Résumé
Crée une couche de calcul de réseau d'itinéraires et définit ses propriétés d'analyse. Une couche d'analyse d'itinéraire est utile pour définir le meilleur itinéraire entre plusieurs localisations de réseau, en fonction d'un coût réseau spécifié. La couche peut être créée à l’aide d’un jeu de données réseau local ou d’un service de calcul d’itinéraire hébergé en ligne ou sur un portail.
Utilisation
Après avoir créé la couche d'analyse avec cet outil, vous pouvez ajouter des objets d'analyse de réseau à l'aide de l'outil Ajouter des localisations, résoudre l'analyse à l'aide de l'outil Calculer et enregistrer les résultats sur le disque à l'aide de l'outil Enregistrer dans un fichier de couche.
Lorsque vous utilisez cet outil dans des modèles de géotraitement, si le modèle est exécuté en tant qu'outil, la couche d'analyse de réseau en sortie doit être convertie en paramètre de modèle. Dans le cas contraire, la couche en sortie n'est pas ajoutée au contenu de la carte.
Dans ArcGIS Pro, les données des couches d’analyse de réseau sont stockées sur disque dans des classes d’entités de géodatabase fichier. Lorsque vous créez une couche d’analyse de réseau dans un projet, les données de cette couche sont créées dans un nouveau jeu de classes d’entités dans l’environnement Espace de travail courant. Lorsque vous créez une couche d’analyse de réseau dans un script Python, vous devez commencer par définir de façon explicite l’environnement de l’espace de travail sur une géodatabase fichier dans laquelle vous voulez stocker les données de la couche à l’aide de arcpy.env.workspace = "<path to file gdb>". Lorsque la couche est créée, un nouveau jeu de données d'entité contenant les classes d'entités de sous-couche appropriées est ajouté à cette géodatabase fichier.
Syntaxe
arcpy.na.MakeRouteAnalysisLayer(network_data_source, {layer_name}, {travel_mode}, {sequence}, {time_of_day}, {time_zone}, {line_shape}, {accumulate_attributes}, {generate_directions_on_solve}, {time_zone_for_time_fields})
Paramètre | Explication | Type de données |
network_data_source | Jeu de données réseau ou service sur lequel l'analyse du réseau est effectuée. Utilisez l'URL du portail pour un service. | Network Dataset Layer;String |
layer_name (Facultatif) | Nom de la couche d’analyse de réseau à créer. | String |
travel_mode (Facultatif) | Nom du mode de déplacement à utiliser dans l’analyse. Le mode de déplacement représente une collection de paramètres réseau, tels que des restrictions de circulation et des règles de demi-tour, qui détermine la façon dont un piéton, une voiture, un camion ou un autre mode de transport se déplace sur le réseau. Les modes de déplacement sont définis dans votre source de données de réseau. Vous pouvez aussi utiliser un objet arcpy.na.TravelMode et une chaîne contenant la représentation JSON valide d’un mode de déplacement en entrée du paramètre. | String |
sequence (Facultatif) | Spécifie si les arrêts en entrée doivent être parcourus dans un ordre spécifique lors du calcul de l'itinéraire optimal. Cette option transforme l'analyse des itinéraires d'un problème de plus court chemin en un problème du voyageur de commerce (TSP).
| String |
time_of_day (Facultatif) | La date et l’heure de début de l’itinéraire. L'heure de début de l'itinéraire permet généralement de trouver des itinéraires selon l'attribut d'impédance qui varie avec l'heure du jour. Par exemple, une heure de début égale à 7 h permet de trouver un itinéraire tenant compte la circulation à l’heure de pointe. La valeur par défaut de ce paramètre est 8 h. Une date et une heure peuvent être spécifiées sous la forme 10/21/05 10:30 AM. Si l'itinéraire couvre plusieurs jours et que seule l'heure de début est indiquée, la date courante est utilisée. Au lieu d'utiliser une date particulière, un jour de la semaine peut être spécifié à l'aide des dates suivantes :
Par exemple, pour préciser que le trajet doit commencer mardi à 17 h, spécifiez la valeur de paramètre sous la forme 1/2/1900 5:00 PM. Après le calcul, l’heure de début et l’heure de fin de l’itinéraire sont renseignées dans les itinéraires en sortie. Ces heures de début et de fin sont également utilisées lors de la génération de directions. | Date |
time_zone (Facultatif) | Spécifie le fuseau horaire du paramètre time_of_day.
| String |
line_shape (Facultatif) | Indique le type de forme pour les entités itinéraires générées par l'analyse.
Indépendamment du type de forme en sortie choisi, le meilleur itinéraire est toujours déterminé par l'impédance du réseau, jamais par la distance euclidienne. Cela signifie que seules les formes d'itinéraire sont différentes, pas le parcours du réseau sous-jacent. | String |
accumulate_attributes [accumulate_attributes,...] (Facultatif) | Liste des attributs de coût à cumuler lors de l’analyse. Ces attributs accumulés servent uniquement de référence. Le solveur utilise uniquement l’attribut de coût utilisé par le mode de déplacement désigné pour la réalisation de l’analyse. Pour chaque attribut de coût accumulé, une propriété Total_[Impédance] est renseignée dans les entités en sortie de l’analyse du réseau. Ce paramètre n’est pas disponible si la source de données réseau est un service ArcGIS Online ou si la source de données réseau est un service hébergé sur une version de Portal for ArcGIS qui ne prend pas en charge l’accumulation. | String |
generate_directions_on_solve (Facultatif) | Spécifie si une feuille de route sera générée lors de l’exécution de l’analyse.
Dans le cas d’une analyse pour laquelle la création d’une feuille de route détaillée n’est pas nécessaire, l’utilisation de l’option NO_DIRECTIONS permet de gagner du temps. | Boolean |
time_zone_for_time_fields (Facultatif) | Indique le fuseau horaire qui sera utilisé pour interpréter les champs horaires inclus dans les tables en entrée, par exemple les champs utilisés pour les fenêtres horaires.
| String |
Sortie dérivée
Nom | Explication | Type de données |
out_network_analysis_layer | La couche d’analyse de réseau en sortie. | Couche Network Analyst |
Exemple de code
Exécute l'outil uniquement avec les paramètres requis.
network = "C:/Data/SanFrancisco.gdb/Transportation/Streets_ND"
arcpy.na.MakeRouteAnalysisLayer(network, "WorkRoute")
Exécutez l'outil avec tous les paramètres.
network = "C:/Data/SanFrancisco.gdb/Transportation/Streets_ND"
arcpy.na.MakeRouteAnalysisLayer(network, "InspectionRoute", "Driving Time",
"FIND_BEST_ORDER", "1/1/1900 9:00 AM", "UTC",
"ALONG_NETWORK", ["Meters", "TravelTime"])
Le script Python autonome suivant illustre l'utilisation de l'outil MakeRouteAnalysisLayer pour trouver le meilleur itinéraire pour parcourir les emplacements d'arrêts géocodés.
# Name: MakeRouteAnalysisLayer_Workflow.py
# Description: Find a best route to visit the stop locations and save the
# route to a layer file. The stop locations are geocoded from a
# text file containing the addresses.
# Requirements: Network Analyst Extension
#Import system modules
import arcpy
from arcpy import env
import os
try:
#Check out Network Analyst license if available. Fail if the Network Analyst license is not available.
if arcpy.CheckExtension("network") == "Available":
arcpy.CheckOutExtension("network")
else:
raise arcpy.ExecuteError("Network Analyst Extension license is not available.")
#Set environment settings
output_dir = "C:/Data"
#The NA layer's data will be saved to the workspace specified here
env.workspace = os.path.join(output_dir, "Output.gdb")
env.overwriteOutput = True
#Set local variables
input_gdb = "C:/Data/SanFrancisco.gdb"
network = os.path.join(input_gdb, "Transportation", "Streets_ND")
layer_name = "BestRoute"
travel_mode = "Driving Time"
address_locator = "C:/Data/SanFranciscoLocator"
address_table = "C:/Data/StopAddresses.csv"
address_fields = "Street Address;City City;State State;ZIP <None>"
out_stops = "GeocodedStops"
output_layer_file = os.path.join(output_dir, layer_name + ".lyrx")
#Create a new Route layer. For this scenario, the default values for all the
#remaining parameters statisfy the analysis requirements
result_object = arcpy.na.MakeRouteAnalysisLayer(network, layer_name,
travel_mode)
#Get the layer object from the result object. The route layer can now be
#referenced using the layer object.
layer_object = result_object.getOutput(0)
#Get the names of all the sublayers within the route layer.
sublayer_names = arcpy.na.GetNAClassNames(layer_object)
#Stores the layer names that we will use later
stops_layer_name = sublayer_names["Stops"]
#Geocode the stop locations from a csv file containing the addresses.
#The Geocode Addresses tool can use a text or csv file as input table
#as long as the first line in the file contains the field names.
arcpy.geocoding.GeocodeAddresses(address_table, address_locator,
address_fields, out_stops)
#Load the geocoded address locations as stops mapping the address field from
#geocoded stop features as Name property using field mappings.
field_mappings = arcpy.na.NAClassFieldMappings(layer_object,
stops_layer_name)
field_mappings["Name"].mappedFieldName = "Address"
arcpy.na.AddLocations(layer_object, stops_layer_name, out_stops,
field_mappings, "")
#Solve the route layer, ignoring any invalid locations such as those that
#cannot be geocoded
arcpy.na.Solve(layer_object, "SKIP")
#Save the solved route layer as a layer file on disk
layer_object.saveACopy(output_layer_file)
print("Script completed successfully")
except Exception as e:
# If an error occurred, print line number and error message
import traceback, sys
tb = sys.exc_info()[2]
print("An error occurred on line %i" % tb.tb_lineno)
print(str(e))
Cet exemple explique comment calculer plusieurs itinéraires en une seule analyse, méthode qui s'avère utile pour calculer des distances ou des temps de trajet entre des paires origine-destination.
Héritage :
La fonction GetNASublayer peut être utilisée pour extraire les sous-couches d’une couche d’analyse de réseau. Elle a été introduite dans ArcGIS Pro 2.7. Dans les versions précédentes, la meilleure manière d’extraire un objet de sous-couche d’une couche d’analyse de réseau consistait à utiliser la méthode listLayers de l’objet Layer d’analyse de réseau en utilisant le nom de la sous-couche en tant que caractère générique.
# Name: MakeRouteAnalysisLayer_MultiRouteWorkflow.py
# Description: Calculate the home-work commutes for a set of people and save
# the output to a feature class
# Requirements: Network Analyst Extension
#Import system modules
import arcpy
from arcpy import env
import datetime
import os
try:
#Check out Network Analyst license if available. Fail if the Network Analyst license is not available.
if arcpy.CheckExtension("network") == "Available":
arcpy.CheckOutExtension("network")
else:
raise arcpy.ExecuteError("Network Analyst Extension license is not available.")
#Set environment settings
output_dir = "C:/Data"
#The NA layer's data will be saved to the workspace specified here
env.workspace = os.path.join(output_dir, "Output.gdb")
env.overwriteOutput = True
#Set local variables
input_gdb = "C:/Data/SanFrancisco.gdb"
network = os.path.join(input_gdb, "Transportation", "Streets_ND")
stops_home = os.path.join(input_gdb, "Analysis", "Commuters_Home")
stops_work = os.path.join(input_gdb, "Analysis", "Commuters_Work")
layer_name = "Commuters"
out_routes_featureclass = "Commuter_Routes"
travel_mode = "Driving Time"
#Set the time of day for the analysis to 8AM on a generic Monday.
start_time = datetime.datetime(1900, 1, 1, 8, 0, 0)
#Create a new Route layer. Optimize on driving time, but compute the
#distance traveled by accumulating the Meters attribute.
result_object = arcpy.na.MakeRouteAnalysisLayer(network, layer_name,
travel_mode, time_of_day=start_time,
accumulate_attributes=["Meters"])
#Get the layer object from the result object. The route layer can now be
#referenced using the layer object.
layer_object = result_object.getOutput(0)
#Get the names of all the sublayers within the route layer.
sublayer_names = arcpy.na.GetNAClassNames(layer_object)
#Stores the layer names that we will use later
stops_layer_name = sublayer_names["Stops"]
routes_layer_name = sublayer_names["Routes"]
#Before loading the commuters' home and work locations as route stops, set
#up field mapping. Map the "Commuter_Name" field from the input data to
#the RouteName property in the Stops sublayer, which ensures that each
#unique Commuter_Name will be placed in a separate route. Matching
#Commuter_Names from stops_home and stops_work will end up in the same
#route.
field_mappings = arcpy.na.NAClassFieldMappings(layer_object, stops_layer_name)
field_mappings["RouteName"].mappedFieldName = "Commuter_Name"
#Add the commuters' home and work locations as Stops. The same field mapping
#works for both input feature classes because they both have a field called
#"Commuter_Name"
arcpy.na.AddLocations(layer_object, stops_layer_name, stops_home,
field_mappings, "")
arcpy.na.AddLocations(layer_object, stops_layer_name, stops_work,
field_mappings, "", append="APPEND")
#Solve the route layer.
arcpy.na.Solve(layer_object)
# Get the output Routes sublayer and save it to a feature class
routes_sublayer = arcpy.na.GetNASublayer(layer_object, "Routes")
arcpy.management.CopyFeatures(routes_sublayer, out_routes_featureclass)
print("Script completed successfully")
except Exception as e:
# If an error occurred, print line number and error message
import traceback, sys
tb = sys.exc_info()[2]
print("An error occurred on line %i" % tb.tb_lineno)
print(str(e))
Environnements
Informations de licence
- Basic: Oui
- Standard: Oui
- Advanced: Oui
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?