Preparar clasificador de máxima verosimilitud (Image Analyst)

ArcGIS Pro 3.4 | | Archivo de ayuda

Disponible con una licencia de Spatial Analyst.

Disponible con licencia de Image Analyst.

Resumen

Genera un archivo de definición de clasificador de Esri (.ecd) utilizando la definición de clasificación del Clasificador de máxima verosimilitud (MLC).

Uso

  • Para finalizar el proceso de clasificación de máxima verosimilitud, utilice el mismo ráster de entrada y el archivo .ecd de salida de esta herramienta con la herramienta Clasificar ráster.

  • El ráster de entrada puede ser cualquier ráster compatible con Esri, con cualquier profundidad de bits válida.

  • Para crear un dataset ráster segmentado, utilice la herramienta Segmentación (desplazamiento medio).

  • Para crear el archivo de ejemplo de formación, utilice el panel Administrador de muestras de entrenamiento del menú desplegable Herramientas de clasificación.

  • El Archivo de definición de clasificador de salida contiene estadísticas de atributo adecuadas para la herramienta Clasificación de máxima verosimilitud.

  • El parámetro Atributos de segmento solo está activo si una de las entradas de capa ráster es una imagen segmentada.

  • Para clasificar datos ráster de series temporales utilizando el algoritmo Clasificación y detección de cambios continuas (CCDC), ejecute primero la herramienta Analizar cambios usando CCDC. Luego utilice el ráster de análisis de cambios de salida como ráster de entrada para esta herramienta de entrenamiento.

    Los datos de muestra de entrenamiento se deben haber recopilado en varios momentos mediante el Administrador de muestras de entrenamiento. El valor de dimensión de cada muestra aparece en un campo de la clase de entidad de muestra de entrenamiento, que se especifica en el parámetro Campo de valor de dimensión.

Parámetros

EtiquetaExplicaciónTipo de datos
Ráster de entrada

El dataset ráster a clasificar.

Raster Layer; Mosaic Layer; Image Service; String
Archivo de muestra de entrenamiento de entrada

La capa o archivo de muestra de entrenamiento que delinea los sitios de entrenamiento.

Estos pueden ser shapefiles o clases de entidad que contengan las muestras de entrenamiento. Los siguientes nombres de campo son obligatorios en el archivo de muestra de entrenamiento:

  • classname- un campo de texto que indique el nombre de la categoría de clase
  • classvalue- un campo de tipo entero largo que contenga el valor entero para cada categoría de clase

Feature Layer
Archivo de definición de clasificador de salida

El archivo en formato JSON de salida que contendrá información de atributos, estadísticas, vectores de hiperplano y otra información requerida por el clasificador. Se creará un archivo .ecd.

File
Ráster de entrada adicional
(Opcional)

Incorpora datasets ráster auxiliares como, por ejemplo, imagen segmentada o DEM. Este parámetro es opcional.

Raster Layer; Mosaic Layer; Image Service; String
Atributos de segmento utilizados
(Opcional)

Especifica los atributos que se incluirán en la tabla de atributos asociada con el ráster de salida.

Este parámetro solo está activo si la propiedad clave Segmentado se establece en verdadero en el ráster de entrada. Si la única entrada de la herramienta es una imagen segmentada, los atributos predeterminados son Color convergido, Recuento de píxeles, Compactación y Rectangularidad. Si se incluye un valor Ráster de entrada adicional como entrada junto a la imagen segmentada, también están disponibles los atributos Número de dígito medio y Desviación estándar.

  • Color convergidoLos valores de color RGB se derivarán del ráster de entrada segmento por segmento. Esto también se conoce como color de cromaticidad promedio.
  • Número de dígito medioEl número digital (DN) medio se derivará de la imagen de píxeles opcional, por segmento.
  • Desviación estándarLa desviación estándar se derivará de la imagen de píxeles opcional, por segmento.
  • Recuento de píxelesEl número de píxeles que componen el segmento, por segmento.
  • CompactaciónEl grado de compactibilidad o circularidad de un segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un círculo.
  • RectangularidadEl grado de rectangularidad del segmento, por segmento. Los valores van de 0 a 1, donde 1 corresponde a un rectángulo.
String
Campo de valor de dimensión
(Opcional)

Contiene valores de dimensión de la clase de entidad de muestra de entrenamiento de entrada.

Este parámetro es necesario para clasificar una serie temporal de datos ráster con la salida ráster de análisis de cambios de la herramienta Analizar cambios usando CCDC.

Field

Información de licenciamiento

  • Basic: Requiere Image Analyst o Spatial Analyst
  • Standard: Requiere Image Analyst o Spatial Analyst
  • Advanced: Requiere Image Analyst o Spatial Analyst

Temas relacionados