Resumen
Simplifica líneas con la eliminación de vértices relativamente extraños y preserva la forma esencial.
Ilustración
Uso
Esta herramienta emplea distintos algoritmos de simplificación para diferentes finalidades. Para más información sobre estos algoritmos, consulte Cómo funcionan Simplificar línea y Simplificar polígono.
- El algoritmo Retener puntos críticos (Douglas-Peucker) (algorithm='POINT_REMOVE' en Python) funciona identificando y eliminando vértices relativamente redundantes para simplificar los datos a fin de visualizarlos a escalas más pequeñas. Es el algoritmo de simplificación más rápido de esta herramienta. Este algoritmo se suele utilizar para la compresión de datos o para una simplificación más gruesa. La angulosidad de las líneas resultantes se incrementa considerablemente a medida que aumenta la tolerancia. Este algoritmo se basa en el algoritmo de Douglas-Peucker: Douglas, David y Peucker, Thomas, "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature," The Canadian Cartographer. 10(2), 112–22 (1973).
- El algoritmo Retener curvaturas críticas (Wang-Müller) (algorithm='BEND_SIMPLIFY' en Python) funciona identificando y eliminando curvaturas relativamente insignificantes para simplificar los datos a fin de visualizarlos a escalas más pequeñas. Suele ser más fiel a la geometría de entrada que el algoritmo Retener puntos críticos (Douglas-Peucker), pero puede tardar más tiempo en procesarse. Este algoritmo se basa en el algoritmo definido en Wang, Zeshen and Müller, Jean-Claude, "Line Generalization Based on Analysis of Shape Characteristics," Cartography and Geographic Information Systems 25(1), 3–15 (1998).
- El algoritmo Retener áreas efectivas ponderadas (Zhou-Jones) (algorithm='WEIGHTED_AREA' en Python) funciona identificando primero triángulos de un área efectiva para cada vértice. Seguidamente, estos triángulos se ponderan mediante un conjunto de métricas a fin de comparar lo llano, el sesgo y la convexidad de cada área. Las áreas ponderadas determinan la eliminación de sus vértices correspondientes para simplificar la línea manteniendo a la vez la mayor cantidad de carácter posible. Este algoritmo se basa en el algoritmo definido en Zhou, Sheng and Jones, Christopher B., "Shape-Aware Line Generalisation with Weighted Effective Area," en Fisher, Peter F. (Ed.), Developments in Spatial Handling: 11th International Symposium on Spatial Handling, 369–80 (2005).
- El algoritmo Retener áreas efectivas (Visvalingam-Whyatt) (algorithm='EFFECTIVE_AREA' en Python) funciona identificando triángulos del área efectiva para que cada vértice guíe la eliminación de vértices para simplificar la línea mientras se mantienen tantos caracteres como resulta posible. Este algoritmo se basa en el algoritmo definido en Visvalingam, M. and Whyatt, J. D., "Line Generalisation by Repeated Elimination of the Smallest Area," Cartographic Information Systems Research Group (CISRG) Documento de trabajo 10, The University of Hull (1992).
El valor del parámetro Tolerancia de simplificación determina el grado de simplificación. Cuanto más grande sea la tolerancia, más gruesa será la geometría resultante. Con tolerancias más pequeñas se genera una geometría más fiel a la entrada. MinSimpTol y MaxSimpTol se agregan a la salida para almacenar la tolerancia que se utilizó.
Heredado:
Durante la resolución de la topología, en versiones de la herramienta anteriores a ArcGIS Pro 1.4 se modificaba la tolerancia por entidad y estos valores se almacenaban en los campos MinSimpTol y MaxSimpTol. Ahora, los valores de estos campos serán los mismos y equivaldrán a la tolerancia especificada en el parámetro Tolerancia de simplificación. Asegúrese de modificar los modelos o scripts existentes basados en cualquiera de estos campos.
- Para el algoritmo Retener puntos críticos (Douglas-Peucker), la tolerancia será la distancia perpendicular máxima permitida entre cada vértice y la nueva línea creada.
- Para el algoritmo Retener curvaturas críticas (Wang-Müller), la tolerancia será el diámetro de un círculo que se aproxima a una curvatura significativa.
- Para el algoritmo Retener áreas efectivas ponderadas (Zhou-Jones), el cuadrado de la tolerancia será el área de un triángulo significativo definido mediante tres vértices adyacentes. Cuanto más se desvíe el triángulo de ser equilátero, mayor ponderación se dará y, por tanto, menores serán sus probabilidades de ser eliminado.
- Para el algoritmo Retener áreas efectivas (Visvalingam-Whyatt), el cuadrado de la tolerancia es el área de un triángulo significativo definido mediante tres vértices adyacentes.
Utilice el parámetro Mantener puntos contraídos (collapsed_point_option en Python) para crear una clase de entidad de puntos de salida para almacenar los extremos de cualquier línea que sea más pequeña que la tolerancia espacial de los datos. Se deriva la salida de puntos; utilizará el mismo nombre y ubicación que la Clase de entidad de salida (out_feature_class en Python) pero con el sufijo _Pnt. La clase de entidad de línea de salida contiene todos los campos presentes en la clase de entidad de entrada. La clase de entidad de punto de salida no contiene ninguno de estos campos.
La clase de entidad de línea de salida será correcta desde el punto de vista topológico. Todos los errores topológicos de los datos de entrada se marcarán en la clase de entidad de línea de salida. La clase de entidad de salida incluye dos campos adicionales: InLine_FID y SimLnFlag, que contienen los Id. de entidad de entrada y los errores topológicos de la entrada, respectivamente. Un valor de SimLnFlag de 1 indica que existe un error topológico; 0 (cero) indica que no hay errores.
Heredado:
Con anterioridad a la versión ArcGIS Pro 1.4 de esta herramienta, se podían generar errores topológicos durante el procesamiento. Se incluyeron los parámetros Verificar errores topológicos (error_checking_option en Python) y Resolver errores topológicos (error_resolving_option en Python) para identificar y, opcionalmente, resolver estos errores. Estos parámetros siguen incluidos en la sintaxis de la herramienta a efectos de compatibilidad con los scripts y modelos, pero ahora se ignoran y están ocultos en el cuadro de diálogo de la herramienta. El campo SimLnFlag se utilizó para marcar los errores topológicos introducidos por la herramienta en el procesamiento. Ahora este campo marca los errores presentes en la entrada.
Utilice el parámetro Capas de barrera de entrada para identificar las entidades que las líneas simplificadas no deben cruzar. Las entidades de barrera pueden ser puntos, líneas o polígonos.
Los dominios y subtipos se copian a la salida, aunque el entorno Transferir dominios de campo, subtipos y reglas de atributo esté desactivado.
El procesamiento de datasets grandes podría superar los límites de memoria. En estos casos, considere la posibilidad de procesar los datos de entrada por partición identificando una clase de entidad poligonal relevante en la configuración de entorno Particiones cartográficas. Las partes de los datos definidos por los límites de partición se procesarán en secuencia. La clase de entidad resultante será sin fisuras y coherente en los bordes de la partición. Consulte Generalizar datasets grandes usando particiones para obtener más información.
Sintaxis
SimplifyLine(in_features, out_feature_class, algorithm, tolerance, {error_resolving_option}, {collapsed_point_option}, {error_checking_option}, {in_barriers})
Parámetro | Explicación | Tipo de datos |
in_features | Las entidades de línea de entrada que se van a simplificar. | Feature Layer |
out_feature_class | La clase de entidad de línea de salida simplificada. Contiene todos los campos incluidos en la clase de entidad de entrada. La clase de entidad de línea de salida será correcta desde el punto de vista topológico. La herramienta no introduce errores topológicos, sino que los errores topológicos de los datos de entrada se marcan en la clase de entidad de línea de salida. La clase de entidad de salida incluye dos campos adicionales: InLine_FID y SimLnFlag, que contienen los Id. de entidad de entrada y los errores topológicos de la entrada, respectivamente. Un valor de SimLnFlag de 1 indica que existe un error topológico de entrada; 0 (cero) indica que no hay errores de entrada. | Feature Class |
algorithm | Especifica el algoritmo de simplificación de línea.
| String |
tolerance | La tolerancia determina el grado de simplificación. Puede elegir la unidad que prefiera; de lo contrario, se utilizarán las unidades de la entrada.MinSimpTol y MaxSimpTol se agregan a la salida para almacenar la tolerancia que se utilizó durante el procesamiento.
| Linear Unit |
error_resolving_option (Opcional) | Heredado:Este es un parámetro heredado que ya no se utiliza. Antes se utilizaba para indicar cómo se manejaban los errores topológicos posiblemente introducidos durante el procesamiento. Este parámetro sigue incluido en la sintaxis de la herramienta a efectos de compatibilidad con los scripts y modelos, pero está oculto en el cuadro de diálogo de la herramienta. | Boolean |
collapsed_point_option (Opcional) | Indica si se va a crear una clase de entidad de puntos de salida para almacenar los extremos de cualquier línea que sea más pequeña que la tolerancia espacial. Se deriva la salida de puntos; utilizará el mismo nombre y ubicación que out_feature_class, pero con el sufijo _Pnt.
| Boolean |
error_checking_option (Opcional) | Nota:Este es un parámetro heredado que ya no se utiliza. Antes se utilizaba para indicar cómo se manejaban los errores topológicos posiblemente introducidos durante el procesamiento. Este parámetro sigue incluido en la sintaxis de la herramienta a efectos de compatibilidad con los scripts y modelos, pero está oculto en el cuadro de diálogo de la herramienta. | Boolean |
in_barriers [in_barriers,...] (Opcional) | Entradas que contienen las entidades que van a actuar como barreras para la simplificación. Las líneas simplificadas resultantes no tocarán ni cruzarán las entidades de barrera. Por ejemplo, al simplificar líneas de contornos, las entidades de altura de punto introducidas como barreras garantizan que las líneas de contornos simplificadas no se van a simplificar a lo largo de estos puntos. La salida no infringirá la elevación indicada mediante alturas de punto medidas. | Feature Layer |
Salida derivada
Nombre | Explicación | Tipo de datos |
out_point_feature_class | Cuando utiliza el parámetro Mantener puntos contraídos (collapsed_point_option en Python), se crea una clase de entidad de puntos de salida para almacenar los extremos de cualquier línea que sea más pequeña que la tolerancia espacial de los datos. | Clase de entidad |
Muestra de código
El script de la ventana de Python muestra cómo utilizar la herramienta SimplifyLine en el modo inmediato.
import arcpy
import arcpy.cartography as CA
arcpy.env.workspace = "C:/data"
CA.SimplifyLine("roads.shp",
"C:/output/output.gdb/simplified_roads",
"POINT_REMOVE",
20)
El siguiente script independiente muestra cómo utilizar la herramienta SimplifyLine.
# Name: SimplifyLine_Example2.py
# Description: Simplify line features from two feature classes, rivers and coastlines,
# while maintaining their connections
# Import system modules
import arcpy
import arcpy.management as DM
import arcpy.cartography as CA
# Set environment settings
arcpy.env.workspace = "C:/data/Portland.gdb/Hydrography"
# Set local variables
inRiverFeatures = "rivers"
inCoastlineFeatures = "coastlines"
mergedFeatures = "C:/data/PortlandOutput.gdb/merged_lines"
simplifiedFeatures = "C:/data/PortlandOutput.gdb/merged_lines_simplified"
tempLayer = "tempLyr"
outRiverFeatureClass = "C:/data/PortlandOutput.gdb/rivers_final"
outCoastlineFeatureClass = "C:/data/PortlandOutput.gdb/coastlines_final"
# Merge rivers and coastlines into one feature class,
# assuming that they have a common f-code field
# with value 40 for rivers and 80 for coastlines.
DM.Merge(inRiverFeatures, inCoastlineFeatures, mergedFeatures)
# Simplify all lines.
CA.SimplifyLine(mergedFeatures,
simplifiedFeatures,
"BEND_SIMPLIFY",
100,
"KEEP_COLLAPSED_POINTS")
# Select rivers and coastlines by their f-code values
# and put them in separate feature classes.
DM.MakeFeatureLayer(simplifiedFeatures, tempLayer, "f-code = 40")
DM.CopyFeatures(tempLayer, outRiverFeatureClass)
DM.MakeFeatureLayer(simplifiedFeatures, tempLayer, "f-code = 80")
DM.CopyFeatures(tempLayer, outCoastlineFeatureClass)
Entornos
Información de licenciamiento
- Basic: No
- Standard: Sí
- Advanced: Sí