Disponible avec une licence Image Analyst.
Résumé
Entraîne un modèle d’apprentissage profond à l’aide de la sortie de l’outil Export Training Data For Deep Learning (Exporter les données d’entraînement pour l’apprentissage profond).
Utilisation
Pour configurer votre machine afin d’utiliser des structures d’apprentissage profond dans ArcGIS Pro, consultez la rubrique Installer les structures d’apprentissage profond pour ArcGIS.
This tool trains using the PyTorch deep learning framework. PyTorch must be installed on your machine to successfully run this tool.
The input training data for this tool must include the images and labels folders that are generated from the Export Training Data For Deep Learning tool.
Pour plus d’informations sur la configuration requise pour l’exécution de cet outil et les problèmes susceptibles de survenir, reportez-vous au Forum aux questions sur l’apprentissage profond.
Pour plus d’informations sur l’apprentissage profond, reportez-vous à la rubrique Apprentissage profond dans ArcGIS Pro.
Syntaxe
TrainDeepLearningModel(in_folder, out_folder, {max_epochs}, {model_type}, {batch_size}, {arguments}, {learning_rate}, {backbone_model}, {pretrained_model}, {validation_percentage}, {stop_training}, {freeze})
Paramètre | Explication | Type de données |
in_folder | The folder containing the image chips, labels, and statistics required to train the model. This is the output from the Export Training Data For Deep Learning tool. To train a model, the input images must be 8-bit rasters with three bands. | Folder |
out_folder | The output folder location that will store the trained model. | Folder |
max_epochs (Facultatif) | The maximum number of epochs for which the model will be trained. A maximum epoch of one means the dataset will be passed forward and backward through the neural network one time. The default value is 20. | Long |
model_type (Facultatif) | Specifies the model type to use to train the deep learning model.
| String |
batch_size (Facultatif) | The number of training samples to be processed for training at one time. The default value is 2. If you have a powerful GPU, this number can be increased to 8, 16, 32, or 64. | Long |
arguments [arguments,...] (Facultatif) | Les arguments des fonctions sont définis dans la classe de fonctions raster Python. C’est là que vous répertoriez les paramètres d’apprentissage profond supplémentaires et les arguments des expériences et améliorations, tels qu’un seuil de confiance pour l’ajustement de la sensibilité. Les noms des arguments sont alimentés lors de la lecture du module Python. When you choose SSD as the model_type parameter value, the arguments parameter will be populated with the following arguments:
When you choose PSPNET as the model_type parameter value, the arguments parameter will be populated with the following arguments:
When you choose RETINANET as the model_type parameter value, the arguments parameter will be populated with the following arguments:
| Value Table |
learning_rate (Facultatif) | The rate at which existing information will be overwritten with newly acquired information throughout the training process. If no value is specified, the optimal learning rate will be extracted from the learning curve during the training process. | Double |
backbone_model (Facultatif) | Specifies the preconfigured neural network to be used as an architecture for training the new model. This method is known as Transfer Learning.
| String |
pretrained_model (Facultatif) | The pretrained model to be used for fine tune training the new model. The input is an Esri Model Definition file (.emd). A pretrained model with similar classes can be fine-tuned to fit the new model. For example, an existing model that has been trained for cars can be fine-tuned to train a model that identifies trucks. The pretrained model must have been trained with the same model type and backbone model that will be used to train the new model. | File |
validation_percentage (Facultatif) | The percentage of training samples that will be used for validating the model. The default value is 10. | Double |
stop_training (Facultatif) | Specifies whether early stopping will be implemented.
| Boolean |
freeze (Facultatif) | Specifies whether to freeze the backbone layers in the pretrained model, so that the weights and biases remain as originally designed.
| Boolean |
Sortie dérivée
Nom | Explication | Type de données |
out_model_file | The output trained model file. | File |
Exemple de code
This example trains a tree classification model using the U-Net approach.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Execute
TrainDeepLearningModel(r"C:\DeepLearning\TrainingData\Roads_FC",
r"C:\DeepLearning\Models\Fire", 40, "UNET", 16, "# #", None,
"RESNET34", None, 10, "STOP_TRAINING", "FREEZE_MODEL")
This example trains an object detection model using the SSD approach.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
#Define input parameters
in_folder = "C:\\DeepLearning\\TrainingData\\Cars"
out_folder = "C:\\Models\\Cars"
max_epochs = 100
model_type = "SSD"
batch_size = 2
arg = "grids '[4, 2, 1]';zooms '[0.7, 1.0, 1.3]';ratios '[[1, 1], [1, 0.5], [0.5, 1]]'"
learning_rate = 0.003
backbone_model = "RESNET34"
pretrained_model = "C:\\Models\\Pretrained\\vehicles.emd"
validation_percent = 10
stop_training = "STOP_TRAINING"
freeze = "FREEZE_MODEL"
# Execute
TrainDeepLearningModel(in_folder, out_folder, max_epochs, model_type,
batch_size, arg, learning_rate, backbone_model, pretrained_model,
validation_percent, stop_training, freeze)
Environnements
Informations de licence
- Basic: Requiert Image Analyst
- Standard: Requiert Image Analyst
- Advanced: Requiert Image Analyst
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?