Résumé
Analyse les relations significatives statistiquement de deux variables à l’aide de l’entropie locale. Chaque entité est classée selon l’une des six catégories en fonction du type de relation. Le résultat peut être utilisé pour visualiser les zones dans lesquelles les variables sont reliées et explorer comment leurs relations évoluent à travers la zone d’étude.
En savoir plus sur le fonctionnement des Relations bivariées locales
Illustration
Utilisation
Cet outil accepte les points et polygones en entrée et doit être utilisé avec des variables continues. Il n’est pas approprié pour les données binaires ou catégorielles.
Il est recommandé de stocker vos entités en sortie dans une géodatabase plutôt que dans un shapefile (.shp). Les shapefiles ne peuvent pas stocker de valeurs nulles dans les attributs, ni stocker les diagrammes dans leurs boîtes de dialogue contextuelles.
Chaque entité en entrée est classée selon l’une des catégories de relations suivantes en fonction du degré de fiabilité avec lequel le paramètre Explanatory Variable (Variables explicative) peut prévoir le paramètre Dependent Variable (Variable dépendante) :
- Not Significant (Non significatif) : la relation entre les variables n’est pas statistiquement significative.
- Positive Linear (Linéaire positif) : la variable dépendante augmente de façon linéaire à mesure que la variable explicative augmente.
- Negative Linear (Linéaire négatif) : la variable dépendante diminue de façon linéaire à mesure que la variable explicative augmente.
- Concave : la variable dépendante change selon une courbe concave à mesure que la variable explicative augmente.
- Convex (Convexe) : la variable dépendante change selon une courbe convexe à mesure que la variable explicative augmente.
- Undefined Complex (Complexe non définie) : les variables sont reliées significativement, mais le type de relation ne peut pas être décrit de manière fiable par l’une des autres catégories.
L’existence d’une relation entre deux variables ne dépend pas du fait que l’une est marquée comme variable explicative et l’autre comme variable dépendante. Par exemple, si le diabète est lié à l’obésité, l’obésité est également liée au diabète. Cependant, la classification du type de relation peut varier selon la variable marquée comme variable explicative et celle marquée comme variable dépendante. Si une variable peut prévoir avec précision une deuxième variable, l’inverse n’est pas forcément vrai. En cas de doute sur la variable à utiliser comme variable explicative et la variable à utiliser comme variable dépendante, exécutez l’outil deux fois en essayant les deux options.
Cet outil prend en charge le traitement parallèle et utilise 50 pour cent des processeurs disponibles par défaut. Le nombre de processeurs utilisés peut être augmenté ou réduit à l'aide de l'environnement Facteur de traitement parallèle.
Syntaxe
LocalBivariateRelationships(in_features, dependent_variable, explanatory_variable, output_features, {number_of_neighbors}, {number_of_permutations}, {enable_local_scatterplot_popups}, {level_of_confidence}, {apply_false_discovery_rate_fdr_correction}, {scaling_factor})
Paramètre | Explication | Type de données |
in_features | La classe d'entités contenant les champs représentant la dependent_variable et la explanatory_variable. | Feature Layer |
dependent_variable | Le champ numérique représentant les valeurs de la variable dépendante. Lors de la catégorisation des relations, la explanatory_variable (Variable explicative) est utilisée pour prévoir la dependent_variable (Variable dépendante). | Field |
explanatory_variable | Le champ numérique représentant les valeurs de la variable explicative. Lors de la catégorisation des relations, la explanatory_variable (Variable explicative) est utilisée pour prévoir la dependent_variable (Variable dépendante). | Field |
output_features | La classe d'entités en sortie contenant toutes les entités en entrée avec les champs représentant la dependent_variable (Variable dépendante), explanatory_variable (Variable explicative), le score d’entropie, la pseudo valeur p, le niveau de signification, le type de relation catégorisée, et les diagnostics associés à la catégorisation. | Feature Class |
number_of_neighbors (Facultatif) | Le nombre de voisins autour de chaque entité (incluant l’entité) qui sera utilisé pour tester l’existence d’une relation locale entre les variables. Le nombre de voisins doit être compris entre 30 et 1000, et la valeur pas défaut est 30. La valeur fournie doit être suffisamment grande pour détecter la relation entre les entités, tout en étant suffisamment petite pour continuer à identifier les modèles locaux. | Long |
number_of_permutations (Facultatif) | Spécifie le nombre de permutations utilisé pour calculer la pseudo valeur p pour chaque entité. Le choix du nombre de permutations doit faire l'objet d'un compromis entre précision de la pseudo valeur p et augmentation du temps de traitement.
| Long |
enable_local_scatterplot_popups (Facultatif) | Détermine si les fenêtres contextuelles du nuage de points seront générées pour chaque entité en sortie. Chaque nuage de points affiche les valeurs des variables explicative (axe horizontal) et dépendante (axe vertical) dans le voisinage local ainsi qu’une ligne ajustée ou courbe représentant la forme de la relation. Les diagrammes du nuage de points ne sont pas disponibles pour les sorties shapefile.
| Boolean |
level_of_confidence (Facultatif) | Spécifie un niveau de confiance du test de l’hypothèse de l’existence de relations significatives.
| String |
apply_false_discovery_rate_fdr_correction (Facultatif) | Spécifie si la correction FDR sera appliquée aux pseudo valeurs p.
| Boolean |
scaling_factor (Facultatif) | Contrôle la sensibilité aux relations subtiles entre les variables. Les valeurs plus élevées (plus proches de un) peuvent détecter des relations relativement faibles, tandis que les valeurs plus petites (plus proches de zéro) ne détecteront que les relations fortes. Les valeurs plus faibles sont également moins sensibles aux points aberrants. La valeur doit être comprise entre 0,01 et 1 ; la valeur pas défaut est 0,5. | Double |
Exemple de code
Le script de fenêtre Python ci-dessous illustre l'utilisation de la fonction LocalBivariateRelationships.
import arcpy
arcpy.env.workspace = 'C:\\LBR\\MyData.gdb'
arcpy.LocalBivariateRelationships_stats('ObesityDiabetes', 'ObesityRate',
'DiabetesRate','LBR_Results', 30, '199', 'CREATE_POPUP',
'95%', 'APPLY_FDR', 0.5)
Le script Python autonome ci-dessous illustre l'utilisation de la fonction LocalBivariateRelationships.
# Use the Local Bivariate Relationships tool to study the relationship between
# obesity and diabetes.
# Import system modules.
import arcpy
import os
# Set property to overwrite existing output by default.
arcpy.env.overwriteOutput = True
try:
# Set the workspace and input features.
arcpy.env.workspace = r"C:\\LBR\\MyData.gdb"
inputFeatures = 'ObesityDiabetes'
# Set the output workspace and output name.
outws = 'C:\\LBR\\outputs.gdb'
outputName = 'LBR_Results'
# Set input features, dependent variable, and explanatory variable.
depVar = 'DiabetesRate'
explVar = 'ObesityRate'
# Set number of neighbors and permutations.
numNeighbors = 50
numPerms = '999'
# Choose to create popups.
popUps = 'CREATE_POPUP'
# Choose confidence level and apply False Discovery Rate correction.
confLevel = '95%'
fdr = 'APPLY_FDR'
# Set the scaling factor.
scaleFactor = 0.5
# Run Local Bivariate Regression.
arcpy.LocalBivariateRelationships_stats(inputFeatures, depVar, explVar,
os.path.join(outws, outputName),
numNeighbors, numPerms, popUps,
confLevel, fdr, scaleFactor)
except arcpy.ExecuteError:
# If an error occurred when running the tool, print out the error message.
print(arcpy.GetMessages())
Environnements
Informations de licence
- Basic: Oui
- Standard: Oui
- Advanced: Oui
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?