An overview of the Deep Learning toolset

Disponible con licencia de Image Analyst.

The Deep Learning toolset contains tools to detect specific features in an image or to classify pixels in a raster dataset.

Deep learning is a type of machine learning artificial intelligence that detects features in imagery using multiple layers in neural networks in which each layer is capable of extracting one or more unique features in the image. The tools in the Deep Learning toolset take advantage of GPU processing to perform analysis in a timely manner.

These ArcGIS Pro tools consume the models that have been trained to detect specific features in third-party deep learning frameworks—such as TensorFlow, CNTK, and PyTorch—and output features or class maps.

The following table lists the available deep learning tools and provides a brief description of each:

ToolDescription

Classify Objects Using Deep Learning

Ejecuta un modelo de aprendizaje profundo entrenado en un ráster de entrada y una clase de entidad opcional para generar una clase de entidad o tabla en la que cada objeto o entidad de entrada tenga asignada una etiqueta de clase o categoría.

Esta herramienta requiere un archivo de definición de modelo que contenga información del modelo entrenado. El modelo puede entrenarse usando la herramienta Entrenar un modelo de aprendizaje profundo o mediante software de entrenamiento de terceros como, por ejemplo, TensorFlow, PyTorch o Keras. El archivo de definición de modelo puede ser un archivo JSON de definición de modelo de Esri (.emd) o un paquete de modelo de aprendizaje profundo, y debe contener la ruta a la función ráster de Python que se llamará para procesar cada objeto y la ruta al archivo de modelo de aprendizaje profundo binario entrenado.

Classify Pixels Using Deep Learning

Ejecuta un modelo de aprendizaje profundo entrenado en un ráster de entrada para generar un ráster clasificado, donde cada píxel válido tiene una etiqueta de clase asignada.

Esta herramienta requiere un archivo de definición de modelo que contenga información del modelo entrenado. El modelo puede entrenarse usando la herramienta Entrenar un modelo de aprendizaje profundo o mediante software de entrenamiento de terceros como, por ejemplo, TensorFlow, PyTorch o Keras. El archivo de definición de modelo puede ser un archivo JSON de definición de modelo de Esri (.emd) o un paquete de modelo de aprendizaje profundo, y debe contener la ruta a la función ráster de Python que se llamará para procesar cada objeto y la ruta al archivo de modelo de aprendizaje profundo binario entrenado.

Compute Accuracy For Object Detection

Calcula la precisión de un modelo de aprendizaje profundo comparando los objetos detectados por la herramienta Detectar objetos con aprendizaje profundo con los datos de la realidad del terreno.

Detect Objects Using Deep Learning

Ejecuta un modelo de aprendizaje profundo entrenado en un ráster de entrada para generar una clase de entidad con los objetos que encuentre. Las entidades pueden ser cuadros o polígonos de delimitación alrededor de los objetos encontrados o puntos en el centro de los objetos.

Esta herramienta requiere un archivo de definición de modelo que contenga información del modelo entrenado. El modelo puede entrenarse usando la herramienta Entrenar un modelo de aprendizaje profundo o mediante software de entrenamiento de terceros como, por ejemplo, TensorFlow, PyTorch o Keras. El archivo de definición de modelo puede ser un archivo JSON de definición de modelo de Esri (.emd) o un paquete de modelo de aprendizaje profundo, y debe contener la ruta a la función ráster de Python que se llamará para procesar cada objeto y la ruta al archivo de modelo de aprendizaje profundo binario entrenado.

Export Training Data For Deep Learning

Convierte datos de vectores o datos ráster etiquetados en datasets de entrenamiento de aprendizaje profundo utilizando imágenes de teledetección. La salida es una carpeta de chips de imagen y una carpeta de archivos de metadatos en el formato especificado.

Non Maximum Suppression

Identifies duplicate features from the output of the Detect Objects Using Deep Learning tool as a postprocessing step and creates a new output with no duplicate features. The Detect Objects Using Deep Learning tool can return more than one bounding box or polygon for the same object, especially as a tiling side effect. If two features overlap more than a given maximum ratio, the feature with the lower confidence value will be removed.

Train Deep Learning Model

Entrena un modelo de aprendizaje profundo utilizando la salida de la herramienta Exportar datos de entrenamiento para aprendizaje profundo.

Tools of the Deep Learning toolset

Temas relacionados