Mit der Spatial Analyst-Lizenz verfügbar.
Mit der Image Analyst-Lizenz verfügbar.
Das Toolset "Math" enthält Werkzeuge zum Durchführen von mathematischen Operationen für Raster.
Die Werkzeuge sind in vier Hauptkategorien gruppiert:
- Mathematik
Die Werkzeuge der obersten Ebene des Toolsets "Mathematik" führen mathematische Operationen für Raster durch, die in die folgenden Kategorien eingeteilt sind: "Arithmetisch", "Potenz", "Exponential" und "Logarithmisch". Zudem sind Werkzeuge enthalten, mit denen die Vorzeichen der Rasterwerte geändert bzw. mit denen die Werte zwischen ganzen Zahlen und Gleitkommawerten konvertiert werden können.
- Bedingt
Das mathematische Toolset "Bedingungsfunktionen" ermöglicht Ihnen die Steuerung der Ausgabewerte anhand der für die Eingabewerte geltenden Bedingungen.
- Logisch
Das mathematische Toolset "Logisch" enthält Werkzeuge für logische Auswertungen in Rastern, die in die folgenden Kategorien eingeteilt sind: "Boolesch", "Bitweise", "Kombinatorisch", "Relational" und "Konditional".
- Trigonometrisch
Das mathematische Toolset "Trigonometrisch" enthält Werkzeuge für trigonometrische Berechnungen in mehreren Kategorien: "Standard", "Invers", "Hyperbolisch" und "Invers hyperbolisch".
Lizenz:
Die mathematischen Werkzeuge sind auch verfügbar, wenn Sie eine Lizenz für die Erweiterung "Spatial Analyst" besitzen.
Bestimmte mathematische Werkzeuge sind auch verfügbar, wenn Sie eine Lizenz für die Erweiterung "3D Analyst" besitzen. Diese Werkzeuge lauten: Divide, Float, Int, Minus, Plus und Times.
In der folgenden Tabelle sind die verfügbaren mathematischen Toolsets aufgeführt und kurz beschrieben.
Werkzeug | Beschreibung |
---|---|
Mathematisches Toolset "Allgemein" | Die allgemeinen mathematischen Werkzeuge wenden eine mathematische Funktion auf die Eingabe an. Diese Werkzeuge lassen sich in mehrere Kategorien unterteilen. Die arithmetischen Werkzeuge führen grundlegende mathematische Operationen aus, z. B. Addition und Multiplikation. Es gibt Werkzeuge, die verschiedene Typen von Potenzierungsoperationen ausführen. Dazu gehören neben den grundlegenden Potenzoperationen auch Exponentialgrößen und Logarithmen. Die restlichen Werkzeuge werden entweder zur Vorzeichenkonvertierung oder zur Konvertierung zwischen ganzzahligen Datentypen und Gleitkommadatentypen verwendet. |
Die mathematischen Werkzeuge für Bedingungsfunktionen ermöglichen Ihnen die Steuerung der Ausgabewerte anhand der für die Eingabewerte geltenden Bedingungen. Es können zwei verschiedene Typen von Bedingungen angewendet werden: entweder Abfragen zu den Attributen oder eine Bedingung, die auf der Position der bedingten Anweisung in einer Liste beruht. | |
Die logischen mathematischen Werkzeuge werten die Eingabewerte aus und bestimmen die Ausgabewerte auf Grundlage einer festgelegten Logik. Die Werkzeuge werden in fünf Hauptkategorien untergliedert: bitwise, boolesch, kombinatorisch, logisch und relational. | |
Mit trigonometrischen mathematischen Werkzeugen können Sie verschiedene trigonometrische Berechnungen an den Werten in einem Eingabe-Raster durchführen. |
Die allgemeinen Werkzeuge im Toolset "Mathematik"
Folgendes gilt nur für die Werkzeuge der obersten Ebene dieses Toolsets. Nähere Informationen zu den anderen Werkzeugen finden Sie in den entsprechenden Abschnitten für die mathematischen Operationen Konditional, Logisch und Trigonometrisch.
Die allgemeinen mathematischen Werkzeuge wenden eine mathematische Funktion auf die Eingabe an. Diese Werkzeuge lassen sich in mehrere Kategorien unterteilen. Die arithmetischen Werkzeuge führen grundlegende mathematische Operationen aus, z. B. Addition und Multiplikation. Es gibt Werkzeuge, die verschiedene Typen von Potenzierungsoperationen ausführen. Dazu gehören neben den grundlegenden Potenzoperationen auch Exponentialgrößen und Logarithmen. Die restlichen Werkzeuge werden entweder zur Vorzeichenkonvertierung oder zur Konvertierung zwischen ganzzahligen Datentypen und Gleitkommadatentypen verwendet.
Für bestimmte Werkzeuge sind zwei Eingaben erforderlich:
- Arithmetisch: Plus, Minus, Times, Divide, Mod (Modulo)
- Potenz: Power
Andere Werkzeuge hingegen erfordern nur eine Eingabe:
- Exponentiell: Exp, Exp2, Exp10
- Logarithmisch: Ln, Log2, Log10
- Potenz: Square, Square Root
- Vorzeichen: Abs, Negate
- Typenkonvertierung: Float, Int, Round Down, Round Up
In der folgenden Tabelle werden die verfügbaren allgemeinen mathematischen Werkzeuge aufgeführt und kurz beschrieben:
Werkzeug | Beschreibung |
---|---|
Den absoluten Wert der Zellen in einem Raster berechnen. | |
Die Werte von zwei Rastern auf Zellenbasis teilen. | |
Die Exponentialfunktion zur Basis e der Zellen in einem Raster berechnen. | |
Die Exponentialfunktion zur Basis 10 der Zellen in einem Raster berechnen. | |
Die Exponentialfunktion zur Basis 2 der Zellen in einem Raster berechnen. | |
Jeden Zellenwert eines Rasters in eine Gleitkommadarstellung konvertieren. | |
Konvertiert die einzelnen Zellenwerte eines Rasters durch Abschneiden in eine ganze Zahl. | |
Den natürlichen Logarithmus (Basis e) von Zellen in einem Raster berechnen. | |
Den Logarithmus der Basis 10 von Zellen in einem Raster berechnen. | |
Den Logarithmus der Basis 2 von Zellen in einem Raster berechnen. | |
Den Wert des zweiten Eingabe-Rasters vom Wert des ersten Eingabe-Rasters auf Zellenbasis subtrahieren. | |
Den Rest (Modulo) der Teilung des ersten Rasters durch das zweite Raster auf Zellenbasis ermitteln. | |
Das Vorzeichen der Zellenwerte des Eingabe-Rasters (Multiplikation mit -1) auf Zellenbasis ändern. | |
Die Werte von zwei Rastern auf Zellenbasis addieren. | |
Die Zellenwerte in einem Raster mit den Werten in einem anderen Raster potenzieren. | |
Für jede Zelle in einem Raster wird die nächstniedrigere Ganzzahl zurückgegeben, die als Gleitkommazahl angegeben wird. | |
Gibt für jede Zelle in einem Raster die nächsthöhere Ganzzahl zurück, die als Gleitkommazahl angegeben wird. | |
Das Quadrat der Zellenwerte in einem Raster berechnen. | |
Die Quadratwurzel der Zellenwerte in einem Raster berechnen. | |
Die Werte von zwei Rastern auf Zellenbasis multiplizieren. |