Preparar clasificador de máxima verosimilitud (Image Analyst)

Disponible con una licencia de Spatial Analyst.

Disponible con licencia de Image Analyst.

Resumen

Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación del Clasificador de máxima verosimilitud (MLC).

Uso

  • Para finalizar el proceso de clasificación de máxima verosimilitud, utilice el mismo ráster de entrada y el archivo .ecd de salida de esta herramienta con la herramienta Clasificar ráster.

  • El ráster de entrada puede ser cualquier ráster compatible con Esri, con cualquier profundidad de bits válida.

  • Para crear un dataset ráster segmentado, utilice la herramienta Segmentación (desplazamiento medio).

  • Para crear el archivo de muestra de entrenamiento, utilice el panel Administrador de muestras de entrenamiento del menú desplegable Herramientas de clasificación.

  • El Archivo de definición de clasificador de salida contiene estadísticas de atributo adecuadas para la herramienta Clasificación de máxima verosimilitud.

  • El parámetro Atributos de segmento solo está habilitado si una de las entradas de capa ráster es una imagen segmentada.

  • Para clasificar datos ráster de series temporales utilizando el algoritmo Clasificación y detección de cambios continuas (CCDC), ejecute primero la herramienta Analizar cambios usando CCDC y utilice el ráster de análisis de cambios de salida como ráster de entrada para esta herramienta de entrenamiento.

    Los datos de muestra de entrenamiento se deben haber recopilado en varios momentos mediante el Administrador de muestras de entrenamiento. El valor de dimensión de cada muestra aparece en un campo de la clase de entidad de muestra de entrenamiento, que se especifica en el parámetro Campo de valor de dimensión.

Sintaxis

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
ParámetroExplicaciónTipo de datos
in_raster

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

La capa o archivo de muestra de entrenamiento que delinea los sitios de entrenamiento.

Estos pueden ser shapefiles o clases de entidad que contengan las muestras de entrenamiento. Los siguientes nombres de campo son obligatorios en el archivo de muestra de entrenamiento:

  • classname: un campo de texto que indique el nombre de la categoría de clase
  • classvalue: un campo de tipo entero largo que contenga el valor entero para cada categoría de clase

Feature Layer
out_classifier_definition

El archivo JSON de salida que contiene información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se crea un archivo .ecd.

File
in_additional_raster
(Opcional)

Incorpora datasets ráster auxiliares como, por ejemplo, imagen segmentada o DEM. Este parámetro es opcional.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(Opcional)

Especifica los atributos a incluir en la tabla de atributos asociada con el ráster de salida.

  • COLORLos valores de color RGB se derivan del ráster de entrada segmento por segmento.
  • MEANEl número digital (DN) medio se deriva de la imagen de píxeles opcional, segmento por segmento.
  • STDLa desviación estándar se deriva de la imagen de píxeles opcional, segmento por segmento.
  • COUNTEl número de píxeles que forman el segmento, por segmento.
  • COMPACTNESSEl grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RECTANGULARITYEl grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.

Este parámetro solo está habilitado si la propiedad clave Segmentado se establece en true en el ráster de entrada. Si la única entrada en la herramienta es una imagen segmentada, los atributos predeterminados son COLOR, COUNT, COMPACTNESS y RECTANGULARITY. Si se incluye un in_additional_raster como entrada junto a la imagen segmentada, también están disponibles los atributos MEAN y STD.

String
dimension_value_field
(Opcional)

Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada.

Este parámetro es necesario para clasificar una serie temporal de datos ráster con la salida ráster de análisis de cambios de la herramienta Analizar cambios usando CCDC.

Field

Muestra de código

Ejemplo 1 de TrainMaximumLikelihoodClassifier (ventana de Python)

El siguiente script de la ventana de Python muestra cómo utilizar la herramienta TrainMaximumLikelihoodClassifier.

import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

TrainMaximumLikelihoodClassifier("c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
                                 "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
                                 "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Ejemplo 2 de TrainMaximumLikelihoodClassifier (script independiente)

Este ejemplo muestra cómo preparar un clasificador de verosimilitud máxima.

# Import system modules
import arcpy
from arcpy.ia import *

"""
Usage: TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, 
                                       {in_additional_raster}, {used_attributes})
"""

# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)
Ejemplo 3 de TrainMaximumLikelihoodClassifier (script independiente)

En este ejemplo se muestra cómo preparar un clasificador de verosimilitud máxima utilizando un ráster de análisis de cambios de la herramienta Analizar cambios usando CCDC.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")


# Define input parameters
in_changeAnalysisRaster = "c:/test/LandsatCCDC.crf"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/change_detection.ecd"
additional_raster = ''
attributes = None
dimension_field = "DateTime"

# Execute 
arcpy.ia.TrainMaximumLikelihoodClassifier(
	in_changeAnalysisRaster, train_features, out_definition, 
	additional_raster, attributes, dimension_field)

Información de licenciamiento

  • Basic: Requiere Image Analyst or Spatial Analyst
  • Standard: Requiere Image Analyst or Spatial Analyst
  • Advanced: Requiere Image Analyst or Spatial Analyst

Temas relacionados