Resumen
Calcula un índice de vecino más cercano en base a la distancia promedio desde cada entidad hasta la entidad vecina más cercana.
Más información acerca de cómo funciona la distancia de Promedio de vecinos más cercanos
Ilustración
Uso
La herramienta Promedio de vecinos más cercanos devuelve cinco valores: la distancia media observada, la distancia media esperada, el índice de vecino más próximo, la puntuación z y el valor p. Los valores se escriben como mensajes en la parte inferior del panel Geoprocesamiento durante la ejecución de la herramienta y se transmiten como valores de salida derivados para uso potencial en modelos o scripts. Puede acceder a los mensajes desplazándose sobre la barra de progreso, haciendo clic en el botón emergente o ampliando la sección de mensajes en el panel Geoprocesamiento. También puede acceder a los mensajes de una herramienta ejecutada anteriormente a través del Historial de geoprocesamiento. Opcionalmente, esta herramienta creará un archivo de informe HTML con un resumen gráfico de los resultados. La ruta al informe se incluirá con los mensajes que resumen los parámetros de ejecución de la herramienta. Al hacer clic sobre dicha herramienta se abrirá el archivo de informe.
Los resultados de la puntuación z y el valor p son medidas de significancia estadística que indican si se debe rechazar o no la hipótesis nula. Sin embargo, debe tener en cuenta que la importancia estadística de este método está condicionada en gran medida por el tamaño del área de estudio (vea más abajo). Para la estadística de Promedio de vecinos más cercanos, la hipótesis nula establece que las entidades se distribuyen de forma aleatoria.
El índice de Vecino más próximo se expresa como la relación entre la distancia media observada y la distancia media esperada. La distancia esperada es la distancia promedio que hay entre vecinos en una distribución hipotética aleatoria. Si el índice es menor que 1, el patrón exhibe clustering; si el índice es mayor que 1, la tendencia es la dispersión o la competencia.
El método de vecino más cercano promedio es sensible al valor del Área (pequeños cambios en el valor del parámetro del Área pueden ocasionar cambios considerables en los resultados puntuación Z y valor P). Por lo tanto, la herramienta Promedio de vecinos más cercanos es más efectiva para comparar entidades diferentes en un área de estudio fija. La imagen a continuación es un ejemplo clásico de cómo las distribuciones de entidades idénticas se pueden dispersar o agrupar según el área de estudio especificada.
Si no se especifica el valor del parámetro de un Área, se utiliza el área del rectángulo de encuadre mínimo alrededor de las entidades de entrada. A diferencia de la extensión, un rectángulo de encuadre mínimo no se alineará necesariamente con los ejes x e y.
Cuando la Clase de entidad de entrada no está proyectada (es decir, cuando las coordenadas se especifican en grados, minutos y segundos) o cuando el sistema de coordenadas de salida está establecido en un Sistema de coordenadas geográficas, las distancias se calculan mediante mediciones de cuerda. Las mediciones de distancia de cuerda se utilizan porque se pueden calcular rápidamente y proporcionar muy buenas estimaciones de verdaderas distancias geodésicas, al menos para los puntos separados unos treinta grados entre sí. Las distancias de cuerda se basan en un esferoide oblato. Dados dos puntos en la superficie de la Tierra, la distancia de cuerda entre ellos es la longitud de una línea, que atraviesa la Tierra tridimensional, para conectar estos dos puntos. Las distancias de cuerda se informan en metros.
Precaución:
Asegúrese de proyectar los datos si su área de estudio se extiende más allá de los 30 grados. Las distancias de cuerda no son una buena estimación de las distancias geodésicas más allá de 30 grados.
Cuando se utilizan distancias de cuerda en el análisis, el parámetro Área, si se especifica, debe proporcionarse en metros.
Existen casos especiales de entidades de entrada que tienen como resultado rectángulos de encuadre mínimo no válidos (área cero). En estos casos, se utilizará un valor pequeño derivado de la tolerancia XY de la entidad de entrada para crear el rectángulo de encuadre mínimo. Por ejemplo, si todas las entidades coinciden (es decir, todas tienen las mismas coordenadas X e Y), en los cálculos se utilizará el área para un polígono cuadrado muy pequeño alrededor de la ubicación única. Otro ejemplo es que todas las entidades se alineen perfectamente (por ejemplo, 3 puntos en una línea recta); en este caso en los cálculos se utilizará el área de un polígono rectangular con un ancho muy pequeño alrededor de las entidades. Siempre es mejor proporcionar un valor del Área cuando se utiliza la herramienta Promedio de vecinos más cercanos.
Si bien esta herramienta trabaja con datos de polígono o de línea, es más adecuada para eventos, incidentes u otros datos de entidad de punto fijo. Para las entidades de línea y de polígono, en los cálculos se utiliza el centroide geométrico verdadero para cada entidad. Para multipunto, polilínea o polígonos con múltiples partes, el centroide se calcula utilizando el centro medio ponderado de todas las partes de entidad. La ponderación para las entidades de punto es 1, para las entidades de línea es longitud y para las entidades de polígono es área.
-
Las capas del mapa se pueden utilizar para definir la Clase de entidad de entrada. Cuando se utiliza una capa con una selección, solo las entidades seleccionadas se incluyen en el análisis.
Precaución:
Al utilizar shapefiles tenga en cuenta que no pueden almacenar valores nulos. Las herramientas u otros procedimientos que crean shapefiles a partir de entradas sin shapefiles pueden almacenar o interpretar valores nulos como cero. En algunos casos, los nulos se almacenan como valores negativos muy grandes en shapefiles. Esto puede ocasionar resultados inesperados. Consulte Consideraciones de geoprocesamiento para la salida del shapefile para obtener más información.
Sintaxis
AverageNearestNeighbor(Input_Feature_Class, Distance_Method, {Generate_Report}, {Area})
Parámetro | Explicación | Tipo de datos |
Input_Feature_Class | La clase de entidad, generalmente una clase de entidad de punto, para la cual se calculará la distancia del vecino más cercano promedio. | Feature Layer |
Distance_Method | Especifica cómo se calculan las distancias desde cada entidad hasta las entidades vecinas.
| String |
Generate_Report (Opcional) |
| Boolean |
Area (Opcional) | Un valor numérico que representa el tamaño del área de estudio. El valor predeterminado es el área del rectángulo de encuadre mínimo que abarcaría todas las entidades (o todas las entidades seleccionadas). Las unidades deben coincidir con las del Sistema de coordenadas de salida. | Double |
Salida derivada
Nombre | Explicación | Tipo de datos |
NNRatio | El valor de índice de vecino más cercano. | Doble |
NNZScore | La puntuación z. | Doble |
PValue | El valor p. | Doble |
NNExpected | La distancia media esperada. | Doble |
NNObserved | La distancia media observada. | Doble |
Report_File | Un archivo HTML con resumen gráfico de los resultados. | Archivo |
Muestra de código
El siguiente script de la ventana de Python muestra cómo utilizar la herramienta AverageNearestNeighbor.
import arcpy
arcpy.env.workspace = r"C:\data"
arcpy.AverageNearestNeighbor_stats("burglaries.shp", "EUCLIDEAN_DISTANCE", "NO_REPORT", "#")
El siguiente script de Phython independiente muestra cómo utilizar la herramienta AverageNearestNeighbor.
# Analyze crime data to determine if spatial patterns are statistically significant
# Import system modules
import arcpy
# Local variables...
workspace = "C:/data"
crime_data = "burglaries.shp"
try:
# Set the current workspace (to avoid having to specify the full path to the feature classes each time)
arcpy.env.workspace = workspace
# Obtain Nearest Neighbor Ratio and z-score
# Process: Average Nearest Neighbor...
nn_output = arcpy.AverageNearestNeighbor_stats(crime_data, "EUCLIDEAN_DISTANCE", "NO_REPORT", "#")
# Create list of Average Nearest Neighbor output values by splitting the result object
print("The nearest neighbor index is: " + nn_output[0])
print("The z-score of the nearest neighbor index is: " + nn_output[1])
print("The p-value of the nearest neighbor index is: " + nn_output[2])
print("The expected mean distance is: " + nn_output[3])
print("The observed mean distance is: " + nn_output[4])
print("The path of the HTML report: " + nn_output[5])
except arcpy.ExecuteError:
# If an error occurred when running the tool, print out the error message.
print(arcpy.GetMessages())
Entornos
- Sistema de coordenadas de salida
La geometría de entidades se proyecta al Sistema de coordenadas de salida antes del análisis. Todos los cálculos matemáticos se basan en la referencia espacial del Sistema de coordenadas de salida. Cuando el entorno del Sistema de coordenadas de salida se basa en grados, minutos y segundos, las distancias geodésicas se calculan mediante distancias de cuerda.
Información de licenciamiento
- Basic: Sí
- Standard: Sí
- Advanced: Sí
Temas relacionados
- Vista general del conjunto de herramientas Análisis de patrones
- Modelado de relaciones espaciales
- ¿Qué es una puntuación z? ¿Qué es un valor P?
- Buscar una herramienta de geoprocesamiento
- Análisis clúster espacial de distancia múltiple (Función K de Ripley)
- Autocorrelación espacial (I de Moran)
- Cómo funciona Vecino más cercano promedio