Sonneneinstrahlung (Grafiken) (Spatial Analyst)

Mit der Spatial Analyst-Lizenz verfügbar.

Zusammenfassung

Leitet Raster-Darstellungen eines hemisphärischen Sichtfelds, einer Sonnenkarte und einer Himmelskarte ab, die in der Berechnung direkter, diffuser und globaler Sonneneinstrahlung verwendet werden

Verwendung

  • Ausgaben im Werkzeug Sonneneinstrahlung (Grafiken) sind Raster-Darstellungen und keine Karten, die den Ausgaben aus der Flächen- oder Punktsonneneinstrahlungsanalyse entsprechen. Vielmehr handelt es sich um Darstellungen der Richtungen in einer Richtungshemisphäre beim Blick von einer bestimmten Position nach oben. In einer hemisphärischen Projektion ist der Mittelpunkt der Zenit, der Rand der kreisförmigen Darstellung auf der Karte ist der Horizont und der Winkel relativ zum Zenit ist proportional zum Radius. Hemisphärische Projektionen haben kein geographisches Koordinatensystem und weisen den Wert (0,0) in der linken unteren Ecke auf.

  • Es wäre nicht praktisch, Sichtfelder für alle Positionen in einem DEM zu speichern. Daher wird, wenn keine Eingabepositionen angegeben werden, ein einzelnes Sichtfeld für den Mittelpunkt des Eingabe-Oberflächen-Rasters erstellt. Bei Angabe von Eingabe-Punkt-Features oder Positionsdateien werden für jede Eingabeposition mehrere Sichtfeld-Raster erstellt. Wenn mehrere Positionen angegeben werden, ist die Ausgabe ein Multiband-Raster, bei dem jedes Band dem Sichtfeld für eine bestimmte Position entspricht.

  • Die Tabelle der Eingabepositionen kann eine Point-Feature-Class oder eine Tabelle mit Punktkoordinaten sein. Bei der Eingabe von Positionen nach Tabelle muss eine Liste der Positionen mit einer XY-Koordinate angegeben werden. Die Tabelle kann eine Geodatabase-Tabelle, eine .dbf-Datei, eine INFO-Tabelle oder eine Text-Tabellendatei sein. Bei Verwendung einer ASCII-Koordinatendatei sollte jede Linie ein XY-Paar enthalten, das durch ein Komma, ein Leerzeichen oder einen Tabulator getrennt ist.

  • Bei Ausgabe-Rastern für die grafische Anzeige werden die Umgebungseinstellungen für Ausdehnung oder Zellengröße nicht berücksichtigt. Die Ausgabeausdehnungen stehen immer in Bezug zur Himmelsgröße/Auflösung und haben die Zellengröße 1. Bei der zugrunde liegenden Analyse werden jedoch die Umgebungseinstellungen verwendet, was sich auf die Ergebnisse des Sichtfeldes auswirken kann.

  • Möglicherweise werden ein oder zwei Sonnenkarten-Raster generiert, abhängig davon, ob die Zeitkonfiguration überlappende Sonnenpositionen während des ganzen Jahres einschließt. Wenn zwei Sonnenkarten erstellt werden, stellt eine den Zeitraum zwischen der Winter- und der Sommersonnenwende dar und die andere den Zeitraum zwischen der Sommer- und der Wintersonnenwende. Je nach Jahr fallen die Sonnenwenden auf den 20. oder 21. Dezember bzw. Juni, gelegentlich jedoch auch auf den 22. des jeweiligen Monats. Wenn mehrere Sonnenkarten erstellt werden, ist die Standardausgabe ein Multiband-Raster.

  • Der Breitengrad der Standortfläche (Einheiten: Dezimalgrad, für die Nordhalbkugel positiv und für die Südhalbkugel negativ) wird u. a. zur Berechnung der Sonnenneigung und -position verwendet.

    Die Analyse wurde nur für kleinräumige Maßstäbe entwickelt, weshalb die Verwendung eines einzigen Breitengradwertes für das ganze DEM im Allgemeinen akzeptabel ist. Bei größeren Datasets wie bei Staaten, Ländern oder Kontinenten unterscheiden sich die Einstrahlungsergebnisse je nach Breitengrad (Unterschied von mehr als 1 Grad) erheblich. Um umfangreichere geographische Regionen zu analysieren, muss das Untersuchungsgebiet in Zonen mit verschiedenen Breitengraden unterteilt werden.

  • Für Eingabe-Oberflächen-Raster, die einen Raumbezug enthalten, wird der mittlere Breitengrad automatisch berechnet; andernfalls wird der Breitengrad standardmäßig auf 45 Grad festgelegt. Bei Verwendung eines Eingabe-Layers wird der Raumbezug des Datenrahmens verwendet.

  • Die Himmelsgröße ist die Auflösung der Sichtfeld-, Himmelskarten- und Sonnenkarten-Raster, die in den Strahlungsberechnungen (Einheiten: Zellen pro Seite) verwendet werden. Dabei handelt es sich um nach oben hin offene, halbkugelförmige Raster-Repräsentationen des Himmels ohne geographisches Koordinatensystem. Diese Raster sind quadratisch (gleiche Anzahl von Zeilen und Spalten).

    Durch Vergrößern der Himmelsgröße vergrößert sich die Berechnungsgenauigkeit, aber auch die Berechnungszeit nimmt beachtlich zu.

  • Bei einer kleinen Tagesintervall-Einstellung (z. B. < 14 Tage) sollte eine größere Himmelsgröße verwendet werden. Während der Analyse wird die Sonnenkarte (entsprechend der Himmelsgröße) verwendet, um Sonnenpositionen (Spuren) für bestimmte Zeiträume darzustellen und die direkte Strahlung zu berechnen. Bei geringen Tagesintervallen und einer zu kleinen Himmelsgrößenauflösung überschneiden sich die Sonnenspuren möglicherweise, was für die betreffende Spur zu Strahlungswerten führt, die 0 oder negativ sind. Mit einer höheren Auflösung wird ein genaueres Ergebnis erzielt.

  • Der maximale Himmelsgrößenwert beträgt 10.000. Der Standardwert 200 reicht für vollständige DEMs mit großen Tagesintervallen (z. B. > 14 Tage) aus. Ein Himmelsgrößenwert von 512 ist ausreichend für Berechnungen an Punktpositionen, bei denen die Berechnungszeit weniger problematisch ist. Bei kleineren Tagesintervallen (z. B. < 14 Tage) wird empfohlen, höhere Werte zu verwenden. Um beispielsweise die Sonneneinstrahlung für eine Position am Äquator mit Tagesintervall = 1 zu berechnen, wird empfohlen, eine Himmelsgröße von 2.800 oder mehr zu verwenden.

  • Tagesintervalle über 3 werden empfohlen, da sich die Sonnenspuren innerhalb von drei Tagen in der Regel je nach Himmelsgröße und Jahreszeit überschneiden. Für Berechnungen über das ganze Jahr mit monatlichem Intervall wird das Tagesintervall deaktiviert; das Programm verwendet dann intern Kalendermonatsintervalle. Der Standardwert ist 14.

  • Da die Sichtfeldberechnung sehr ressourcenintensiv sein kann, werden Horizontwinkel nur für die angegebene Anzahl von Berechnungsrichtungen aufgezeichnet. Gültige Werte müssen ein Vielfaches von 8 (8, 16, 24, 32 usw.) sein. In der Regel ist ein Wert von 8 oder 16 für Flächen mit sanfter Topografie geeignet, wohingegen der Wert 32 für komplexe Topografie angemessen ist. Der Standardwert ist 32.

  • Die Anzahl der benötigten Berechnungsrichtungen ist mit der Auflösung des Eingabe-DEMs verknüpft. Natürliches Terrain mit einer Auflösung von 30 Metern ist in der Regel relativ glatt, sodass in den meisten Situationen weniger Richtungen (16 oder 32) ausreichend sind. Bei feineren DEMs und insbesondere bei künstlichen Strukturen, die in die DEMs integriert wurden, muss die Anzahl der Richtungen erhöht werden. Mit zunehmender Zahl der Richtungen steigt die Genauigkeit, aber auch die Berechnungszeit.

  • Weitere Informationen zur Geoverarbeitung von Umgebungen mit diesem Werkzeug finden Sie unter Analyseumgebungen und Spatial Analyst.

Parameter

BeschriftungErläuterungDatentyp
Eingabe-Raster

Eingabe-Höhenoberflächen-Raster.

Raster Layer
Eingabe-Punkte oder -Tabelle
(optional)

Die Eingabe-Point-Feature-Class oder die Tabelle mit den Positionen zur Analyse der Sonneneinstrahlung.

Feature Layer; Table View
Himmelsgröße / Auflösung
(optional)

Die Auflösung oder Himmelsgröße für das Sichtfeld, die Himmelskarte und Sonnen-Karten-Raster. Einheiten: Zellen.

Standardmäßig wird ein Raster von 200 x 200 Zellen erzeugt.

Long
Höhenversatz
(optional)

Die Höhe (in Meter) über der DEM-Oberfläche, für die Berechnungen durchgeführt werden sollen.

Der Höhenversatz wird auf alle Eingabepositionen angewendet.

Double
Berechnungsrichtungen
(optional)

Die Anzahl der azimutalen Richtungen, die beim Berechnen des Sichtfeldes verwendet werden.

Gültige Werte müssen ein Vielfaches von 8 (8, 16, 24, 32 usw.) sein. Der Standardwert liegt bei 32 Richtungen, was für komplexe Topografie angemessen ist.

Long
Breitengrad
(optional)

Der Breitengrad der Standortfläche. Die Angabe erfolgt in Dezimalgrad (für die Nordhalbkugel positiv und für die Südhalbkugel negativ).

Für Eingabe-Oberflächen-Raster, die einen Raumbezug enthalten, wird der mittlere Breitengrad automatisch berechnet; andernfalls wird der Breitengrad standardmäßig auf 45 Grad festgelegt.

Double
Zeitkonfiguration
(optional)

Gibt den Zeitraum an, der für die Berechnungen verwendet werden soll.

  • Besondere Tage: Berechnet die Sonneneinstrahlung für Sommersonnenwende, Tagundnachtgleiche und Wintersonnenwende (wobei die Sonneneinstrahlung für die Tagundnachtgleiche im Frühling und im Herbst identisch ist).
  • Innerhalb eines Tages: Führt Berechnungen für einen angegebenen Zeitraum innerhalb eines einzelnen Tages durch.

    Wählen Sie den julianischen Tag aus, und geben Sie die Start- und Endzeit ein. Wenn die Startzeit und die Endzeit identisch sind, wird die Sonneneinstrahlung zu diesem Zeitpunkt berechnet. Wenn die Startzeit vor Sonnenaufgang und die Endzeit nach Sonnenuntergang liegt, wird die Sonneneinstrahlung für den ganzen Tag berechnet.

    • Verwenden Sie die Kalenderschaltfläche, um das Dialogfeld Kalender zu öffnen und die Eingabe des richtigen Tages zu erleichtern.
  • Mehrere Tage: Führt Berechnungen für einen bestimmten mehrtägigen Zeitraum innerhalb eines Jahres durch.

    Geben Sie das Startjahr sowie den Start- und Endtag an. Wenn der Endtag kleiner als der Starttag ist, wird davon ausgegangen, dass der Endtag im folgenden Jahr liegt. Die Standardzeitkonfiguration beginnt an Tag 5 und endet an Tag 160 des aktuellen julianischen Jahres.

    • Verwenden Sie die Kalenderschaltfläche, um das Dialogfeld Kalender zu öffnen und die Eingabe der richtigen Tage zu erleichtern.
  • Gesamtes Jahr: Führt Berechnungen für ein ganzes Jahr mit monatlichen Intervallen durch.

    Wenn die Option Ausgaben für jedes Intervall erstellen aktiviert wird, werden für jeden Monat Ausgabedateien erstellt; andernfalls wird eine einzelne Ausgabe für das ganze Jahr erstellt.

Time configuration
Tagesintervall
(optional)

Das Zeitintervall für das ganze Jahr (Einheiten: Tage), das zur Berechnung von Himmelssektoren für die Sonnenkarte verwendet wird.

Der Standardwert ist 14 (zweiwöchentlich).

Long
Stundenintervall
(optional)

Das Zeitintervall für den ganzen Tag (Einheiten: Stunden), das zur Berechnung von Himmelssektoren für Sonnenkarten verwendet wird.

Der Standardwert ist 0,5.

Double
Ausgabe-Sonnnenkarten-Raster
(optional)

Das Ausgabe-Raster für die Sonnenkarte.

Die Ausgabe ist eine Darstellung, die Sonnenspuren, die scheinbare Position der Sonne im Laufe der Zeit, angibt. Die Ausgabe weist dieselbe Auflösung auf wie das Sichtfeld und die Himmelskarte.

Raster Dataset
Zenit-Einteilung
(optional)

Die Anzahl der Abschnitte, die zum Erstellen von Himmelssektoren in der Himmelskarte verwendet werden.

Der Standard beträgt 8 Abschnitte (relativ zum Zenit). Die Werte müssen größer als 0 und kleiner als die Hälfte des Himmelsgrößenwertes sein.

Long
Azimut-Einteilung
(optional)

Die Anzahl der Abschnitte, die zum Erstellen von Himmelssektoren in der Himmelskarte verwendet werden.

Der Standard beträgt 8 Abschnitte (relativ zur nördlichen Richtung). Gültige Werte müssen ein Vielfaches von 8 sein. Außerdem müssen sie größer als 0 und kleiner als 160 sein.

Long
Ausgabe-Himmelskarten-Raster
(optional)

Das Ausgabe-Raster für die Himmelskarte.

Die Ausgabe wird erstellt, indem der gesamte Himmel in eine Reihe von durch Zenit- und Azimutunterteilungen definierte Himmelssektoren unterteilt wird. Die Ausgabe weist dieselbe Auflösung auf wie das Sichtfeld und die Sonnenkarte.

Raster Dataset

Rückgabewert

BeschriftungErläuterungDatentyp
Ausgabe-Sichtfeld-Raster

Das Ausgabe-Raster für das Sichtfeld.

Das resultierende Sichtfeld für eine Position stellt dar, welche Himmelsrichtungen sichtbar und welche verdeckt sind. Es ähnelt der Ansicht, die nach oben gerichtete hemisphärische Fotos (Fischaugenfotos) bieten.

Raster

SolarRadiationGraphics(in_surface_raster, {in_points_feature_or_table}, {sky_size}, {height_offset}, {calculation_directions}, {latitude}, {time_configuration}, {day_interval}, {hour_interval}, {out_sunmap_raster}, {zenith_divisions}, {azimuth_divisions}, {out_skymap_raster})
NameErläuterungDatentyp
in_surface_raster

Eingabe-Höhenoberflächen-Raster.

Raster Layer
in_points_feature_or_table
(optional)

Die Eingabe-Point-Feature-Class oder die Tabelle mit den Positionen zur Analyse der Sonneneinstrahlung.

Feature Layer; Table View
sky_size
(optional)

Die Auflösung oder Himmelsgröße für das Sichtfeld, die Himmelskarte und Sonnen-Karten-Raster. Einheiten: Zellen.

Standardmäßig wird ein Raster von 200 x 200 Zellen erzeugt.

Long
height_offset
(optional)

Die Höhe (in Meter) über der DEM-Oberfläche, für die Berechnungen durchgeführt werden sollen.

Der Höhenversatz wird auf alle Eingabepositionen angewendet.

Double
calculation_directions
(optional)

Die Anzahl der azimutalen Richtungen, die beim Berechnen des Sichtfeldes verwendet werden.

Gültige Werte müssen ein Vielfaches von 8 (8, 16, 24, 32 usw.) sein. Der Standardwert liegt bei 32 Richtungen, was für komplexe Topografie angemessen ist.

Long
latitude
(optional)

Der Breitengrad der Standortfläche. Die Angabe erfolgt in Dezimalgrad (für die Nordhalbkugel positiv und für die Südhalbkugel negativ).

Für Eingabe-Oberflächen-Raster, die einen Raumbezug enthalten, wird der mittlere Breitengrad automatisch berechnet; andernfalls wird der Breitengrad standardmäßig auf 45 Grad festgelegt.

Double
time_configuration
(optional)

Gibt die Zeitkonfiguration (den Zeitraum) an, die zum Berechnen der Sonneneinstrahlung verwendet wird.

Die Time-Class-Objekte dienen zur Angabe der Zeitkonfiguration.

Die folgenden Zeitkonfigurationsarten sind verfügbar: TimeWithinDay, TimeMultipleDays, TimeSpecialDays und TimeWholeYear.

Formate:

  • TimeWithinDay({day},{startTime},{endTime})
  • TimeMultipleDays({year},{startDay},{endDay})
  • TimeSpecialDays()
  • TimeWholeYear({year})

Die standardmäßige Zeitkonfiguration lautet TimeMultipleDays mit startDay 5 und endDay 160 (aktuelles julianisches Jahr).

Time configuration
day_interval
(optional)

Das Zeitintervall für das ganze Jahr (Einheiten: Tage), das zur Berechnung von Himmelssektoren für die Sonnenkarte verwendet wird.

Der Standardwert ist 14 (zweiwöchentlich).

Long
hour_interval
(optional)

Das Zeitintervall für den ganzen Tag (Einheiten: Stunden), das zur Berechnung von Himmelssektoren für Sonnenkarten verwendet wird.

Der Standardwert ist 0,5.

Double
out_sunmap_raster
(optional)

Das Ausgabe-Raster für die Sonnenkarte.

Die Ausgabe ist eine Darstellung, die Sonnenspuren, die scheinbare Position der Sonne im Laufe der Zeit, angibt. Die Ausgabe weist dieselbe Auflösung auf wie das Sichtfeld und die Himmelskarte.

Raster Dataset
zenith_divisions
(optional)

Die Anzahl der Abschnitte, die zum Erstellen von Himmelssektoren in der Himmelskarte verwendet werden.

Der Standard beträgt 8 Abschnitte (relativ zum Zenit). Die Werte müssen größer als 0 und kleiner als die Hälfte des Himmelsgrößenwertes sein.

Long
azimuth_divisions
(optional)

Die Anzahl der Abschnitte, die zum Erstellen von Himmelssektoren in der Himmelskarte verwendet werden.

Der Standard beträgt 8 Abschnitte (relativ zur nördlichen Richtung). Gültige Werte müssen ein Vielfaches von 8 sein. Außerdem müssen sie größer als 0 und kleiner als 160 sein.

Long
out_skymap_raster
(optional)

Das Ausgabe-Raster für die Himmelskarte.

Die Ausgabe wird erstellt, indem der gesamte Himmel in eine Reihe von durch Zenit- und Azimutunterteilungen definierte Himmelssektoren unterteilt wird. Die Ausgabe weist dieselbe Auflösung auf wie das Sichtfeld und die Sonnenkarte.

Raster Dataset

Rückgabewert

NameErläuterungDatentyp
out_viewshed_raster

Das Ausgabe-Raster für das Sichtfeld.

Das resultierende Sichtfeld für eine Position stellt dar, welche Himmelsrichtungen sichtbar und welche verdeckt sind. Es ähnelt der Ansicht, die nach oben gerichtete hemisphärische Fotos (Fischaugenfotos) bieten.

Raster

Codebeispiel

SolarRadiationGraphics – Beispiel 1 (Python-Fenster)

Das folgende Skript veranschaulicht, wie dieses Werkzeug im Python-Fenster verwendet wird.

import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
outViewshedMap = SolarRadiationGraphics("elevation", "observers.shp", 200, 2, 32, 52,
                                 TimeMultipleDays(2009, 91, 212), 14, 0.5, 
                                 "c:/sapyexamples/output/sunmap", 8, 8, 
                                 "c:/sapyexamples/output/skymap")
outViewshedMap.save("c:/sapyexamples/output/viewmap")
SolarRadiationGraphics – Beispiel 2 (eigenständiges Skript)

Erstellen eines Sichtfelds, einer Sonnenkarte und einer Himmelskarte, die in der Sonneneinstrahlungsanalyse verwendet werden.

# Name: SolarRadiationGraphics_Ex_02.py
# Description: Derives raster representations of a hemispherical viewshed, 
#    sunmap, and skymap, which are used in the calculation of direct, diffuse, 
#    and global solar radiation.
# Requirements: Spatial Analyst Extension

# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *

# Set environment settings
env.workspace = "C:/sapyexamples/data"

# Set local variables
inRaster = "elevation"
pntFC = "observers.shp"
skySize = 200
zOffset = 2
directions = 32
latitude = 52
timeConfig = TimeMultipleDays(2009, 91, 212)
dayInterval = 14
hourInterval = 0.5
outSunMap = "c:/sapyexamples/output/sunmap"
zenDivisions = 8
aziDivisions = 8
outSkyMap = "c:/sapyexamples/output/skymap"

# Execute SolarRadiationGraphics
outViewshedMap = SolarRadiationGraphics(inRaster, pntFC, skySize, zOffset, 
                                    directions, latitude, timeConfig,
                                    dayInterval, hourInterval, outSunMap,
                                    zenDivisions, aziDivisions, outSkyMap)

# Save the output
outViewshedMap.save("c:/sapyexamples/output/viewmap")

Lizenzinformationen

  • Basic: Erfordert Spatial Analyst
  • Standard: Erfordert Spatial Analyst
  • Advanced: Erfordert Spatial Analyst

Verwandte Themen