Label | Explanation | Data Type |
Input Radar Data | The input radar data. | Raster Dataset; Raster Layer |
Output Radar Data | The despeckled radar data. | Raster Dataset |
Polarization Bands (Optional) | The polarization bands that will be filtered. The first band is selected by default. | String |
Filter
Type (Optional) | Specifies the type of smoothing algorithm or filter that will be applied.
| String |
Filter Size
(Optional) | Specifies the size of the pixel window that will be used to filter noise. This parameter is only valid when the Filter Type parameter is set to Lee, Enhanced Lee, Frost, Kuan, or Gamma MAP.
| String |
Noise Model
(Optional) | Specifies the type of noise that is reducing the quality of the radar image. This parameter is only valid when the Filter Type parameter is set to Lee.
| String |
Noise Variance
(Optional) | The noise variance of the radar image. The default is 0.25. This parameter is only valid when the Filter Type parameter is set to Lee and the Noise Model parameter is set to Additive noise or Additive and multiplicative noise. | Double |
Additive Noise Mean
(Optional) | The mean value of additive noise. A larger noise mean value will produce less smoothing, while a smaller value results in more smoothing. The default value is 0. This parameter is only valid when the Filter Type parameter is set to Lee and the Noise Model parameter is set to Additive and multiplicative noise. | Double |
Multiplicative Noise Mean
(Optional) | The mean value of multiplicative noise. A larger noise mean value will produce less smoothing, while a smaller value results in more smoothing. The default value is 1. This parameter is only valid when the Filter Type parameter is set to Lee and the Noise Model parameter is set to Multiplicative noise or Additive and multiplicative noise. | Double |
Number of Looks
(Optional) | The number of looks value of the image, which controls image smoothing and estimates noise variance. A smaller value results in more smoothing, while a larger value retains more image features. The default value is 1. This parameter is only valid when the Filter Type parameter is set to Enhanced Lee, Kuan, or Gamma MAP or when the Filter Type parameter is set to Lee and the Noise Model parameter is set to Multiplicative. | Long |
Damping Factor
(Optional) | The exponential damping level of smoothing that will be applied. A damping value greater than 1 will result in better edge preservation but less smoothing. Values less than 1 will result in more smoothing. A value of 0 will produce results similar to a low-pass filter. The default is 1. | Long |
Available with Image Analyst license.
Summary
Corrects the input synthetic aperture radar (SAR) data for speckle, which is a result of coherent illumination that resembles a grainy or salt and pepper effect.
This tool filters out noise while retaining edges and sharp features in the SAR image. The available filters are Lee, Enhanced Lee, Refined Lee, Frost, Kuan, and Gamma MAP.
Usage
-
Despeckling SAR imagery improves image interpretation and classification results.
Parameters
Despeckle(in_radar_data, out_radar_data, {polarization_bands}, {filter_type}, {filter_size}, {noise_model}, {noise_variance}, {add_noise_mean}, {mult_noise_mean}, {number_of_looks}, {damp_factor})
Name | Explanation | Data Type |
in_radar_data | The input radar data. | Raster Dataset; Raster Layer |
out_radar_data | The despeckled radar data. | Raster Dataset |
polarization_bands [polarization_bands,...] (Optional) | The polarization bands that will be filtered. The first band is selected by default. | String |
filter_type (Optional) | Specifies the type of smoothing algorithm or filter that will be applied.
| String |
filter_size (Optional) | Specifies the size of the pixel window that will be used to filter noise.
This parameter is only valid when the filter_type parameter is set to LEE, ENHANCED_LEE, FROST, KUAN, or GAMMA_MAP. | String |
noise_model (Optional) | This parameter is only valid when the filter_type parameter is set to LEE. | String |
noise_variance (Optional) | The noise variance of the radar image. The default is 0.25. This parameter is only valid when the filter_type parameter is set to LEE and the noise_model parameter is set to ADDITIVE_NOISE or ADDITIVE_AND_MULTIPLICATIVE_NOISE. | Double |
add_noise_mean (Optional) | The mean value of additive noise. A larger noise mean value will produce less smoothing, while a smaller value results in more smoothing. The default value is 0. This parameter is only valid when the filter_type parameter is set to LEE and the noise_model parameter is set to ADDITIVE_NOISE or ADDITIVE_AND_MULTIPLICATIVE_NOISE. | Double |
mult_noise_mean (Optional) | The mean value of multiplicative noise. A larger noise mean value will produce less smoothing, while a smaller value results in more smoothing. The default value is 1. This parameter is only valid when the filter_type parameter is set to LEE and the noise_model parameter is set to MULTIPLICATIVE_NOISE or ADDITIVE_AND_MULTIPLICATIVE_NOISE. | Double |
number_of_looks (Optional) | The number of looks value of the image, which controls image smoothing and estimates noise variance. A smaller value results in more smoothing, while a larger value retains more image features. The default value is 1. This parameter is only valid when the filter_type parameter is set to ENHANCED_LEE, KUAN, or GAMMA_MAP or when the filter_type parameter is set to LEE and the noise_model parameter is set to MULTIPLICATIVE_NOISE. | Long |
damp_factor (Optional) | The exponential damping level of smoothing that will be applied. A damping value greater than 1 will result in better edge preservation but less smoothing. Values less than 1 will result in more smoothing. A value of 0 will produce results similar to a low-pass filter. The default is 1. | Long |
Code sample
This example despeckles the cross-polarization band using the Refined Lee filter.
import arcpy
arcpy.env.workspace = "D:\Data\SAR\S1\20181014"
outRadar = arcpy.ia.Despeckle("IW_manifest_TNR_CalB0.crf", "VV;VH", "REFINED_LEE")
outRadar.save("IW_manifest_TNR_CalB0_Dspk.crf")
This example despeckles the cross-polarization band using the Refined Lee filter.
# Import system modules and check out ArcGIS Image Analyst extension license
import arcpy
arcpy.CheckOutExtension("ImageAnalyst")
from arcpy.ia import *
# Set local variables
in_radar = "D:\Data\SAR\S1\20181014\manifest_TNR_CalB0.crf"
out_radar = "D:\Data\SAR\S1\20181014\manifest_TNR_CalB0_Dspk.crf"
polarization = "VV;VH"
filter_type = "REFINED_LEE"
# Execute
outRadar = arcpy.ia.Despeckle(in_radar, polarization, filter_type)
outRadar.save(out_radar)
Environments
Licensing information
- Basic: Requires Image Analyst
- Standard: Requires Image Analyst
- Advanced: Requires Image Analyst