Available with Image Analyst license.

The ArcGIS Image Analyst extension provides a rich suite of raster functions in ArcGIS Pro.

## Raster functions

A large number of raster functions is provided with the Image Analyst extension. These functions are grouped into categories of related functionality in the following tables. Each function is linked within the table to a detailed description.

### Analysis

The following functions are found in the Analysis raster function category. Use the analysis functions to analyze multidimensional and imagery datasets.

Function | Description |
---|---|

CCDC Analysis | Evaluates changes in pixel values over time using the Continuous Change Detection and Classification (CCDC) method and generates a change analysis raster containing the model results. |

Compute Change | The Compute Change function computes the differences between two categorical or continuous raster datasets. |

Detect Change Using Change Analysis | The Detect Change Using Change Analysis function generates a raster layer containing pixel date-of-change information using the change analysis raster. The change analysis raster must be generated by the Analyze Changes Using CCDC tool or the Analyze Changes Using LandTrendr tool, or the CCDC Analysis raster function or the LandTrendr Analysis raster function. |

Generate Trend | Estimates the trend for each pixel along a dimension for one or more variables in a multidimensional raster. |

Calculates the gradient along X, Y, XY, or a given dimension. | |

LandTrendr Analysis | Evaluates changes in pixel values over time using the Landsat-based detection of trends in disturbance and recovery (LandTrendr) method and generates a change analysis raster containing the model results. |

Predict Using Trend | Computes a forecasted multidimensional raster layer using the output trend raster from the Generate Trend function. |

Process Raster Collection | Processes each slice in a multidimensional raster or each item in a mosaic raster. This function can also aggregate multiple slices into a single slice. |

Weighted Sum | The Weighted Sum function allows you to overlay several rasters, multiplying each by their given weight and summing them together. |

### Classification functions

The following functions are found in the Classification raster function category. Use the segmentation and classification functions to prepare segmented rasters or pixel-based raster datasets to use in creating classified raster datasets.

Function | Description |
---|---|

Classify | Applies the appropriate classifier and associated training data specified in the .ecd training file to a raster dataset or segmented raster. |

Linear Spectral Unmixing | Performs subpixel classification and calculates the fractional abundance of different land-cover types for individual pixels. |

Maximum Likelihood Classify | Performs a maximum likelihood classification on a raster dataset or mosaic dataset. |

Predict Using Regression | Computes a predicted raster based on raster data inputs and a regression model from the Train Random Trees Regression Model tool. |

Region Pixel Count | Identifies connected regions with the same pixel value, and returns a raster containing values for the number of pixels in the regions. |

Segment Mean Shift | Groups pixels that are adjacent and have similar spectral characteristics into segments. This can be used as a second raster in the Classify function. |

### Conversion functions

The following function is found in the Conversion raster function category.

Function | Description |
---|---|

Converts a trend raster to a three-band (red, green, and blue) raster. The trend raster is generated from the Generate Trend raster function or the CCDC Analysis raster function. |

### Data management functions

The following function is found in the Data management raster function category.

Function | Description |
---|---|

Creates a multidimensional raster layer by combining existing multidimensional raster variable data along a dimension. | |

The Geometric Median function calculates the geometric median across pixels in a time series of multiband imagery. |

### Math functions

The following functions are found in the Math raster function category. The general math functions apply a mathematical function to the input raster(s). These tools fall into several categories. The arithmetic tools perform basic mathematical operations, such as addition and multiplication. There are tools that perform various types of exponentiation operations, which include exponentials and logarithms, in addition to the basic power operations. The remaining tools are used either for sign conversion or for conversion between integer and floating point data types.

Function | Description |
---|---|

Abs | Calculates the absolute value of the pixels in a raster. |

Arithmetic | Uses the pixel values to calculate mathematical operations on overlapping rasters. |

Band Arithmetic | Calculates indexes using the predefined formulas or user-defined expressions. |

Calculator | Computes a raster from a mathematical expression based on the raster bands. |

Divide | Divides the values of two rasters on a pixel-by-pixel basis. |

Exp | Calculates the base e exponential of the pixels in a raster. |

Exp10 | Calculates the base 10 exponential of the pixels in a raster. |

Exp2 | Calculates the base 2 exponential of the pixels in a raster. |

Float | Converts each pixel value of a raster into a floating-point representation. |

Int | Converts each pixel value of a raster to an integer by truncation. |

Ln | Calculates the natural logarithm (base e) of each pixel in a raster. |

Log10 | Calculates the base 10 logarithm of each pixel in a raster. |

Log2 | Calculates the base 2 logarithm of each pixel in a raster. |

Minus | Subtracts the value of the second input raster from the value of the first input raster on a pixel-by-pixel basis. |

Mod | Finds the remainder (modulo) of the first raster when divided by the second raster on a pixel-by-pixel basis. |

Negate | Changes the sign (multiplies by -1) of the pixel values of the input raster on a pixel-by-pixel basis. |

Plus | Adds (sums) the values of two rasters on a pixel-by-pixel basis. |

Power | Raises the pixel values in a raster to the power of the values found in another raster. |

Round Down | Returns the next lower integer, as a floating-point value, for each pixel in a raster. |

Round Up | Returns the next higher integer, as a floating-point value, for each pixel in a raster. |

Square | Calculates the square of the pixel values in a raster. |

Square Root | Calculates the square root of the pixel values in a raster. |

Times | Multiplies the values of two rasters on a pixel-by-pixel basis. |

### Math: Conditional

The following functions are found in the Math: Conditional raster function category. The conditional functions allow you to control the output values based on the conditions placed on the input values. The conditions that can be applied are of two types: queries on the attributes or a condition based on the position of the conditional statement in a list.

Function | Description |
---|---|

Con | Performs a conditional if/else evaluation on each of the input cells of an input raster. |

Set Null | Sets identified pixel locations to NoData based on the specified criteria. Returns NoData if a conditional evaluation is true, and returns the value specified by another raster if it is false. |

### Math: Logical

The following functions are found in the Math: Logical raster function category. The logical math functions evaluate the values of the inputs and determine the output values based on Boolean logic. These functions process raster datasets in five main areas: Bitwise, Boolean, Combinatorial, Logical, and Relational.

Function | Description |
---|---|

Bitwise And | Performs a Bitwise And operation on the binary values of two input rasters. |

Bitwise Left Shift | Performs a Bitwise Left Shift operation on the binary values of two input rasters. |

Bitwise Not | Performs a Bitwise Not (complement) operation on the binary value of an input raster. |

Bitwise Or | Performs a Bitwise Or operation on the binary values of two input rasters. |

Bitwise Right Shift | Performs a Bitwise Right Shift operation on the binary values of two input rasters. |

Bitwise Xor | Performs a Bitwise eXclusive Or operation on the binary values of two input rasters. |

Boolean And | Performs a Boolean And operation on the pixel values of two input rasters. If both input values are true (nonzero), the output value is 1. If one or both input values are false (zero), the output value is 0. |

Boolean Not | Performs a Boolean Not (complement) operation on the pixel values of the input raster. If the input values are true (nonzero), the output value is 0. If the input values are false (zero), the output value is 1. |

Boolean Or | Performs a Boolean Or operation on the cell values of two input rasters. If one or both input values are true (nonzero), the output value is 1. If both input values are false (zero), the output value is 0. |

Boolean Xor | Performs a Boolean eXclusive Or operation on the cell values of two input rasters. If one input value is true (nonzero) and the other value is false (zero), the output value is 1. If both input values are true or both are false, the output value is 0. |

Equal To | Performs an equal-to operation on two rasters on a pixel-by-pixel basis. |

Greater Than | Performs a Relational greater-than operation on two inputs on a pixel-by-pixel basis. Returns a value of 1 for pixels where the first raster is greater than the second raster and a value of 0 for pixels where the first raster is not greater than the second raster. |

Greater Than Equal | Performs a Relational greater-than-or-equal-to operation on two inputs on a pixel-by-pixel basis. Returns a value of 1 for pixels where the first raster is greater than or equal to the second raster and a value of 0 for pixels where the first raster is not greater than or equal to the second raster. |

Is Null | Determines which values from the input raster are NoData on a pixel-by-pixel basis. Returns a value of 1 if the input value is NoData and a value of 0 for pixels that are not NoData. |

Less Than | Performs a Relational less-than operation on two inputs on a pixel-by-pixel basis. Returns a value of 1 for pixels where the first raster is less than the second raster. |

Less Than Equal | Performs a Relational less-than-or-equal-to operation on two inputs on a pixel-by-pixel basis. Returns a value of 1 for pixels where the first raster is less than or equal to the second raster and a value of 0 where it is not less than or equal to the second raster. |

Not Equal | Performs a Relational not-equal-to operation on two inputs on a pixel-by-pixel basis. Returns a value of 1 for pixels where the first raster is not equal to the second raster and a value of 0 for pixels where it is equal to the second raster. |

### Math: Trigonometric

The following functions are found in the Math: Trigonometric raster function category. The trigonometric math functions perform various trigonometric calculations on the values in an input raster.

Function | Description |
---|---|

ACos | Calculates the inverse cosine of the pixels in a raster. |

ACosH | Calculates the inverse hyperbolic cosine of the pixels in a raster. |

ASin | Calculates the inverse sine of the pixels in a raster. |

ASinH | Calculates the inverse hyperbolic sine of the pixels in a raster. |

ATan | Calculates the inverse tangent of the pixels in a raster. |

ATan2 | Calculates the inverse tangent (based on x,y) of the pixels in a raster. |

ATanH | Calculates the inverse hyperbolic tangent of the pixels in a raster. |

Cos | Calculates the cosine of the pixels in a raster. |

CosH | Calculates the hyperbolic cosine of the pixels in a raster. |

Sin | Calculates the sine of the pixels in a raster. |

SinH | Calculates the hyperbolic sine of the pixels in a raster. |

Tan | Calculates the tangent of the pixels in a raster. |

TanH | Calculates the hyperbolic tangent of the pixels in a raster. |

### SAR

The following functions are found in the SAR raster function category.

Function | Description |
---|---|

Computes various SAR indices, such as Radar Vegetation Index (RVI), Radar Forest Degradation Index (RFDI), and Canopy Structure Index (CSI). | |

Corrects the input synthetic aperture radar (SAR) data for radiometric distortions due to topography. | |

Corrects backscatter disturbances caused by thermal noise in the input synthetic aperture radar (SAR) data, resulting in a more seamless image. |

### Statistical

The following functions are found in the Statistical raster function category. Use the statistical functions to perform statistical raster operations on a local, neighborhood, or zonal basis.

Function | Description |
---|---|

Cell Statistics | Calculates statistics from multiple rasters on a pixel-by-pixel basis. |

Dimensional Moving Statistics | Calculates statistics over a moving window on multidimensional data along a specified dimension. |

Focal Statistics | Calculates statistics on the cells within a neighborhood around each pixel of an input raster. Several shapes of neighborhood are available. |

Zonal Statistic | Summarizes the values of a raster within the zones of another dataset. |