Make Route Analysis Layer (Network Analyst)

This ArcGIS 2.8 documentation has been archived and is no longer updated. Content and links may be outdated. See the latest documentation.

Summary

Makes a route network analysis layer and sets its analysis properties. A route analysis layer is useful for determining the best route between a set of network locations based on a specified network cost. The layer can be created using a local network dataset or a routing service hosted online or in a portal.

Usage

  • After creating the analysis layer with this tool, you can add network analysis objects to it using the Add Locations tool, solve the analysis using the Solve tool, and save the results on disk using the Save To Layer File tool.

  • When using this tool in geoprocessing models, if the model is run as a tool, the output network analysis layer must be made a model parameter; otherwise, the output layer is not added to the contents of the map.

  • In ArcGIS Pro, network analysis layer data is stored on disk in file geodatabase feature classes. When creating a network analysis layer in a project, the layer's data will be created in a new feature dataset in the Current Workspace environment. When creating a network analysis layer in a Python script, you must first explicitly set the workspace environment to a file geodatabase where you want the layer's data to be stored using arcpy.env.workspace = "<path to file gdb>". When the layer is created, a new feature dataset containing the appropriate sublayer feature classes will be added to this file geodatabase.

Parameters

LabelExplanationData Type
Network Data Source

The network dataset or service on which the network analysis will be performed. Use the portal URL for a service.

Network Dataset Layer;String
Layer Name
(Optional)

The name of the network analysis layer to create.

String
Travel Mode
(Optional)

The name of the travel mode to use in the analysis. The travel mode represents a collection of network settings, such as travel restrictions and U-turn policies, that determine how a pedestrian, car, truck, or other medium of transportation moves through the network. Travel modes are defined on your network data source.

An arcpy.na.TravelMode object and a string containing the valid JSON representation of a travel mode can also be used as input to the parameter.

String
Sequence
(Optional)

Specifies whether the input stops must be visited in a particular order when calculating the optimal route. This option changes the route analysis from a shortest-path problem to a traveling salesperson problem (TSP).

  • Use current order — The stops will be visited in the input order. This is the default.
  • Find best order — The stops will be reordered to find the optimal route. This option changes the route analysis from a shortest-path problem to a traveling salesperson problem (TSP).
  • Preserve both first and last stop —Preserve the first and last stops by input order. The rest will be reordered to find the optimal route.
  • Preserve first stop —Preserve the first stop by input order. The rest will be reordered to find the optimal route.
  • Preserve last stop —Preserve the last stop by input order. The rest will be reordered to find the optimal route.
String
Time of Day
(Optional)

The start date and time for the route. Route start time is typically used to find routes based on the impedance attribute that varies with the time of the day. For example, a start time of 7:00 a.m. could be used to find a route that considers rush hour traffic. The default value for this parameter is 8:00 a.m. A date and time can be specified as 10/21/05 10:30 AM. If the route spans multiple days and only the start time is specified, the current date is used.

Instead of using a particular date, a day of the week can be specified using the following dates:

  • Today—12/30/1899
  • Sunday—12/31/1899
  • Monday—1/1/1900
  • Tuesday—1/2/1900
  • Wednesday—1/3/1900
  • Thursday—1/4/1900
  • Friday—1/5/1900
  • Saturday—1/6/1900

For example, to specify that travel should begin at 5:00 p.m. on Tuesday, specify the parameter value as 1/2/1900 5:00 PM.

After the solve, the start and end times of the route are populated in the output routes. These start and end times are also used when directions are generated.

Date
Time Zone
(Optional)

Specifies the time zone of the Time of Day parameter.

  • Local time at locations —The Time of Day parameter refers to the time zone in which the first stop of a route is located. This is the default.If you are generating many routes that start in multiple times zones, the start times are staggered in coordinated universal time (UTC). For example, a Time of Day value of 10:00 a.m., 2 January, would mean a start time of 10:00 a.m. eastern standard time (3:00 p.m. UTC) for routes beginning in the eastern time zone and 10:00 a.m. central standard time (4:00 p.m. UTC) for routes beginning in the central time zone. The start times are offset by one hour in UTC.The arrival and departure times and dates recorded in the output Stops feature class will refer to the local time zone of the first stop for each route.
  • UTC —The Time of Day parameter refers to coordinated universal time (UTC). Choose this option if you want to generate a route for a specific time, such as now, but aren't certain in which time zone the first stop will be located.If you are generating many routes spanning multiple times zones, the start times in UTC are simultaneous. For example, a Time of Day value of 10:00 a.m., 2 January, would mean a start time of 5:00 a.m. eastern standard time (10:00 a.m. UTC) for routes beginning in the eastern time zone and 4:00 a.m. central standard time (10:00 a.m. UTC) for routes beginning in the central time zone. Both routes would start at 10:00 a.m. UTC.The arrival and departure times and dates recorded in the output Stops feature class will refer to UTC.
String
Line Shape
(Optional)

Specifies the shape type for the route features that are output by the analysis.

  • Along network —The output routes will have the exact shape of the underlying network sources. The output includes route measurements for linear referencing. The measurements increase from the first stop and record the cumulative impedance to reach a given position.
  • No lines —No shape will be generated for the output routes.
  • Straight lines —The output route shape will be a single straight line between the stops.
String
Accumulate Attributes
(Optional)

A list of cost attributes to be accumulated during analysis. These accumulated attributes are for reference only; the solver only uses the cost attribute used by your designated travel mode when solving the analysis.

For each cost attribute that is accumulated, a Total_[Impedance] property is populated in the network analysis output features.

This parameter is not available if the network data source is an ArcGIS Online service or the network data source is a service on a version of Portal for ArcGIS that does not support accumulation.

String
Generate Directions on Solve
(Optional)

Specifies whether directions will be generated when running the analysis.

  • Checked—Turn-by-turn directions will be generated on solve. This is the default.
  • Unchecked—Turn-by-turn directions will not be generated on solve.

For an analysis in which generating turn-by-turn directions is not needed, leaving this option unchecked will reduce the time it takes to solve the analysis.

Boolean
Time Zone for Time Fields
(Optional)

Specifies the time zone that will be used to interpret the time fields included in the input tables, such as the fields used for time windows.

  • Local time at locations —The dates and times in the time fields for the stop will be interpreted according to the time zone in which the stop is located. This is the default.
  • UTC —The dates and times in the time fields for the stop refer to coordinated universal time (UTC).
String

Derived Output

LabelExplanationData Type
Network Analyst Layer

The output network analysis layer.

Network Analyst Layer

Environments

Licensing information

  • Basic: Yes
  • Standard: Yes
  • Advanced: Yes

Related topics