Available with Image Analyst license.
Summary
Computes a forecasted multidimensional raster using the output trend raster from the Generate Trend Raster tool.
Usage
This tool uses the output from the Generate Trend Raster tool as the input multidimensional trend raster.
This tool produces a multidimensional raster dataset in Cloud Raster Format (CRF). Currently, no other output formats are supported.
By default, the multidimensional raster output will be compressed using the LZ77 compression type. It is recommended, however, that you change the compression type to LERC and adjust the maximum error value based on your data. For example, if you expect the results of the analysis to be accurate to three decimal places, use 0.001 for the maximum error value. It's best to avoid unnecessary accuracy requirements, as they will increase the processing time and storage size.
Syntax
PredictUsingTrendRaster(in_multidimensional_raster, {variables}, {dimension_def}, {dimension_values}, {start}, {end}, {interval_value}, {interval_unit})
Parameter | Explanation | Data Type |
in_multidimensional_raster | The input multidimensional trend raster from the Generate Trend Raster tool. | Raster Dataset; Raster Layer; Mosaic Dataset; Mosaic Layer; Image Service; File |
variables [variables,...] (Optional) | The variable or variables that will be predicted in the analysis. If no variables are specified, all variables will be used. | String |
dimension_def (Optional) | Specifies the method used to provide prediction dimension values.
| String |
dimension_values [dimension_values,...] (Optional) | The dimension value or values to be used in the prediction. The format of the time, depth, and height values must match the format of the dimension values used to generate the trend raster. If the trend raster was generated for the StdTime dimension, the format would be YYYY-MM-DDTHH:MM:SS, for example 2050-01-01T00:00:00. Multiple values are separated with a semicolon. This parameter is required when the dimension_def parameter is set to BY_VALUE. | String |
start (Optional) | The start date, height, or depth of the dimension interval to be used in the prediction. | String |
end (Optional) | The end date, height, or depth of the dimension interval to be used in the prediction. | String |
interval_value (Optional) | The number of steps between two dimension values to be included in the prediction. The default value is 1. For example, to predict temperature values every five years, use a value of 5. | Double |
interval_unit (Optional) | Specifies the unit that will be used for the interval value. This parameter only applies when the dimension of analysis is a time dimension.
| String |
Return Value
Name | Explanation | Data Type |
out_multidimensional_raster | The output Cloud Raster Format (CRF) multidimensional raster dataset. | Raster |
Code sample
This example generates the forecasted precipitation and temperature for January 1, 2050, and January 1, 2100.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Execute
predictOutput = PredictUsingTrendRaster("C:/Data/LinearTrendCoefficients.crf",
"temp;precip", "BY_VALUE", "2050-01-01T00:00:00;2100-01-01T00:00:00")
# Save output
predictOutput.save("C:/Data/Predicted_Temp_Precip.crf")
This example generates the forecasted NDVI values for each month in year 2025.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Define input parameters
inFile = "C:/Data/HarmonicTrendCoefficients.crf"
variables = "NDVI"
dimension_definition = "BY_INTERVAL"
start = "2025-01-01T00:00:00"
end = "2025-12-31T00:00:00"
interval_value = 1
interval_unit = "MONTHS"
# Execute - predict the monthly NDVI in 2025
predictOutput = PredictUsingTrendRaster(inFile, variables,
dimension_definition, '', start, end, interval_value, interval_unit)
# Save output
predictOutput.save("C:/data/predicted_ndvi.crf")
Environments
Licensing information
- Basic: Requires Image Analyst
- Standard: Requires Image Analyst
- Advanced: Requires Image Analyst