y="5.0"/>

</point>
</points>

feature_content2.xmp

<?xml version="1.0">
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="point">
<feature-type>

<extract expr="@name"/>
<literal expr="_"/>
<extract expr="@num"/>

</feature-type>
<attributes>

<attribute>
<name> <literal expr="location.x"/> </name>
<value> <extract expr="location[@x]"/> </value>

</attribute>
<attribute>

<name> <literal expr="location.y"/> </name>
<value> <extract expr="location[@y]"/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

<feature-content-map>
<mapping match="outline/color">

<attributes>
<attribute>

<name>
<literal expr="outline_color."/>
<extract expr="@type"/>

</name>
<value> <extract expr="@value"/> </value>

</attribute>
</attributes>

</mapping>
<mapping match="fill/color">

<attributes>
<attribute>

<name>
<literal expr="fill_color."/>
<extract expr="@component"/>

</name>
<value> <extract expr="."/> </value>

</attribute>
</attributes>

</mapping>
</feature-content-map>

</xfMap>

When the points3.xml, feature_content2.xmp documents are input into the XML Reader, the following FME features
are output:

+++
Feature Type: myPoint_0'
Attribute: fill_color.blue' has value 0.596'
Attribute: fill_color.green' has value 0.233'
Attribute: fill_color.red' has value 0.324'
Attribute: location.x ' has value 10.0'
Attribute: location.y ' has value 0.0'
Attribute: outline_color.blue' has value 1.0'
Attribute: outline_color.green' has value 1.0'
Attribute: outline_color.red' has value 1.0'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: myPoint_1'
Attribute: fill_color.blue' has value 0.554"'
Attribute: fill_color.green' has value 0.948'
Attribute: fill_color.red' has value 0.874'
Attribute: location.x ' has value 5.0'
Attribute: location.y ' has value 5.0'
Attribute: outline_color.blue' has value 0.5'
Attribute: outline_color.green' has value 0.5'
Attribute: outline_color.red' has value 0.5'
Attribute: xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===

Attribute Element (Handling Multiple Values)

The xfMap <attribute> element provides two different ways to handle attributes that contain multiple values; these
reflect the way in which an FME feature interpret all of its attributes, as (name, value) pairs with the name being the
attribute’s identifier. An FME feature can also store a collection of attributes by using an attribute list. Attribute lists
behave like primitive attributes, i.e, (name, value) pairs, except that they contain indices enclosed in braces {} in its
attribute name.

When we want to get information from the XML document stream into an attribute of the FME feature, and that infor-
mation maps to an attribute with multiple values, then we can either:

a. use a “primitive attribute” and append, with a separator character, the multiple values into one string, or

b. use the FME attribute list, or

c. retain one attribute value out of the multiple values.

The <attribute> element has an optional type attribute that specifies how an attribute is to be mapped into an FME fea-
ture. The valid values for the type attribute are: multi-value, list, and single-value, which correspond to the a), b) and c)
options above, respectively.

Multi-value Option

When the value of the type attribute is multi-value, then the <attribute> element can carry an additional optional delim
attribute that specifies the separator to be used for the appended string of values. The delim attribute defaults to a
comma when it is not specified.

The following example sets the separator for the appended values to be the pipe character:

<attribute type=”multi-value” delim=”|”/>
...
</attribute>

An extra attribute on the FME feature may also be created counting the number of values in the multi-value attribute.
The create-count-attribute is an optional attribute that can be used when the type attribute is set tomulti-value; its valid
values are yes and no, with no being its default value.

The name of the count attribute is based on the same name specified in the expression sequence of the <attribute>’s
<name> element augmented by an optional prefix and a mandatory suffix.

The count attribute’s prefix and suffix may be specified through the count-attribute-name-prefix and count-attribute-name-
suffix attributes, respectively.

Both count-attribute-name-prefix and count-attribute-name-suffix are optional attributes. The default value for the count-attrib-
ute-name-prefix is the empty string, while the default value for the count-attribute-name-suffix is Count. The count-attribute-
name-suffixmust not be the empty string when it is present.

List Option

When the value of the type attribute is list, then a multiple value attribute in the input XML document stream will be con-
verted into an attribute list for the FME feature that is under construction.

Single-value Option

This is the default value for the type attribute. An attribute with a particular name can only have one value in the FME
feature.

The <attribute> element can carry an additional optional use attribute that specifies if the first, last or any of the values
in between the first or last value out of the multiple values should be used. The legal values for this attribute are: first-
value, last-value, or any natural number in 0...(last-value - 1). When it is not specified, the use attribute defaults to the
last-value. If the natural numbers are used instead and if they overspecified the number of multi-value attributes from
the input XML stream, then the last-value will be assumed.

Example

The following example illustrates multiple value handling. Consider the following input XML and xfMap document:

purchase.xml
<?xml version="1.0"?>
<purchase date="1999-10-20">

<items>
<item>Radio</item>
<item>Toothbrush</item>
<item>Towel</item>
<item>Soap</item>
<item>Bottled Water</item>

</items>
</purchase>

purchase.xmp
<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<feature-map>
<mapping match="purchase">

<feature-type>
<literal expr="purchase-"/> <extract expr="@date"/>

</feature-type>
</mapping>

</feature-map>

<feature-content-map>
<!-- This mapping rule matching the ‘item’ element will be activated

5 times (the number of ‘item’ elements). -->
<mapping match="item">

<attributes>
<!-- Gather all of the items into the multiple value

attribute ‘items1’, since the attribute element
does not have a delim attribute, the default separator,
i.e., the comma, is used as the delimeter for the appended
string of values. -->

<attribute type="multi-value">
<name> <literal expr="items1"/> </name>
<value> <extract expr="."/> </value>

</attribute>
<!-- Same as above except that we name the attribute ‘items2’

and we specify the delimiter to be the colon character. -->
<attribute type="multi-value" delim=":">

<name> <literal expr="items2"/> </name>
<value> <extract expr="."/> </value>

</attribute>
<!-- Make an FME attribute list named ‘list’ out of the items. -->
<attribute type="list">

<name> <literal expr="list-attr"/> </name>
<value> <extract expr="."/> </value>

</attribute>
<!-- Use the first value of the items. -->
<attribute type="single-value" use="first-value">

<name> <literal expr="first-item"/> </name>
<value> <extract expr="."/> </value>

</attribute>
<!-- Use the last value of the items. -->
<attribute type="single-value">

<name> <literal expr="last-item"/> </name>
<value> <extract expr="."/> </value>

</attribute>
<!-- Use the 4th item. -->
<attribute type="single-value" use=”3”>

<name> <literal expr="item-at-3-(4th item)"/> </name>
<value> <extract expr="."/> </value>

</attribute>
</attributes>

</mapping>
</feature-content-map>

</xfMap>

The following shows a log of the FME feature constructed when the purchase.xml and purchase.xmp documents are
fed into the XML Reader:

+++
Feature Type: purchase-1999-10-20'
Attribute: first-item' has value Radio'
Attribute: item-at-3-(4th item)' has value Soap'
Attribute: items1' has value Radio,Toothbrush,Towel,Soap,Bottled Water'
Attribute: items2' has value Radio:Toothbrush:Towel:Soap:Bottled Water'
Attribute: last-item' has value Bottled Water'
Attribute: list-attr{0}' has value Radio'
Attribute: list-attr{1}' has value Toothbrush'
Attribute: list-attr{2}' has value Towel'
Attribute: list-attr{3}' has value Soap'
Attribute: list-attr{4}' has value Bottled Water'
Attribute: xml_type' has value xml_no_geom'
Attribute: list-attr{0}' is sequenced
Attribute: list-attr{1}' is sequenced
Attribute: list-attr{2}' is sequenced
Attribute: list-attr{3}' is sequenced
Attribute: list-attr{4}' is sequenced
Geometry Type: Unknown (0)
+==

Attribute Element (Handling Optional Attributes)

Each attribute specified with the <attribute> element is added by default to an FME feature. A user may not want an
attribute included in an FME feature when the expression sequence of an attribute’s value evaluates to the empty
string. The <attribute> element has an optional required attribute that specifies if the attribute is to be given to the fea-
ture based on the evaluated expression sequence of its value. The valid values for the required attribute are true and
false, with its default value being true.

If the optional required attribute is set to false, then the attribute will not be given to the feature when the expression
sequence of its value evaluates to the empty string. The following xfMap fragment sets the required attribute to false.

<attribute required="false">
<name> <literal expr="my-optional-attribute"/> </name>
<value> <extract expr="."/> </value>

</attribute>

Attribute Element (Sequenced Attributes)

The <attribute> element’s optional type attribute may be set to sequenced; these attributes correspond to the FME fea-
ture’s sequenced attributes and are useful for creating FME schema features. The following xfMap fragments sets
sequenced attributes for the FME feature that is under construction.

<attribute type="sequenced">
<name> <literal expr="my-sequenced-attribute"/> </name>
<value> <extract expr="."/> </value>

</attribute>

Geometry Element

A feature mapping rulemay contain an optional <geometry> element that specifies the construction of the FME fea-
ture’s geometry through a geometry builder. A geometry builder can construct one of the following geometries:

a. point geometry: is a single coordinate geometry, the coordinate maybe x,y, or x,y,z. When this geometry is
given to the FME feature, the feature’s xml_type attribute is set to xml_point.

b. line geometry: is a polyline, it contains at least 2 coordinates, the coordinates may be x,y, or x,y,z. When
this geometry is given to the FME feature, the feature’s xml_type attribute of the feature is set to xml_line.

c. area geometry: is either a single closed polyline, a donut, or an aggregate of donuts/and or simple closed
polylines. The coordinates may be x,y or x,y,z. When this geometry is given to the FME feature, the feature’s
xml_type attribute of the feature is set to xml_area.

d. homogeneous aggregate geometry: is a collection of like geometries. A member of the aggregate may
itself be an aggregate as long its xml_type matches. When this geometry is given to the FME feature, the fea-
ture’s xml_type attribute of the feature is set to either xml_point, xml_line, or xml_area.

e. heterogenous aggregate geometry: is a collection of geometries which may differ from one another. A
member of this aggregate type may be any type of geometry. When this geometry is given to the FME feature,
the features’s xml_type attribute of the feature is set to xml_aggregate.

f. text geometry: is a text value, a size and a rotation and a location. When this text geometry is given to the
FME feature, the feature’s xml_type attribute of the feature is set to xml_text.

g. path geometry: a curve geometry composed of curve segments. A curve segment maybe a a line or an arc.
When this path geometry is given to the FME feature, the feature’s xml_type attribute of the feature is set to
xml_line.

h. arc geometry: an arc geometry is a circular or elliptical curve segment, see the xml-arc and xml-ellip-
tical-arc geometry builders for the supported arc definitions. When this path geometry is given to the
FME feature, the feature’s xml_type attribute of the feature is set to xml_arc.

i. surface geometry: is a surface geometry composed of three dimensional areas. When this surface geometry
is given to the FME feature, the feature’s xml_type attribute of the feature is set to xml_surface.

j. solid geometry: is a solid geometry composed of three dimensional surfaces. When this solid geometry is
given to the FME feature, the feature’s xml_type attribute of the feature is set to xml_solid.

The <geometry> element has an activate attribute that specifies the name of a geometry builder. For a geometry builder
to do anything useful (that is, construct a geometry), we must supply it with data, we can do this with the geometry
builder’s data parameters. The data is supplied through the <geometry> element’s child <data> elements. The gen-
eral form of a <geometry> element is:

<geometry activate=”...”>
<data name=”...”>

<!-- the value is some expression sequence -->
</data>
...
<data name=”...>

<!-- an expression sequence -->

</data>
</geometry>

In a feature mapping rule the <geometry> element must come after the <feature-type> and <attributes> elements.

Later in this section, the XML Reader’s built-in geometry builders and their data parameters are described, custom
geometry builders are described in their own sections. In order to understand how a geometry builder constructs the
geometry of a FME feature we first explain the states of a geometry builder.

Geometry Builder States (activation, execution, suspension, and de-activation)

Similar to mapping rules a geometry builder may be activated, set on execution, suspended, and de-activated.

Let R be the mapping rule containing a <geometry> element having a activate attribute that specifies the geometry
builder B, and

let E be the element whose start-tag is being read from the input XML document stream,

then:

a. B is activatedwhen R is activated, (recall that R is activated when R is the first mapping rule in an active-
search-set matching E),

b. B is executing as long as E is the context element,

c. B is suspendedwhen E is not the context element

Note: B if suspended, may again be set to the execution state. For example, when a mapping rule R1, matching a
child element of E, say E1, contains a <geometry> element with no activate attribute. The <geometry> element in
R1 then indicates to the XML Reader that B should again be executing and that the geometry data parameters in R1
should be given to B. This mechanism is provided for input XML documents that might structured their information
in a segmented manner, say:
 <line>
 <coord>2.9,3.4</coord>
 ...

</line>
so that a separate mapping rule must be defined to match each <coord> element to complete one polyline feature.

d. B is de-activated after E is completely read.

Note: A geometry builder can only be executing or suspended if it is not de-activated.

Geometry Construction

It is possible to activate several geometry builders at a time. We can think of it as a stack of activated geometry build-
ers, each builder is pushed into the stack when activated and popped when it is de-activated.

An activated geometry builder B constructs exactly one type of geometry. When B de-activates, exactly two things
may happen:

a. the geometry constructed by B is given to the FME feature: this occurs only if B is also the last acti-
vated geometry builder.

b. the geometry constructed by B is given to a previous geometry builder Bt: When B de-activates and
B is not the last activated geometry builder, then the top activated geometry builder in the stack, say Bt,
receives and integrates the geometry constructed by B into its own. For this to be meaningful, Btmust be will-
ing to accept a geometry constructed by another geometry builder.

Composite Geometry Builders

Geometry builders that can integrate another geometry into their own are called composite geometry builders,
those that do not are called non-composite. Note that the composite, non-composite qualifiers do not refer to the
type of geometry that the builder constructs, instead, they refer to whether or not the builder is capable of inte-
grating another geometry into its own.

Usually, the builders that construct aggregate geometries are composite geometry builders. One can envisage a cus-
tom non-composite geometry builder that builds an aggregate geometry. For example, if a multi-point feature in the
input XML document is defined to be something like:

<multi-point dimension="2">
2.3,34.9 445.4,34.34 23.35,345.453

</multi-point>

A custom geometry builder used solely to build an aggregate of point features out of the <multi-point> element does not
need to be a composite geometry builder, since it does not need to accept a point geometry from other builders
because the information for all of the point components are embedded in the <multi-point> element’s text content.

Built-in Geometry Builders

This section describes the built-in geometry builders available to the XML Reader. These custom geometry builders
are format-specific and are described in their own sections. The XML Reader comes with the following built-in geome-
try builders:

n xml-point: is a non-composite builder that constructs a point geometry.

n xml-line: is non-composite builder that constructs a line geometry.

n xml-area: is a composite builder that constructs an area geometry.

n xml-donut: is a composite builder that constructs a donut area geometry.

n xml-aggregate: is a composite builder that constructs an aggregate geometry.

n xml-box: is a non-composite builder that constructs a polygon geometry from two coordinates.

n xml-text: is a composite builder that constructs a text geometry.

n xml-path: is a composite builder that constructs a path from line segments.

n xml-arc: and xml-elliptical-arc:are non-composite/composite builders that constructs arc geometry.

n xml-circle: is a non-composite builder that constructs an arc geometry based on a circle definition.

n xml-polygon: is a composite builder that constructs a polygon geometry.

n xml-face: is a composite builder that constructs a simple surface geometry.

n xml-composite-surface: is a composite builder that constructs a composite surface geometry

n xml-enclosed-surface: is a composite builder that constructs a simple solid geometry.

n xml-composite-solid: is a composite builder that constructs a composite solid geometry.

n xml-multi-point: is a composite builder that constructs a homegenous point aggregate geometry.

n xml-multi-curve: is a composite builder that constructs a homegenous curve aggregate geometry.

n xml-multi-area: is a composite builder that constructs a homegenous area aggregate geometry.

n xml-multi-text: is a composite builder that constructs an aggregate of text.

n xml-multi-surface: is a composite builder that constructs a homogenous surface geometry

n xml-multi-solid: is a composite builder that constructs a homogenous solid aggregate geometry.

n xml-null: is a non-composite builder that constructs the null geometry.

n xml-reverse-geometry: is a composite builder that reverses the order of coordinates.

n fme-geometry: is a non-composite builder that constructs various type of geometries from various types of
geometry serialization.

The following sections describes each built-in builder and its data parameters.

xml-point

This is a non-composite builder that construct one point geometry object.

builder type: non-composite.

geometry constructed: point geometry.

data parameters:

Data Name Value Required/
Optional

data-string The string containing the coordinate data.
Range: String

Required

axis-order Indicates the axis for a coordinate.
Range: A permutation of the numbers 1..N,
where N is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional

dimension The dimension of the coordinates.
Range: String representing a positive
integer, or the “implicit” literal, which forces
the dimension to be automaticallly deter-
mined even if axis-order is specified.
Default:When not specified the dimension
will be automatically determined.

Optional

axis-separator The string separating each axis of a coor-
dinate in the data-string.
Range: String | “whitespace” this includes the
tab, newline, and space characters.
Default: “,”

Optional

coord-separator The string separating each coordinate in the
data-string.
Range: String
Default: “whitespace” this includes the tab,
newline, and space characters.

Optional

decimal The string representing the decimal point for
each real number in the data-string.
Range: String
Default: “.”

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

The following sequence of examples illustrates the usage of the xml-point builder.

Example 1
The following xml_point1.xmp xfMap document maps a <point> element from the xml_point.xml input XML document.
Notice that the mapping rule matching the <point> element has a <geometry> element that specifies an xml-point
geometry builder. We assume all the default values for the xml-point data parameters, so we only specify the
required one, the data-string parameter.

xml_point1.xml

<?xml version="1.0"?>
<point id="0">0.945,78.970</point>

xml_point1.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<feature-map>
<mapping match="point">

<geometry activate="xml-point">
<data name="data-string"> <extract expr="."/> </data>

</geometry>
</mapping>

</feature-map>
</xfMap>

FME feature constructed:

++
Feature Type: '
Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: '
(0.945,78.97)
++==

Example 2
This is example is a little bit more complicated than the previous one. It illustrates several ways in which the xml-
point data parameters may be used to map the information from the input XML elements into a point geometry. Please
refer to the comments in the example for details.

xml_point2.xml

<?xml version="1.0"?>
<points>

<point-A type="xy">8.8,2.5</point-A>
<point-A type="xyz">97.97,92.5,-35.8</point-A>
<point-A type="yxz">29,-77.9,0.0</point-A>

<point-B>89,07 89,06 89,05</point-B>

<point-C x="10.0" y="5.0"/>
</points>

xml_point2.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="point-A[@type=’xy’ or @type=’xyz’]">
<!-- This mapping rule activates when the start-tag of a

point-A element having a type of xy or xyz is read. -->
<feature-type>

<literal expr="point-A-"/> <extract expr="@type"/>

</feature-type>
<!-- We use the default values for the other data parameters.

Therefore we only need to supply the data-string parameter. -->
<geometry activate="xml-point">

<data name="data-string"> <extract expr="."/> </data>
</geometry>

</mapping>

<mapping match="point-A[@type=’yxz’]">
<!-- This mapping rule activates when the start-tag of a
point-A element having a type yxz is read. -->
<feature-type> <literal expr="point-A-yxz"/> </feature-type>
<!-- The axis-order specifies the order of the axis of the

coordinates in the data-string back to x,y,z order. -->
<geometry activate="xml-point">

<data name="data-string"> <extract expr="."/> </data>
<data name="axis-order"> <literal expr="2,1,3"/> </data>

</geometry>
</mapping>

<mapping match="point-B">
<!-- Match the point-B element. -->
<feature-type> <literal expr="point-B"/> </feature-type>
<!-- Notice that the point-B element has as its decimal the comma

character, and the axis separator is whitespace. We specify
the dimension as well, because when the axis-separator
and the coord-separator equal in value, then the dimension
cannot be determine implicitly (both axis and
coord (the default value) separator are whitespace). -->

<geometry activate="xml-point">
<data name="data-string"> <extract expr="."/> </data>
<data name="dimension"> <literal expr="3"/> </data>
<data name="decimal"> <literal expr=","/> </data>
<data name="axis-separator">

<literal expr="whitespace"/>
</data>

</geometry>
</mapping>

<mapping match="point-C">
<!-- Match the point-C element. -->
<feature-type> <literal expr="point-C"/> </feature-type>
<geometry activate="xml-point">

<!-- The xml-point builder parses a coordinate string. So
using an expression sequence we construct the coordinate
string such that it’s axis-separator is the comma (which is
default value), and we give this expression sequence as
the value of the data-string parameter. -->

<data name="data-string">
<extract expr="@x"/> <literal expr=","/> <extract expr="@y"/>

</data>
</geometry>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

++
Feature Type: point-A-xy'
Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: '
(8.8,2.5)
==
++
Feature Type: point-A-xyz'

Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 3 -- Coordinate System: '
(97.97,92.5,-35.8)
==
++
Feature Type: point-A-yxz'
Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 3 -- Coordinate System: '
(-77.9,29,0)
==
++
Feature Type: point-B'
Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 3 -- Coordinate System: '
(89.07,89.06,89.05)
==
++
Feature Type: point-C'
Attribute: fme_geometry' has value fme_point'
Attribute: xml_type' has value xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: '
(10,5)
==

xml-line

This is a composite builder that constructs a line geometry. The coordinates of the line may be given via the data-
string parameter or via point geometries.

builder type: composite: accepts point geometries.

geometry constructed: line geometry.

data parameters:

Data Name Value Required/Optional

data-string The string containing the coordinate data.
Range: String

Optional

axis-order Indicates the axis order for a coordinate.
Range: A permutation of the numbers 1..N,
where N is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional

dimension The dimension of the coordinates.
Range: String representing a positive
integer, or the “implicit” literal, which forces
the dimension to be automaticallly deter-
mined even if axis-order is specified.
Default:When not specified the dimension
will be automatically determined.

Optional

axis-separator The string separating each axis of a coor-
dinate in the data-string.
Range: String | “whitespace” this includes the

Optional

Data Name Value Required/Optional

tab, newline, and space characters.
Default: “,”

coord-separator The string separating each coordinate in the
data-string.
Range: String
Default: “whitespace” this includes the tab,
newline, and space characters.

Optional

decimal The string representing the decimal point for
each real number in the data-string.
Range: String
Default: “.”

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

demote-incom-
plete-geometry

A line is incomplete if it doesn’t have at least
two distinct points, if only one coordinate is
given then the line geometry builder will halt
on error, setting this optional parameter to
true allows a point geometry to be con-
structed when only one coordinate is given.
Range: false | true
Default: false

Optional

allow-incomplete-
geometry

A line is incomplete if it doesn’t have at least
two distinct points, setting this optional
parameter to true allows a degenerate one
coordinate line geometry to be constructed.
Note that this parameter overrides the
demote-incomplete-geometry parameter.
Range: false | true
Default: false

Optional

name Specifies the geometry’s name.
Range: String

Optional

The document below contains two different type of line elements that we wish to map into FME features:

lines.xml

<?xml version="1.0"?>
<lines>

<line1>
0.0 0.0 1.0
10.0 10.0 1.0
20.0 30.0 1.0

</line1>
<line2 coords="50.5,50.4 30.8,15.2 0,0"/>

</lines>

The following xfMap document uses the xml-line geometry builder:

xml_line.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="line1">
<feature-type> <literal expr="line1"/> </feature-type>
<geometry activate="xml-line">

<data name="data-string"> <extract expr="."/> </data>
<data name="dimension"> <literal exptr="3"/> </data>

</geometry>
</mapping>

<mapping match="line2">
<feature-type> <literal expr="line2"/> </feature-type>
<geometry activate="xml-line">

<data name="data-string">
<extract expr="@coords"/>

</data>
</geometry>

</mapping>
</feature-map>

</xfMap>

When the lines.xml and xml_line.xmp documents are fed into the XML Reader the following FME features are output:

+++
Feature Type: line1'
Attribute: fme_geometry' has value fme_line'
Attribute: xml_type' has value xml_line'
Geometry Type: Line (2)
Number of Coordinates: 3 -- Coordinate Dimension: 3 -- Coordinate System: '
(0,0,1) (10,10,1) (20,30,1)
===
+++
Feature Type: line2'
Attribute: fme_geometry' has value fme_line'
Attribute: xml_type' has value xml_line'
Geometry Type: Line (2)
Number of Coordinates: 3 -- Coordinate Dimension: 2 -- Coordinate System: '
(50.5,50.4) (30.8,15.2) (0,0)
===

xml-area

The xml-area geometry builder constructs area geometries. The coordinates given to the data-string parameter must
form a single closed polygon (first and last coord must equal).

Notice that all of the <data> elements are optional; that is, they do not need to appear in the <geometry> element. When
this is the case, this builder cannot build an area geometry unless the XML Reader at some point passes other area
geometries (either simple polygons, a donuts, or an aggregate of areas) to it; the builder geometrically integrates all
of these area geometries into one area geometry, for example, if 3 area geometries (say 3 simple polygons: 1 outer
shell, and 2 holes) are given to it in any arbitrary order, the builder will geometrically integrate the 3 areas into one
donut geometry.

builder type: composite - but it only accepts area geometries.

geometry constructed: area geometry.

data parameters:

Data Name Value Required/Optional

data-string The string containing the coordinate data.
Range: String

Optional

axis-order Indicates the axis order for a coordinate.
Range: A permutation of the numbers 1..N,
where N is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional

dimension The dimension of the coordinates.
Range: String representing a positive
integer, or the “implicit” literal, which forces
the dimension to be automaticallly deter-
mined even if axis-order is specified.
Default:When not specified the dimension
will be automatically determined.

Optional

axis-separator The string separating each axis of a coor-
dinate in the data-string.
Range: String | “whitespace” this includes the
tab, newline, and space characters.
Default: “,”

Optional

coord-separator The string separating each coordinate in the
data-string.
Range: String
Default: “whitespace” this includes the tab,
newline, and space characters.

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

demote-incomplete-
geometry

An area is incomplete if it does not have at
least three distinct points. If only one or two
coordinates are given then the area geome-
try builder will halt on error. Setting this
optional parameter to true allows a point
geometry to be constructed when only one
coordinate is given and a line geometry to be

Optional

Data Name Value Required/Optional

constructed when only two coordinates are
given.
Range: false | true
Default: false

aggregate-to-multi Specifies whether an aggregate of areas
should be converted into a multi area.
Range: false | true
Default: false

Optional

name Specifies the geometry’s name.
Range: String

Optional

example 1, building simple polygons
The following xml_area_simple_polygon.xmp document instructs the XML Reader to output two FME features that are
simple closed polygons from the input polygons.xml document.

polygons.xml

<?xml version="1.0"?>
<polygons>

<polygon>60.0,60.0 80.0,60.0 80.0,80.0 60.0,80.0 60.0,60.0</polygon>
<polygon>40.0,40.0 50.0,40.0 50.0,50.0 40.0,50.0 40.0,40.0</polygon>

</polygons>

xml_area_simple_polygon.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="polygon">
<feature-type> <literal expr="simple polygon"/> </feature-type>
<geometry activate="xml-area">

<data name="data-string"> <extract expr="."/> </data>
</geometry>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: simple closed polygon'
Attribute: fme_geometry' has value fme_polygon'
Attribute: xml_type' has value xml_area'
Geometry Type: Polygon (4)
Number of Coordinates: 5 -- Coordinate Dimension: 2 -- Coordinate System: '
(60,60) (80,60) (80,80) (60,80) (60,60)
===
+++
Feature Type: simple closed polygon'
Attribute: fme_geometry' has value fme_polygon'
Attribute: xml_type' has value xml_area'
Geometry Type: Polygon (4)
Number of Coordinates: 5 -- Coordinate Dimension: 2 -- Coordinate System: '
(40,40) (50,40) (50,50) (40,50) (40,40)
===

example 2, building donuts
The donuts.xml document contains an element representing a donut. In this example we show how to use the xml-
area geometry builder, in the xml_area_donut.xmp, to make the XML Reader output an FME donut feature. The xfMap
document has two feature mapping rules matching the <donut> and <polygon> elements. Note that the <outershell> and
<hole> elements are ignored by the mapping rules; this distinction is not necessary for the construction of the area-
donut geometry, since the xml-area builder geometrically determines which polygon is an outer boundary or a hole.

The xml-area geometry builder that is activated in the feature mapping rule matching the <donut> element just waits
for geometry builders to passed it area geometries so that it can geometrically integrate them into one donut feature.

donuts.xml

<?xml version="1.0"?>
<donuts>
<donut>

<outer-shell>
<polygon>0.0,0.0 100.0,0.0 100.0,100.0 0.0,100.0 0.0,0.0</polygon>

</outer-shell>
<hole>

<polygon>60.0,60.0 80.0,60.0 80.0,80.0 60.0,80.0 60.0,60.0</polygon>
</hole>
<hole>

<polygon>40.0,40.0 50.0,40.0 50.0,50.0 40.0,50.0 40.0,40.0</polygon>
</hole>

</donut>
</donuts>

xml_area_donut.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="donut">
<feature-type> <literal expr="donut"/> </feature-type>
<!-- Note that no data parameters are required for the

xml-area geometry builder since its whole purpose
is to sit and wait for other builders to hand it
area geometries. -->

<geometry activate="xml-area"/>
</mapping>

</feature-map>

<feature-content-map>
<mapping match="polygon">

<!-- This xml-area geometry builder uses the content of the polygon
element to construct a single closed polygon area geometry.
When this geometry builder de-activates the area geometry is
handed over to the top geometry builder on the stack (in this
case it is the xml-area that was activated in the mapping rule
above. -->

<geometry activate="xml-area">
<data name="data-string"> <extract expr="."/> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

FME feature constructed:

+++
Feature Type: donut'
Attribute: fme_geometry' has value fme_donut'
Attribute: xml_type' has value xml_area'

Geometry Type: Donut (8)
Total Number of Coords: 15 -- Coordinate Dimension: 2 -- Coordinate System: '
Number of Shells: 3
Outer Shell -- Part Number: 0 -- Number of Coordinates: 5
(0,0) (100,0) (100,100) (0,100) (0,0)

Inner Shell -- Part Number: 1 -- Number of Coordinates: 5
(40,40) (50,40) (50,50) (40,50) (40,40)

Inner Shell -- Part Number: 2 -- Number of Coordinates: 5
(60,60) (80,60) (80,80) (60,80) (60,60)

===

xml-donut

The xml-donut geometry builder is a composite geometry builder that may construct either donut or polygon geom-
etries. The xml-donut geometry builder does nothing on its own, when activated it just waits and accepts either curve
or polygon geometries that form the outer and inner boundaries of the donut. The outer boundary of the donut is the
first geometry accepted, subsequent geometries are set as inner boundaries.

builder type: composite - it accepts polygon and curve geometries.

geometry constructed: area geometry.

data parameters:

Data Name Value Required/Optional

keep-as-donut If the value for this data parameter is set to
false and if only the outer boundary of the
donut is set, then a polygon, rather than a
donut, will be constructed.
Range: false | true
Default: true

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

demote-incomplete-
geometry

A donut is incomplete if it does not have the
outer boundary set. If there are no polygon
or curve geometries given, the donut geome-
try builder will halt on error. Setting this
optional parameter to true allows a non-geo-
metrical object to be constructed when no
geometries are given.
Range: false | true
Default: false

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-aggregate

The xml-aggregate geometry builder builds aggregate objects. This builder does not require any data parameters, so
the only way for it to build an aggregate geometry is from existing geometry objects. This means that before the xml-

aggregate builder is de-activated, other geometry builders should have been activated and de-activated, moreover,
their constructed geometries should have been passed to it.

builder type: composite - accepts any type of geometry.

geometry constructed: aggregate.

data parameters:

Data Name Value Required/Optional

xml_type This data parameter applies only if an aggre-
gate was constructed. This data parameter
sets the xml_type for the feature under con-
struction. Note that this xml_type may be
overwritten by geometry builders or attrib-
ute rules from mapping rules that are acti-
vated before the one containing the
activation of the current aggregate builder.
Range: xml_point | xml_line | xml_area |
xml_aggregate
Default: xml_aggregate

Optional

keep-as-aggregate When the value for this data parameter is
set to “false” and the xml-aggregate geome-
try consists solely of one feature, then an
aggregate geometry will not be constructed.
Range: false | true
Default: true

Optional

contains-individual-geom-
etries

When the value for this data parameter is
set to “true” then a flag will be set on the
aggregate signaling that the aggregate is
merely a placeholder containing individually
named geometries; e.g., in a destination
system each named geometry component
may be interpreted as a separate geometry
column in a table.
Range: false | true
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

The following example shows how the xml-aggregate geometry builder is used in the xml_aggregate.xmp to construct
a geometry that is an aggregate of point geometries. The previous, points1.xml, is used as the input XML document
and is reproduced below for convenience:

points1.xml

<?xml version="1.0"?>
<points>

<point name="myPoint" num="0">
<color>

<red>0.324</red>
<green>0.233</green>
<blue>0.596</blue>

</color>
<location x="10.0" y="0.0"/>

</point>
<point name="myPoint" num="1">

<color>
<red>0.874</red>
<green>0.948</green>
<blue>0.554</blue>

</color>
<location x="5.0" y="5.0"/>

</point>
</points>

xml_aggregate.xmp

<?xml version="1.0?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="points">
<feature-type> <literal expr="points"/> </feature-type>
<!-- This geometry builder integrates all the

geometries that it receives into one aggregate
geometry -->

<geometry activate="xml-aggregate">
<data name="xml_type">

<literal expr="xml_point"/>
</data>

</geometry>
</mapping>

</feature-map>

<feature-content-map>
<mapping match="point">

<geometry activate="xml-point">
<data name="data-string">

<extract expr="./location[@x]"/>
<literal expr=","/>
<extract expr="./location[@y]"/>

</data>
</geometry>

</mapping>
</feature-content-map>

</xfMap>

FME feature constructed:

+++
Feature Type: points'
Attribute: fme_geometry' has value fme_aggregate'
Attribute: xml_type' has value xml_point'
Geometry Type: Aggregate (512)
Total Number of Coords: 2 -- Coordinate Dimension: 2 -- Coordinate System: '

Number of Aggregate Parts: 2

Geometry Type: Point (1) -- Part Number: 0 -- Number of Coordinates: 1
(10,0)

Geometry Type: Point (1) -- Part Number: 1 -- Number of Coordinates: 1
(5,5)
===

xml-box

This is a non-composite builder that construct a polygon geometry out of two coordinates.

builder type: non-composite.

geometry constructed: polygon geometry.

data parameters:

Data Name Value Required/
Optional

data-string The string containing the coordinate data.
Range: String

Required

axis-order Indicates the axis for a coordinate.
Range: A permutation of the numbers 1..N,
where N is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional

dimension The dimension of the coordinates.
Range: String representing a positive
integer, or the “implicit” literal, which forces
the dimension to be automaticallly deter-
mined even if axis-order is specified.
Default:When not specified the dimension
will be automatically determined.

Optional

axis-separator The string separating each axis of a coor-
dinate in the data-string.
Range: String | “whitespace” this includes the
tab, newline, and space characters.
Default: “,”

Optional

coord-separator The string separating each coordinate in the
data-string.
Range: String
Default: “whitespace” this includes the tab,
newline, and space characters.

Optional

decimal The string representing the decimal point for
each real number in the data-string.
Range: String
Default: “.”

Optional

Data Name Value Required/
Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

The following sequence of examples illustrates the usage of the xml-box builder.

box.xml

<?xml version="1.0"?>
<boxes>

<box>60.0,60.0 80.0,80.0</box>
<box>40.0,40.0 50.0,50.0</box>

</boxes>

box.xmp

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">

<xfMap>
<feature-map>

<mapping match="box">
<feature-type> <literal expr="boxed-polygon"/> </feature-type>
<geometry activate="xml-box">

<data name="data-string"> <extract expr="."/> </data>
</geometry>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: boxed-polygon'
Attribute: fme_geometry' has value fme_polygon'
Attribute: xml_type' has value xml_area'
Geometry Type: Polygon (4)
Number of Coordinates: 5 -- Coordinate Dimension: 2 -- Coordinate System: '
(60,60) (80,60) (80,80) (60,80) (60,60)
===
+++
Feature Type: boxed-polygon'
Attribute: fme_geometry' has value fme_polygon'
Attribute: xml_type' has value xml_area'
Geometry Type: Polygon (4)
Number of Coordinates: 5 -- Coordinate Dimension: 2 -- Coordinate System: '
(40,40) (50,40) (50,50) (40,50) (40,40)
===

xml-text

This is a composite builder that construct a text geometry. If required, the xml-text builder can be used as a non-com-
posite xml-text builder, in which case, in addition to the data parameters below, one will also need to use the data
parameters for an xml-point (see above). If used as a composite builder, it must be given an existing geometry (in
fact, this is the preferred way of using the xml-text builder). In other words, another geometry must be activated and
deactivated before the xml-text is deactivated.

builder type: composite

geometry constructed: point, or depends on builder

data parameters:

Data Name Value Required/
Optional

text-string The string containing text for the text geome-
try
Range: String

Required

text-rotation The orientation of the text in decimal degrees
Default: String representing a real number

Required

text-size The size of the text
Range: String representing a positive
integer.

Required

name Specifies the geometry’s name.
Range: String

Optional

xml-path

The xml-path geometry builder constructs linear paths. This builder does not require any data parameters, so the
only way for it to build a path geometry is from existing curve or point geometries. This means that before the xml-
path builder is de-activated, other geometry builders that construct curves or points, such as xml-line, xml-arc or
xml-point, should have been activated and de-activated, moreover, their constructed geometries should have been
passed to it.

The xml-path geometry builder also accepts null geometries. Currently, these null geometries must have the “radius”
and “direction” traits set. The null “arc” geometry in a path must be preceded and succeded by a “curve” or “point”
which correspond to the start and end point of the arc, respectively.

The xml-path geometry builder can return a polygon geometry when its convert-to-polygon data parameter is set to
true. In this case the builder sets the constructed path as the boundary of the polygon.

builder type: composite - accepts curve, point and appropriately tagged null geometries.

geometry constructed: line geometry, point, or area geometry.

data parameters:

Data Name Value Required/Optional

demote-incomplete-
geometry

A path needs at least one curve segment, set-
ting this optional parameter to true avoids
empty paths to be constructed by demoting a
path with zero segments into a non-geo-
metrical object.

Optional

Data Name Value Required/Optional

Range: false | true
Default: true

keep-as-path When the value for this data parameter is
set to “false” and the xml-path geometry con-
sists solely of one feature, then a path
geometry will not be constructed. A path
with a one coordinate line segment is
returned as a point.
Range: false | true
Default: true

Optional

demote-single-arc When the value for this data parameter is
set to “true” and the xml-path geometry con-
sists solely of one arc feature, then a path
geometry will not be constructed. If the sin-
gle feature is not an arc, handling will
depend on the keep-as-path parameter.
Range: false | true
Default: true

Optional

convert-to-polygon This optional data parameter directs the
xml-path geometry builder to return a poly-
gon geometry with the constructed path set
as the polygon’s boundary.
Range: false | true
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-arc

This is a non-composite and composite builder that constructs a circular arc geometry. Currently the following arc
definitions are supported:

a. A circular arc defined by 3 coincident control points.

b. A circular arc defined by a circle’s center, start and end point and a direction.

c. A circular arc defined by a start and end point, a radius and a direction.

builder type: non-composite/composite, accepts point geometries in composite mode.

geometry constructed: arc geometry.

data parameters:

Data Name Value Required/
Optional

data-string a. For an arc defined by 3 coincident control
points, the coordinate data denotes the coin-
cident points in the order of arc traversal.

The coordinate data may be received as point geometries,
the order of the point geometries are assumed to be the
order of arc traversal.

b. The coordinate data string denotes the center,
start and end point of an arc when the “direc-
tion” data parameter is present.

The coordinate data may be received as point geometries.
These control points maybe named or unnamed. The
named point geometries maybe received in any order,
there names must be one of “center”, “start” or “end”, or
any of their equivalents, see below. If the point geometries
are unnamed, then the order of the points is significant,
the first point received is assumed as the center point, the
next point as the start point, and the last point as the end
point of the arc.

c. The coordinate data string denotes the start
and end point of an arc when the “direction”
and “radius” data parameters are present

The coordinate data may be received as point geometries.
These control points maybe named or unnamed. The
named point geometries maybe received in any order,
there names must be one of “start” or “end”, or any of
their equivalents, see below. If the point geometries are
unnamed, then the order of the points is significant, the
first point received is assumed as the start point, the next
point as the end point of the arc.

Equivalent control point names: The following
names maybe substituted for “center”, “start” and
“end”:
l center: CentrePoint
l start: FromPoint
l end: ToPoint

Range: String

Optional if the con-
trol points are to be
passed in as point
geometries; other-
wise Required

direction Specifies the traversal direction from the start to the
end point of an arc.
Range: cw | ccw
Default: There are no default values.

Required if the
data-string is to
specify the center,
start and end points
of an arc

Data Name Value Required/
Optional

radius The radius of the circular arc.
Range: A positive real number.
Default: There are no default values.

Required, along
with the direction,
if the data-string
specifies the start
and end point of an
arc.

axis-order Indicates the axis for a coordinate.
Range: A permutation of the numbers 1..N, where N
is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional

dimension The dimension of the coordinates.
Range: String representing a positive integer, or the
“implicit” literal, which forces the dimension to be
automatically determined even if axis-order is spec-
ified.
Default:When not specified the dimension will be
automatically determined.

Optional

axis-separator The string separating each axis of a coordinate in the
data-string.
Range: String | “whitespace” this includes the tab,
newline, and space characters.
Default: “,”

Optional

coord-separator The string separating each coordinate in the data-
string.
Range: String
Default: “whitespace” this includes the tab, newline,
and space characters.

Optional

decimal The string representing the decimal point for each
real number in the data-string.
Range: String
Default: “.”

Optional

coordinate-system Specifies the coordinate system name. If the expres-
sion sequence for the coordinate-system evaluates
to the empty string, then the coordinate system for
the feature being built will not be set.
Range: String
Default: “.”

Optional

number-of-arcs The data parameter is optional and is only applicable Optional

Data Name Value Required/
Optional

when an arc is defined by control points coincident to
it. If the value given is greater than 1, then the
number of coordinates in the data-string must be
(2*number-of-arcs +1), each consecutive arc con-
structed share a common control point, and the
geometry returned from these consecutive arcs can-
not be an arc anymore, instead, a path geometry is
returned.
Range: a positive number
Default: 1

demote-incom-
plete-geometry

This optional data parameter allows the xml-arc
geometry builder to return a non-geometrical object
when no data-string is given or when the value of the
data-string is the empty string.
Range: false | true
Default: false

Optional

incomplete-geome-
try-traits

This optional data parameter takes effect only when
the demote-incomplete-geometry data parameter is
set to true. This parameter lists the xml-arc data
parameters that should be loaded into the demoted
arc geometry as traits. For example, when this
geometry builder fails to construct an arc and
demote-incomplete-geometry is set to true and the
value for this parameter is set to “radius direction”,
then the builder will construct a null geometry with
radius and direction traits.
Range: whitespace separated list of arc data parameter
names
Default: There are no default values.

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-elliptical arc

This is a non-composite and composite builder that constructs an elliptical arc geometry. The following elliptical arc
definition is supported:

a. An elliptical arc defined by a circle’s center, start and end point, primary-radius, secondary-radius, direction,
rotation, and rotation-direction.

builder type: non-composite/composite, accepts point geometries in composite mode.

geometry constructed: arc geometry.

data parameters:

Data Name Value Required/
Optional

data-string a. The coordinate data string denotes the center,
start and end point of an arc when the “direc-
tion” data parameter is present.

The coordinate data may be received as point geometries.
These control points maybe named or unnamed. The
named point geometries maybe received in any order,
there names must be one of “center”, “start” or “end”, or
any of their equivalents, see below. If the point geometries
are unnamed, then the order of the points is significant,
the first point received is assumed as the center point, the
next point as the start point, and the last point as the end
point of the arc.

Equivalent control point names: The following
names maybe substituted for “center”, “start” and
“end”:
l center: CentrePoint
l start: FromPoint
l end: ToPoint

Range: String

Optional if the con-
trol points are to be
passed in as point
geometries; other-
wise Required

primary-radius The length of the primary axis for the ellipse the arc
is based upon.
Range: A positive real number.
Default: There are no default values.

Required

secondary-radius The length of the secondary axis for the ellipse the
arc is based upon.
Range: A positive real number.
Default: There are no default values.

Required

direction Specifies the traversal direction from the start to the
end point the elliptical arc.
Range: cw | ccw
Default: There are no default values.

Required

rotation The rotation of the ellipse that defines the arc. The
rotation angle specifies the angle in degrees from
the horizontal axis to the primary axis in the direc-
tion specified by the rotation-direction data param-
eter.
Range: A positive real number.
Default: 0.0

Optional

rotation-direction Specifies the rotation direction. See the rotation
data parameter.
Range: cw | ccw

Required

Data Name Value Required/
Optional

Default: ccw

axis-order Indicates the axis for a coordinate.
Range: A permutation of the numbers 1..N, where N
is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional, used only
if data-string is
specified

dimension The dimension of the coordinates.
Range: String representing a positive integer, or the
“implicit” literal, which forces the dimension to be
automatically determined even if axis-order is spec-
ified.
Default:When not specified the dimension will be
automatically determined.

Optional, used only
if data-string is
specified

axis-separator The string separating each axis of a coordinate in the
data-string.
Range: String | “whitespace” – this includes the tab,
newline, and space characters.
Default: “,”

Optional, used only
if data-string is
specified

coord-separator The string separating each coordinate in the data-
string.
Range: String
Default: “whitespace” – this includes the tab, new-
line, and space characters.

Optional, used only
if data-string is
specified

decimal The string representing the decimal point for each
real number in the data-string.
Range: String
Default: “.”

Optional, used only if
data-string is specified

coordinate-system Specifies the coordinate system name. If the expres-
sion sequence for the coordinate-system evaluates
to the empty string, then the coordinate system for
the feature being built will not be set.
Range: String
Default: “.”

Optional

demote-incom-
plete-geometry

This optional data parameter allows the xml-arc
geometry builder to return a non-geometrical object
when no data-string is given or when the value of the
data-string is the empty string.
Range: false | true
Default: false

Optional

Data Name Value Required/
Optional

incomplete-geome-
try-traits

This optional data parameter takes effect only when
the demote-incomplete-geometry data parameter
is set to true. This parameter lists the xml-arc data
parameters that should be loaded into the demoted
arc geometry as traits. For example, when this
geometry builder fails to construct an arc and
demote-incomplete-geometry is set to true and the
value for this parameter is set to “radius direction”,
then the builder will construct a null geometry with
radius and direction traits.
Range: whitespace separated list of arc data param-
eter names
Default: There are no default values.

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-circle

This is a non-composite and composite builder that constructs a circular arc geometry. The following circle definition
is supported:

a. A circle defined by three distinct control points that are coincident to the circle.

b. A circle defined by a center point and a radius.

builder type: non-composite

geometry constructed: arc geometry.

data parameters:

Data Name Value Required/
Optional

data-string a. The coordinate data string denoting the coin-
cident points in the order of circle traversal.

b. The coordinate data string denoting the circle's
center point.

Range: String

Required

radius The radius of the circle.

Range: A positive, real number

Default: There are no default values.

Required, if the data-
string specifies the
center point of the cir-
cle.

Data Name Value Required/
Optional

axis-order Indicates the axis for a coordinate.
Range: A permutation of the numbers 1..N, where N
is the number of dimensions.
Each number is separated by a comma “,”.
Default: “1,2,...,N”

Optional, used only
if data-string is
specified

dimension The dimension of the coordinates.
Range: String representing a positive integer, or the
“implicit” literal, which forces the dimension to be
automatically determined even if axis-order is spec-
ified.
Default:When not specified the dimension will be
automatically determined.

Optional, used only
if data-string is
specified

axis-separator The string separating each axis of a coordinate in the
data-string.
Range: String | “whitespace” this includes the tab,
newline, and space characters.
Default: “,”

Optional, used only
if data-string is
specified

coord-separator The string separating each coordinate in the data-
string.
Range: String
Default: “whitespace” – this includes the tab, new-
line, and space characters.

Optional, used only
if data-string is
specified

decimal The string representing the decimal point for each
real number in the data-string.
Range: String
Default: “.”

Optional, used only if
data-string is specified

coordinate-system Specifies the coordinate system name. If the expres-
sion sequence for the coordinate-system evaluates
to the empty string, then the coordinate system for
the feature being built will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-polygon

The xml-polygon geometry builder constructs a polygon from a closed curve geometry. This is a composite builder.
The xml-polygon geometry builder does nothing on its own, when activated, it will wait and accept points and curves.
The points and curves are interpreted into a path which becomes the boundary of the polygon. The curve is assumed
to be closed, if it is not, then closure will be assumed as a straight line from the start point to the end point.

builder type: composite - accept curve and point geometries.

geometry constructed: area geometry.

data parameters:

Data Name Value Required/Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

demote-incomplete-
geometry

A polygon is incomplete if it doesn’t have at
least one curve or point segment. If no seg-
ments are given then the polygon geometry
builder will halt on error. Setting this
optional parameter to true allows a non-geo-
metrical object to be constructed when no
segments are given.
Range: false | true
Default: false

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-face

The xml-face geometry builder builds simple surface geometries. This builder does not require any data parameters,
and will construct the simple surface geometry from existing area geometries. Thus, before the xml-face geometry
builder is deactivated, other geometry builders should have been activated, passing their constructed areas to the
xml-face geometry builder.

Each of the areas passed to the xml-face geometry builder should share a common plane. The first area accepted
forms the outer boundary, and subsequent areas accepted form inner gaps.

builder type: composite - accepts area geometries

geometry constructed: simple surface

data parameters:

Data Name Value Required/Optional

demote-incomplete-
geometry

This Boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no areas to
create a simple surface from, the simple sur-
face will be downgraded to a null geometry.
If set to false, whenever the geometry
builder receives no areas to create a simple
surface from, it will raise an error and ter-
minate the translation.

Optional

Data Name Value Required/Optional

Range: true|false
Default: false

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a simple surface

simplesurface.xml

<?xml version="1.0"?>
<simplesurface>

<area>
0.0,0.0,0.0 5.0,0.0,5.0 5.0,5.0,10.0 0.0,5.0,5.0 0.0,0.0,0.0

</area>
<area>

2.0,2.0,4.0 3.0,2.0,5.0 3.0,3.0,6.0 2.0,3.0,5.0 2.0,2.0,4.0
</area>

</simplesurface>

simplesurface.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="simplesurface">

<feature-type> <literal expr="simplesurface" /> </feature-type>
<geometry activate="xml-face" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="area">
<geometry activate="xml-area">

<data name="data-string"> <extract expr="." /> </data>
</geometry>

</mapping>
</feature-content-map>

</xfMap>

xml-composite-surface

The xml-composite-surface geometry builder builds composite surface geometries. This builder does not require any
data parameters, and will construct the composite surface geometry from existing surface geometries. Thus, before
the xml-composite-surface geometry builder is deactivated, other geometry builders should have been activated,
passing their constructed surfaces to the xml-composite-surface geometry builder.

Each of the surfaces passed to the xml-composite-surface geometry builder should be topologically connected along
their boundaries.

builder type: composite - accepts surface geometries

geometry constructed: composite surface

data parameters:

The following demote-incomplete-geometry and allow-empty-composite data parameters change how the geometry is
handled in error conditions. If both of the data parameters are set to false, whenever the geometry builder receives
no simple surfaces to create a composite surface from, it will raise an error and terminate the translation.

Data Name Value Required/Optional

demote-incomplete-
geometry

This boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no simple sur-
faces to create a composite surface from,
the composite surface will be downgraded to
a null geometry.
Range: true|false
Default: false

Optional

allow-empty-
composite

This boolean parameter determines if incom-
plete geometry should be left incomplete
instead of producing an error. If set to true,
whenever the geometry builder receives no
simple surfaces to create a composite sur-
face from, the composite surface will be left
empty and returned.
Range: true|false
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a composite surface

compositesurface.xml

<?xml version="1.0"?>
<compositesurface>

<simplesurface>
<area>

0.0,0.0,0.0 5.0,0.0,5.0 5.0,5.0,10.0 0.0,5.0,5.0 0.0,0.0,0.0
</area>
<area>

2.0,2.0,4.0 3.0,2.0,5.0 3.0,3.0,6.0 2.0,3.0,5.0 2.0,2.0,4.0
</area>

</simplesurface>
<simplesurface>

<area>

0.0,0.0,0.0 5.0,0.0,0.0 5.0,0.0,5.0 0.0,0.0,0.0
</area>

</simplesurface>
</compositesurface>

compositesurface.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="compositesurface">

<feature-type>
<literal expr="compositesurface" />

</feature-type>
<geometry activate="xml-composite-surface" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="simplesurface">
<geometry activate="xml-face" />

</mapping>
<mapping match="area">

<geometry activate="xml-area">
<data name="data-string"> <extract expr="." /> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

xml-enclosed-surface

The xml-enclosed-surface geometry builder builds simple solid geometries. This builder does not require any data
parameters, and will construct the simple solid geometry from existing surface geometries. Thus, before the xml-
enclosed-surface geometry builder is deactivated, other geometry builders should have been activated, passing their
constructed surfaces to the xml-enclosed-surface geometry builder.

Each of the surfaces passed to the xml-enclosed-surface geometry builder should fully enclose a volume of space.
The first surface accepted forms the outer boundary, and subsequent areas accepted form inner voids.

builder type: composite - accepts surface geometries

geometry constructed: simple solid

data parameters:

Data Name Value Required/Optional

demote-incomplete-
geometry

This boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no surfaces to
create a simple solid from, the simple solid
will be downgraded to a null geometry. If set
to false, whenever the geometry builder
receives no surfaces to create a simple solid
from, it will raise an error and terminate the
translation.
Range: true|false
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the Optional

Data Name Value Required/Optional

expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a simple solid

simplesolid.xml

<?xml version="1.0"?>
<simplesolid>

<compositesurface>
<simplesurface>

<area>0.0,0.0,0.0 0.0,1.0,0.0 1.0,0.0,0.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,0.0,0.0 1.0,1.0,1.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,1.0,1.0 0.0,1.0,0.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>1.0,0.0,0.0 0.0,1.0,0.0 1.0,1.0,1.0 1.0,0.0,0.0</area>
</simplesurface>

</compositesurface>
</simplesolid>

simplesolid.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="simplesolid">

<feature-type> <literal expr="simplesolid" /> </feature-type>
<geometry activate="xml-enclosed-surface" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="compositesurface">
<geometry activate="xml-composite-surface" />

</mapping>
<mapping match="simplesurface">

<geometry activate="xml-face" />
</mapping>
<mapping match="area">

<geometry activate="xml-area">
<data name="data-string"> <extract expr="." /> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

xml-composite-solid

The xml-composite-solid geometry builder builds composite solid geometries. This builder does not require any data
parameters, and will construct the composite solid geometry from existing simple solid geometries. Thus, before the
xml-composite-solid geometry builder is deactivated, other geometry builders should have been activated, passing
their constructed simple solids to the xml-composite-solid geometry builder.

Each of the simple solids passed to the xml-composite-solid geometry builder should be topologically connected along
their boundaries.

builder type: composite - accepts simple solid geometries

geometry constructed: composite solid

data parameters:

The following demote-incomplete-geometry and allow-empty-composite data parameters change how the geometry is
handled in error conditions. If both of the data parameters are set to false, whenever the geometry builder receives
no simple solids to create a composite solid from, it will raise an error and terminate the translation.

Data Name Value Required/Optional

demote-incomplete-
geometry

This boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no simple sol-
ids to create a composite solid from, the com-
posite solid will be downgraded to a null
geometry.
Range: true|false
Default: false

Optional

allow-empty-
composite

This boolean parameter determines if incom-
plete geometry should be left incomplete
instead of producing an error. If set to true,
whenever the geometry builder receives no
simple solids to create a composite solid
from, the composite solid will be left empty
and returned.
Range: true|false
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a composite solid

compositesolid.xml

<?xml version="1.0"?>
<compositesolid>

<simplesolid>
<compositesurface>

<simplesurface>
<area>0.0,0.0,0.0 0.0,1.0,0.0 1.0,0.0,0.0 0.0,0.0,0.0</area>

</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,0.0,0.0 1.0,1.0,1.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,1.0,1.0 0.0,1.0,0.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>1.0,0.0,0.0 0.0,1.0,0.0 1.0,1.0,1.0 1.0,0.0,0.0</area>
</simplesurface>

</compositesurface>
</simplesolid>
<simplesolid>

<compositesurface>
<simplesurface>

<area>0.0,0.0,0.0 0.0,1.0,0.0 1.0,0.0,0.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,0.0,0.0 1.0,1.0,-1.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>0.0,0.0,0.0 1.0,1.0,-1.0 0.0,1.0,0.0 0.0,0.0,0.0</area>
</simplesurface>
<simplesurface>

<area>1.0,0.0,0.0 0.0,1.0,0.0 1.0,1.0,-1.0 1.0,0.0,0.0</area>
</simplesurface>

</compositesurface>
</simplesolid>

</compositesolid>

compositesolid.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="compositesolid">

<feature-type> <literal expr="compositesolid" /> </feature-type>
<geometry activate="xml-composite-solid" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="simplesolid">
<geometry activate="xml-enclosed-surface" />

</mapping>
<mapping match="compositesurface">

<geometry activate="xml-composite-surface" />
</mapping>
<mapping match="simplesurface">

<geometry activate="xml-face" />
</mapping>
<mapping match="area">

<geometry activate="xml-area">
<data name="data-string"> <extract expr="." /> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

xml-multi-point

The xml-multi-point geometry builder constructs an aggregate geometry made up solely of points. This builder does
not require any data parameters, it can only build a multi-point geometry from existing points.

builder type: composite - accept point geometries.

geometry constructed: multi-point geometry.

data parameters:

Data Name Value Required/Optional

keep-as-multi Setting this optional parameter to “false”
directs the builder to return a point rather
than a multi-point geometry when only one
point geometry is received.
Range: false | true
Default: true

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-multi-curve

The xml-multi-curve geometry builder constructs a curve aggregate geometry. This builder does not require any data
parameters, it can only build a multi-curve geometry from existing curves.

builder type: composite - accept curve, e.g., lines and arcs, geometries.

geometry constructed: multi-curve geometry.

data parameters:

Data Name Value Required/Optional

keep-as-multi Setting this optional parameter to “false”
directs the builder to return a single curve
rather than a multi-curve geometry when
only one curve geometry is received.
Range: false | true
Default: true

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.

Optional

Data Name Value Required/Optional

Range: String
Default: “.”

name Specifies the geometry’s name.
Range: String

Optional

xml-multi-area

The xml-multi-area geometry builder constructs an aggregate area geometry. This builder does not require any data
parameters, and so it can only build a multi-area geometry from existing areas.

builder type: composite - accept area geometries.

geometry constructed: multi-area geometry.

data parameters:

Data Name Value Required/Optional

keep-as-multi Setting this optional parameter to “false”
directs the builder to return a single area
rather than a multi-area geometry when only
one area geometry is received.
Range: false | true
Default: true

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-multi-text

The xml-multi-text geometry builder constructs an aggregate text geometry. This builder does not require any data
parameters, it can only build a multi-text geometry from existing text geometries.

builder type: composite - accept text geometries.

geometry constructed: multi-text geometry.

data parameters:

Data Name Value Required/Optional

keep-as-multi Setting this optional parameter to “false”
directs the builder to return a single text
rather than a multi-text geometry when only
one text geometry is received.
Range: false | true

Optional

Data Name Value Required/Optional

Default: true

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

xml-multi-surface

The xml-multi-surface geometry builder builds an aggregate geometry made up solely of surface geometries. This
builder does not require any data parameters, and will construct the multi surface geometry from existing surface
geometries. Thus, before the xml-multi-surface geometry builder is deactivated, other geometry builders should
have been activated, passing their constructed surfaces to the xml-multi-surface geometry builder.

Each of the surfaces passed to the xml-multi-surface geometry builder should be either simple or composite sur-
faces. The accepted surfaces do not have a restraint on their spatial relationship - they may be disjoint, overlapping,
touching, or completely disconnected.

builder type: composite - accepts surface geometries

geometry constructed:multi surface

data parameters:

The following demote-incomplete-geometry and allow-empty-composite data parameters change how the geometry is
handled in error conditions. If both of the data parameters are set to false, whenever the geometry builder receives
no surfaces to create a multi surface from, it will raise an error and terminate the translation.

Data Name Value
Required/
Optional

keep-as-multi Setting this optional parameter to "false"
directs the builder to return a single surface
rather than a multi-surface geometry when
only one surface geometry is received.
Range: false | true
Default: true

Optional

demote-incomplete-
geometry

This Boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no surfaces to
create a multi surface from, the multi sur-
face will be downgraded to a null geometry.
Range: true|false
Default: false

Optional

Data Name Value
Required/
Optional

allow-empty-
composite

This Boolean parameter determines if incom-
plete geometry should be left incomplete
instead of producing an error. If set to true,
whenever the geometry builder receives no
surfaces to create a multi surface from, the
multi surface will be left empty and
returned.
Range: true|false
Default: false

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a multi surface

multisurface.xml

<?xml version="1.0"?>
<multisurface>

<simplesurface>
<area>

0.0,0.0,0.0 5.0,0.0,5.0 5.0,5.0,10.0 0.0,5.0,5.0 0.0,0.0,0.0
</area>
<area>

2.0,2.0,4.0 3.0,2.0,5.0 3.0,3.0,6.0 2.0,3.0,5.0 2.0,2.0,4.0
</area>

</simplesurface>
<simplesurface>

<area>
0.0,0.0,0.0 5.0,0.0,0.0 5.0,5.0,0.0 0.0,5.0,0.0 0.0,0.0,0.0

</area>
</simplesurface>

</multisurface>

multisurface.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="multisurface">

<feature-type> <literal expr="multisurface" /> </feature-type>
<geometry activate="xml-multi-surface" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="simplesurface">

<geometry activate="xml-face" />
</mapping>
<mapping match="area">

<geometry activate="xml-area">
<data name="data-string"> <extract expr="." /> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

xml-multi-solid

The xml-multi-solid geometry builder builds an aggregate geometry made up solely of solid geometries. This builder
does not require any data parameters, and will construct the multi solid geometry from existing solid geometries.
Thus, before the xml-multi-solid geometry builder is deactivated, other geometry builders should have been acti-
vated, passing their constructed solids to the xml-multi-solid geometry builder.

Each of the solids passed to the xml-multi-solid geometry builder should be either simple or composite solids. The
accepted solids do not have a restraint on their spatial relationship - they may be disjoint, overlapping, touching, or
completely disconnected.

builder type: composite - accepts solid geometries

geometry constructed:multi solids

data parameters:

The following demote-incomplete-geometry and allow-empty-composite data parameters change how the geometry is
handled in error conditions. If both of the data parameters are set to false, whenever the geometry builder receives
no solids to create a multi solid from, it will raise an error and terminate the translation.

Data Name Value Required/Optional

keep-as-multi Setting this optional parameter to "false"
directs the builder to return a single solid
rather than a multi-solid geometry when
only one solid geometry is received.
Range: false | true
Default: true

Optional

demote-incomplete-
geometry

This boolean parameter determines if incom-
plete geometry should be demoted instead of
producing an error. If set to true, whenever
the geometry builder receives no solids to
create a multi solid from, the multi solid will
be downgraded to a null geometry.
Range: true|false
Default: false

Optional

allow-empty-
composite

This boolean parameter determines if incom-
plete geometry should be left incomplete
instead of producing an error. If set to true,
whenever the geometry builder receives no
solids to create a multi solid from, the multi
solid will be left empty and returned.
Range: true|false
Default: false

Optional

Data Name Value Required/Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

Example: Building a multi solid

multisolid.xml

<?xml version="1.0"?>
<multisolid>

<simplesolid>
<compositesurface>

<simplesurface>
<area>

0.0,0.0,0.0 0.0,1.0,0.0 1.0,0.0,0.0 0.0,0.0,0.0
</area>

</simplesurface>
<simplesurface>

<area>
0.0,0.0,0.0 1.0,0.0,0.0 1.0,1.0,1.0 0.0,0.0,0.0

</area>
</simplesurface>
<simplesurface>

<area>
0.0,0.0,0.0 1.0,1.0,1.0 0.0,1.0,0.0 0.0,0.0,0.0

</area>
</simplesurface>
<simplesurface>

<area>
1.0,0.0,0.0 0.0,1.0,0.0 1.0,1.0,1.0 1.0,0.0,0.0

</area>
</simplesurface>

</compositesurface>
</simplesolid>
<simplesolid>

<compositesurface>
<simplesurface>

<area>
0.0,0.0,0.0 0.0,-1.0,0.0 -1.0,0.0,0.0 0.0,0.0,0.0

</area>
</simplesurface>
<simplesurface>

<area>
0.0,0.0,0.0 -1.0,0.0,0.0 -1.0,-1.0,-1.0 0.0,0.0,0.0

</area>
</simplesurface>
<simplesurface>

<area>
0.0,0.0,0.0 -1.0,-1.0,-1.0 0.0,-1.0,0.0 0.0,0.0,0.0

</area>
</simplesurface>
<simplesurface>

<area>
1.0,0.0,0.0 0.0,-1.0,0.0 -1.0,-1.0,-1.0 -1.0,0.0,0.0

</area>
</simplesurface>

</compositesurface>
</simplesolid>

</multisolid>

multisolid.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="multisolid">

<feature-type> <literal expr="multisolid" /> </feature-type>
<geometry activate="xml-multi-solid" />

</mapping>
</feature-map>
<feature-content-map>

<mapping match="simplesolid">
<geometry activate="xml-enclosed-surface" />

</mapping>
<mapping match="simplesurface">

<geometry activate="xml-face" />
</mapping>
<mapping match="area">

<geometry activate="xml-area">
<data name="data-string"> <extract expr="." /> </data>

</geometry>
</mapping>

</feature-content-map>
</xfMap>

xml-null

The xml-null geometry builder is a non-composite geometry builder, it constructs a geometry object that represents
the null geometry.

builder type: non-composite.

geometry constructed: the null geometry.

data parameters:

Data Name Value Required/Optional

name Specifies the geometry's name

Range: String

Optional

xml-reverse-geometry

The xml-reverse-geometry geometry builder is a composite geometry builder. The builder accepts a single geometry
and reverses the order of its coordinates.

builder type: composite.

geometry constructed: the geometry received with the order of its coordinates reversed

data parameters:

Data Name Value Required/Optional

reverse-geometry Reverses the geometry if it is set to true.

Range: true/false

Default: true

Optional

fme-geometry

This is a non-composite builder that deserializes different geometry types from different geometry serializations.

builder type: non-composite.

geometry constructed:All FME supported geometries.

data parameters:

Data Name Value Required/
Optional

data-string The string containing the serialized geometry.
Range: String

Required

encoding Specifies the encoding of the serialized
geometry. The encoding maybe the FME XML
geometry representation, the FME hex
encoded binary geometry serialization, the
OGC hex encoded WKB serialization or the
OGC WKT serialization.
Range: fme-xml | fme-binary-hex | ogc-
wkb-hex | ogc-wkt.
Default: fme-xml.

Optional

coordinate-system Specifies the coordinate system name. If the
expression sequence for the coordinate-sys-
tem evaluates to the empty string, then the
coordinate system for the feature being built
will not be set.
Range: String
Default: “.”

Optional

name Specifies the geometry’s name.
Range: String

Optional

The following example illustrates the usage of the fme-geometry builder.

fmegeometry.xml

<?xml version="1.0"?>
<feature>

<geom>POINT (-0.915929 0.482301)</geom>
</feature>

fmegeometry.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="feature">

<feature-type> <literal expr="feature" /> </feature-type>
<geometry activate="fme-geometry">

<data name="encoding"><literal expr="ogc-wkt"/></data>
<data name="data-string">

<extract expr="./geom"/>
</data>

</geometry>
</mapping>

</feature-map>
</xfMap>

Mapping Segmented Geometric Information

Sometimes it may take more than one mapping rule to successfully extract the geometric data from the elements in
the input XML document stream. Consider the following polyline element:

<polyline>
<coord>0.0,0.0</coord>
<coord>1.1,2.2</coord>
<coord>5.3,-1.9</coord>
<coord>7.9,3.5</coord>

</polyline>

Refer to FME Feature Construction (defining mapping rules under the <feature-content-map>
element). It explains when mapping rules should be define under the <feature-content-map> element to handle cases
like this one.

What we need here is to activate just one geometry builder B – one that constructs a line geometry. If we just define
one feature mapping rule matching the <polyline> element, then we will not be able to give B the contents of all the
<coord> elements because B gets suspended when the <polyline> element ceases to be the context element.

Recall that a suspended geometry builder may be set to the state of execution if the currently executing mapping rule
contains a <geometry> element having no activate attribute.

We need to re-execute B and pass it the contents of the <coord> element when this element is matched. To achieve,
this we define an additional feature mapping rule, that matches a <coord> element and contains a <geometry> element
with no activate attribute.

The following xfMap document fragment does exactly this. The built-in geometry builder xml-line constructs polyline
features.

<feature-map>
<mapping match="polyline">

...
<geometry activate="xml-line">

</geometry>
</mapping>

</feature-map>

<feature-content-map>
<mapping match="coord">
...
<geometry>

<!-- activate attribute missing, execute
the suspended mapping rule passing it
the parameters that are defined in the
geometry.

NOTE: It is an error to define a mapping rule
of this form if no geometry builder was
activated. -->

<data name=”data-string”>
<extract expr=”.”/>

</data>
</geometry>

</mapping>
</feature-content-map>

Geometry Traits (trait element)

A <geometry> element may have any number of optional <trait> elements. These elements specify any number of geome-
try traits for the geometry that is under construction. Geometry traits passed to the geometry builder in this manner
will appear on the geometry currently being constructed, but will not affect any component geometries in the case
that the traits are passed to a composite builder.

The geometry traits supplied are represented as name and value pairs, both of which have expression sequences as
their values. They are represented in the xfMap by the <trait>, <name>, and <value> elements:

<trait required=”true|false”>
<name> <!-- an expression sequence --> </name>
<value> <!-- an expression sequence --> </value>

</trait>
...
<trait>

...
</trait>

The optional required attribute on the trait element defaults to true, if set to false then the trait is added to the geome-
try only if the trait value is not the empty string.

Once again, if the <geometry> element does not have an activate attribute, then the traits will pass to the currently sus-
pended geometry builder, reactivating it to receive traits.

The following xfMap document, traits.xmp contains a mapping rule which matches a <point> element from the
points1.xml document. The mapping rule contains a geometry element with a couple of simple traits.

points1.xml

<?xml version="1.0"?>
<points>

<point name="myPoint" num="0">
<color>

<red>0.324</red>
<green>0.233</green>
<blue>0.596</blue>

</color>
<location x="10.0" y="0.0" />

</point>
<point name="myPoint" num="1">

<color>
<red>0.874</red>
<green>0.948</green>
<blue>0.554</blue>

</color>
<location x="5.0" y="5.0" />

</point>
</points>

traits.xmp

<?xml version=“1.0”?>
<xfMap>

<feature-map>
<mapping match=“point”>

<feature-type>
<extract expr=“@name” />
<literal expr=“_” />
<extract expr=“@num” />

</feature-type>
<geometry activate=“xml-point”>

<data name=“data-string”>
<extract expr=“./location[@x]” />
<literal expr=“,” />

<extract expr=“./location[@y]” />
</data>
<trait>

<name>
<literal expr=“my_geometry_trait” />

</name>
<value>

<!-- We set the “my_geometry_trait” trait to be
“sample_value” -->

<literal expr=“sample_value” />
</value>

</trait>
<trait>

<name>
<literal expr=“point_num” />

</name>
<value>

<!-- The expression sequence below constructs the
value of “point_num” to be the value of the num
attribute in points1.xml -->

<extract expr=“@num” />
</value>

</trait>
</geometry>

</mapping>
</feature-map>

</xfMap>

When the above points1.xml and traits.xmp documents are fed into the XML Reader, the following FME features are
constructed:

++
Feature Type: myPoint_0'
Attribute(string): fme_feature_type' has value myPoint_0'
Attribute(string): fme_geometry' has value fme_point'
Attribute(string): fme_type' has value fme_point'
Attribute(string): xml_type' has value xml_point'
Coordinate System: '
Geometry Type: IFMEPoint
Number of Geometry Traits: 2
GeometryTrait(string): my_geometry_trait' has value sample_value'
GeometryTrait(string): point_num' has value 0'
Coordinate Dimension: 2
(10,0)
==

++
Feature Type: myPoint_1'
Attribute(string): fme_feature_type' has value myPoint_1'
Attribute(string): fme_geometry' has value fme_point'
Attribute(string): fme_type' has value fme_point'
Attribute(string): xml_type' has value xml_point'
Coordinate System: '
Geometry Type: IFMEPoint
Number of Geometry Traits: 2
GeometryTrait(string): my_geometry_trait' has value sample_value'
GeometryTrait(string): point_num' has value 1'
Coordinate Dimension: 2
(5,5)
==

FME Feature Construction
(constructing multiple features at a time)

XML data is most often hierarchal than “flat”, and so it is common to encounter elements embedded within elements
for which we may want to map both child and parent as features. For example, consider a <building> with <name>,
<location> and several <wall> child elements:

<building>
<name>C10<name>

<location>east side</location>
<wall> ... </wall>
<wall> ... </wall>

</building>

If we want to map both <building> and <wall> elements as FME features then we need one or more mapping rules
matching the <building> and <wall> elements in the xfMap’s <feature-map> element. But by default there’s only one
active feature-search-set. In the example above, the <building> element will trigger the construction of a new FME
feature, then immediately, the one and only feature-search-set will be set to contain mapping rules from the <feature-
content-map> and it will not be set back to the <feature-map> until the </building> end element tag is read, therefore
the “wall” mapping rule in the <feature-map> will never be considered for activation.

The xfMap <feature-map> element may have an optional multi-feature-construction attribute whose default value is false
but may be settable to true. Setting themulti-feature-construction to true allows the XML reader to construct multiple fea-
tures a time by instructing it to always create an additional feature-search-set whose content is the <feature-map>,
recall that only mapping rules in the <feature-map> trigger the construction of a new feature when activated.

For example:

<feature-map multi-feature-construction=”true”>
<mapping match="building">

...
</mapping>
<mapping match="wall">

...
</mapping>

</feature-map>

Structure Element

Every feature mapping rule may contain an optional <structure> element that allows an XML subtree, that is rooted in
a mapping rule's matched element, be added as attribute lists to the FME feature under construction. FME attribute
lists behave just as primitive attributes, except that they may contain an index enclosed in braces to identify an ele-
ment of the list. Attribute list elements may contain primitives or other attribute lists.

The attribute lists indices will likely not correspond to the XML subtree element order. Consider the following XML sub-
tree rooted at <a>:

<a>
<c/>

Element is a repeating child of <a>, but the indices for the list attributes are such that they must increase with-
out gaps and as a consequence the ordering for the children of <a> is lost when we have interweaving repeating
child elements:

a{0}.b{0}
a{0}.b{1}
a{0}.b{2}
a{0}.c{0}

The structure instruction in a feature mapping rule may be specified by a single empty <structure/> element. This
directs the XML reader to start constructing FME attribute lists from the subtree rooted at the matched element:

<mapping match="...">
<feature-type> ... </feature-type>
<attributes> ... </attributes>
<geometry> ... </geometry>
<structure/>

</mapping>

Consider the following XML document, a_items.xml:

a_items.xml

<?xml version="1.0"?>
<a-items>
<a>
a0b0
<c x="first x-val" y="first y-val">a0c0</c>
a0b1
<d><e>a0e</e></d>
a0b2

<f></f>
<g/>

</a-items>

The following xfMap document, a.xmp, maps each <a> element into an FME feature while turning the subtree that is
rooted at <a> into attribute lists:

a.xmp:

<?xml version="1.0"?>
<xfMap>
<feature-map>

<mapping match="a">
<feature-type><literal expr="a"/></feature-type>>
<structure/>

</mapping>
</feature-map>

</xfMap>

The a.xmp constructs the following feature from a_items.xml:

++
Feature Type: a'
Attribute(string): a{0}.b{0}' has value a0b0'
Attribute(string): a{0}.b{1}' has value a0b1'
Attribute(string): a{0}.b{2}' has value a0b2'
Attribute(string): a{0}.c{0}' has value a0c0'
Attribute(string): a{0}.c{0}.x' has value first x-val'
Attribute(string): a{0}.c{0}.y' has value first y-val'
Attribute(string): a{0}.d{0}.e{0}' has value a0e'
Attribute(string): xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==

XML attributes in the FME attribute lists are represented without an index. Notice that the x and y attributes for the
<c> element in the a_items.xml document do not have a list index in the FME feature.

It is important to notice that the <f> and <g> elements in the above example did not map over to the FME feature as
attributes, this is because <f> and <g> do not have character content. To make the XML reader create the cor-
responding FME feature list attributes a{0}.f{0} and a{0}.g{0} for the empty <f> and <g> elements, respectively,
the optionalmap-empty-elements xml attribute for the structure element should be set to yes. For example:

<?xml version="1.0"?>
<xfMap>
<feature-map>

<mapping match="a">
<feature-type><literal expr="a"/></feature-type>>
<structure map-empty-elements=”yes”/>

</mapping>
</feature-map>

</xfMap>

In addition, XML attributes can also be differentiated from leaf elements, by letting the XML reader append a prefix to
their name. The <structure> element may have an optional attribute-identifier xml attribute whose value becomes
the prefix for the name in the FME attribute list.

As noted earlier, the list indices in the generated attribute names only preserve the ordering for elements with the
same name. The child-position-attribute attribute can be used on the structure element to preserve the ordering

of all child elements, regardless of name. When this attribute is specified, each child element will generate an addi-
tional feature attribute whose value will be the position of the child element within its parent. The name of the attrib-
ute will be the list prefix representing the path to the element, followed by the value of the child-position-attribute
attribute. If the attribute-identifier attribute is also specified, it will be used in the feature’s position attribute.

Consider applying the following xfMap, a1.xmp, to the structures_items.xml document. The xfMap appends '@' to
every list component whose name originated from an xml attribute for elements in the subtree rooted at <a>. Also,
each child element has a ‘pos’ attribute containing its position within its parent.

a1.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a">

<feature-type><literal expr="a"/></feature-type>
<structure attribute-identifier="@"

child-position-attribute=”pos” />
</mapping>

</feature-map>
</xfMap>

FME feature constructed:

+++
Feature Type: a'
Attribute(string): a{0}.b{0}' has value a0b0'
Attribute(string): a{0}.b{1}' has value a0b1'
Attribute(string): a{0}.b{2}' has value a0b2'
Attribute(string): a{0}.c{0}' has value a0c0'
Attribute(string): a{0}.c{0}.@x' has value first x-val'
Attribute(string): a{0}.c{0}.@y' has value first y-val'
Attribute(string): a{0}.d{0}.e{0}' has value a0e'
Attribute(string): xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===

A prefix may also be attached to every FME attribute list that is generated through a structure for a matched element.
The xfMap <structure> element may have an optional structure-prefix attribute whose value becomes the attribute
lists prefix. The following a2.xmp xfMap document extends a1.xmp by adding the "myStructurePrefix-" prefix onto
the attribute lists for the constructed feature.

a2.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a">

<feature-type><literal expr="a"/></feature-type>
<structure structure-prefix="myStructurePrefix-"

attribute-identifier="@"/>
</mapping>

</feature-map>
</xfMap>

Applying the a2.xmp xfMap to the structures-items.xml document makes the XML reader construct the following fea-
ture:

+++
Feature Type: a'
Attribute(string): myStructurePrefix-a{0}.b{0}' has value a0b0'
Attribute(string): myStructurePrefix-a{0}.b{1}' has value a0b1'
Attribute(string): myStructurePrefix-a{0}.b{2}' has value a0b2'
Attribute(string): myStructurePrefix-a{0}.c{0}' has value a0c0'
Attribute(string): myStructurePrefix-a{0}.c{0}.@x' has value first x-val'
Attribute(string): myStructurePrefix-a{0}.c{0}.@y' has value first y-val'
Attribute(string): myStructurePrefix-a{0}.d{0}.e{0}' has value a0e'
Attribute(string): xml_type' has value xml_no_geom'

Geometry Type: Unknown (0)
===

In the examples above, the separator used for attributes on the feature is the period ('.'). Thus, the element 'e', child
of element 'd', child of element 'a' is represented as a{0}.d{0}.e{0}. Each <structure> element can have an
optional separator attribute (the default is the period character). If you need to change the separator, this is possible
simply by specifying the separator as shown in the following example.

A3.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a">

<feature-type><literal expr="a"/></feature-type>
<structure attribute-identifier="@" separator="—"/>

</mapping>
</feature-map>

</xfMap>

FME feature constructed:

++
Feature Type: a'
Attribute(string): a{0}--b{0}' has value a0b0'
Attribute(string): a{0}--b{1}' has value a0b1'
Attribute(string): a{0}--b{2}' has value a0b2'
Attribute(string): a{0}--c{0}' has value a0c0'
Attribute(string): a{0}--c{0}--x' has value first x-val'
Attribute(string): a{0}--c{0}--y' has value first y-val'
Attribute(string): a{0}--d{0}--e{0}' has value a0e'
Attribute(string): xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==

It is also possible to tell the XML Reader to ignore the matched element when it is constructing an attribute list. This is
done by setting the optional skip-matched attribute on the xfMap <structure> element to "yes". The valid values for
this attribute are "yes" and "no", and its default value is "no". For example, applying the following xfMap a4.xmp to
the a_items.xml document will remove the a{0} component from the attribute lists for the constructed FME feature :

a4.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a">

<feature-type><literal expr="a"/></feature-type>
<structure skip-matched="yes"

structure-prefix="myStructurePrefix-"
attribute-identifier="@"/>

</mapping>
</feature-map>

</xfMap>

Notice that the a{} component does not appear in the attribute lists:

+++
Feature Type: a'
Attribute(encoded: utf-16): `a{0}.b{0}' has value `a0b0'
Attribute(encoded: utf-16): `a{0}.b{0}.@pos' has value `0'
Attribute(encoded: utf-16): `a{0}.b{1}' has value `a0b1'
Attribute(encoded: utf-16): `a{0}.b{1}.@pos' has value `2'
Attribute(encoded: utf-16): `a{0}.b{2}' has value `a0b2'
Attribute(encoded: utf-16): `a{0}.b{2}.@pos' has value `4'
Attribute(encoded: utf-16): `a{0}.c{0}' has value `a0c0'
Attribute(encoded: utf-16): `a{0}.c{0}.@pos' has value `1'
Attribute(encoded: utf-16): `a{0}.c{0}.@x' has value `first x-val'
Attribute(encoded: utf-16): `a{0}.c{0}.@y' has value `first y-val'
Attribute(encoded: utf-16): `a{0}.d{0}.@pos' has value `3'
Attribute(encoded: utf-16): `a{0}.d{0}.e{0}' has value `a0e'
Attribute(encoded: utf-16): `a{0}.d{0}.e{0}.@pos' has value `0'

Attribute(encoded: utf-16): `a{0}.f{0}.@pos' has value `5'
Attribute(encoded: utf-16): `a{0}.g{0}.@pos' has value `6'
Attribute(string): xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
===

It is also possible to control the appearance of the attributes in those instances where the xml is known to only allow a
single instance of an element. In the example above for instance, the <c> and <d> elements might be constrained to
only occur once. In these cases, the list-suffix is cluttering up the attribute name. The structure element introduces a
mini-language to define the cardinalities of the elements. Below an example is given, followed by more detailed dis-
cussion.

A5.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a">

<feature-type><literal expr="a"/></feature-type>
<structure skip-matched="yes" attribute-identifier="@"

cardinality="*/c */d{}/+ */+"/>
</mapping>

</feature-map>
</xfMap>

FME feature constructed:

++
Feature Type: a'
Attribute(string): b' has value a0b0'
Attribute(string): b{1}' has value a0b1'
Attribute(string): b{2}' has value a0b2'
Attribute(string): c' has value a0c0'
Attribute(string): c.@x' has value first x-val'
Attribute(string): c.@y' has value first y-val'
Attribute(string): d{0}.e' has value a0e'
Attribute(string): xml_type' has value xml_no_geom'
Geometry Type: Unknown (0)
==

The cardinality attribute is a space separated list of cardinality directives. In the previous example, the strings are:

1. */c

2. */d{}/+

3. */+

Each forward-slash separated element indicates an element in the xml-document. The asterisk acts as a wildcard,
matching any element. A literal string matches the name of an element. The use of the braces ({}) indicates that ele-
ment should be treated like a list, while no braces indicates that the element should be treated as singular if possible.
Finally, the trailing '+' or '+{}' indicates that any further elements along this path through the xml-document should
be treated as non-list (+) or list ({}) elements.

In the above example, cardinality (1) matches the <a> element (the root) and the <c> element. This indicates that
both the root and the <c> element should be treated as singular. Attributes are always singular.

Cardinality (2) matches the the <a> element, followed by the <d> element which should be treated as a list, followed
by any number of attributes, all of which should be treated as non-list.

Finally, cardinality (3) matches the root <a>, followed by any other xml elements, all of which should be treated as
singular. In this circumstance "*/+" fixes the cardinality of exactly the same set of attributes as "+" would have.

These three rules are applied in order to determine matches

1. Literal matches are preferred to wildcard matches. E.g. a/+ is preferred to */+

2. Literal matches occurring early in a cardinality expression are preferred to literal matches occurring late. E.g.
a/*/* is preferred to */b/*.

3. Non-list elements are preferred to list elements. So /*/foo/ is preferred to /*/foo{}/.

This doesn't provide a total ordering on the cardinality expressions, since e.g. a/b/c should sort exactly the same way
as d/e/f, but since these will not match the same elements, the order doesn't matter. The basic elements of a car-
dinality expression are: literal matches, consisting of characters matching the name of an xml-element; wildcard
matches: "*{}", "*" matching exactly one element, and treating it as a list, or non-list (respectively); and an optional
suffix: +{}, + to indicate that any further matches should be treated as non-list or list (respectively).

In case there are no matches found, the default behaviour is to assume that the cardinality is specified as "+{}". In
order to match, an attribute path (e.g. <a><c/> is matched by a.b.c) must be exactly as long as
the cardinality expression. The only exception is that the suffixes "+" and "+{}" extend the cardinality expression as
long as is necessary to match a string.

In addition to specifying element names, forward-slash separated elements can also include a namespace prefix and
a colon. If a namespace prefix is specified, then the colon must also be specified. In all cases, an element namemust
also be specified (possibly as a wildcard). If no namespace prefix is given, the effect is the same as specifying a wild-
card for the prefix. It is possible to specify a "blank" prefix, by having nothing before the colon. In this case, it will
only match if the actual element's prefix is the empty string.

In other words:

1. a/b/*/+ is the same as *:a/*:b/*:c/+

2. a/:b/c will match a element but not a <test:b> element (where <a> and <c> match)

The '+' and '+{}' suffixes do not currently take a namespace specifier.

If one wants to include the prefix in the name of the attribute (in order to treat elements from different namespaces as
different attributes on their FME feature), one must set the attribute "use-namespace-prefix" on the structure ele-
ment to "yes".

Note that there is no interaction between the skip-matched attribute and the cardinality attribute. This means that
even if skip-matched="yes", an element in the cardinality expression must still match it. For example, if we had spec-
ified the structure element in a5.xmp to be

<structure skip-matched="yes" cardinality="c d/+{} */+"/>

The result would have been that the only match would be */+, since none of the other cardinality expressions would
match the <a> element. In normal use, this simply means that the first element in the cardinality expression should
be either a wildcard or the name of the matching element. This can be usefull if one wishes to match a number of dif-
ferent elements, some of which have different cardinality constraints. It allows quite succinct xfMaps to be written.

a6.xmp

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="a-list/*">

<feature-type><matched expr="local-name"/></feature-type>
<structure cardinality="a/b{}/+ a/b{}/c/+{} z/c{}/d{}/e"/>

</mapping>
</feature-map>

</xfMap>

The above example will match any element that is a child of the element "a-list", name the feature according to the ele-
ment matched, and then use the cardinalities given to determine how to write the attributes out.

Finally, we would often like to exclude some elements of an xml tree from conversion into FME attributes. An obvious
case is one such as the following, were we want to map all the xml leaf elements to FME attributes, except those which
are used to construct the geometry of the feature.

A7.xml:

<?xml version="1.0"?>
<features>
<feature>
<name>Downtown Harbour</name>
<age>132 years </age>

<lat>100</lat>
<lon>54.2</lon>

</feature>
<feature>
<name>EastSide Harbour</name>
<age>38 years </age>
<lat>101.2</lat>
<lon>54.8</lon>

</feature>
</features>

a7.xmp:

<?xml version="1.0"?>
<xfMap>

<feature-map>
<mapping match="feature">

<feature-type><literal expr="Harbour"/></feature-type>
<geometry activate="xml-point">

<data name="data-string>
<extract expr="./lat"/>
<literal expr=","/>
<extract expr="./lon"/>

</data>
</geometry>

<structure skip-matched="yes"
cardinality="+"
except="lat lon"/>

</mapping>
</feature-map>

</xfMap>

FME feature constructed:

++
Feature Type: Harbour'
Attribute(string): name' has value Downtown Harbour'
Attribute(string): age' has value 132'
Attribute(string): xml_type' has value xml_point'
Geometry Type: IFMEPoint
(100,0, 58.2)
Feature Type: Harbour'
Attribute(string): name' has value Eastside Harbour'
Attribute(string): age' has value 37'
Attribute(string): xml_type' has value xml_point'
Geometry Type: IFMEPoint
(101,2, 54.8)
==

Here we explicitly exclude the xml elements <lat> and <lon> in order to extract them using the geometry tag (dis-
cussed elsewhere in the xfMap documentation). This avoids having attributes which mirror the geometry.

The except attribute accepts the same types of expressions as the match or except attribute of a mapping rule. For
example, the expression except=”parent/child{2}” could be used to exclude the second <child> element contained
in a <parent> element from the output of the structure subrule.

Note that, currently, <structure> elements cannot be constructed in parallel on a feature – only one can be con-
structed at a time.

References Element

A feature mapping rulemay also contain an optional <references> element. This element specifies reference-sets that
hold name/value pairs that may be accessed via <refexpr> expression elements. A detailed description for the <ref-
erences> element and its content may be found in the Reference Mapping Rules section.

In a feature mapping rule the <references> element should appear before the <feature-type> element, for example:

<feature-map>
<mapping match="...">

...
<references>...</references>
<feature-type>...</feature-type>
...

</mapping>
</feature-map>

Group Mapping Rules

Group mapping rules specify the construction of xfMap groups, and they must be defined inside the <group-map> or
<group-content-map> elements.

FME features that are created through the feature mapping rules may be further processed by the xfMap groups,
these are processing entities that reside inside the XML Reader in which features may enter and leave, but while
inside a group, the features may be further modified through:

a. the attachment of group specific attributes, and/or

b. the processing of an FME factory pipeline.

All group mapping rules whether they’re defined under the <group-map> or the <group-content-map> elements have the
same structure.

Unlike the feature mapping rules every group mapping rule when activated, regardless of where it is defined,
triggers the XML Reader to construct a new group.

Group Construction and Destruction

We now describe when an xfMap group is created and destructed. If we let R be a group mapping rule defining the
group G, then:

a. G is constructedwhen R is activated, and

b. G is destructed when R is de-activated, but only if:

1. Rwas defined in the <group-map> element, or

2. G is not a persistent group.

The XML Reader keeps a stack of constructed groups; for expository convenience we’ll name this stack the g-stack.
When R activates, G is pushed into the g-stack, G is popped from the g-stack when R de-activates.

Note: If for the moment we ignore the existence of persistent groups, then what b) says is that a group G is
destructed whenever its corresponding mapping rule R is de-activated. Furthermore, if R was defined in the
<group-map> element, then it does not matter if G is a persistent group or not, because it will always be destroyed
when R de-activates. That is, there is no reason to define a group in the <group-map> element to be a persistent
group: it will never persist because the condition in b) 1) does not allow it.

FME features that are constructed by feature mapping rules will enter all groups that are in the g-stack from the top
until the bottom group of the stack. The FME features that leave the bottom group of the g-stack are output by the
XML Reader.

Group Attribute-sets

A group can attach a set of attributes to the FME features that enter it. These attribute sets are defined in the group
mapping rule by the optional <apply-attribute-sets> element.

The <apply-attribute-sets> element can have one or more <attribute-set> elements that describes an attribute collection
through its <attributes> element (see the section “feature mapping rules - attributes element”).

Each <attribute-set> element may also contain an optional <condition> element (see section “group mapping rule - con-
dition element”) that allows or prevents a feature from entering into the attribute set.

The general form of the <apply-attribute-sets> element is:

<apply-attribute-sets>

<attribute-set>
<!-- optional condition -->
<condition .../>
<attributes>...</attributes>

</attribute-set>
...
<attribute-set>...</attribute-set>

</apply-attribute-sets>

The following example illustrates the usage of the group mapping rules’s attribute sets. Consider the cleaning.xml
input XML document:

cleaning.xml

<?xml version=”1.0”?>
<cleaning-schedule date=”09 Mar 2001”>

<staff first-name=”John” last-name=”Norton” id=”00098”>
<room>302</room>
<room>210</room>
<room>450</room>

</staff>
<staff first-name=”Laura” last-name=”Lee” id=”00029”>

<room>192</room>
<room>597</room>

</staff>
</cleaning-schedule>

Wemap each of the above <room> elements into an FME feature. We use group mapping rules to add the information
from the <cleaning-schedule> and <staff> elements (refer to the comments in the xfMap document below for further
detail):

cleaning.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>

<xfMap>
<group-map>

<mapping match=”cleaning-schedule”>
<!-- This group mapping rule activates when the cleaning-schedule

element start-tag is read. The group constructed, called
it G0, has one attribute set which attaches to the
features that enters it. G0 is pushed into the XML Reader’s
g-stack, and it will be the first group in the stack. -->

<apply-attribute-sets>
<attribute-set>

<attributes>
<attribute>

<name> <literal expr=”cleaning date”/> </name>
<value> <extract expr=”@date”/> </value>

</attribute>
</attributes>

</attribute-set>
</apply-attribute-sets>

</mapping>
</group-map>

<group-content-map>
<mapping match=”staff”>

<!-- This mapping rule is activated when the staff element
start-tag is read. The group constructed, called it G1,
is pushed into the g-stack, it is popped after the
staff element’s end-tag is read. G1 contains an attribute set
with two attributes which get attached to features that enter

the group. -->
<!-- The ‘room’ features that are constructed by the

feature mapping rule below will pass through G1 and
then through G0 before being output. Notice the attribute
set contents of G1 changes (there will be two G1s created
since there are two staff elements in the input dataset. -->

<apply-attribute-sets>
<attribute-set>

<attributes>
<attribute>

<name> <literal expr=”staff name”/> </name>
<value>

<extract expr=”@first-name”/>
<literal expr=” ”/>
<extract expr=”@last-name”/>

</value>
</attribute>
<attribute>

<name> <literal expr=”staff id”/> </name>
<value> <extract expr=”@id”/> </value>

</attribute>
</attributes>

</attribute-set>
</apply-attribute-sets>

</mapping>
</group-content-map>

<feature-map>
<mapping match=”room”>

<feature-type> <literal expr=”room”/> </feature-type>
<attributes>

<attribute>
<name> <literal expr=”room number”/> </name>
<value> <extract expr=”.”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

The two documents above make the XML Reader output the following 5 FME room features:

+++
Feature Type: `room'
Attribute: `cleaning date' has value `09 Mar 2001'
Attribute: `room number' has value `302'
Attribute: `staff id' has value `00098'
Attribute: `staff name' has value `John Norton'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `room'
Attribute: `cleaning date' has value `09 Mar 2001'
Attribute: `room number' has value `210'
Attribute: `staff id' has value `00098'
Attribute: `staff name' has value `John Norton'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `room'
Attribute: `cleaning date' has value `09 Mar 2001'
Attribute: `room number' has value `450'
Attribute: `staff id' has value `00098'

Attribute: `staff name' has value `John Norton'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `room'
Attribute: `cleaning date' has value `09 Mar 2001'
Attribute: `room number' has value `192'
Attribute: `staff id' has value `00029'
Attribute: `staff name' has value `Laura Lee'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `room'
Attribute: `cleaning date' has value `09 Mar 2001'
Attribute: `room number' has value `597'
Attribute: `staff id' has value `00029'
Attribute: `staff name' has value `Laura Lee'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

Group Pipelines

A group may contain a sequence of FME factory pipelines that processes features entering it. A group mapping rule,
that defines a group with pipelines, has an <apply-pipelines> element which contains a sequence of one or more <pipe-
line> elements.

Each <pipeline> element has a <file> element that specifies the location of the file containing the definition of an FME fac-
tory pipeline. The location of the file is specified with the <file> element’s name attribute. In addition, optional pipeline
directives may be specified through the <directives> element. The name and value for each optional directive are spec-
ified through expression sequences.

<pipeline>
<file name="theFeatureProcessingPipeline.fmi"/>
<directives>

<directive>
<name> ... some expression sequence ... </name>
<value> ... some expression sequence ... </value>
</directive>
...
<directive> ... </directive>

</directives>
</pipeline>

Note: The location of the pipeline file may be specified with an absolute or relative path. When the path is relative,
then it is assumed that it is relative to the location of the xfMap document.

Each <pipeline> element may also contain an optional <condition> element (see section “group mapping rule - condition
element”) that allows or prevents a feature from entering into the pipeline.

The following illustrates the usage of group pipelines. Consider the following input XML and xfMap documents:

group.xml

<?xml version=”1.0”?>
<group>

<member id=”290”/>
</group>

pipeline.xmp

<?xml version=”1.0”?>

<xfMap>

<group-map>
<mapping match=”group”>

<!-- The group object contains one FME factory pipeline that is
defined in the pipeline.fmi file. This files is in the
same directory as the pipeline.xmp xfMap.
The features construted in the feature mapping rule
below will enter this group and its pipeline for
further processing.-->

<apply-pipelines>
<pipeline>

<!-- The section titled ‘condition element’ describes the
function of this element as a filter that prevents or
allows features entering the the pipeline.
Here only feature’s having an attribute call id
with the value of 290 are allowed into the pipeline
other features do not enter, they just by pass it. -->

<condition feature=”@id=’290’”/>
<file name=”pipeline.fmi”/>

</pipeline>
</apply-pipelines>

</mapping>
</group-map>

<feature-map>
<mapping match=”member”>

<feature-type> <literal expr=”member”/> </feature-type>
<attributes>

<attribute>
<name> <literal expr=”id”/> </name>
<value> <extract expr=”@id”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

This is the FME factory defined in the pipeline.fmi file:

FACTORY_DEF * TeeFactory \
INPUT FEATURE_TYPE member \
OUTPUT FEATURE_TYPE member isCopy false \
OUTPUT FEATURE_TYPE member isCopy true

The FME features output by the XML Reader are:

+++
Feature Type: `member'
Attribute: `id' has value `290'
Attribute: `isCopy' has value `false'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `member'
Attribute: `id' has value `290'
Attribute: `isCopy' has value `true'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

Condition Element

Features that enter a group will also enter all its attribute sets and pipelines by default. Each attribute set and pipe-
line may contain an optional condition that allows an FME feature to enter it, or prevents and FME feature from enter-
ing it. The optional condition is represented in xfMap by the <condition> element:

<condition .../>

The <condition> element has two attributes named feature and element that take Boolean expressions as values. The fea-
ture attribute Boolean expression is evaluated on the attributes of the FME feature that entered the group. The element
attribute Boolean expression is evaluated on the attribute of the element that matched the group mapping rule. At
least one of the feature or element attributes must be present in the <condition> element. The following are the valid com-
binations:

<condition feature=”...”/>

<condition element=”...”/>

<condition feature=”...” element=”...”/>

The <condition> element also has an optional type attribute that specifies whether the feature and element Boolean
expressions should form a conjunction or a disjunction. The valid values for the type attribute are and (for a con-
junction), and or (for a disjunction). Its default value is and:

<condition feature=”...” type=”and” element=”...”/>

<condition feature=”...” type=”or” element=”...”/>

The grammar for both the feature and the element Boolean expressions is:

booleanExpr = attrCondition
| andExpr
| orExpr
| ‘(‘ booleanExpr ‘)’

andExpr = booleanExpr ‘and’ booleanExpr
orExpr = booleanExpr ‘or’ booleanExpr

attrCondition = ‘@’attrName(‘+’ | ‘-’) |
‘@’attrName(‘=’|’!=’)’%’? (‘"‘|"‘")attrValue(‘"‘|"‘")

Note: The XML Reader evaluates a Boolean expression in a right associative way. Use parentheses to indicate the
intended precedence when using complex Boolean expressions.

Except for the% sign in the right-hand side of the attrCondition production, the grammar of the Boolean expression is
identical tomapping rule’s match condition (see the section titled “mapping rules - the match expression”).

The% sign is used to access let variables inside the Boolean expression. Let variables are described in the section
titled “mapping rules (optional elements) - define element”.

Persistent Groups

A group is persistent if the group mapping rule that defines it has a <persist> element.

A persistent group that is not the last group in the g-stack will not be destroyed when its corresponding mapping rule
de-activates.

Note: A group mapping rule defined under the <group-map> element may have a <persist> element, but this indi-
cation for the group to persist is always ignored by the XML Reader, this group, by construction, will always be the
last one left in the g-stack (seeGroup Construction and Destruction).

When a persistent group is popped from the g-stack it can persist inside other g-stack groups. The <persist> element
has an optional in attribute that specifies where it may persist. The valid values for this attribute are parent-group and
base-group (where parent_group is the default value):

<persist in=”...”>

The parent-group of a persistent group is the group that will be at the top of the g-stack when the persistent group is
popped. The base-group is the group that is at the base of the g-stack; it is the first group pushed into the stack; it is
the group constructed from the activation of a group mapping rule that was defined under the <group-map> element.

FME features that are constructed by feature mapping rules will enter all the groups that are in the g-stack from the
top until the bottom of the stack. If a group in the stack has persistent groups, then the features will first enter the
persistent groups before entering into the group’s own attribute sets and pipelines.

The following example shows why persistent groups are sometimes needed.

group_persist.xml

<?xml version=”1.0”?>
<group>

<group-property name=”section”>C-23</group-property>
<group-property name=”location”>Z-Edifice</group-property>
<group-property name=”op-code”>580ld-3</group-property>
<member id=”290”/>
<member id=”350”/>
<member id=”300”/>

</group>

Wewant to map each <member> element into an FME feature, but we’ll also like to attach the information from each of the <group-prop-
erty> elements to themember feature. The following xfMap document achieves this by the usage of persistent groups:

group_persist.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>

<xfMap>
<group-map>

<!-- We create a group here for the sole purpose of having a
group to persist on. The groups constructed in the
group-content-map may persist in this group.

Features that enter this group will be processed
by this group’s ‘persistent groups attribute sets’.

-->
<mapping match=”group”/>

</group-map>

<group-content-map>
<mapping match=”group-property”>

<!-- The group is constructed and pushed into the g-stack when the
group-property start-tag is read, when the end-tag is
read, then the group is popped from the g-stack.

The group is not destroyed, it will persist in its
parent-group, in this case it is the group that
is constructed in the group-map above.

We make this group persist, since otherwise this group
is destroyed when the group-property element end-tag
is read so that this group attribute set will not be
attached to any feature.-->

<persist/>
<apply-attribute-sets>

<attribute-set>
<attributes>

<attribute>
<name> <extract expr=”@name”/> </name>
<value> <extract expr=”.”/> </value>

</attribute>
</attributes>

</attribute-set>
</apply-attribute-sets>

</mapping>
</group-content-map>

<feature-map>
<mapping match=”member”>

<feature-type>
<literal expr=”member-”/> <extract expr=”@id”/>

</feature-type>
</mapping>

</feature-map>
</xfMap>

The two documents above make the XML Reader output the following FME features:

+++
Feature Type: `member-290'
Attribute: `location' has value `Z-Edifice'
Attribute: `op-code' has value `580ld-3'
Attribute: `section' has value `C-23'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `member-350'
Attribute: `location' has value `Z-Edifice'
Attribute: `op-code' has value `580ld-3'
Attribute: `section' has value `C-23'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `member-300'
Attribute: `location' has value `Z-Edifice'
Attribute: `op-code' has value `580ld-3'
Attribute: `section' has value `C-23'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

A group actually contains two places where it may adopt persistent groups. By default the group adopts a persistent
group in its low-priority list, the <persist> element has an optional priority attribute that specifies if a persistent group
should be adopted into a group’s low- or high-priority lists.

A group will always process FME features through its high-priority persistent groups before the low-priority ones.
The valid values for the priority attribute are low and high, with low being the default value.

For example, the following group mapping rule defines a persistent group to persist in its parent group high-priority
list:

<group-content-map>
<mapping match=”manifold”>

<persist in=”parent-group” priority=”high”/>
...

</mapping>
</group-content-map>

Reference Mapping Rules

Reference mapping rules specify the construction of xfMap reference-sets, and they must be defined inside the <ref-
erence-map> or <reference-content-map> elements.

References allow an xfMap to store values that need to be accessed later in the input stream. All reference mapping
rules, whether they’re defined under the <reference-map> or the <reference-content-map> elements, have the same
structure. Similar to group mapping rules but unlike feature mapping rules, every reference mapping rule when acti-
vated, regardless of where it was defined, triggers the XML Reader to construct a new reference-set.

Reference-Set Construction and Destruction

Let R be a reference mapping rule defining a set of references S, then:

a. S is constructedwhen R is activated, and

b. S is destructedwhen R is de-activated, but only if:

1. Rwas defined in the <reference-map> element, or

2. S is not a persistent reference-set.

As with xfMap groups, constructed reference-sets can be pictured as residing in some sort of stack, we call this the
r-stack, where the top of the stack houses the most immediate constructed reference-set. A destructed reference-
set is removed from the r-stack unless it was specified to be a persistent.

Reference-Sets

A reference-set contains references that may be accessed by other mapping rules through the <refexpr> expression
wherever an expression sequence is allowed. A reference-set is defined in a reference mapping rule by the <ref-
erences> element.

The <references> element may contain zero or more <reference> elements. Each <reference> element defines a single ref-
erence in the set. In addition, each referencemay belong to a particular named group, so that several references in a
set may have the same name as long as they belong to different groups. An optional group-name attribute in a <ref-
erence> element names the group for a reference. References defined without a group-name belong in the default
group of a reference-set.

<mapping match=”...”>
<references>
<!-- Defined 2 references in group-1 -->

<reference group-name=”group-1”>
...
</reference>
<reference group-name=”group-1”>
...
</reference>
...
<!-- Define a reference in the default group -->
<reference>
</reference>

</references>
</mapping>
A reference has a name and a value. The name and value for each reference are spec-
ified through expression sequences.
<reference>

<name> ... some expression sequence ... </name>
<value> ... some expression sequence ... </value>

</reference>

A reference has a name and a value. The name and value for each reference are specified through expression
sequences.

<reference>
<name> ... some expression sequence ... </name>
<value> ... some expression sequence ... </value>

</reference>

The name along with the reference’s group-name together form the handle for the interested value we wish to store.
The value of a reference can be accessed with an refexpr expression, that is, the value for a stored reference can be
accessed wherever an expression sequence is allowed.

The r-stack, the stack of constructed reference-sets, is searched from top to bottom for stored references. Therefore,
newer reference-sets having the same reference handles as previous constructed and non-destroyed references-
sets always override older references.

Persistent Reference-Sets

A reference-set is removed from the r-stack and destroyed as soon as its originating mapping rule is deactivated. If
there is a need to keep references for a longer period then its reference-set can be made to persist on the sets that

still reside in the r-stack. A reference-set whose originating mapping rule is being deactivated can be made to persist
either at the top or at the bottom of the r-stack.

The persist attribute in the <references> element allows a reference-set to be persisted beyond the deactivation of its
originating mapping rule. The valid values for the persist attribute are true and false. A reference-set is not persisted
by default, so an absent persist attribute has the same effect as setting it to false.

<references persist=”true|false”>
...
</references>

By default, a persistent reference-set persists in the set at the top of the r-stack. This persistent set will be destroyed
as soon as its containing set is also destroyed. For convenience, the xfMap allows a set to be persisted in the set at the
bottom of the r-stack. The <references> element’s optional persist-in attribute can be used to control this. The valid
values for the persist-in attribute are parent and base. Setting the persist-in attribute to base allows a set to be persisted
at the bottom of the r-stack. By default, a persistent reference-set will be persisted in the set at the top of the stack –
this is the same as setting the persist-in attribute to parent.

<references persist=”true” persist-in”parent|base”>
...
</references>

A reference-set persisting in another reference-set overwrites the references in the host set.

refexpr Expressions

The refexpr expression allows access to stored reference values and is represented in the xfMap by the <refexpr> ele-
ment.

The general syntax for the element is:

<refexpr expr=”...” default=”...” reference-group=”...” r-stack=”...”>
<arg> ... optional reference name as expr seq ... </arg>
<arg> ... optional default value as expr seq ... </arg>

</refexpr>

The expr attribute denotes the name for a stored reference. The optional default attribute may contain the value
returned by the expression in the case that a reference by that name is not found in any of the constructed reference-
sets. This may occur if the reference was never stored or if the reference-set containing that reference was already
destroyed.

Both <arg> child elements in the <refexpr> element are optional.

The expr attribute is required but it may be the empty string, in which case the first <arg> child element must be
present, and the evaluated expression sequence for this first argument becomes the reference’s name to search.

If the default attribute is absent or if it is present but its value is the empty string, then the second argument, if
present, is evaluated to become the default value for the expression in the case that the reference is not found.

The reference-group attribute is optional and it specifies the group-name for a reference in a reference-set. If the ref-
erence-group attribute is absent, then the default group in a reference-set is assumed.

The r-stack attribute is optional and it specifies the starting place to search for values in the stack of reference-sets.
The valid values for the r-stackattribute are top, previous and bottom, with top being the default value.

Example

Consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<zones>

<class>
<code v="HP">Historic Park</code>
<code v="NE">Natural Environment Park</code>
<code v="NP">National Park</code>
<code v="PA">Protected Area</code>

</class>

<zone name="A-1" class="NE"/>
<zone name="B-3" class="PA"/>
<zone name="D-H" class="HP"/>

</zones>

The following xfMap maps each <zone> element into an FME feature. A class attribute is also added to the feature, but
we use the class’s long descriptive name rather than class’s code as its value:

<?xml version="1.0" encoding="UTF-8"?>
<xfMap>

<reference-map>
<!-- construct an empty reference-set for other references-sets to persist in. This
reference-set will only be destroyed when the </zones> end tag is read -->

<mapping match="zones">
</mapping>

</reference-map>

<reference-content-map>
<!-- For each <code> element built a reference-set with one reference belonging to

the “codes” reference group, the name of the reference will be the code id,
the value in the “v” attribute, and the reference value is the descriptive
name of the code. We also make this reference-set persist, it will persist in the
parent reference-set, in this case, this is the reference-set that was constructed
when the <zones> element got matched. -->

<mapping match="class/code">
<references persist="true">

<reference group-name="codes">
<name><extract expr="@v"/></name>
<value><extract expr="."/></value>

</reference>
</references>

</mapping>
</reference-content-map>

<feature-map>
<mapping match="zone">

<feature-type><literal expr="zone"/></feature-type>
<attributes>

<attribute>
<name><literal expr="name"/></name>
<value><extract expr="@name"/></value>

</attribute>
<attribute>

<name><literal expr="class"/></name>
<value>

<refexpr expr="" reference-group="codes">
<arg><extract expr="@class"/></arg>

</refexpr>
</value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

+++
Feature Type: `zone'
Attribute(string): `class' has value `Natural Environment Park'
Attribute(string): `name' has value `A-1'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `zone'
Attribute(string): `class' has value `Protected Area'
Attribute(string): `name' has value `B-3'

Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `zone'
Attribute(string): `class' has value `Historic Park'
Attribute(string): `name' has value `D-H'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

Mapping Rules (Optional Elements)

This section describes the optional elements of a mapping rule. All mapping rules, whether they are feature, group,
or reference mapping rules may contain these elements.

Signature Element

The signature of a mapping rule serves two purposes:

1. it identifies the mapping rule by name, and

2. it declares some named parameters, which are passed into a mapping rule on activation.

The signature of a mapping rule is defined with the optional <signature> element. The <signature> element has a name
attribute that defines the name of the mapping rule. The mapping rule’s optional named parameters are defined via
the <signature>’s <params> child element; this element contains a sequence of one or more <param> elements that spec-
ify the names of the parameters via their name attribute:

<mapping match=”...”>
<signature name=”myMappingRule”/>
...

</mapping>

<mapping match=”...>
<signature name=”myOtherMappingRule”>

<params>
<param name=”firstParam”/>
<param name=”secondParam”/>

</params>
</signature>

</mapping>

myOtherMappingRule has two named parameters: firstParam, and secondParam. The value of a named parameters is a
expression sequence and it may be access via the parmval expression element.

Expression Element (parmval Expressions)

The parmval expression allows access to the mapping rule’s parameters by referring to them by name in its expres-
sion string. The parmval expression is represented in xfMap by the <parmval> element; its expr attribute holds the
value of its expression string:

<parmval expr="the-name-of-a-mapping-rule-parameter"/>

The actual value for a parameter in an activated mapping rule R1must be supplied by a mapping rule R0, where R0 is
the mapping rule that got suspended when R1 activated.

The expr value for the parmval expression may be optionally specified via a named argument. This allows the expr
value to be constructed programatically by an expression sequence. The argument must be named ‘expr’ and it must
take the following form:

<parmval><arg named="expr">...any expression sequence...</arg></parmval>

For example, the following mapping rule sets the feature type with a parmval expression:

<mapping match=’...’>
<signature name=’myRule’>

<params>
<param name=”firstParam”/>

<param name=”theFeatureType”/>
</params>

</signature>

<feature-type>
<parmval expr=”theFeatureType”/>
<literal expr=”_”/>
<parmval>

<arg name=”expr”>
<literal expr=”firstParam”/>

</arg>
</parmval>

</feature-type>
</mapping>

Use-Mappings Element (supplying the parameters)

The optional <use-mappings> element must be the last element in a mapping rule. This element contains a sequence of
one or more <use> elements that identifies a mapping rule by its signature name through the name attribute:

<mapping match=”...”>
...
<use-mappings>

<use name=”myMappingRule1”/>
<use name=”myMappingRule2”/>
...

</use-mappings>
</mapping>

The above only specifies parameter-less mapping rules. To supply the parameters for a mapping rule, the <use> ele-
ment may optionally have an <args> element. The <args> element can have one or more <arg> elements that take
expression sequences as their values:

<mapping match=”...>
...
<use-mappings>

<use name=”myMappingRule1”/>
<args>

<arg> <!-- arg0 --> </arg>
...
<arg> <!-- argN --> </arg>

</args>
</use>

...
</use-mappings>

</mapping>

ThemyMappingRule1mapping rule’s signature must contain (N+1) named parameters.

Use-Mappings Element (limiting the active-search-set)

The <use-mappings> element of an executing mapping rule changes the default contents of an active-search-set (see
theContents of an active-search-set (Default Contents)). It limits the contents of an active-search-set to
the mapping rules listed under its <use> elements.

For example, if the following is a feature mapping rule:

<mapping match=”...”>
...
<use-mappings>

<use name=”mr1”/>
<use name=”mr2”/>

</use-mappings>
</mapping>

Then, when the above feature mapping rule is executing, its feature-search-set (recall that the feature-search-set is
the feature mapping rule’s active-search-set) will only contain the feature mapping rules mr1 and mr2.

Consider the following input XML document:

drawing.xml

<?xml version=”1.0”?>

<drawing>
<figure>

<color type=”background”>
<component type=”red”>0.949</component>
<component type=”green”>0.357</component>
<component type=”blue”>0.283</component>

</color>
<color type=”foreground”>

<component type=”red”>0.532</component>
<component type=”green”>0.899</component>
<component type=”blue”>0.521</component>

</color>
</figure>

</drawing>

The following xfMap document maps the above <figure> element into an FME feature:

drawing.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>

<xfMap>
<feature-map>

<mapping match=”figure”>
<feature-type> <literal expr=”figure”/> </feature-type>

</mapping>
</feature-map>

<feature-content-map>
<mapping match=”color”>

<!-- The use-mappings element will limit the feature-search-set
to contain only the mr_colors mapping rule.

The value of the type attribute from the color element is
passed as an argument to the mr_colors mapping rule.-->

<use-mappings>
<use name=”mr_colors”>

<args>
<arg> <extract expr=”@type”/> </arg>

</args>
</use>

</use-mappings>
</mapping>

<mapping match=”component”>
<-- The signature of this mapping rule has 1 named parameter

called colorType, its value is passed as an argument from
the mapping rule above. -->

<signature name=”mr_colors”>
<params>

<param name=”colorType”/>
</params>

</signature>

<attributes>
<attribute>

<name>
<!-- Access the colorType parameter. -->
<parmval expr=”colorType”/>
<literal expr=”.”/>
<extract expr=”@type”/>

</name>
<value> <extract expr=”.”/> </value>

</attribute>
</attributes>

<-- NOTE: This mapping rule does not have a use-mappings element.
When this mapping rule is executing the feature-search-set is
set to its default contents. That is, all of the feature mapping

rules defined under the feature-content-map -->
</mapping>

</feature-content-map>
</xfMap>

The FME feature created is:

+++
Feature Type: `figure'
Attribute: `background.blue' has value `0.283'
Attribute: `background.green' has value `0.357'
Attribute: `background.red' has value `0.949'
Attribute: `foreground.blue' has value `0.521'
Attribute: `foreground.green' has value `0.899'
Attribute: `foreground.red' has value `0.532'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

Define Element

The <define> element allows expression sequences to be named and referenced in other expression sequences
through that name. It contains a sequence of one or more <let> elements. Each <let> element defines a let definition,
and the name of the let definition is specified via the <let> element’s name attribute while its value is an expression
sequence:

<define>
<let name=”myExprSeq”>

<!-- some expression sequence -->
</let>
<let name=”myOtherExprSeq”>

<!-- some expression sequence -->
</let>
...

</define>

These let expression sequences may be accessed in two different ways: by the defnval expressions, or by the <con-
dition> element’s Boolean expression % token. The defnval expression is described in defnval Expressions. This
section describes the% token in the <condition> element’s Boolean expressions.

Recall that unlike the mapping rule’s match Boolean expression, the Boolean expressions from the <condition> element
may contain an extra% token, which is reproduced for reference below.

booleanExpr = attrCondition
| andExpr
| orExpr
| ‘(‘ booleanExpr ‘)’

andExpr = booleanExpr ‘and’ booleanExpr
orExpr = booleanExpr ‘or’ booleanExpr

attrCondition = ‘@’attrName(‘+’ | ‘-’) |
‘@’attrName(‘=’|’!=’)’%’? (‘"‘|"‘")attrValue(‘"‘|"‘")

The token %means to interpret the attrValue as the name of a let definition. The value of the let definition attrValue, an
expression sequence, is then substituted for comparison.

The following example illustrates how the let definitions may be accessed through the <condition> element’s Boolean
expressions.

players.xml

<?xml version=”1.0”?>

<players>
<positions>

<position name=”Josephine” type=”forward”/>
<position name=”Joan” type=”backward”/>

</positions>
<player>

<name>Josephine</name>
<age>16</age>

</player>
<player>

<name>Joan</name>
<age>17</age>

</player>
</players>

We would like to map each <player> element into an FME feature. We would also like to add a position attribute that
describes the player’s position to the FME feature. Notice that all position information precedes the data of the individ-
ual players; therefore we’ll use group mapping rules:

players.xmp

<?xml version=”1.0”?>

<xfMap>
<group-map>

<!-- We create this group so that the groups that are constructed
out of the position elements can persist here. -->

<mapping match=”players”/>
</group-map>

<group-content-map>
<mapping match=”positions/position”>

<!-- A group is constructed for every position element, when
the position element end-tag is read the group is defined
to persist in its parent-group (i.e., the group defined
in the group-map above). -->

<define>
<!-- This let definition will be access by the

condition element below. We want to keep track
of the name of this player that started this group. -->

<let name=”playerName”> <extract expr=”@name”/> </let>
</define>
<persist/>
<apply-attribute-sets>

<attribute-set>
<!-- Only features that have an attribute called

‘name’ with its value equal to the value
of the expresion sequence denoted by ‘playerName’
will receive the attribute set. -->

<condition feature=”@name=%’playerName’”/>
<attributes>

<attribute>

<name> <literal expr=”position”/> </name>
<value> <extract expr=”@type”/> </value>

</attribute>
</attributes>

</attribute-set>
</apply-attribute-sets>

</mapping>
</group-content-map>

<feature-map>
<mapping match=”player”>

<feature-type> <literal expr=”player”/>
<attributes>

<attribute>
<name> <literal expr=”name”/> </name>
<value> <extract expr=”./name”/> </value>

</attribute>
<attribute>

<name> <literal expr=”age”/> </name>
<value> <extract expr=”./age”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

The FME features output when the above players.xml and players.xmp are fed into the XML Reader are:

+++
Feature Type: `player'
Attribute: `age' has value `16'
Attribute: `name' has value `Josephine'
Attribute: `position' has value `forward'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `player'
Attribute: `age' has value `17'
Attribute: `name' has value `Joan'
Attribute: `position' has value `backward'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

Notice that the player FME features contain the position element with their correct attribute values.

More Expression Elements

l defnval Expressions

l strexpr Expressions

l tclexpr Expressions

l counter Expressions

l maprule Expressions

l selexpr Expressions

l matched Expressions

l keyword Expressions

l fmefunc Expressions

l logexpr Expressions

l comparison Expressions

defnval Expressions

The defnval expression allows access to the value of a let variable in an expression sequence. The expr attribute of a
<defnval> element must be equal to the name of a let variable defined under the mapping rule’s <define> element.

The following feature mapping rule shows how to access the value of a let variable in an expression sequence:

<mapping match="...">
...
<define>

<let name="theFeatureType">
<!-- some expression sequence -->

</let>
</define>
...
<feature-type>

<defnval expr="theFeatureType"/>
<feature-type>
...

</mapping>

strexpr Expressions

This expression provides string processing capabilities on an expression sequence. The strexpr expression has the
following general form:

<strexpr expr=”...”>
<arg> <!-- some expression sequence --> </arg>
<arg> <!-- some expression sequence --> </arg>
...
<arg> <!-- some expression sequence --> </arg>

</strexpr>

The value of this expression depends on the string operation that is specified through the expression string, i.e., the
expr attribute. This also dictates the number of arguments (i.e., the number of <arg> elements) that the strexpr
expression should have.

The following lists the available operations and their arguments.

charAt:

<strexpr expr=”charAt”>
<arg> <!-- source string --> </arg>
<arg> <!-- index --> </arg>

</strexpr>

It returns the character of the source string at the specified index. The indexmust be in 0 and (the length of the
source string minus 1).

contains:

<strexpr expr=”contains”>
<arg> <!-- source string --> </arg>
<arg> <!-- string to search --> </arg>
<arg> <!-- value to return if true --> </arg>
<arg> <!-- value to return if false --> </arg>

</strexpr>

Evaluates containment of the string to search within the source string. It returns the evaluated expression sequence
for the third argument when the source string contains the string to search, otherwise it returns the evaluated
expression sequence for the fourth argument.

extract:

<strexpr expr=”extract”>
<arg> <!-- source string --> </arg>
<arg> <!-- start --> </arg>
<arg> <!-- length --> </arg>

</strexpr>

Returns the characters that are in the range start and (start + length) of the source string.

findAndReplace:

<strexpr expr=”findAndReplace”>
<arg> <!-- source string --> </arg>
<arg> <!-- old text --> </arg>
<arg> <!-- new text --> </arg>
<arg> <!-- string to return if no replace --> </arg>

</strexpr>

Replaces all the occurrences of old text with new text in the source string. The 4th argument is optional, it allows the
expression to return an alternate evaluated expression sequence when no old text is present in the source string.
Both new text and old text are fixed strings. Use regexReplace for regular expression support.

first:

<strexpr expr=”first”>
<arg> <!-- source string --> </arg>
<arg> <!-- text to search --> </arg>

</strexpr>

Returns the index of the first occurrence of the text to search in the source string, or the empty string if the text to
search is not found.

last:

<strexpr expr=”last”>
<arg> <!-- source string --> </arg>
<arg> <!-- text to search --> </arg>

</strexpr>

Returns the index of the last occurrence of the text to search in the source string, or the empty string if the text to
search is not found.

leftOf:

<strexpr expr=”leftOf”>
<arg> <!-- source string --> </arg>
<arg> <!-- index --> </arg>

</strexpr>

Returns the sub-string left of the specified index in the source string; the empty string is returned if the index is out
of range.

leftOfString:

<strexpr expr=”leftOfString”>
<arg> <!-- source string --> </arg>
<arg> <!-- separator --> </arg>

</strexpr>

Returns the sub-string left of the first separator in the source string; the empty string is returned if the separator is
absent in the source string.

length:

<strexpr expr=”length”>
<arg> <!-- source string --> </arg>

</strexpr>

It returns the character length of the source string.

normalizeWhitespace:

<strexpr expr=”normalizeWhitespace”>
<arg> <!-- source string --> </arg>

</strexpr>

Returns the source string with all consecutive whitespace, tabs, line feeds, and spaces collapsed into a single space.

padLeading:

<strexpr expr=”padLeading”>
<arg> <!-- source string --> </arg>
<arg> <!-- target length --> </arg>
<arg> <!-- pad char --> </arg>

</strexpr>

Pads the beginning of the source string with the pad char character until the resulting string length equals target
length. Only the first character of pad char is taken when pad char length is > 1.

padTrailing:

<strexpr expr=”padTrailing”>
<arg> <!-- source string --> </arg>
<arg> <!-- target length --> </arg>
<arg> <!-- pad char --> </arg>

</strexpr>

Pads the end of the source string with the pad char character until the resulting string length equals target length.
Only the first character of pad char is taken when pad char length is > 1.

regexMatch:

<strexpr expr=”regexMatch”>
<arg> <!-- regular expression --> </arg>
<arg> <!-- source string --> </arg>

</strexpr>

Returns either the string ‘true’ or ‘false’ depending on whether the regular expression matches the entire source
string. The regular expression supports Perl Compatible Regular Expressions (PCRE).

regexReplace:

<strexpr expr=”regexReplace”>
<arg> <!-- matching regular expression --> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- replacement regular expression --> </arg>
<arg> <!-- optional return value if no matches --> </arg>

</strexpr>

Returns the result of replacing all occurrences of matching regular expression with replacement regular expression
in source string. If there are no matches and if the optional 4th argument is absent then the source string is returned
untouched, otherwise the value for the 4th argument is returned. The regular expressions support Perl Compatible
Regular Expressions (PCRE).

rightOf:

<strexpr expr=”rightOf”>
<arg> <!-- source string --> </arg>
<arg> <!-- index --> </arg>

</strexpr>

Returns the sub-string right of the specified index in the source string; the empty string is returned if the index is
out of range

rightOfString:

<strexpr expr=”rightOfString”>
<arg> <!-- source string --> </arg>
<arg> <!-- separator --> </arg>

</strexpr>

Returns the sub-string right of the first separator in the source string; the empty string is returned if the separator is
absent in the source string.

remove:

<strexpr expr=”remove”>
<arg> <!-- source string --> </arg>
<arg> <!-- start --> </arg>
<arg> <!-- length --> </arg>

</strexpr>

Removes the characters in the range of start to (start + length) from the source string.

toLower:

<strexpr expr=”toLower”>
<arg> <!-- source string --> </arg>

</strexpr>

Returns the source string converted to lowercase.

toUpper:

<strexpr expr=”toUpper”>
<arg> <!-- source string --> </arg>

</strexpr>

Returns the source string converted to uppercase.

trim:

<strexpr expr=”trim”>
<arg> <!-- source string --> </arg>
<arg> <!-- char to trim --> </arg>

</strexpr>

Trims all of the leading and trailing char to trim characters from the source string. If value of the char to trim argu-
ment is whitespace, for example, <arg> <literal expr=”whitespace”/> </arg>, then leading and trailing whit-
espaces will be removed from the source string.

trimLeading:

<strexpr expr=”trimLeading”>
<arg> <!-- source string --> </arg>
<arg> <!-- char to trim --> </arg>

</strexpr>

Trims all of the leading char to trim characters from the source string.

trimTrailing:

<strexpr expr=”trimTrailing”>
<arg> <!-- source string --> </arg>
<arg> <!-- char to trim --> </arg>

</strexpr>

Trims all of the trailing char to trim characters from the source string.

Example

The example below illustrates several of the strexpr expression operations. Please refer to the comments in the
strexpr.xmp for the details.

strexpr.xml

<?xml version=”1.0”?>
<strings>

<id>78</id>
<date>05,12,1999</date>

</strings>

strexpr.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>

<xfMap>
<feature-map>

<mapping match=”strings”>
<define>

<let name=”featType”>
<!-- define the ‘featType’ expression sequence

to be an id of exactly 15 digits. Pad it with leading 0’s
until the results length is 15 digits. -->

<strexpr expr=”padLeading”>
<arg> <extract expr=”./id”/> </arg>
<arg> <literal expr=”15”/> </arg>
<arg> <literal expr=”0”/> </arg>

</strexpr>
</let>

</define>

<feature-type> <defnval expr=”featType”/> </feature-type>

<attributes>
<attribute>

<name> <literal expr=”date”/> </name>
<value>

<!-- Replace all the commas in the date element content
by a dash -->

<strexpr expr=”findAndReplace”>
<arg> <extract expr=”./date”> </arg>
<arg> <literal expr=”,”/> </arg>
<arg> <literal expr=”-”/> </arg>

</strexpr>
</value>

</attribute>

<attribute>
<name> <literal expr=”orig-id”/> </name>
<value>

<!-- trim off all leading 0’s from the featType
expression sequence -->

<strexpr expr=”trimLeading”>
<arg> <defnval expr=”featType”/> </arg>
<arg> <literal expr=”0”/> </arg>

</strexpr>
</value>

</attribute>

<attribute>
<name> <literal expr=”featType-length”/> </name>
<value>

<!-- the length of the featType expression sequence -->
<strexpr expr=”length”>
<arg> <defnval expr=”featType”/> </arg>

</strexpr>
</value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

FME feature constructed:

+++
Feature Type: `000000000000078'
Attribute: `date' has value `05-12-1999'
Attribute: `featType-length' has value `15'
Attribute: `orig-id' has value `78'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

tclexpr Expressions

The tclexpr expression provides a limited set of Tcl processing capabilities on the expression sequences. It has the fol-
lowing general form:

<tclexpr expr=”...”>
<arg> <!-- some expression sequence --> </arg>
<arg> <!-- some expression sequence --> </arg>
...
<arg> <!-- some expression sequence --> </arg>

</tclexpr>

The value of this expression depends on the Tcl command that is specified through the expression string (i.e., the
expr attribute); this also dictates the number of arguments (i.e., the <arg> elements) that the tclexpr expression
should have.

The following lists the available Tcl commands and their arguments.

expr:

<tclexpr expr=”expr”>
<arg> <!-- some expression sequence --> </arg>
...

</tclexpr>

Concatenates all of the arguments and evaluates the result as a Tcl expression. The number of <arg> elements fol-
lowing the first one depends on which Tcl expression is specified.

concat:

<tclexpr expr=”concat”>
<arg> <!-- arg0 --> </arg>
...
<arg> <!-- argN --> </arg>

</tclexpr>

Returns a concatenated list by treating all of the arguments arg0 to argN as lists.

join:

<tclexpr expr=”join”>
<arg> <!-- source list --> </arg>
<arg> <!-- (optional) join string --> </arg>

</tclexpr>

Returns a string that is the concatenated elements of the source list. An optional join string may be specified to sep-
arate the concatenated elements. This join string defaults to a single space when it is not specified.

lindex:

<tclexpr expr=”lindex”>
<arg> <!-- source list --> </arg>
<arg> <!-- index --> </arg>

</tclexpr>

Returns the index item from the source list. The index starts at 0, and can be ‘end’ so that it returns the last item of
the source list.

linsert:

<tclexpr expr=”linsert”>
<arg> <!-- source list --> </arg>
<arg> <!-- index --> </arg>
<arg> <!-- element0 --> </arg>
...
<arg> <!-- elementN --> </arg>

</tclexpr>

Insert the elements element0 ... elementN into the source list starting at the specified index. An index of 0 inserts at
the beginning while an index of ‘end’ inserts at the end of the source list.

list:

<tclexpr expr=”list”>
<arg> <!-- arg0 --> </arg>
...
<arg> <!-- argN --> </arg>

</tclexpr>

Returns a list containing the given arguments arg0 to argN.

llength:

<tclexpr expr=”llength”>
<arg> <!-- source list --> </arg>

</tclexpr>

Return the number of elements in the source list.

lrange:

<tclexpr expr=”lrange”>
<arg> <!-- source list --> </arg>
<arg> <!-- first --> </arg>
<arg> <!-- last --> </arg>

</tclexpr>

Returns a list consisting of the source list elements from indices first to last. The indices start from 0; the last index
can be ‘end’ to refer to the last element of the source list.

lreplace:

<tclexpr expr=”lreplace”>
<arg> <!-- source list --> </arg>
<arg> <!-- first --> </arg>
<arg> <!-- last --> </arg>
<arg> <!-- element0 --> </arg>
...
<arg> <!-- elementN --> </arg>

</tclexpr>

Replaces the elements in the source list having the indices first through last with the given elements element0 ... ele-
mentN. If no elements are supplied, then the list elements within the indices are deleted.

lsearch:

<tclexpr expr=”lsearch”>
<arg> <!-- (optional) search mode --> </arg>
<arg> <!-- source list --> </arg>
<arg> <!-- search pattern --> </arg>

</tclexpr>

Searches the source list for an element that matches the search pattern. If it is found, it returns the index of the
matching element in the source list; otherwise it returns -1. The valid values for the optional search mode are: -exact
(use exact matching), -glob (use glob pattern matching), and -regexp (use regular expression matching).

lsort:

<tclexpr expr=”lsort”>
<arg> <!-- (optional) sort options --> </arg>
<arg> <!-- source list --> </arg>

</tclexpr>

Sorts the elements in the source list. The valid values for the optional sort options are:

l ascii (sort by ASCII collation order)

l dictionary (sort by dictionary order)

l integer (compare elements as integers)

l real (compare elements as floating points)

l increasing (sort in increasing order)

l decreasing (sort in decreasing order)

split:

<tclexpr expr=”split”>
<arg> <!-- source string --> </arg>
<arg> <!-- (optional) separators --> </arg>

</tclexpr>

Splits the source string into a Tcl list. The elements in the string are split if they are separated by any of the char-
acters in separators. The separators argument is optional; when it is not specified, then the default separator is whit-
espace.

string:

<tclexpr expr=”string”>
<arg> <!-- option --> </arg>
...

</tclexpr>

Performs string operations based on option; this value also dictates the number of arguments that follow it.

The valid values for option are:

compare

<tclexpr expr=”string”>
<arg> <literal expr=”compare”/> </arg>
<arg> <!-- string1 --> </arg>
<arg> <!-- string2 --> </arg>

</tclexpr>

Compares the strings string1 and string2 lexicographically. Returns -1 if string1 is less than string2, 0 if equal, or 1
if greater.

first

<tclexpr expr=”string”>
<arg> <literal expr=”first”/> </arg>
<arg> <!-- string1 --> </arg>

<arg> <!-- string2 --> </arg>
</tclexpr>

Returns the index of the first occurrence of string1 in string2, or -1 if there are no occurrences.

index

<tclexpr expr=”string”>
<arg> <literal expr=”index”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- char index --> </arg>

</tclexpr>

Returns the character in source string that has index char index, else the empty string is returned if char index is out
of range.

last

<tclexpr expr=”string”>
<arg> <literal expr=”last”/> </arg>
<arg> <!-- string1 --> </arg>
<arg> <!-- string2 --> </arg>

</tclexpr>

Returns the index of the last occurrence of string1 in string2, else -1 if there are no occurrences.

length

<tclexpr expr=”string”>
<arg> <literal expr=”length”/> </arg>
<arg> <!-- source string --> </arg>

</tclexpr>

Returns the length of the source string.

match

<tclexpr expr=”string”>
<arg> <literal expr=”match”/> </arg>
<arg> <!-- pattern --> </arg>
<arg> <!-- source string --> </arg>

</tclexpr>

Returns 1 if the source string matches the glob pattern, else 0 is returned.

range

<tclexpr expr=”string”>
<arg> <literal expr=”range”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- first --> </arg>
<arg> <!-- last --> </arg>

</tclexpr>

Returns the substring of source string consisting of the characters from the index first through the index last. last
can be the string ‘end’.

tolower

<tclexpr expr=”string”>
<arg> <literal expr=”tolower”/> </arg>
<arg> <!-- source string --> </arg>

</tclexpr>

Returns the source string converted to lowercase.

toupper

<tclexpr expr=”string”>
<arg> <literal expr=”toupper”/> </arg>
<arg> <!-- source string --> </arg>

</tclexpr>

Returns the source string converted to uppercase.

trim

<tclexpr expr=”string”>
<arg> <literal expr=”trim”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- (optional) chars to trim --> </arg>

</tclexpr>

Returns the source string with the leading and trailing characters from the set chars to trim removed. The chars to
trim argument is optional; when it is not specified, it defaults to the whitespace characters.

trimleft

<tclexpr expr=”string”>
<arg> <literal expr=”trimleft”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- (optional) chars to trim --> </arg>

</tclexpr>

Returns the source string with the leading characters from the set chars to trim removed. The chars to trim argument
is optional; when it is not specified, it defaults to the whitespace characters.

trimright

<tclexpr expr=”string”>
<arg> <literal expr=”trimright”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- (optional) chars to trim --> </arg>

</tclexpr>

Returns the source string with the trailing characters from the set chars to trim removed. The chars to trim argument
is optional; when it is not specified, it defaults to the whitespace characters.

wordend

<tclexpr expr=”string”>
<arg> <literal expr=”wordend”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- index --> </arg>

</tclexpr>

Returns the index after a word for which index falls in the source string. A word is assumed to be delimited by whit-
espace.

wordstart

<tclexpr expr=”string”>
<arg> <literal expr=”wordstart”/> </arg>
<arg> <!-- source string --> </arg>
<arg> <!-- index --> </arg>

</tclexpr>

Returns the index before a word for which index falls in the source string. A word is assumed to be delimited by whit-
espace.

Example

The example below illustrates several of the tclexpr expression operations. Please refer to the comments in the
tclexpr.xmp for details.

tclexpr.xml

<?xml version=”1.0”?>
<strings>

<str1>faerie</str1>
<str2>queene</str2>
<str3>the</str3>

</strings>

tclexpr.xmp

<?xml version="1.0" encoding="UTF-8"?>

<xfMap>
<feature-map>

<mapping match="strings">
<define>

<let name="str1"> <extract expr="./str1"/> </let>
<let name="str2"> <extract expr="./str2"/> </let>
<let name="str3"> <extract expr="./str3"/> </let>
<let name="theList">

<literal expr='"'/>
<tclexpr expr="list">

<arg> <defnval expr="str3"/> </arg>
<arg> <defnval expr="str1"/> </arg>
<arg> <defnval expr="str2"/> </arg>

</tclexpr>
<literal expr='"'/>

</let>
</define>

<feature-type> <defnval expr="theList"/> </feature-type>

<attributes>
<attribute>

<name> <literal expr="list-length"/> </name>
<value>

<tclexpr expr="llength">
<arg> <defnval expr="theList"/> </arg>

</tclexpr>
</value>

</attribute>

<attribute>
<name> <literal expr="sorted-list"/> </name>
<value>

<tclexpr expr="lsort">
<arg> <defnval expr="theList"/> </arg>

</tclexpr>
</value>

</attribute>

<attribute>
<name> <literal expr="eval-expr(1+3+4+3+1)"/> </name>
<value>

<tclexpr expr="expr">
<arg> <literal expr="1+3+4+3+1"/> </arg>

</tclexpr>
</value>

</attribute>

<attribute>
<name> <literal expr="upcase"/> </name>
<value>

<tclexpr expr="string">
<arg> <literal expr="toupper"/> </arg>
<arg> <defnval expr="theList"/> </arg>

</tclexpr>
</value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

FME feature constructed:

++
Feature Type: `"the faerie queene"'
Attribute: `eval-expr(1+3+4+3+1)' has value `12'
Attribute: `list-length' has value `3'
Attribute: `sorted-list' has value `faerie queene the'
Attribute: `upcase' has value `THE FAERIE QUEENE'
Attribute: `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
==

counter Expressions

The counter expression provides counting capabilities on the expression sequences. It has the following general
form:

<counter expr=”...” start-value=”...” modulo=”...” scope=”...” peek=”...” />

Or

<counter>
<arg> <!-- expr --> </arg>
<arg> <!-- start-value --> </arg>
<arg> <!-- modulo --> </arg>
<arg> <!-- scope --> </arg>
<arg> <!-- peek --> </arg>
</counter>

A counter expression counts integral values. Upon evaluation the counter expression will return its current integral
value and then update its counter by 1. The expression string (i.e., the expr attribute) names the counter.

All properties are optional (and default to the empty string for expr, zero for modulo and start-value, and local for
scope). The start-value specifies the initial value for the counter expression whilemodulo allows clock-like arithmetic
when the counter value is updated. A modulo of zero implies nomodulo specification. A counter is by default bound to
the lifetime of a mapping rule activation. To bound the counter beyond this lifetime the scope attribute can be used.
The valid values for the scope property are local, which is the default, parent which uses the scope of the parent node,
and xfMap. Specifying xfMap for the scope bounds the counter to the xfMap. To access the value of a counter without
updating its value the optional peek attribute, whose default value is false, should be set to true.

The ability to specify properties of the counter as arguments allows these properties to be determined dynamically
based on the document being read. If an argument evaluates to the empty string, then its value is ignored (and the
default is used, or the previously established value in a counter with non-local scope).

Example

The example below illustrates several of the counter expression operations.

bin.xml

<?xml version=”1.0”?>
<bin>

<item>I’m some sort of item inside this bin.</item>
<item>What type of item may I be?</item>
<item>I wouldn’t know.</item>
<item>Why should I?</item>
<item>Ask the bin.</item>

</bin>

counter.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>
<xfMap>

<group-map>
<mapping match=”bin”>

<apply-attribute-sets>
<attribute-set>

<attribute>
<name> <literal expr=”item-order-in-bin”/> </name>
<value><counter expr=”my-counter-name”/> </value>

</attribute>
<attribute>

<name> <literal expr=”count-modulo-2”/> </name>
<value><counter expr=”mod-2-count” modulo=”2”/> </value>

</attribute>
<attribute>

<name> <literal expr=”some-other-counter”/> </name>
<value>

<counter expr=”some-counter” start-value=”5” modulo=”8”/>
</value>

</attribute>
</attribute-set>

</apply-attribute-sets>
</mapping>

</group-map>

<feature-map>
<mapping match=”item”>

<feature-type> <literal expr=”item”/> </feature-type>
<attributes>

<attribute>
<name> <literal expr=”value”/> </name>
<value><extract expr=”.”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: `item'
Attribute(string): `count-modulo-2' has value `0'
Attribute(string): `item-order-in-bin' has value `0'
Attribute(string): `some-other-count' has value `5'
Attribute(string): `value' has value `I'm some sort of item inside this bin.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `count-modulo-2' has value `1'
Attribute(string): `item-order-in-bin' has value `1'
Attribute(string): `some-other-count' has value `6'
Attribute(string): `value' has value `What type of item may I be?'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `count-modulo-2' has value `0'
Attribute(string): `item-order-in-bin' has value `2'

Attribute(string): `some-other-count' has value `7'
Attribute(string): `value' has value `I wouldn't know.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `count-modulo-2' has value `1'
Attribute(string): `item-order-in-bin' has value `3'
Attribute(string): `some-other-count' has value `5'
Attribute(string): `value' has value `Why should I?'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `count-modulo-2' has value `0'
Attribute(string): `item-order-in-bin' has value `4'
Attribute(string): `some-other-count' has value `6'
Attribute(string): `value' has value `Ask the bin.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

maprule Expressions

Themaprule expression provides information about mapping rules. It is represented in the xfMap document with the
<maprule> element, and it has the following general form:

<maprule expr=”...”/>

The expression string (i.e., the expr attribute) specifies the type of mapping rule information.

The following lists the valid values the expression string may take:

activate-count:

<maprule expr=”activate-count”/>

Returns the number of times a mapping rule has been activated.

Example

The example below illustrates several of the counter expression operations.

bin.xml

<?xml version=”1.0”?>
<bin>

<item>I’m some sort of item inside this bin.</item>
<item>What type of item may I be?</item>
<item>I wouldn’t know.</item>
<item>Why should I?</item>
<item>Ask the bin.</item>

</bin>

maprule.xmp

<?xml version=”1.0”?>
<!DOCTYPE xfMap SYSTEM ”xfMap.dtd”>
<xfMap>

<feature-map>
<mapping match=”item”>

<feature-type> <literal expr=”item”/> </feature-type>
<attributes>

<attribute>
<name> <literal expr=”value”/> </name>

<value><extract expr=”.”/> </value>
</attribute>
<attribute>

<name> <literal expr=”mapping-rule-activate-count”/> </name>
<value><maprule expr=”activate-count”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: `item'
Attribute(string): `mapping-rule-activate-count' has value `1'
Attribute(string): `value' has value `I'm some sort of item inside this bin.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `mapping-rule-activate-count' has value `2'
Attribute(string): `value' has value `What type of item may I be?'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `mapping-rule-activate-count' has value `3'
Attribute(string): `value' has value `I wouldn't know.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `mapping-rule-activate-count' has value `4'
Attribute(string): `value' has value `Why should I?'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `item'
Attribute(string): `mapping-rule-activate-count' has value `5'
Attribute(string): `value' has value `Ask the bin.'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

selexpr Expressions

The selexpr expression returns the first, last, or the ith non-empty evaluated expression sequence from its argument
list. It is represented in the xfMap document with the <selexpr> element, and it has the following general form:

<selexpr expr=”...”>
<arg> <!-- some expression sequence --> </arg>
<arg> <!-- some expression sequence --> </arg>
...
<arg> <!-- some expression sequence --> </arg>

</selexpr>

The expression string (i.e., the expr attribute) specifies the first, last, or ith evaluated non-empty expression
sequence to be returned. The valid values for the expression string are first, last, or a positive integer between 1 and k,
where k is the number of arguments.

Example

items.xml

<?xml version=”1.0”?>
<items>

<item>
<primary-id>p9384</primary-id>
<alternate-id></alternate-id>

</item>
<item>

<primary-id></primary-id>
<alternate-id>a2046</alternate-id>

</item>
<item>

<primary-id></primary-id>
<alternate-id></alternate-id>

</item>
</items>

selexpr.xmp

<?xml version=”1.0”?>
<xfMap>

<feature-map>
<mapping match=”item”>

<feature-type>
<selexpr expr=”first”/>
<arg> <extract expr=”./primary-id”/> </arg>
<arg> <extract expr=”./alternate-id”/> </arg>
<arg> <literal expr=”no-id”/> </arg>

</selexpr>
</feature-type>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: `p9384'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `a2046'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `no-id'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

matched Expressions

Thematched expression returns the mapping rule’s matched element’s local-name, namespace-prefix, namespace-
uri, QName, or sequence number. This expression is useful to retrieve the name of the matched element in the case
that a wildcard was used in thematch expression, or to determine a unique identifier for an element. It is rep-
resented in the xfMap document with the <matched> element, and it has the following general form:

<matched expr=”...” ancestor=”...”/>

The expression string (i.e., the expr attribute) specifies whether the local-name, the namespace-prefix, the names-
pace-uri, QName, or the sequence number of the matched element is to be returned. The valid values for the expres-

sion string are local-name, prefix, uri, qname, and sequence. The sequence number is a period-seperated list of numbers
which identify the path from the root of the xml tree to the child element where the matched expression is evaluated.

The ancestor attribute is optional. Its value indicates which ancestor element the expr attribute applies to. The valid
values for the ancestor attribute are self, parent, grandparent, or a non-negative number, with self, parent, and grand-
parent being equivalent to 0, 1, and 2, respectively. The default value for the ancestor attribute is self.

Example

three_players.xml

<?xml version="1.0" encoding="UTF-8"?>
<players xmlns="http://schemas.sports.com/players"

xmlns:pl2="http://schemas.sports.com/2/players"
xmlns:pl3="http://schemas.sports.com/5/players">

<Laura> <age>24</age> </Laura>
<pl2:Sharen> <age>27</age> </pl2:Sharen>
<Claudia> <age>28</age> </Claudia>

</players>

three_players.xmp

<?xml version="1.0" encoding="UTF-8"?>
<xfMap xmlns:pl="http://schemas.sports.com/players">

<feature-map>
<mapping match="pl:players/*">

<feature-type> <literal expr="player"/> </feature-type>
<attributes>

<attribute>
<name> <literal expr="local-name"/> </name>
<value> <matched expr="local-name"/> </value>

</attribute>
<attribute>

<name> <literal expr="ns-prefix"/> </name>
<value> <matched expr="prefix"/> </value>

</attribute>
<attribute>

<name> <literal expr="ns-uri"/> </name>
<value> <matched expr="uri"/> </value>

</attribute>
<attribute>

<name> <literal expr="QName"/> </name>
<value> <matched expr="qname"/> </value>

</attribute>
<attribute>

<name> <literal expr="Sequence Number"/> </name>
<value> <matched expr="sequence"/> </value>

</attribute>
<attribute>

<name> <literal expr="Parent-QName"/> </name>
<value> <matched expr="qname" ancestor=”parent”/> </value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: `player'
Attribute(string): `QName' has value `Laura'
Attribute(string): `Sequence Number' has value `1.3'
Attribute(string): `local-name' has value `Laura'

Attribute(string): `ns-prefix' has value `'
Attribute(string): `ns-uri' has value `http://schemas.sports.com/players'
Attribute(string): `Parent-QName' has value `players'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `player'
Attribute(string): `QName' has value `pl2:Sharen'
Attribute(string): `local-name' has value `Sharen'
Attribute(string): `ns-prefix' has value `pl2'
Attribute(string): `ns-uri' has value `http://schemas.sports.com/2/players'
Attribute(string): `Parent-QName' has value `players'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
+++
Feature Type: `player'
Attribute(string): `QName' has value `Claudia'
Attribute(string): `local-name' has value `Claudia'
Attribute(string): `ns-prefix' has value `'
Attribute(string): `ns-uri' has value `http://schemas.sports.com/players'
Attribute(string): `Parent-QName' has value `players'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

keyword Expressions

The keyword expression allows access to values that are declared in the FME mapping file. It is represented in the
xfMap document with the <keyword> element, and it has the following general form:

<keyword expr=”...” default=”...” keyword-group=”…” op=”compare|contains”>
<arg> <!-- keyword --> </arg>
<arg> <!-- optional default value --> </arg>

</keyword>

The expression string (i.e., the expr attribute) denotes the name of the keyword, which would have been specified
in the FME mapping file through the XFMAP_KEYWORD keyword, or via a file through the XFMAP_KEYWORD_FILE
keyword. The optional default attribute specifies the default value in the case the specified keyword was not
defined.

The expr attribute may be an empty string, in which case, the first argument, the first <arg> element, must be
present. The evaluated expression sequence for this first argument becomes the keyword to search.

If the default attribute is absent or if it is the empty string, then the second argument if it is present will be eval-
uated to become the default value in the case the keyword was not defined.

The keyword-group attribute is only applicable if keywords were specified via a file through the XFMAP_KEYWORD_
FILE. Each keyword in a file may be optionally partitioned into groups. The value for this attribute indicates the
group name.

The op attribute indicates the way in which a keyword is retrieved. The attribute defaults to compare, which retrieves
a keyword value if a keyword with the exact name is found. If the op attribute is set to contains then a value is
retrieved when the specified name is contained in any of the stored keywords.

Example

Assuming the FME mapping file has the following XML XFMAP_KEYWORD's defined:

XML_XFMAP_KEYWORD key0 value0
XML_XFMAP_KEYWORD key1 “my other value”

keywords.xml

<?xml version="1.0" encoding="UTF-8"?>
<items>

<item>
<primary-id>key0</primary-id>
<alternate-id>he5390</alternate-id>

</item>
<item>

<primary-id>key1</primary-id>
<alternate-id>a2046</alternate-id>

</item>
<item>

<primary-id>key566</primary-id>
<alternate-id>ad249</alternate-id>

</item>
</items>

keywords.xmp

<?xml version="1.0" encoding="UTF-8"?>
<xfMap>

<feature-map>
<mapping match="item">

<feature-type>
<keyword expr="">

<arg> <extract expr="./primary-id"/> </arg>
<arg> <extract expr="./alternate-id"/> </arg>

</keyword>
</feature-type>

</mapping>
</feature-map>

</xfMap>

FME features constructed:

+++
Feature Type: `value0'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
xml-feat
+++
Feature Type: `my other value'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===
xml-feat
+++
Feature Type: `ad249'
Attribute(string): `xml_type' has value `xml_no_geom'
Geometry Type: Unknown (0)
===

fmefunc Expressions

The fmefunc expression allows FME mapping file functions to be called. It is represented in the xfMap document with
the <fmefunc> element, and it has the following general form:

<fmefunc expr=”...FME function specification...”>
<arg> <!-- some expression sequence --> </arg>
<arg> <!-- some expression sequence --> </arg>
...
<arg> <!-- some expression sequence --> </arg>

</selexpr>

The expression string (i.e., the expr attribute) specifies an FME function. FME functions are named with an “at” sign,
@, as their first character. Both type of FME functions, i.e., feature and attribute functions, may be specified.

If the string in the expr attribute does not start with an @ sign, then its literal value is returned, otherwise the FME
function is evaluated for its return value, bare in mind that FME feature functions do not return a value so an empty
string is returned if this is the case.

The fmefunc expression may have 0 or more optional arguments that are expression sequences. Each expression
sequence in an <arg> element should evaluate to an FME function specification, meaning that its first character must
be the @, otherwise, the evaluated expression is simply concatenated as part of the final result for the fmefunc
expression.

The evaluated value for an fmefunc expression is the concatenation of the results for all specified FME function spec-
ifications.

Each fmefunc expression works upon its own “scratch” FME feature allowing the possibility for algorithmic com-
putations because the state of this temporary feature is not reset between the evaluation of the expression’s argu-
ments and each argument is evaluated in order. Algorithmic calculations are achieved by “stacking up” a series of
feature and or attribute FME functions.

Example

items.xml

<?xml version="1.0" encoding="UTF-8"?>
<items>
<item>
<primary-id>key0</primary-id>
<alternate-id>he5390</alternate-id>
<geoLat>312129.20N</geoLat>
<geoLong>0854453.20W</geoLong>

</item>
</items>

items.xmp

<?xml version="1.0" encoding="UTF-8"?>
<xfMap>
<feature-map>
<mapping match="item">
<feature-type><literal expr="item"/></feature-type>
<attributes>
<attribute>
<name><literal expr="geoLat"/></name>
<value><extract expr="./geoLat"/></value>

</attribute>
<attribute>
<name><literal expr="geoLong"/></name>
<value><extract expr="./geoLong"/></value>

</attribute>
</attributes>

<geometry activate="xml-point">
<data name="data-string">
<fmefunc expr="">
<note> @SupplyAttributes(geoLat,LAT,geoLong,LON) </note>
<arg>
<literal expr="@SupplyAttributes("/>
<literal expr="geoLat,"/>
<extract expr="./geoLat"/>
<literal expr=",geoLong,"/>

<extract expr="./geoLong"/>
<literal expr=")"/>

</arg>
<arg>

<literal expr="@Angle(ATTRIBUTES,DDDMMSS.SSO,DECIMAL_DEGREES,geoLat,geoLong)"/>
</arg>
<note> x,y </note>
<arg><literal expr="@Value(geoLong)"/></arg>
<arg><literal expr=","/></arg>
<arg><literal expr="@Value(geoLat)"/></arg>

</fmefunc>
</data>

</geometry>
</mapping>

</feature-map>
</xfMap>

FME features constructed:

+++
Feature Type: `item'
Attribute(string): `fme_geometry' has value `fme_point'
Attribute(string): `geoLat' has value `312129.20N'
Attribute(string): `geoLong' has value `0854453.20W'
Attribute(string): `xml_type' has value `xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: `'
(-85.7481083333333,31.3581111111111)
===

===

logexpr Expressions

The logexpr expression allows for easy logging. While it can also evaluate to a string (usually the message being
logged), its primary purpose is to generate a log entry. It is represented in the xfMap document with the <logexpr> ele-
ment, and it has the following general form:

<logexpr expr=’the expression to be logged’
return=’the expression to return’
severity=’[inform|warn|error]’
limit=’maximum number of log messages’
suppress-limit-warning=’[true|false]’>

<arg> <!-- The expression to be logged --> </arg>
<arg> <!-- some expression to return --> </arg>

</logexpr>

The expression string (i.e., the expr attribute) specifies a string to enter in the log. The return attribute specifies a
value to evaluate to, and the severity attribute determines the type of log message entered into the log. All these attrib-
utes are optional, and both expr and return attributes can be specified by the two arguments. If any argument is spec-
ified, then both expr and return will be ignored. It is not possible to mix-and-match these attributes and arguments.

If no return value is specified (in either argument or attribute), then the expression evaluates to the message entered
in the log. In cases where the logexpr is being used solely in order to enter a log message, the return attribute or
argument must be specified to be the empty string.

The severity attribute is optional, and defaults to ‘inform’ if it is not specified.

The limit attribute is optional. This attribute determines the maximum number of log messages to display. After this
number of messages have been logged, additional log messages resulting from the logexpr expression are sup-
pressed. Notification of this event is provided in the form of a single log message stating that further log messages
will be suppressed. If the limit attribute is left unspecified, then no limit is set.

If the suppress-limit-warning attribute is specified and set to true, then no notification will be provided when the log-
expr expression has logged its maximum number of log messages as provided in the limit attribute.

Example

items.xml

<?xml version="1.0" encoding="UTF-8"?>
<items>

<item1>
<key>key 1</key>

</item1>
<item2>

<key>2</key>
</item2>
<item3>

<key>5.002</key>
</item3>

</items>

items.xmp

<?xml version="1.0" encoding="UTF-8"?>
<xfmap>

<feature-map>
<mapping match="items">

<feature-type><literal expr="keys"/></feature-type>
</mapping>

</feature-map>

<feature-content-map>
<mapping match="item1">

<attributes>
<attribute>

<!-- Here we log ‘found item 1’ but evaluates to the empty string.
This shows its use as a ‘side effect’ of logging, rather than
for the string value it will evaluate to -->

<name><literal expr="item-1"/><logexpr expr="found item 1" return=""
severity="inform"/></name>

<value><extract expr="./key"/></value>
</attribute>

</attributes>
</mapping>

<mapping match="item2">
<attributes>

<attribute>
<!-- Notice that the log message becomes part of the name -->

<name><literal expr="item"/><logexpr expr="two found"
severity="warn"/></name>

<value><extract expr="./key"/></value>
</attribute>

</attributes>
</mapping>

<mapping match="item3">
<attributes>

<attribute>
<name><literal expr="item3"/></name>
<value><extract expr="./key"/>

<!-- notice that the logexpr expr="three found" is completely ignored here -->
<logexpr expr="three found" severity="inform">

<arg><literal expr="item 3's key was found with value
"/><extract expr="./key"/></arg>

<arg><literal expr=" : key5 expected"/></arg>
</logexpr>
</value>

</attribute>
</attributes>

</mapping>
</feature-content-map>

</xfmap>

Messages Logged
===
...|INFORM|found item 1
...|WARN |two found
...|INFORM|item 3's key was found with value 5.002
==

Features Constructed
+++
...|INFORM|Feature Type: `keys'
...|INFORM|Attribute(string): `item-1found item 1' has value `key 1'
...|INFORM|Attribute(string): `item3' has value `5.002'
...|INFORM|Attribute(string): `itemtwo found' has value `2'
...|INFORM|Attribute(string): `xml_type' has value `xml_no_geom'
...|INFORM|Geometry Type: Unknown (0)
===

===

comparison Expressions

The comparison expression implements a simple conditional choice for expression sequences. It has the following
general form:

<comparison [expr=[“=|!=”]] lhs="..." rhs="..." success="..." failure="...">
<arg name="lhs">...</arg>
<arg name="rhs">...</arg>
<arg name="success">...</arg>
<arg name="failure">...</arg>

</comparison>

Notice that unlike other expressions, the arguments are identified by name rather than by position. The names are
not optional, and the order of the arguments does not matter. All arguments/attributes are optional. The expr attrib-
ute defaults to the string ‘=’, but all other attributes and arguments default to the empty string ““.

The meaning of the comparison expression is to perform a simple conditional choice. The arguments/attributes ‘lhs’
and ‘rhs’ are abbreviations for ‘left-hand side’ and ‘right-hand side’. These two expressions are evaluated and com-
pared. The comparison type is determined by the ‘expr’ attribute. If the expr attribute is ‘=’ and the comparison is
true (that is, if the left hand side is equal to the right hand side), then the success argument is evaluated and
returned, otherwise the failure argument is evaluated and returned. If the expr attribute is ‘!=’, for ‘not equal’, then
the sense of the comparison is reversed; i.e. if the comparison is true, then failure is evaluated, otherwise success is
evaluated.

Note: This is not a flow-of-control conditional expression, but rather simply chooses between expression argu-
ments to evaluate.

The example below demonstrates a case in which news articles are tagged with their source language, ‘fr’ for
‘French’ and ‘en’ for English. Suppose that we want to extract all the author’s names, one per feature. But since the
french word for ‘name’ is ‘nom’ (and ‘histoire’ for ‘story’), we want to selectively extract the author’s name based on
the stories source language. We do this by assigning an attribute to a feature, and setting that attribute’s value as a
comparison expression that chooses based on the ‘lang’ attribute.

Example

stories.xml

<?xml version="1.0" encoding="UTF-8"?>
<entries>

<entry lang=”en”>
<name>Mark</name>
<story> ... </story>

</entry>
<entry lang=”fr”>

<nom>Jean-Sebastian</nom>
<histoire> ... </histoire>

</entry>
</entries>

stories.xmp

<?xml version="1.0" encoding="UTF-8"?>
<xfmap>

<feature-map>
<mapping match="entry">

<feature-type><literal expr="author"/></feature-type>
<attributes>

<attribute>
<name><literal expr=”author”/></name>

<!-- Here we check if the ‘lang’ attribute is equal to the string ‘Name’ and if
it is, we extract the Name element. Otherwise, we extract the Nom element -->

<value>
<comparison lhs="en">

<arg name="rhs"><extract expr="@lang"/></arg>
<arg name="success"><extract expr="./Name"/></arg>
<arg name="failure"><extract expr="./Nom"/></arg>

</comparison>
</value>

</attribute>
</attributes>

</mapping>
</feature-map>

</xfmap>

==

Features Constructed

|INFORM|+++
|INFORM|Feature Type: `entry'
|INFORM|Attribute(string): `author' has value `Mark'
|INFORM|Attribute(string): `xml_type' has value `xml_no_geom'
|INFORM|Geometry Type: Unknown (0)
|INFORM|===
|INFORM|+++
|INFORM|Feature Type: `entry'
|INFORM|Attribute(string): `author' has value `Jean-Sebastian'
|INFORM|Attribute(string): `xml_type' has value `xml_no_geom'
|INFORM|Geometry Type: Unknown (0)
|INFORM|===

FME Schema Features

Since the XML Reader is an FME plug-in reader, it must be able to return FME schema features, either to FME or to a
third-party application through FME Objects. An xfMap document may contain an optional <schema-type> element that
instructs the XML Reader on how the FME schema features should be constructed. On default, if the <schema-type> ele-
ment is not present, the schema features are constructed by scanning all of the FME features returned by the XML
Reader. Currently, the XML Reader can construct FME schema features by three different methods which are spec-
ified through the <schema-type> element’s child element.

If the <schema-type> element is present, then it must contain one of the following child elements:

1. <scan> element - this is the XML Reader’s default method for constructing schema features. If the <schema-
type> element is not present in an xfMap document, then this method is assumed.

2. <generate> element - this element contains two attributes, the xfMap and document attributes, that specify
the XML document with the schema feature information and the xfMap document which maps that information
into FME schema features.

3. <inline> element - this element can contain zero or more <schema-feature> child elements. A <schema-fea-
ture> element represents an FME schema feature explicitly; it contains a type attribute that specifies a schema

feature’s feature type, and zero or more <schema-attribute> elements that specify the schema feature’s attrib-
utes and attribute types.

The following sections describe each element.

Scanning For FME Schema Features

The XML Reader defaults to scanning the FME features constructed through the xfMap when it is requested for
schema features. This can be explicitly stated in the xfMap by including a <scan> child element in the optional
<schema-type> element.

The following xfMap sample explicitly instructs the XML Reader to scan the FME features it constructs for the gen-
eration of the schema features (however, it is not necessary, since this is the default mode).

<?xml version="1.0"?>
<!DOCTYPE xfMap SYSTEM "xfMap.dtd">
<xfMap>

<schema-type>
<scan/>

</schema-type>
...

</xfMap>

If possible, the <generate> or <inline> element should be used instead. This avoids the double read the XML Reader
would perform on an XML input dataset when the FME uses it for translation: once for returning schema features, and
once for returning the actual FME data features.

Generating FME Schema Features

The XML Reader can switch the given xfMap and XML input document when it is requested for schema features. This
can be done through the <schema-type> element’s <generate> element.

The <generate> element contains two required attributes: the xfMap and the document attributes. They specify the
xfMap and XML document to used when XML Reader is requested for schema features. In other words, it is possible
for the XML Reader to ignore the given xfMap and input XML document by using the <generate> element.

Consider the following input XML document. (It is the same points1.xml document used earlier and reproduced here
for convenience.)

points1.xml

<?xml version="1.0" encoding="UTF-8"?>
<points>

<point name="myPoint" num="0">
<color>

<red>0.324</red>
<green>0.233</green>
<blue>0.596</blue>

</color>
<location x="10.0" y="0.0"/>

</point>
<point name="myPoint" num="1">

<color>
<red>0.874</red>
<green>0.948</green>
<blue>0.554</blue>

</color>
<location x="5.0" y="5.0"/>

</point>
</points>

The following xfMap document, generate_points1.xmp, maps the elements in the points1.xml document into FME fea-
tures:

generate_points1.xmp

<?xml version="1.0"?>
<xfMap>

<note>
This xfMap document maps elements from the points1.xml document.

</note>

<schema-type>
<generate xfMap="generate_points1_schemas.xmp"
document="generate_points1_schemas.xml"/>

</schema-type>

<feature-map>
<mapping match="point">

<feature-type> <literal expr="point"/> </feature-type>
<attributes>

<attribute>
<name> <literal expr="number"/> </name>
<value> <extract expr="@num"/> </value>

</attribute>
<attribute>

<name> <literal expr="color"/> </name>
<value>

<extract expr="./color/red"/>
<literal expr=","/>
<extract expr="./color/green"/>
<literal expr=","/>
<extract expr="./color/blue"/>

</value>
</attribute>

</attributes>

<geometry activate="xml-point">
<data name="data-string">

<extract expr="./location[@x]"/>
<literal expr=","/>
<extract expr="./location[@y]"/>

</data>
</geometry>

</mapping>
</feature-map>
</xfMap>

When the points1.xml and generate_points1.xmp are fed into the XML Reader and FME data features are requested,
then the following features are output:

++
Feature Type: `point'
Attribute(string): `color' has value `0.324,0.233,0.596'
Attribute(string): `fme_geometry' has value `fme_point'
Attribute(string): `number' has value `0'
Attribute(string): `xml_type' has value `xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: `'
(10,0)
==
++
Feature Type: `point'
Attribute(string): `color' has value `0.874,0.948,0.554'
Attribute(string): `fme_geometry' has value `fme_point'
Attribute(string): `number' has value `1'
Attribute(string): `xml_type' has value `xml_point'
Geometry Type: Point (1)
Number of Coordinates: 1 -- Coordinate Dimension: 2 -- Coordinate System: `'
(5,5)
==

Notice that the generate_points1.xmp xfMap contains a <schema-type> element. Its child element is the <generate> ele-
ment whose attributes, xfMap and document attributes, indicate the xfMap (generate_points1_schemas.xmp) and XML
document (generate_points1_schemas.xml) to be used when the XML Reader is requested for schema features.

The generate_points1_schemas.xml document contains one <schema-feature> element; this element describes the
FME schema feature that we want for the FME data features that are constructed from the points1.xml document
through the generate_points1.xmp xfMap.

generate_points1_schemas.xml

<?xml version="1.0" encoding="UTF-8"?>
<schemas>

<schema-feature type="point">
<attribute name="fme_geometry{0}" type="xml_point"/>
<attribute name="color" type="xml_char(20)"/>
<attribute name="number" type="xml_int16"/>
<attribute name="xml_type" type="xml_char(12)"/>

</schema-feature>
</schemas>

The usage of the <generate> element requires the user to have knowledge of how schema features are represented in
FME. Every FME schema feature must have an fme_geometry{} list attribute that lists the possible geometry types of a
schema feature. For the XML Reader, the possible values for the fme_geometry{} list attribute are: xml_no_geom, xml_
text, xml_point, xml_line, xml_area, and xml_text. If a theme or feature type is capable of containing several geometries
(for example, points, lines and areas), then the fme_geometry{} list attribute should contain 3 members:

fme_geometry{0} = “xml_point”
fme_geometry{1} = “xml_line”
fme_geometry{2} = “xml_area”

The type of user attribute, that is, the value of an attribute, must be one of the predefined FME types: xml_char(#),
xml_int16, xml_int32, xml_real32, xml_real64, xml_decimal(#,#), or xml_boolean.

The following xfMap generate_points1_schemas.xmp maps the <schema-feature> element into an FME feature.

<?xml version="1.0"?>
<xfMap>

<note>
This xfMap document maps elements from the
generate_points1_schema.xml document.

</note>

<feature-map>
<mapping match="schema-feature">

<feature-type> <extract expr="@type"/> </feature-type>
</mapping>

</feature-map>

<feature-content-map>
<mapping match="attribute">

<attributes>
<attribute type=”sequenced”>

<name> <extract expr="@name"/> </name>
<value> <extract expr="@type"/> </value>

</attribute>
</attributes>

</mapping>
</feature-content-map>

</xfMap>

Note: Nothing dictates that the xfMap generate_points1_schemas.xmp and the generate_points1_schemas.xml
document should take the form of the example above. What is required when the <generate> element is used is
that an FME feature constructed with the XML document (specified in the document attribute) with the xfMap (spec-
ified in the xfMap attribute) by the XML Reader conforms to the definition of an FME schema feature. The FME

schema features constructed must contain a fme_geometry{} list attribute, and the attributes defined for the fea-
tures must have values that equal one of the FME types: xml_char(#), xml_int16, xml_int32, xml_real32, xml_
real64, xml_decimal(#,#), or xml_boolean.

The document attribute in the <generate> element may take the special value, #dataset, which instructs the XML
Reader to keep given input XML document as the document used for generating the FME schema features.

Example:

<schema-type>
<generate xfMap=”schemas.xmp” document=”#dataset”/>

</schema-type>

Inline FME Schema Features

The xfMap has a mechanism to specify schema features in its content. This is done through the <schema-type> ele-
ment’s <inline> element.

The <inline> element can contain zero or more <schema-feature> child elements. A <schema-feature> element represents
an FME schema feature explicitly; it contains a type attribute that specifies a schema feature’s feature type, and zero
or more <schema-attribute> elements that specify the schema feature’s attributes and attribute types.

The <schema-attribute> element has two required attributes, they are the name and type attributes. The value for the
type attribute must be an FME attribute type: xml_char(#), xml_int16, xml_int32, xml_real32, xml_real64, xml_decimal(#,#), or
xml_boolean.

The following example illustrates the usage of the <inline> element. When the XML Reader is requested for FME
schema features and the xfMap below is used, then a schema feature of feature type states having 9 user-defined
attributes – AREA, CODE, NAME, POP1990, POP90_SQMI, P_URBAN90, P_ING_LANG, P_EMPL_SEC, and HSE_UNIT90 –
and no geometry is returned.

<?xml version="1.0" encoding="UTF-8"?>
<xfMap>

<schema-type>
<inline>

<schema-feature type="states">
<schema-attribute name="AREA" type="xml_decimal(16,3)"/>
<schema-attribute name="CODE" type="xml_char(4)"/>
<schema-attribute name="NAME" type="xml_char(25)"/>
<schema-attribute name="POP1990" type="xml_decimal(11,0)"/>
<schema-attribute name="POP90_SQMI" type="xml_decimal(20,6)"/>
<schema-attribute name="P_URBAN90" type="xml_decimal(20,6)"/>
<schema-attribute name="P_ING_LANG" type="xml_decimal(20,6)"/>
<schema-attribute name="P_EMPL_SEC" type="xml_decimal(20,6)"/>
<schema-attribute name="HSE_UNIT90" type="xml_decimal(11,0)"/>
<schema-attribute name="fme_geometry{0}" type="xml_no_geom"/>

</schema-feature>
</inline>

</schema-type>
...

</xfMap>

	FME Readers and Writers (Data Interoperability extension
)
	About Quick Facts Tables
	Format Type Identifier
	Reader/Writer
	Dependencies
	Dataset Type
	Typical File Extensions
	Automated Translation Support
	Feature Type
	User-Defined Attributes
	Coordinate System Support
	Generic Color Support
	Spatial Index
	Schema Required
	Encoding Support
	Transaction Support
	Enhanced Geometry
	Geometry Type Attribute
	Supported Geometry
	Raster-Specific Information

	About Feature Attributes
	Format-Specific Attributes and Generic FME Attributes in Workbench

	About FME Rasters
	Overview
	About FME Rasters
	Raster Properties
	Band Properties
	Palette Properties
	Raster Concepts
	Raster Processing
	Raster versus Vector Features
	Raster File Naming
	World Files
	MapInfo TAB Files

	Database Writer Mode
	Overview
	Database Writer Mode
	Generic Database Writer Mode

	1Spatial Internal Feature Format (IFF) Reader/Writer
	Overview
	IFF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Adobe 3D PDF Writer
	Overview
	PDF Quick Facts
	Writer Overview
	Feature Representation

	Adobe Geospatial PDF Writer
	Overview
	PDF Quick Facts
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Adobe Illustrator (IEPS) Writer
	IEPS Quick Facts
	Overview
	Writer Overview
	Feature Representation

	Aeronautical Information Exchange Model (AIXM) Reader/Writer
	Overview
	AIXM Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation

	ASPRS LIDAR Data Exchange Format (LAS) Reader/Writer
	Overview
	About Point Clouds
	LIDAR Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Australian Asset Design & As Constructed (ADAC) XML Reader
	Overview
	ADAC Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	Autodesk 3ds Writer
	Overview
	3ds Quick Facts
	Writer Overview
	Workbench Parameter
	Feature Representation

	Autodesk AutoCAD DWF Reader/Writer
	Overview
	AutoCAD DWF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Autodesk AutoCAD DWG/DXF Reader/Writer
	Overview
	AutoCAD DWG Quick Facts
	AutoCAD RealDWG Quick Facts
	Background
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Autodesk MapGuide SDL Reader/Writer
	Overview
	SDL Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	BC MOEP Reader/Writer
	Overview
	BC MOEP Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	BC MoF Electronic Submission Framework (ESF) - Reader/Writer
	Overview
	Reader Directives
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Directives

	Bentley MicroStation Design Reader/Writer
	Overview
	Design File Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation
	Writing Levels in V8 (DEFLine Params)

	Bentley MicroStation GeoGraphics Reader/Writer
	Overview
	GeoGraphics Quick Facts

	Canadian Council on Geomatics Interchange Format (CCOGIF) Reader/Writer
	Overview
	CCOGIF ASCII Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Defining Volume Structure
	Generated Mapping Files
	Profile-Specific Mapping Files

	CITS Data Transfer Format (QLF) Reader/Writer
	Overview
	QLF Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	CityGML Reader/Writer
	Overview
	CityGML Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation
	Noise ADE

	ComGraphix Data Exchange Format (CGDEF) Reader/Writer
	Overview
	CGDEF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Comma-Separated Value (CSV) Reader/Writer
	Overview
	CSV Quick Facts
	Reader Overview
	Writer Overview
	Feature Representation

	Danish DSFL Reader
	Overview
	DSFL Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation

	Danish UFO Reader/Writer
	Overview
	UFO Quick Facts
	Reader Overview
	Writer Overview
	Feature Representation

	dBase (DBF) Reader/Writer
	Overview
	DBF Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Digital Line Graph (DLG) Reader
	Overview
	DLG Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation
	Features Created by Generated DLG Mapping Files

	Dutch Top10 GML Reader/Writer
	Overview
	Top10 Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Known Issues

	Encapsulated PostScript (EPS) Writer
	EPS Quick Facts
	Overview
	Writer Overview
	Feature Representation

	ESRI ArcGIS Layer Reader
	ArcGIS Layer Quick Facts
	Overview
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	ESRI ArcGIS Map (.mxd) Reader
	ArcGIS Map Quick Facts
	Overview
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	ESRI ArcInfo Coverage/ESRI ArcInfo Export (E00) Reader/Writer
	E00 Quick Facts
	Overview
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation
	Region Support
	Info Files
	Generated Mapping Files
	Controlling E00 Output

	ESRI ArcInfo Generate Reader/Writer
	ARCGEN Quick Facts
	Overview
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	ESRI ArcSDE Reader/Writer
	Overview
	FME and ESRI ArcSDE (SDE30) Compatibility
	ESRI ArcSDE Quick Facts
	Raster-specific Quick Facts
	FME SDE Highlights
	Connecting to SDE
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Complete Reader Example
	Writer Overview
	FME Raster Features
	SDE Table Representation
	Using Versioning with the SDE Reader, Writer, and QueryFactory
	Feature Representation
	Annotation
	Troubleshooting

	ESRI Geodatabase Reader/Writer
	Geodatabase Quick Facts
	Overview
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Geodatabase Table Representation
	Feature Representation

	ESRI Geodatabase (XML) Reader
	Overview
	XML Geodatabase Quick Facts

	ESRI Shape Reader/Writer
	Overview
	ESRI Shape Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Facet XDR Reader/Writer
	Overview
	Facet XDR Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	FME Feature Store Reader/Writer
	Overview
	FME Feature Store Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Genasys GenaMap Reader
	Overview
	GenaMap Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	Geographic Data Management System (GDMS) Reader
	Overview
	GDMS Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation
	GDMS Feature Types
	Example Mapping File from GDMS to Shape

	GeoJSON (Geographic JavaScript Object Notation) Reader/Writer
	Overview
	GeoJSON Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	GeoRSS/RSS Feed Reader/Writer
	Overview
	GeoRSS Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation

	GML (Geography Markup Language) Reader/Writer
	Overview
	Versions
	Additional GML Formats
	GML Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation
	DEF Lines

	GML SF-0 (Geography Markup Language Simple Features Level SF-0 Profile) Reade...
	Overview
	GMLSF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	DEF Lines

	Google Earth KML Reader/Writer
	Overview
	Deprecation Advisory
	Google Earth (OGCKML) Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	GPS eXchange Format (GPX) Reader
	Overview
	GPX Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Schema Overview

	IBM DB2 Reader/Writer
	Overview
	DB2 Database Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Using DEF Lines to Read from an ODBC Datasource

	IBM DB2 Spatial Reader/Writer
	Overview
	DB2 Spatial Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Troubleshooting

	IBM Informix Reader/Writer
	Overview
	Informix Database Quick Facts
	Reader Overview
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	IBM Informix Spatial Reader/Writer
	Overview
	Informix Spatial Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	IDRISI Vector Format Reader/Writer
	Overview
	IDRISI Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Industry Foundation Class STEP Files (IFC) Reader
	Overview
	IFC Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	Intergraph GeoMedia Access and SQL Server Warehouse Reader/Writer
	FM0 Quick Facts
	FM0_SQL Quick Facts
	Overview
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Troubleshooting

	Intergraph MGE Reader/Writer
	Overview
	MGE Quick Facts
	Reader Overview
	Writer Overview
	Feature Representation

	ISO 8211 Reader
	Overview
	ISO 8211 Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	JSON (JavaScript Object Notation) Reader/Writer
	Overview
	JSON Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Landmark Z-Map Writer
	Overview
	Z-Map Quick Facts
	Writer Overview
	Feature Representation (Z-Map Writer)

	Landmark Zycor Graphics File (ZGF) Reader
	Overview
	ZGF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation

	LandXML Reader
	Overview
	LandXML Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	MapInfo MIF/MID Reader/Writer
	Overview
	MIF Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Feature Representation

	MapInfo TAB Reader/Writer
	Overview
	MapInfo Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Feature Representation

	Microsoft Access Reader/Writer
	Overview
	MS Access Database Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Feature Representation

	Microsoft DirectX Writer
	Overview
	DirectX Quick Facts
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Microsoft Excel Reader/Writer
	Overview
	MS Excel Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Feature Representation

	Microsoft SQL Server Reader/Writer
	Overview
	MS SQL Server Quick Facts
	Reader Overview
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Table Representation
	Feature Representation

	Microsoft SQL Server (Spatial) Reader/Writer
	Overview
	MS SQL Server (Spatial) Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Table Representation
	Feature Representation

	Northgate StruMap Reader/Writer
	Overview
	StruMap Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation

	NULL (Nothing) Reader/Writer
	Overview

	ODBC 3.x Reader
	Overview
	ODBC 3.x Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation
	Mapping File Example

	OpenStreetMap (OSM) XML Reader/Writer
	Overview
	OSM Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Oracle Reader/Writer
	Overview
	Oracle Quick Facts
	Reader Overview
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Writer Mode Specification
	Feature Representation
	Troubleshooting

	Oracle Spatial Object Reader/Writer
	Object Writing
	Raster Support
	3D Geometry Support
	Oracle® Version
	Oracle Instant Client

	Overview
	Oracle Spatial Object Quick Facts
	Raster-Specific Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	FME Raster Features
	Feature Representation
	GeoMedia Geometry Representation
	Troubleshooting
	Mapping File Example

	Oracle Spatial Relational Reader/Writer
	ORACLE® VERSION:
	Overview
	Oracle Spatial Relational Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Enhanced Relational Operation
	Troubleshooting
	Mapping File Examples

	Oracle SQL Loader Writer
	Overview

	OS (GB) NTF Reader
	Overview
	OS(GB) NTF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	PenMetrics GRD Reader/Writer
	Overview
	GRD Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Feature Representation

	PHOCUS PHODAT Reader/Writer
	Overview
	PHOCUS PHODAT Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation

	Point Cloud XYZ (POINTCLOUDXYZ) Reader/Writer
	Overview
	More Information
	About Point Clouds
	Point Cloud XYZ Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter

	PostGIS Reader/Writer
	Overview
	PostGIS Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation
	Troubleshooting Tips
	Connecting to PostgreSQL/PostGIS tables in another user's schema

	PostgreSQL Reader/Writer
	Overview
	PostgreSQL Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation
	Troubleshooting

	Regional Geographic Information System (REGIS) Reader/Writer
	Overview
	REGIS Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	S-57 (ENC) Hydrographic Data Reader
	Overview
	S-57 Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation
	Soundings
	Feature Relationships (LNAM)

	Scalable Vector Graphics (SVG) Writer
	Overview
	SVG Quick Facts
	Writer Overview
	Feature Representation

	Spatial Archive and Interchange Format (SAIF) Reader/Writer
	Overview
	SAIF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation

	Spatial Data Transfer Standard (SDTS) Reader
	Overview
	SDTS Quick Facts
	Reader Overview
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation
	Secondary Attributes

	SQLite Reader/Writer
	Overview
	SQLite Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	BEGIN_SQL{n}
	Workbench Parameter
	END_SQL{n}
	Workbench Parameter
	Feature Representation

	Standard Linear Format (SLF) Reader
	Overview
	SLF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Feature Representation
	Features Created by the FME Factories
	Using the Multi-Reader and the SLF Reader for ITD 2D Data

	STAR-APIC Mercator MCF Reader/Writer
	Overview
	Mercator MCF Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Swedish KF85 Reader/Writer
	Overview
	KF85 Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Feature Representation

	Swedish Masik Reader/Writer
	Overview
	Masik Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Feature Representation

	Text File Reader/Writer
	Overview
	Text File Quick Facts
	Reader Overview
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Feature Representation

	Trimble JobXML Reader
	Overview
	JobXML Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	U.S. Environmental Protection Agency (EPA) Geospatial Data Reader
	Overview
	EPA Geospatial Quick Facts
	Reader Overview
	SEARCH_ENVELOPE
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter

	Vector Markup Language (VML) Writer
	Overview
	VML Quick Facts
	Writer Overview
	Feature Representation

	Vector Product Format (VPF) Coverage and Database Reader/Writer
	Overview
	VPF Reader Quick Facts
	VPF Writer Quick Facts
	Reader Overview
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation (VPF Reader)
	Feature Type Values
	Special Attribute Handling
	Value Descriptor Tables
	Table Relations
	Writer Overview
	Feature Representation (VPF Writer)
	Using the VPF Writer

	Virtual Reality Modeling Language (VRML) Writer
	Overview
	VRML Quick Facts
	Writer Overview
	Feature Representation

	Wavefront OBJ Reader/Writer
	Overview
	Supported OBJ File Syntax
	Wavefront OBJ Quick Facts
	Reader Overview
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Feature Representation
	FME Geometry Attributes Supported

	WFS (Web Feature Service) Reader
	Overview
	WFS Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Feature Representation

	XML (Extensible Markup Language) Reader/Writer
	Overview
	XML Quick Facts
	Reader Overview
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	Workbench Parameter
	SEARCH_ENVELOPE_COORDINATE_SYSTEM
	Workbench Parameter
	CLIP_TO_ENVELOPE
	Workbench Parameter
	EXPOSED_ATTRS
	Workbench Parameter
	Writer Overview
	Workbench Parameter
	Feature Representation
	xfMap

