Pixel mit Deep Learning klassifizieren (Raster Analysis)

ArcGIS Pro 3.4 | | Hilfearchiv

Zusammenfassung

Führt ein trainiertes Deep-Learning-Modell für ein Eingabebild aus und erzeugt ein klassifiziertes Raster, das als gehosteter Bilddaten-Layer in Ihrem Portal veröffentlicht wird.

Abbildung

Abbildung des Werkzeugs "Pixel mit Deep Learning klassifizieren"

Verwendung

  • Die Python-Umgebung des RA-Servers (Raster-Analyse) muss mit der passenden Deep-Learning-Python-API wie TensorFlow, CNTK oder einer vergleichbaren Anwendung konfiguriert werden.

  • Wenn dieses Werkzeug ausgeführt wird, ruft der RA-Server eine Deep-Learning-Python-API eines Drittanbieters (wie TensorFlow oder CNTK) auf und verwendet zum Verarbeiten der einzelnen Raster-Kacheln die angegebene Python-Raster-Funktion.

  • Das Eingabemodell dieses Werkzeugs übernimmt nur ein Deep-Learning-Paketelement (.dlpk) aus dem Portal.

  • Nachdem das Eingabemodell ausgewählt oder angegeben wurde, ruft das Werkzeug die Modellargumentinformationen vom RA-Server ab. Das Werkzeug kann diese Informationen möglicherweise nicht abrufen, wenn das Eingabemodell ungültig ist oder der RA-Server nicht ordnungsgemäß mit dem Deep-Learning-Framework konfiguriert wurde.

Parameter

BeschriftungErläuterungDatentyp
Eingabe-Raster

Das zu klassifizierende Eingabebild. Hierbei kann es sich um die URL für einen Image-Service, einen Raster-Layer, einen Kartenserver-Layer oder einen gekachelten Internet-Layer handeln.

Raster Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer; String
Eingabemodell

Die Eingabe ist eine URL eines Deep-Learning-Paketelements (.dlpk). Sie enthält den Pfad zur binären Datei des Deep-Learning-Modells, den Pfad zu der zu verwendenden Python-Raster-Funktion sowie andere Parameter wie etwa die bevorzugte Kachelgröße oder den bevorzugten Abstand.

File
Ausgabename

Der Name des Image-Service der klassifizierten Pixel.

String
Modellargumente
(optional)

Die Funktionsargumente werden in der Python-Raster-Funktionsklasse definiert, die vom Eingabemodell referenziert wird. Hier geben Sie zusätzliche Deep-Learning-Parameter und Argumente für Experimente und Verfeinerungen wie den Konfidenzschwellenwert zur Anpassung der Empfindlichkeit an. Die Namen der Argumente werden vom Werkzeug durch Lesen des Python-Moduls im RA-Server aufgefüllt.

Value Table
Verarbeitungsmodus
(optional)

Legt fest, wie alle Raster-Elemente in einem Mosaik-Dataset oder Image-Service verarbeitet werden. Dieser Parameter findet Anwendung, wenn es sich beim Eingabe-Raster um ein Mosaik-Dataset oder einen Image-Service handelt.

  • Als mosaikiertes Bild verarbeitenAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden zusammen mosaikiert und verarbeitet. Dies ist die Standardeinstellung.
  • Alle Raster-Elemente separat verarbeitenAlle Raster-Elemente im Mosaik-Dataset oder Image-Service werden als separate Bilder verarbeitet.
String

Abgeleitete Ausgabe

BeschriftungErläuterungDatentyp
Aktualisiertes Eingabe-Raster

Das Ausgabe-Raster-Dataset.

Raster Layer

Lizenzinformationen

  • Basic: Erfordert ArcGIS Image Server
  • Standard: Erfordert ArcGIS Image Server
  • Advanced: Erfordert ArcGIS Image Server

Verwandte Themen