FAA 13A Runway Protection Surfaces (Aviation)

Available with Aviation Airports license.

Available with Aviation Charting license.

Summary

Generates runway protection surfaces based on FAA Advisory Circular 150/5300-13A.

Safe and efficient landing and takeoff operations at an airport require that certain areas on and near the airport are clear of objects or restricted to objects with a certain function, composition, or height. These clearing standards and criteria are established to create a safer environment for the aircraft operating on or near the airport.

Usage

  • This tool generates runway protection surfaces based on design matrices defined by the FAA. A design matrix consists of an approach category and approach design group. You can choose the design matrix to use for your surfaces by setting the Approach Category and Approach Design Group parameters.

    Some design matrices only apply to aircraft under 12,500 pounds. You can use the Small Aircraft parameter to select the design matrix for a small aircraft.

    Learn more about FAA Advisory Circular 150/5300-13A standards

  • The Input Runway Features parameter value must be z-enabled.

  • The Output OIS Features parameter value must be z-enabled.

  • This tool creates the runway protection area surface in an existing polygon or multipatch feature class. If a feature class is used for the Target OIS Features parameter value, it must have a vertical spatial reference.

Parameters

LabelExplanationData Type
Input Runway Features

The input runway dataset. The feature class must be z-enabled and contain polylines.

Feature Layer
Target OIS Features

The target feature class that will contain the generated obstruction identification surfaces.

Feature Layer
Surface Generation
(Optional)

Specifies the type of surface that will be generated.

  • Runway Safety AreaA runway safety area (RSA) will be generated.
  • Runway Object Free AreaA runway object free area (ROFA) will be generated.
  • Runway Obstacle Free ZoneA runway obstacle free zone (ROFZ) will be generated.
  • Precision Obstacle Free ZoneA precision obstacle free zone (POFZ) will be generated.
  • Approach Runway Protection ZoneAn approach runway protection zone (RPZ) will be generated.
  • Departure Runway Protection ZoneA departure runway protection zone (RPZ) will be generated.
String
Visibility Minimums

Specifies the visibility minimums that will be used for the runways.

  • VisualVisual flight rules will be used.
  • Not lower than 1 mileVisibility minimums will not be lower than 1 mile.
  • Not lower than 3/4 mileVisibility minimums will not be lower that 3/4 mile.
  • Lower than 3/4 mileVisibility minimums will be lower than 3/4 mile.
String
Approach Category

Specifies the approach category that will be used to generate surfaces.

  • AThe approach category A will be used.
  • BThe approach category B will be used.
  • CThe approach category C will be used.
  • DThe approach category D will be used.
  • EThe approach category E will be used.
String
Aircraft Design Group

Specifies the approach design group that will be used to generate surfaces.

  • IThe approach design group I will be used.
  • IIThe approach design group II will be used.
  • IIIThe approach design group III will be used.
  • IVThe approach design group IV will be used.
  • VThe approach design group V will be used.
  • VIThe approach design group VI will be used.
String
Small Aircraft
(Optional)

Specifies whether surfaces will be generated with the small aircraft design matrix.

Note:

This parameter only applies when the Approach Category parameter is set to A or B.

  • Checked—Surfaces will be generated with the small aircraft design matrix.
  • Unchecked—Surfaces will not be generated with the small aircraft design matrix. This is the default.
Boolean
Approach Guidance
(Optional)

Specifies the type of approach guidance that will be used at the end of the runway.

  • Precision Category IPrecision Category I approach operations will be used for the runway.
  • Precision Category IIPrecision Category II approach operations will be used for the runway.
  • Precision Category III APrecision Category III A approach operations will be used for the runway.
  • Precision Category III BPrecision Category III B approach operations will be used for the runway.
  • Precision Category III CPrecision Category III C approach operations will be used for the runway.
  • Precision Category III DPrecision Category III D approach operations will be used for the runway.
  • Non-verticalNonvertical approach operations (Non-precision approach category) will be used for the runway.
  • VerticalVertically guided approach operations will be used for the runway.
  • VisualOnly visual approach operations will be used for the runway.
String
Runway Direction
(Optional)

Specifies the end of the runway where the approach surface will be created.

  • High end to low endThe approach surface will be created from the high end of the runway to the low end. If a displaced threshold point exists at the high end of the runway, that point will be honored when creating the OIS.
  • Low end to high endThe approach surface will be created from the low end of the runway to the high end. If a displaced threshold point exists at the low end of the runway, that point will be honored when creating the OIS.
  • Both endsThe approach surface will be created from both the low end and high end of the runway.
String
Airport Elevation
(Optional)

The highest elevation on any of the runways of the airport. The value should be in the vertical coordinate system linear units of the target feature class. If no value is provided, the highest point from the Input Runway Features parameter value will be used.

Double
Input Airport Control Point Feature
(Optional)

The point features containing an Airport Elevation parameter feature, displaced threshold features, or both. Values provided for the Airport Elevation parameter will take precedence over these point features.

Feature Layer
Runway End Features
(Optional)

The input runway end point features associated with the each runway.

Feature Layer
Last Low End Approach Light
(Optional)

The distance in feet of the Approach Lighting System (ALS) from the end of the low end of the runway. If no value is provided, it is assumed that there is no ALS at the low end of the runway.

Double
Last High End Approach Light
(Optional)

The distance in feet of the Approach Lighting System (ALS) from the end of the high end of the runway. If no value is provided, it is assumed that there is no ALS at the high end of the runway.

Double
Custom JSON File
(Optional)

The import configuration, in JSON format, that creates the custom OIS.

File

Derived Output

LabelExplanationData Type
Output OIS Features

The output obstruction identification surface (OIS) features.

Feature Layer

arcpy.aviation.FAA13ARunwayProtectionSurfaces(in_features, target, {surface_generation}, visibility_minimums, approach_category, approach_design_group, {small_aircraft}, {approach_guidance}, {runway_direction}, {airport_elevation}, {airport_control_point_feature_class}, {runway_end_features}, {last_low_light}, {last_high_light}, {custom_json_file})
NameExplanationData Type
in_features

The input runway dataset. The feature class must be z-enabled and contain polylines.

Feature Layer
target

The target feature class that will contain the generated obstruction identification surfaces.

Feature Layer
surface_generation
[surface_generation,...]
(Optional)

Specifies the type of surface that will be generated.

  • RUNWAY_SAFETY_AREAA runway safety area (RSA) will be generated.
  • RUNWAY_OBJECT_FREE_AREAA runway object free area (ROFA) will be generated.
  • RUNWAY_OBSTACLE_FREE_ZONEA runway obstacle free zone (ROFZ) will be generated.
  • PRECISION_OBSTACLE_FREE_ZONEA precision obstacle free zone (POFZ) will be generated.
  • APPROACH_RUNWAY_PROTECTION_ZONEAn approach runway protection zone (RPZ) will be generated.
  • DEPARTURE_RUNWAY_PROTECTION_ZONEA departure runway protection zone (RPZ) will be generated.
String
visibility_minimums

Specifies the visibility minimums that will be used for the runways.

  • VISUALVisual flight rules will be used.
  • NOT_LOWER_THAN_1_MILEVisibility minimums will not be lower than 1 mile.
  • NOT_LOWER_THAN_3_4_MILEVisibility minimums will not be lower that 3/4 mile.
  • LOWER_THAN_3_4_MILEVisibility minimums will be lower than 3/4 mile.
String
approach_category

Specifies the approach category that will be used to generate surfaces.

  • AThe approach category A will be used.
  • BThe approach category B will be used.
  • CThe approach category C will be used.
  • DThe approach category D will be used.
  • EThe approach category E will be used.
String
approach_design_group

Specifies the approach design group that will be used to generate surfaces.

  • IThe approach design group I will be used.
  • IIThe approach design group II will be used.
  • IIIThe approach design group III will be used.
  • IVThe approach design group IV will be used.
  • VThe approach design group V will be used.
  • VIThe approach design group VI will be used.
String
small_aircraft
(Optional)

Specifies whether surfaces will be generated with the small aircraft design matrix.

Note:

This parameter only applies when the approach_category parameter is set to A or B.

  • SMALL_AIRCRAFTSurfaces will be generated with the small aircraft design matrix.
  • NOT_SMALL_AIRCRAFTSurfaces will not be generated with the small aircraft design matrix. This is the default.
Boolean
approach_guidance
(Optional)

Specifies the type of approach guidance that will be used at the end of the runway.

  • PRECISION_CAT_IPrecision Category I approach operations will be used for the runway.
  • PRECISION_CAT_IIPrecision Category II approach operations will be used for the runway.
  • PRECISION_CAT_IIIAPrecision Category III A approach operations will be used for the runway.
  • PRECISION_CAT_IIIBPrecision Category III B approach operations will be used for the runway.
  • PRECISION_CAT_IIICPrecision Category III C approach operations will be used for the runway.
  • PRECISION_CAT_IIIDPrecision Category III D approach operations will be used for the runway.
  • NON_VERTICALNonvertical approach operations (Non-precision approach category) will be used for the runway.
  • VERTICALVertically guided approach operations will be used for the runway.
  • VISUALOnly visual approach operations will be used for the runway.
String
runway_direction
(Optional)

Specifies the end of the runway where the approach surface will be created.

  • HIGH_END_TO_LOW_ENDThe approach surface will be created from the high end of the runway to the low end. If a displaced threshold point exists at the high end of the runway, that point will be honored when creating the OIS.
  • LOW_END_TO_HIGH_ENDThe approach surface will be created from the low end of the runway to the high end. If a displaced threshold point exists at the low end of the runway, that point will be honored when creating the OIS.
  • BOTH_ENDThe approach surface will be created from both the low end and high end of the runway.
String
airport_elevation
(Optional)

The highest elevation on any of the runways of the airport. The value should be in the vertical coordinate system linear units of the target feature class. If no value is provided, the highest point from the in_features parameter value will be used.

Double
airport_control_point_feature_class
(Optional)

The point features containing an airport_elevation parameter feature, displaced threshold features, or both. Values provided for the airport_elevation parameter will take precedence over these point features.

Feature Layer
runway_end_features
(Optional)

The input runway end point features associated with the each runway.

Feature Layer
last_low_light
(Optional)

The distance in feet of the Approach Lighting System (ALS) from the end of the low end of the runway. If no value is provided, it is assumed that there is no ALS at the low end of the runway.

Double
last_high_light
(Optional)

The distance in feet of the Approach Lighting System (ALS) from the end of the high end of the runway. If no value is provided, it is assumed that there is no ALS at the high end of the runway.

Double
custom_json_file
(Optional)

The import configuration, in JSON format, that creates the custom OIS.

File

Derived Output

NameExplanationData Type
derived_outfeatureclass

The output obstruction identification surface (OIS) features.

Feature Layer

Code sample

FAA13ARunwayProtectionSurfaces example (stand-alone script)

The following stand-alone script demonstrates how to use the FAA13ARunwayProtectionSurfaces function.

import arcpy

arcpy.CheckOutExtension("Aeronautical")

arcpy.env.workspace = "D:/data.gdb"

in_features = "RunwayCenterline"
target = "ObstructionIdSurface_MP"
surface_generation = ["RUNWAY_SAFETY_AREA", "RUNWAY_OBSTACLE_FREE_AREA"]
visibility_minimums = "VISUAL"
approach_category = "A"
approach_design_group = "I"
small_aircraft = True
approach_guidance = "VISUAL"
runway_direction = "BOTH_END"
airport_elevation = 97.2
airport_control_point_feature_class = "AirportControlPoint"
runway_end_features = "RunwayEndPoints"
last_low_light = 0.0
last_high_light = 0.0
custom_json_file = "D:/config.json"

arcpy.aviation.FAA13ARunwayProtectionSurfaces(in_features, target, visibility_minimums, approach_category, 
                                              approach_design_group, small_aircraft, approach_guidance, 
                                              runway_direction, airport_elevation, airport_control_point_feature_class, 
                                              runway_end_features, last_low_light, last_high_light, custom_json_file)

arcpy.CheckInExtension("Aeronautical")

Environments

This tool does not use any geoprocessing environments.

Licensing information

  • Basic: No
  • Standard: Requires Airports, ArcGIS Aviation Charting
  • Advanced: No