Skip To Content

Überblick über die Toolbox "Spatial Statistics"

Die Toolbox "Spatial Statistics" enthält Statistikwerkzeuge zur Analyse von räumlichen Verteilungen, Mustern, Prozessen und Beziehungen. Es gibt zwar Ähnlichkeiten zwischen räumlichen und nicht räumlichen (herkömmlichen) Statistiken im Hinblick auf Begrifflichkeiten und Zielsetzungen, räumliche Statistiken wurden jedoch zur ausschließlichen Verwendung mit geographischen Daten entwickelt. Im Gegensatz zu herkömmlichen nicht räumlichen Statistikmethoden wird hier der Raum (Nähe, Fläche, Konnektivität und/oder andere räumliche Beziehungen) direkt in die Mathematik integriert.

Mit den Werkzeugen in der Toolbox "Spatial Statistics" können Sie die entscheidenden Eigenschaften einer räumlichen Verteilung zusammenfassen (zum Beispiel zur Bestimmung des arithmetischen Mittelpunktes oder des allgemeinen Richtungstrends), statistisch signifikante räumliche Cluster (Hot Spots/Cold Spots) und räumliche Ausreißer identifizieren, allgemeine Muster der Cluster-Bildung oder Verteilung bewerten, Features basierend auf Attributähnlichkeiten gruppieren, einen passenden Analysemaßstab identifizieren und räumliche Beziehungen erkunden. Für in Python geschriebene Werkzeuge steht darüber hinaus der Quellcode zur Verfügung, sodass Sie diese und andere Analysewerkzeuge ändern, erweitern und/oder mit anderen gemeinsam nutzen und daraus lernen können.

Hinweis:

Die Werkzeuge in der Toolbox "Spatial Statistics" können nicht direkt mit einem XY-Ereignis-Layer (ein Layer, der aus einer Tabelle mit X- und Y-Koordinatenfeldern erstellt wurde) verwendet werden. Verwenden Sie vor dem Ausführen der Analyse zunächst das Werkzeug Features kopieren zum Konvertieren der XY-Ereignisdaten in eine Feature-Class.

Denken Sie beim Verwenden von Shapefiles daran, dass diese keine NULL-Werte speichern können. Werkzeuge oder andere Verfahren zur Erstellung von Shapefiles aus Nicht-Shapefile-Eingaben speichern oder interpretieren NULL-Werte möglicherweise als Wert 0. In manchen Fällen werden NULL-Werte in Shapefiles als sehr große negative Werte gespeichert. Dies kann zu unerwarteten Ergebnissen führen. Weitere Informationen finden Sie unter Überlegungen zur Geoverarbeitung für die Shapefile-Ausgabe.

ToolsetBeschreibung

Analysen von Mustern

Mit diesen Werkzeugen können Sie auswerten, ob Features oder die damit verknüpften Werte ein gruppiertes, verteiltes oder zufälliges räumliches Muster bilden.

Cluster-Zuordnung

Mit diesen Werkzeugen können Sie statistisch signifikante Hot Spots, Cold Spots und räumliche Ausreißer identifizieren. Es gibt außerdem Werkzeuge zum Identifizieren oder Gruppieren von Features mit ähnlichen Eigenschaften.

Messen von geographischen Verteilungen

Mit diesen Werkzeugen können Sie Fragen beantworten wie: Wo ist der Mittelpunkt? Wie sind Shape und Ausrichtung beschaffen? Wie weit verteilt sind die Features?

Modellierung von räumlichen Beziehungen

Diese Werkzeuge dienen zur Modellierung von Datenbeziehungen mit Regressionsanalysen und zur Erstellung räumlicher Gewichtungsmatrizen.

Utilities

Mit diesen Dienstprogrammen können Sie eine Vielzahl verschiedener Funktionen ausführen: Berechnung von Flächen, Bewertung von Mindestabständen, Exportieren von Variablen und Geometrie, Konvertieren von räumlichen Gewichtungsdateien und Erfassen von lagegleichen Punkten.

Toolsets in der Toolbox "Spatial Statistics"

Zusätzliche Quellen

Auf http://esriurl.com/spatialstats finden Sie eine aktuelle Liste aller verfügbaren Ressourcen rund um die Verwendung der Werkzeuge in der Toolbox "Spatial Statistics", darunter:

  • Lernprogramme
  • Videos
  • Kostenlose Online-Seminare
  • Bücher, Artikel und Whitepaper
  • Beispielskripte und Fallstudien

Verwandte Themen


In diesem Thema
  1. Zusätzliche Quellen