Analizar cambios usando LandTrendr (Image Analyst)

Disponible con licencia de Image Analyst.

Resumen

Evalúa los cambios en los valores de píxel a lo largo del tiempo utilizando el método de detección de tendencias de perturbación y recuperación basado en Landsat (LandTrendr) y genera un ráster de análisis de cambios que contiene los resultados del modelo.

Más información sobre cómo funciona LandTrendr

Uso

  • El algoritmo LandTrendr es un método para identificar los cambios en los valores de píxel a lo largo del tiempo. Se desarrolló para una serie temporal de imágenes Landsat multibanda y se utiliza para detectar el cambio y clasificar la cobertura de suelo antes y después de que se produzca el cambio. Esta herramienta se puede utilizar con imágenes de sensores compatibles y puede servir para detectar cambios en rásteres de banda única. Por ejemplo, esta herramienta se puede utilizar para detectar cambios en una serie temporal de rásteres NDVI con el fin de identificar eventos de deforestación.

  • El algoritmo LandTrendr extrae la trayectoria de la serie temporal de cada píxel a lo largo del tiempo utilizando la información del valor del píxel de un solo índice espectral o banda espectral. A continuación, se segmenta la trayectoria para capturar y modelar periodos sin cambio, con cambio y de recuperación del cambio.

  • La salida de esta herramienta es información del modelo en un ráster de análisis de cambios en el que cada píxel almacena un conjunto de información del modelo que describe el historial de ese píxel a lo largo del tiempo. El ráster de análisis de cambios es un ráster multidimensional donde cada división es un ráster multibanda compuesto por los coeficientes del modelo, el error cuadrático medio (RMSE) y los cambios observados. Se puede utilizar como entrada de la herramienta Detectar cambios usando el ráster de análisis de cambios, que genera un ráster que contiene información de cambio para cada píxel.

    There is one slice for each year in the analysis.
  • Esta herramienta extra los cambios de una entidad observada, de modo que las imágenes multidimensionales de entrada ideales deben capturar una observación coherente a lo largo del tiempo y no deben incluir interferencias atmosféricas o de sensores, nubes ni sombras de nubes. La práctica recomendada es utilizar datos que se han normalizado y se pueden enmascarar con una banda QA, por ejemplo, los productos Landsat Collection 1 Surface Reflectance con una máscara de nube.

  • La herramienta realiza el análisis de una imagen por año y el número de divisiones anuales debe ser igual o mayor que el valor especificado en el parámetro Número mínimo de observaciones. Se recomienda tener seis años de datos como mínimo.

    Si tiene datos mensuales, semanales o diarios, se recomienda seleccionar varias imágenes de cada año (preferentemente de la misma estación), eliminar las nubes y las sombras de nubes y combinar las imágenes para generar una sola imagen que capture bien la observación. Si se proporcionan datos mensuales, semanales o diarios como ráster multidimensional de entrada, la herramienta identificará una división para el análisis en función de la fecha más cercana a la proporcionada en el parámetro Fecha de ajuste.

  • Una entidad en un paisaje a menudo tardará un tiempo en recuperarse de un cambio no permanente, como un incendio forestal o una plaga de insectos. Para controlar la tasa de recuperación que reconoce el modelo, establezca el parámetro Umbral de recuperación. Un segmento distinto no puede tener una tasa de recuperación que sea más rápida que el umbral de 1/recuperación.

  • La recuperación de un cambio en el paisaje puede producirse en la dirección positiva o negativa. Por ejemplo, cuando un paisaje experimenta pérdida de bosque, una serie temporal de valores de índice de vegetación muestra una caída en los valores de índice y la recuperación muestra un aumento gradual de los valores de índice de vegetación o una tendencia de recuperación positiva. Especifique la dirección de la tendencia de recuperación con el parámetro Recuperación con tendencia creciente.

  • Para explorar los cambios calculados en el ráster de análisis de cambio de salida, cree un gráfico de perfil temporal. Genere gráficos para varias ubicaciones en el ráster de análisis de cambio utilizando la banda Valor ajustado o la banda Pendiente para ver dónde se han producido los cambios. Puede desplazar el puntero sobre los puntos del gráfico para identificar la fecha del cambio.

  • Esta herramienta puede tardar mucho tiempo en ejecutarse y requiere espacio en disco significativo para almacenar los resultados. Para mejorar el tiempo de procesamiento y reducir la cantidad de espacio de almacenamiento, se recomiendan los siguientes pasos:

    • Desactive el entorno Pirámide. Desactive la casilla de verificación Crear pirámides del panel Entorno o cambie el entorno a NONE en Python.
    • Establezca el entorno Compresión en LERC y cambie el valor de Error máximo a 0.000001.
    • Si espera ejecutar la herramienta Cambiar usando el ráster de análisis de cambios en la salida de esta herramienta varias veces, cree una transposición multidimensional en el resultado.

  • Esta herramienta produce un dataset ráster multidimensional en formato de ráster de nube (CRF). En este momento, no se admite ningún otro formato de salida.

Parámetros

EtiquetaExplicaciónTipo de datos
Ráster multidimensional de entrada

El dataset ráster multidimensional de entrada.

Raster Dataset; Raster Layer; Mosaic Dataset; Mosaic Layer; Image Service; File
Nombre de la banda de procesamiento
(Opcional)

El nombre de la banda de imagen que se utilizará para segmentar las trayectorias de valores de píxel a lo largo del tiempo. Elija el nombre de la banda que capturará mejor los cambios en la entidad que desea observar.

Si no se especifica ningún valor de banda y la entrada es imágenes multibanda, se utilizará la primera banda de la imagen multibanda.

String
Fecha de ajuste
(Opcional)

La fecha utilizada para identificar una división para cada año en el dataset multidimensional de entrada. Se utilizará la división con la fecha más cercana a la fecha de ajuste. Este parámetro es obligatorio si el dataset de entrada contiene datos subanuales.

El valor predeterminado es el 06-30, es decir, el 30 de junio, que es aproximadamente la mitad del año natural.

String
Número máximo de segmentos
(Opcional)

Número máximo de segmentos que se ajustarán a la serie temporal para cada píxel. El valor predeterminado es 5.

Long
Umbral de exceso de recuento de vértices
(Opcional)

El número de vértices adicionales por encima de max_num_segments + 1 que se puede utilizar para ajustar el modelo durante la etapa inicial de identificación de vértices. Más adelante en el proceso de modelado, el número de vértices adicionales se reducirá a max_num_segments + 1. El valor predeterminado es 2.

Long
Umbral pico
(Opcional)

Umbral que se va a utilizar para atenuar picos o anomalías en la trayectoria del valor de píxel. El valor debe estar entre 0 y 1, donde 1 significa que no hay atenuación. El valor predeterminado es 0,9.

Double
Umbral de recuperación
(Opcional)

Valor del umbral de recuperación en años. Si un segmento presenta una tasa de recuperación más rápida que 1/recovery threshold, el segmento se descarta y no se incluye en el modelo de serie temporal. El valor debe estar comprendido entre 0 y 1. El valor predeterminado es 0,25.

Double
Evitar la recuperación de un año
(Opcional)

Especifica si se excluirán los segmentos que presentan una recuperación de un año.

  • Activado: se excluirán los segmentos que presenten una recuperación de un año. Esta es la opción predeterminada.
  • Desactivado: no se excluirán los segmentos que presenten una recuperación de un año.

Boolean
Recuperación con tendencia creciente
(Opcional)

Especifica si la recuperación tiene una tendencia creciente (positivo).

  • Activado: la recuperación tiene una tendencia creciente. Esta es la opción predeterminada.
  • Desactivado: la recuperación tiene una tendencia decreciente.

Boolean
Cantidad mínima de observaciones
(Opcional)

Número mínimo de observaciones válidas necesarias para realizar el ajuste. El número de años del dataset multidimensional de entrada debe ser igual o mayor que este valor. El valor predeterminado es 6.

Long
Mejor proporción de modelo
(Opcional)

El mejor valor de proporción de modelo. Durante el proceso de selección del modelo, la herramienta calculará el valor p para cada modelo e identificará un modelo que tenga el mayor número de vértices manteniendo el valor p más pequeño (más significativo) basado en este valor de proporción. Un valor de 1 significa que el modelo tiene el valor p más bajo, pero es posible que no tenga un número elevado de vértices. El valor predeterminado es 1,25.

Double
Umbral de valor p

Umbral de valor p correspondiente a un modelo que se va a seleccionar. Una vez detectados los vértices en la etapa inicial del ajuste del modelo, la herramienta ajustará cada segmento y calculará el valor p para determinar la importancia del modelo. En la siguiente iteración, el modelo disminuirá el número de segmentos en uno y volverá a calcular el valor p. Esto continuará y, si el valor p es menor que el valor especificado en este parámetro, el modelo se seleccionará y la herramienta dejará de buscar un modelo mejor. Si no se selecciona ningún modelo, la herramienta seleccionará un modelo con un valor p menor que el lowest p-value × best model proportion value. El valor predeterminado es 0,01.

Double
Incluir otras bandas
(Opcional)

Especifica si se incluirán otras bandas en los resultados.

  • Activado: se incluirán otras bandas en los resultados. La información de segmentación y vértices de la banda de segmentación inicial especificada en el parámetro Banda de procesamiento también se ajustará a las bandas restantes de las imágenes multibanda. Los resultados del modelo incluirán primero la banda de segmentación y, a continuación, las bandas restantes.
  • Desactivado: no se incluirán otras bandas en los resultados. Esta es la opción predeterminada.

Boolean

Valor de retorno

EtiquetaExplicaciónTipo de datos
Ráster multidimensional de salida

El dataset ráster multidimensional de formato de ráster de nube (CRF) de salida.

Ráster de análisis de cambio de salida que contiene información del modelo del análisis LandTrendr.

Raster

AnalyzeChangesUsingLandTrendr(in_multidimensional_raster, {processing_band}, {snapping_date}, {max_num_segments}, {vertex_count_overshoot}, {spike_threshold}, {recovery_threshold}, {prevent_one_year_recovery}, {recovery_trend}, {min_num_observations}, {best_model_proportion}, pvalue_threshold, {output_other_bands})
NombreExplicaciónTipo de datos
in_multidimensional_raster

El dataset ráster multidimensional de entrada.

Raster Dataset; Raster Layer; Mosaic Dataset; Mosaic Layer; Image Service; File
processing_band
(Opcional)

El nombre de la banda de imagen que se utilizará para segmentar las trayectorias de valores de píxel a lo largo del tiempo. Elija el nombre de la banda que capturará mejor los cambios en la entidad que desea observar.

Si no se especifica ningún valor de banda y la entrada es imágenes multibanda, se utilizará la primera banda de la imagen multibanda.

String
snapping_date
(Opcional)

La fecha utilizada para identificar una división para cada año en el dataset multidimensional de entrada. Se utilizará la división con la fecha más cercana a la fecha de ajuste. Este parámetro es obligatorio si el dataset de entrada contiene datos subanuales.

El valor predeterminado es el 06-30, es decir, el 30 de junio, que es aproximadamente la mitad del año natural.

String
max_num_segments
(Opcional)

Número máximo de segmentos que se ajustarán a la serie temporal para cada píxel. El valor predeterminado es 5.

Long
vertex_count_overshoot
(Opcional)

El número de vértices adicionales por encima de max_num_segments + 1 que se puede utilizar para ajustar el modelo durante la etapa inicial de identificación de vértices. Más adelante en el proceso de modelado, el número de vértices adicionales se reducirá a max_num_segments + 1. El valor predeterminado es 2.

Long
spike_threshold
(Opcional)

Umbral que se va a utilizar para atenuar picos o anomalías en la trayectoria del valor de píxel. El valor debe estar entre 0 y 1, donde 1 significa que no hay atenuación. El valor predeterminado es 0,9.

Double
recovery_threshold
(Opcional)

Valor del umbral de recuperación en años. Si un segmento presenta una tasa de recuperación más rápida que 1/recovery threshold, el segmento se descarta y no se incluye en el modelo de serie temporal. El valor debe estar comprendido entre 0 y 1. El valor predeterminado es 0,25.

Double
prevent_one_year_recovery
(Opcional)

Especifica si se excluirán los segmentos que presentan una recuperación de un año.

  • ALLOW_ONE_YEAR_RECOVERYLos segmentos que presentan una recuperación de un año no se excluirán.
  • PREVENT_ONE_YEAR_RECOVERYLos segmentos que presentan una recuperación de un año se excluirán. Esta es la opción predeterminada.
Boolean
recovery_trend
(Opcional)

Especifica si la recuperación tiene una tendencia creciente (positivo).

  • INCREASING_TRENDLa recuperación tiene una tendencia creciente. Esta es la opción predeterminada.
  • DECREASING_TRENDLa recuperación tiene una tendencia decreciente.
Boolean
min_num_observations
(Opcional)

Número mínimo de observaciones válidas necesarias para realizar el ajuste. El número de años del dataset multidimensional de entrada debe ser igual o mayor que este valor. El valor predeterminado es 6.

Long
best_model_proportion
(Opcional)

El mejor valor de proporción de modelo. Durante el proceso de selección del modelo, la herramienta calculará el valor p para cada modelo e identificará un modelo que tenga el mayor número de vértices manteniendo el valor p más pequeño (más significativo) basado en este valor de proporción. Un valor de 1 significa que el modelo tiene el valor p más bajo, pero es posible que no tenga un número elevado de vértices. El valor predeterminado es 1,25.

Double
pvalue_threshold

Umbral de valor p correspondiente a un modelo que se va a seleccionar. Una vez detectados los vértices en la etapa inicial del ajuste del modelo, la herramienta ajustará cada segmento y calculará el valor p para determinar la importancia del modelo. En la siguiente iteración, el modelo disminuirá el número de segmentos en uno y volverá a calcular el valor p. Esto continuará y, si el valor p es menor que el valor especificado en este parámetro, el modelo se seleccionará y la herramienta dejará de buscar un modelo mejor. Si no se selecciona ningún modelo, la herramienta seleccionará un modelo con un valor p menor que el lowest p-value × best model proportion value. El valor predeterminado es 0,01.

Double
output_other_bands
(Opcional)

Especifica si se incluirán otras bandas en el proceso de segmentación.

  • INCLUDE_OTHER_BANDSSe incluirán otras bandas. La información de segmentación y vértices de la banda de segmentación inicial especificada en el parámetro processing_band también se ajustará a las bandas restantes de las imágenes multibanda. Los resultados del modelo incluirán primero la banda de segmentación y, a continuación, las bandas restantes.
  • EXCLUDE_OTHER_BANDSNo se incluirán otras bandas. Esta es la opción predeterminada.
Boolean

Valor de retorno

NombreExplicaciónTipo de datos
out_multidimensional_raster

El dataset ráster multidimensional de formato de ráster de nube (CRF) de salida.

Ráster de análisis de cambio de salida que contiene información del modelo del análisis LandTrendr.

Raster

Muestra de código

Ejemplo 1 de AnalyzeChangesUsingLandTrendr (ventana de Python)

En este ejemplo se realiza el algoritmo LandTrendr para la detección de cambios en una serie temporal de datos NDVI.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")


changeAnalysisRaster = arcpy.ia.AnalyzeChangesUsingLandTrendr(
	"Monthly_NDVI_30_years.crf","","",10,3,0.9,0.25, 'PREVENT_ONE_YEAR_RECOVERY', 
	'INCREASING_TREND',10,1.25,0.05, 'EXCLUDE_OTHER_BANDS')

# Save output
changeAnalysisRaster.save(r"C:\data\NDVI_ChangeAnalysis.crf")
Ejemplo 2 de AnalyzeChangesUsingLandTrendr (script independiente)

Este ejemplo realiza una detección de cambio continuo en una serie temporal de imágenes de Landsat.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Define input parameters
in_multidimensional = r"C:\data\Landsat_time_series.crf"
processing_band = "Band_4"
snapping_date = ""
max_num_segments = 10
vertex_count_overshoot = 3
spike_threshold = 0.9
recovery_threshold = 0.25
prevent_one_year_recovery = "PREVENT_ONE_YEAR_RECOVERY"
recovery_trend = "INCREASING_TREND"
min_num_observations = 6
best_model_proportion = 1.25
pvalue_threshold = 0.01
output_other_bands = "EXCLUDE_OTHER_BANDS"

# Execute
changeAnalysisRaster = arcpy.ia.AnalyzeChangesUsingCCDC(
	in_multidimensional, processing_band, snapping_date, max_num_segments,
	vertex_count_overshoot, spike_threshold, recovery_threshold, prevent_one_year_recovery,
	recovery_trend, min_num_observations, best_model_proportion, pvalue_threshold, output_other_bands)

# Save output
changeAnalysisRaster.save(r"C:\data\Landsat_ChangeAnalysis.crf")

Información de licenciamiento

  • Basic: Requiere Image Analyst
  • Standard: Requiere Image Analyst
  • Advanced: Requiere Image Analyst

Temas relacionados