Resumen
Predice los valores de cada ubicación de un cubo de espacio-tiempo utilizando un ajuste a la curva.
La herramienta ajusta una curva paramétrica a cada ubicación del parámetro Cubo de espacio-tiempo de entrada y predice la serie temporal extrapolando esta curva a periodos de tiempo futuros. Las curvas pueden ser lineales, parabólicas, en forma de S (Gompertz) o exponenciales. Puede usar el mismo tipo de curva en cada ubicación del cubo de espacio-tiempo o permitir que la herramienta establezca el tipo de curva que mejor se ajusta a cada ubicación.
Más información sobre el funcionamiento de la previsión de ajuste de curva
Ilustración
Uso
Esta herramienta acepta archivos netCDF creados con las herramientas Crear cubo de espacio-tiempo agregando puntos, Crear cubo de espacio-tiempo a partir de entidades definidas y Crear cubo de espacio-tiempo a partir de capa ráster multidimensional.
Si se compara con otras herramientas de previsión del conjunto de herramientas de previsión de serie temporal, esta es la más directa y la más adecuada para las series temporales que siguen una tendencia predecible y que no presentan una fuerte estacionalidad. Si los datos siguen una tendencia compleja o presentan ciclos estacionales importantes, utilice otras herramientas de previsión.
Se pueden comparar y fusionar varios cubos de espacio-tiempo predichos mediante la herramienta Evaluar previsiones por ubicación. Esto permite crear varios cubos de previsión con parámetros y herramientas de previsión diferentes; la herramienta identificará la mejor previsión correspondiente a cada ubicación por medio del error cuadrático medio de previsión (RMSE) o el RMSE de validación.
Para cada ubicación del parámetro Cubo de espacio-tiempo de entrada, la herramienta crea dos modelos que sirven para diferentes propósitos.
- Modelo de predicción: este modelo se utiliza para predecir los valores del cubo de espacio-tiempo ajustando una curva a los valores de las series temporales y extrapolando esta curva para los periodos de tiempo futuros. El ajuste del modelo de previsión a los valores del cubo de espacio-tiempo se mide mediante el valor de RMSE de previsión.
- Modelo de validación: este modelo se utiliza para validar el modelo de predicción y evaluar con qué precisión es capaz de predecir los valores. Si se especifica un número mayor que 0 en el parámetro Número de periodos de tiempo a excluir para la validación, este modelo se ajusta a los periodos de tiempo incluidos y se utiliza para predecir los valores de los periodos de tiempo excluidos. Permite ver con qué precisión el tipo de curva elegido puede predecir los valores. El ajuste de los valores previstos a los valores excluidos se mide mediante el valor RMSE de validación.
Más información sobre el modelo de previsión, el modelo de validación y la estadística de RMSE
La opción Detección automática del parámetro Tipo de curva se ajustará a los cuatro tipos de curva en cada ubicación e identificará el que tenga el RMSE de validación más pequeño. Si no se excluyen periodos de tiempo para validación, se utiliza la curva con el RMSE de previsión más pequeño.
Los valores del parámetro Entidades de salida se agregarán al panel Contenido con una representación en pantalla basada en el periodo de tiempo predicho final.
-
Esta herramienta genera mensajes de geoprocesamiento y gráficos emergentes para facilitar la compresión y visualización de los resultados de previsión. Los mensajes contienen información sobre la estructura del cubo de espacio-tiempo y la estadística de resumen de los valores de RMSE. Al hacer clic en una entidad mediante el uso de la herramienta de navegación Explorar, se muestra un gráfico de líneas en el panel Emergente en el que aparecen los valores del cubo de espacio-tiempo, la curva empleada en la previsión y los valores previstos para esa ubicación.
El parámetro Opción de valor atípico se puede utilizar para detectar valores atípicos estadísticamente significativos en los valores de la serie temporal de cada ubicación.
Más información sobre cómo detectar valores atípicos de series temporales
La decisión sobre cuántos periodos de tiempo deben excluirse para la validación es importante. Cuantos más periodos de tiempo se excluyan, menores periodos de tiempo se mantienen para estimar el modelo de validación. No obstante, si se excluyen muy pocos periodos de tiempo, el RMSE de validación se estimará usando una pequeña cantidad de datos y puede llevar a engaño. Se recomienda excluir los máximos periodos de tiempo posibles, pero manteniendo a la vez suficientes periodos de tiempo para estimar el modelo de validación. También se recomienda mantener al menos tanto periodos de tiempo para validación como número de periodos de tiempo pretenda pronosticar si el cubo de espacio-tiempo tiene suficientes periodos de tiempo para permitirlo.
Sintaxis
arcpy.stpm.CurveFitForecast(in_cube, analysis_variable, output_features, {output_cube}, {number_of_time_steps_to_forecast}, {curve_type}, {number_for_validation}, {outlier_option}, {level_of_confidence}, maximum_number_of_outliers)
Parámetro | Explicación | Tipo de datos |
in_cube | El cubo netCDF que contiene la variable para predecir los periodos de tiempo futuros. Este archivo debe tener una extensión .nc y se debe haber creado utilizando las herramientas Crear cubo de espacio-tiempo agregando puntos, Crear cubo de espacio-tiempo a partir de ubicaciones definidas o Crear cubo de espacio-tiempo a partir de capa ráster multidimensional. | File |
analysis_variable | Variable numérica del archivo netCDF que se pronosticará en periodos de tiempo futuros. | String |
output_features | Clase de entidad de salida de todas las ubicaciones en el cubo de espacio-tiempo con valores previstos almacenados como campos. La capa presenta la previsión correspondiente al periodo de tiempo final y contiene gráficos emergentes en los que se muestran las series temporales y las previsiones correspondientes a cada ubicación. | Feature Class |
output_cube (Opcional) | Nuevo cubo de espacio-tiempo (archivo .nc) que contiene los valores del cubo de espacio-tiempo de entrada con los periodos de tiempo previstos anexados. La herramienta Visualizar cubo de espacio-tiempo en 3D puede utilizarse para ver todos los valores observados y previstos de forma simultánea. | File |
number_of_time_steps_to_forecast (Opcional) | Entero positivo que especifica el número de periodos de tiempo de la previsión. Este valor no puede ser mayor que el 50% de los periodos de tiempo totales del cubo de espacio-tiempo de entrada. El valor predeterminado es un periodo de tiempo. | Long |
curve_type (Opcional) | Especifica el tipo de curva que se utilizará para predecir los valores del cubo de espacio-tiempo de entrada.
| String |
number_for_validation (Opcional) | Número de periodos de tiempo al final de cada serie temporal que se van a excluir para validación. El valor predeterminado es el 10% (redondeado por defecto) del número de periodos de tiempo de entrada y no puede ser mayor que el 25% del número de periodos de tiempo. Si no quiere excluir ningún periodo de tiempo, introduzca el valor 0. | Long |
outlier_option (Opcional) | Especifica si se identificarán valores atípicos de series temporales estadísticamente significativos.
| String |
level_of_confidence (Opcional) | Especifica el nivel de confianza para la prueba de los valores atípicos de series temporales.
| String |
maximum_number_of_outliers | El número máximo de periodos de tiempo que se pueden declarar como valores atípicos para cada ubicación. El valor predeterminado corresponde a un cinco por ciento (redondeado a la baja) del número de periodos de tiempo del cubo de espacio-tiempo de entrada (siempre se utilizará un valor de al menos 1). Este valor no puede superar el 20 por ciento del número de periodos de tiempo. | Long |
Muestra de código
En el siguiente script de Python se muestra cómo utilizar la herramienta CurveFitForecast.
import arcpy
arcpy.env.workspace = "C:/Analysis"
# Forecast four time steps using a linear curve.
arcpy.stpm.CurveFitForecast("Population.nc", "Pop_NONE_ZEROS",
"Analysis.gdb/Forecasts",
"outForecastCube.nc", 4,
"LINEAR", 5)
En el siguiente script de Python se muestra cómo utilizar la herramienta CurveFitForecast para hacer una previsión de población:
# Forecast population levels using curve fitting.
# Import system modules.
import arcpy
# Set property to overwrite existing output.
arcpy.env.overwriteOutput = True
# Set workspace.
workspace = r"C:\Analysis"
arcpy.env.workspace = workspace
# Forecast three time steps using auto-detect.
arcpy.stpm.CurveFitForecast("Population.nc", "Pop_NONE_ZEROS",
"Analysis.gdb/Forecasts", "outForecastCube.nc"
3, "AUTO_DETECT", 5, "IDENTIFY", "90%", 4)
# Create a feature class visualizing the forecasts.
# Output can only be viewed in a Scene view.
arcpy.stpm.VisualizeSpaceTimeCube3D("outForecastCube.nc", "Pop_NONE_ZEROS",
"VALUE", "Analysis.gdb/ForecastsFC")
Entornos
Información de licenciamiento
- Basic: Sí
- Standard: Sí
- Advanced: Sí
Temas relacionados
- Descripción general de la caja de herramientas Minería de patrones en espacio-tiempo
- Una vista general del conjunto de herramientas de previsión de serie temporal
- Previsión de suavizado exponencial
- Evaluar predicciones por ubicación
- Previsión basada en bosque
- Comprender los valores atípicos en el análisis de serie temporal
- Cómo funciona Previsión de ajuste de curva
- Buscar una herramienta de geoprocesamiento