Horizon (3D Analyst)

Synthèse

Permet de générer une ligne ou une classe d'entités multipatch contenant les résultats d'une analyse de la silhouette ou de l'horizon.

En savoir plus sur le fonctionnement de l’outil Horizon

Illustration

Illustration de l’outil Horizon

Utilisation

  • L'outil Horizon permet de créer des silhouettes d'entités qui peuvent être extrudées dans des volumes d'ombre avec l'outil Barrière d'horizon.

  • Les champs suivants sont ajoutés à la valeur du paramètre Output Feature Class (Classe d’entités en sortie) qui contient les horizons :

    • OBSV_PT_ID : FID du point d’observation utilisé pour créer cet horizon
    • ORIGFTR_ID : FID de l’entité (bâtiment, par exemple)
  • Les champs suivants sont ajoutés à la valeur du paramètre Output Feature Class (Classe d’entités en sortie) qui contient les silhouettes :

    • OBSV_PT_ID : FID du point d’observation utilisé pour créer cette silhouette
    • ORIGFTR_ID : FID de l’entité d’origine (bâtiment, par exemple) représentée par cette silhouette
    • DIR_VECT_X : composant x du vecteur d’unité représentant la direction des rayons lumineux à partir du point d’observation
    • DIR_VECT_Y : composant y du vecteur d’unité représentant la direction des rayons lumineux à partir du point d’observation
    • DIR_VECT_Z : composant z du vecteur d’unité représentant la direction des rayons lumineux à partir du point d’observation
    • FEAT_CTR_X : composant z du centre de l’enveloppe de l’entité d’origine (par exemple, bâtiment)
    • FEAT_CTR_Y : composant y du centre de l’enveloppe de l’entité
    • FEAT_CTR_Z : composant z du centre de l’enveloppe de l’entité
    • BHND_CTR_X : composant x du centre de l’enveloppe de l’entité, déplacé derrière l’entité
    • BHND_CTR_Y : composant y du centre de l’enveloppe de l’entité, déplacé derrière l’entité
    • BHND_CTR_Z : composant z du centre de l’enveloppe de l’entité, déplacé derrière l’entité
    • USED_PARLL : création ou non de la silhouette à l’aide de rayons lumineux parallèles (1 pour oui, 0 pour non)
    • MADE_VERT : silhouette créée à la verticale ou non, plutôt que perpendiculaire aux rayons lumineux (1 pour oui, 0 pour non)
    • MOVED_BHND : silhouette déplacée ou non derrière l’entité, plutôt que placée au centre (1 pour oui, 0 pour non)
  • La réfraction atmosphérique et la correction de courbure de la Terre ne sont appliquées que lorsque la valeur du paramètre Input Surface (Surface en entrée) est un jeu de données raster. Si votre surface est définie par un jeu de données TIN, de MNT ou LAS, utilisez l’un des outils suivants pour exporter vos données vers un raster :

Paramètres

ÉtiquetteExplicationType de données
Entités ponctuelles d’observation en entrée

Points 3D représentant les points d'observation. Chaque entité aura sa propre sortie.

Feature Layer
Classe d’entités en sortie

Entités 3D qui seront des lignes représentant l'horizon ou des multipatchs représentant les silhouettes.

Feature Class
Surface en entrée
(Facultatif)

Surface topographique qui permettra de définir l'horizon. Si aucune surface n’est fournie, une surface virtuelle est utilisée, définie par les valeurs des paramètres Virtual Surface Radius (Rayon de surface virtuelle) et Virtual Surface Elevation (Altitude de surface virtuelle).

LAS Dataset Layer; Mosaic Layer; Raster Layer; TIN Layer; Terrain Layer
Rayon de surface virtuelle
(Facultatif)

Rayon de la surface virtuelle qui servira à définir l’horizon si aucune surface topographique n’est fournie. La valeur par défaut est 1,000 mètres.

Linear Unit
Altitude de surface virtuelle
(Facultatif)

Altitude de la surface virtuelle qui servira à définir l’horizon, au lieu d’une surface réelle. Ce paramètre est ignoré si une surface réelle est fournie. La valeur par défaut est 0.

Linear Unit
Entités en entrée
(Facultatif)

Entités utilisées pour déterminer l’horizon. Si aucune entité n’est spécifiée, l’horizon se compose uniquement de la ligne d’horizon, telle qu’elle est définie par la surface topographique ou virtuelle.

Feature Layer
Niveau de détail de l’entité
(Facultatif)

Indique le niveau de détail auquel chaque entité est examinée.

  • Détails completsChaque tronçon de l’entité est pris en compte dans l’analyse d’horizon (uniquement les tronçons des triangles et les boucles extérieures sont pris en compte). Cette opération, qui demande beaucoup de temps, est la plus précise. Il s’agit de l’option par défaut.
  • Emprise convexeL’analyse d’horizon utilise le périmètre supérieur de l’enveloppe convexe de l’emprise de chaque entité extrudée à l’altitude du plus haut sommet dans l’entité.
  • EnveloppeL’analyse d’horizon utilise le périmètre de l’enveloppe de l’entité en trois dimensions. Il s'agit de la technique la plus rapide.
String
Azimut de départ
(Facultatif)

Azimut (en degrés) à partir duquel l’analyse d’horizon doit commencer.

L’analyse démarre au point d’observation et se poursuit vers la droite, à partir de la valeur du paramètre From Azimuth (Azimut de départ) jusqu’à atteindre la valeur du paramètre To Azimuth (Azimut d’arrivée). La valeur doit être supérieure à -360 et inférieure à 360. La valeur par défaut est 0.

Double; Field
Azimut de destination
(Facultatif)

Direction (en degrés) dans laquelle l’analyse d’horizon va se terminer.

L’analyse démarre au point d’observation et se poursuit vers la droite, à partir de la valeur du paramètre From Azimuth (Azimut de départ) jusqu’à atteindre la valeur du paramètre To Azimuth (Azimut d’arrivée). La valeur ne doit pas être plus de 360 degrés supérieure à la valeur du paramètre From Azimuth (Azimut de départ). La valeur par défaut est 360.

Double; Field
Intervalle azimut
(Facultatif)

Intervalle angulaire (en degrés) auquel l’horizon va être évalué lors de l’analyse d’horizon entre la valeur du paramètre From Azimuth (Azimut de départ) et la valeur du paramètre To Azimuth (Azimut d’arrivée). La valeur ne doit pas être supérieure à la valeur du paramètre To Azimuth (Azimut d’arrivée) moins la valeur du paramètre From Azimuth (Azimut de départ). La valeur par défaut est 1.

Double; Field
Rayon maximum de l’horizon
(Facultatif)

Distance maximale à partir de l’emplacement d’observation à laquelle l’horizon va être recherché. Une valeur nulle indique qu’aucune limite n’est imposée. La valeur par défaut est 0.

Linear Unit
Segmenter l’horizon
(Facultatif)

Indique si la ligne d’horizon obtenue disposera d’une entité pour chaque point d’observation ou si la ligne d’horizon de chaque point d’observation sera segmentée par les éléments uniques qui constituent la ligne d’horizon. Ce paramètre est actif uniquement si un multipatch en entrée a été spécifié.

Si des silhouettes sont générées, ce paramètre indique alors si des rayons divergents sont utilisés. Pour les ombres, désactivez ce paramètre.

  • Désactivé : chaque entité de la ligne d'horizon représentera un point d'observation. Il s’agit de l’option par défaut.
  • Activé : la ligne d'horizon de chaque point d'observation sera segmentée par les éléments uniques qui constituent la ligne d'horizon.
Boolean
Mettre à l’échelle en pourcentage
(Facultatif)

Le pourcentage de l’angle vertical (angle au-dessus de l’horizon ou angle d’altitude) ou de l’altitude d’origine auquel chaque sommet d’horizon va être placé. Si la valeur 0 ou 100 est utilisée, la mise à l’échelle n’a pas lieu. La valeur par défaut est 100.

Double
Mettre à l’échelle selon
(Facultatif)

Indique la manière dont la mise à l’échelle est déterminée.

  • Angle vertical depuis le point d'observationLa mise à l’échelle est effectuée en fonction de l’angle vertical de chaque sommet par rapport au point d’observation. Il s’agit de l’option par défaut.
  • ÉlévationLa mise à l’échelle est effectuée en fonction de l’altitude de chaque sommet par rapport au point d’observation.
String
Méthode de mise à l’échelle
(Facultatif)

Indique le sommet à utiiser pour calculer l’échelle.

  • Ligne d'horizon maximumLes sommets seront mis à l'échelle par rapport à l'angle vertical (ou à l'altitude) du sommet ayant l'angle vertical le plus élevé (ou l'altitude la plus élevée). Il s’agit de l’option par défaut.
  • Chaque sommetLes sommets seront mis à l'échelle par rapport à l'angle vertical original (ou à l'altitude originale) de chaque sommet.
String
Utiliser la courbure
(Facultatif)

Indique si la courbure de la Terre est utilisée lors de la génération de la crête. Cette option est disponible uniquement si une surface raster est spécifiée pour le paramètre Input Surface (Surface en entrée).

  • Désactivé : la courbure de la Terre n’est pas utilisée. Il s’agit de l’option par défaut.
  • Activé : la courbure de la Terre est utilisée.
Boolean
Utiliser la réfraction
(Facultatif)

Indique si la réfraction atmosphérique est appliquée lors de la génération d’une crête à partir d’une surface en entrée. Cette option est disponible uniquement si une surface raster est spécifiée pour le paramètre Input Surface (Surface en entrée).

  • Désactivé : la réfraction atmosphérique n’est pas appliquée. Il s’agit de l’option par défaut.
  • Activé : la réfraction atmosphérique est appliquée.
Boolean
Facteur de réfraction
(Facultatif)

Coefficient de réfraction à utiliser si la réfraction atmosphérique est appliquée. La valeur par défaut est 0.13.

Double
Résolution des niveaux de pyramide
(Facultatif)

Résolution de taille de fenêtre ou de tolérance z du niveau de pyramide de MNT qui sera utilisée. La valeur par défaut est 0 (ou résolution maximale).

Double
Créer des silhouettes
(Facultatif)

Indique si les entités en sortie représenteront des lignes d'horizon ou des silhouettes.

  • Désactivé : la sortie sera créée en tant qu'entités polylinéaires représentant la ligne d'horizon. Il s’agit de l’option par défaut.
  • Activé : la sortie sera créée en tant qu'entités multipatch représentant les silhouettes.
Boolean

arcpy.ddd.Skyline(in_observer_point_features, out_feature_class, {in_surface}, {virtual_surface_radius}, {virtual_surface_elevation}, {in_features}, {feature_lod}, {from_azimuth_value_or_field}, {to_azimuth_value_or_field}, {azimuth_increment_value_or_field}, {max_horizon_radius}, {segment_skyline}, {scale_to_percent}, {scale_according_to}, {scale_method}, {use_curvature}, {use_refraction}, {refraction_factor}, {pyramid_level_resolution}, {create_silhouettes})
NomExplicationType de données
in_observer_point_features

Points 3D représentant les points d'observation. Chaque entité aura sa propre sortie.

Feature Layer
out_feature_class

Entités 3D qui seront des lignes représentant l'horizon ou des multipatchs représentant les silhouettes.

Feature Class
in_surface
(Facultatif)

Surface topographique qui permettra de définir l'horizon. Si aucune surface n’est fournie, une surface virtuelle est utilisée, définie par les valeurs des paramètres virtual_surface_radius et virtual_surface_elevation.

LAS Dataset Layer; Mosaic Layer; Raster Layer; TIN Layer; Terrain Layer
virtual_surface_radius
(Facultatif)

Rayon de la surface virtuelle qui servira à définir l’horizon si aucune surface topographique n’est fournie. La valeur par défaut est 1,000 mètres.

Linear Unit
virtual_surface_elevation
(Facultatif)

Altitude de la surface virtuelle qui servira à définir l’horizon, au lieu d’une surface réelle. Ce paramètre est ignoré si une surface réelle est fournie. La valeur par défaut est 0.

Linear Unit
in_features
[in_features,...]
(Facultatif)

Entités utilisées pour déterminer l’horizon. Si aucune entité n’est spécifiée, l’horizon se compose uniquement de la ligne d’horizon, telle qu’elle est définie par la surface topographique ou virtuelle.

Feature Layer
feature_lod
(Facultatif)

Indique le niveau de détail auquel chaque entité est examinée.

  • FULL_DETAILChaque tronçon de l’entité est pris en compte dans l’analyse d’horizon (uniquement les tronçons des triangles et les boucles extérieures sont pris en compte). Cette opération, qui demande beaucoup de temps, est la plus précise. Il s’agit de l’option par défaut.
  • CONVEX_FOOTPRINTL’analyse d’horizon utilise le périmètre supérieur de l’enveloppe convexe de l’emprise de chaque entité extrudée à l’altitude du plus haut sommet dans l’entité.
  • ENVELOPEL’analyse d’horizon utilise le périmètre de l’enveloppe de l’entité en trois dimensions. Il s'agit de la technique la plus rapide.
String
from_azimuth_value_or_field
(Facultatif)

Azimut (en degrés) à partir duquel l’analyse d’horizon doit commencer.

L’analyse démarre au point d’observation et se poursuit vers la droite, à partir de la valeur du paramètre from_azimuth_value_or_field jusqu’à atteindre la valeur du paramètre to_azimuth_value_or_field. La valeur doit être supérieure à -360 et inférieure à 360. La valeur par défaut est 0.

Double; Field
to_azimuth_value_or_field
(Facultatif)

Direction (en degrés) dans laquelle l’analyse d’horizon va se terminer.

L’analyse démarre au point d’observation et se poursuit vers la droite, à partir de la valeur du paramètre from_azimuth_value_or_field jusqu’à atteindre la valeur du paramètre to_azimuth_value_or_field. La valeur ne doit pas être plus de 360 degrés supérieure à la valeur du paramètre from_azimuth_value_or_field. La valeur par défaut est 360.

Double; Field
azimuth_increment_value_or_field
(Facultatif)

Intervalle angulaire (en degrés) auquel l’horizon va être évalué lors de l’analyse d’horizon entre la valeur du paramètre from_azimuth_value_or_field et la valeur du paramètre to_azimuth_value_or_field. La valeur ne doit pas être supérieure à la valeur du paramètre to_azimuth_value_or_field moins la valeur du paramètre from_azimuth_value_or_field. La valeur par défaut est 1.

Double; Field
max_horizon_radius
(Facultatif)

Distance maximale à partir de l’emplacement d’observation à laquelle l’horizon va être recherché. Une valeur nulle indique qu’aucune limite n’est imposée. La valeur par défaut est 0.

Linear Unit
segment_skyline
(Facultatif)

Indique si la ligne d’horizon obtenue disposera d’une entité pour chaque point d’observation ou si la ligne d’horizon de chaque point d’observation sera segmentée par les éléments uniques qui constituent la ligne d’horizon. Ce paramètre est activé uniquement si un multipatch en entrée a été spécifié.

Si des silhouettes sont générées, ce paramètre indique alors si des rayons divergents sont utilisés. Pour les ombres, définissez ce paramètre sur NO_SEGMENT_SKYLINE.

  • NO_SEGMENT_SKYLINEChaque entité de la ligne d'horizon représentera un point d'observation. Il s’agit de l’option par défaut.
  • SEGMENT_SKYLINELa ligne d'horizon de chaque point d'observation sera segmentée par les éléments uniques qui constituent la ligne d'horizon.
Boolean
scale_to_percent
(Facultatif)

Le pourcentage de l’angle vertical (angle au-dessus de l’horizon ou angle d’altitude) ou de l’altitude d’origine auquel chaque sommet d’horizon va être placé. Si la valeur 0 ou 100 est utilisée, la mise à l’échelle n’a pas lieu. La valeur par défaut est 100.

Double
scale_according_to
(Facultatif)

Indique la manière dont la mise à l’échelle est déterminée.

  • VERTICAL_ANGLELa mise à l’échelle est effectuée en fonction de l’angle vertical de chaque sommet par rapport au point d’observation. Il s’agit de l’option par défaut.
  • ELEVATIONLa mise à l’échelle est effectuée en fonction de l’altitude de chaque sommet par rapport au point d’observation.
String
scale_method
(Facultatif)

Indique le sommet à utiiser pour calculer l’échelle.

  • SKYLINE_MAXIMUMLes sommets seront mis à l'échelle par rapport à l'angle vertical (ou à l'altitude) du sommet ayant l'angle vertical le plus élevé (ou l'altitude la plus élevée). Il s’agit de l’option par défaut.
  • EACH_VERTEXLes sommets seront mis à l'échelle par rapport à l'angle vertical original (ou à l'altitude originale) de chaque sommet.
String
use_curvature
(Facultatif)

Indique si la courbure de la Terre est utilisée lors de la génération de la crête à partir d’une surface fonctionnelle. Cette option est disponible uniquement si une surface raster est spécifiée pour le paramètre in_surface.

  • CURVATURELa courbure de la Terre est utilisée.
  • NO_CURVATURELa courbure de la Terre n’est pas utilisée. Il s’agit de l’option par défaut.
Boolean
use_refraction
(Facultatif)

Indique si la réfraction atmosphérique est appliquée lors de la génération d’une crête à partir d’une surface fonctionnelle. Cette option est disponible uniquement si une surface raster est spécifiée pour le paramètre in_surface.

  • NO_REFRACTIONLa réfraction atmosphérique n’est pas appliquée. Il s’agit de l’option par défaut.
  • REFRACTIONLa réfraction atmosphérique est appliquée.
Boolean
refraction_factor
(Facultatif)

Coefficient de réfraction à utiliser si la réfraction atmosphérique est appliquée. La valeur par défaut est 0.13.

Double
pyramid_level_resolution
(Facultatif)

Résolution de taille de fenêtre ou de tolérance z du niveau de pyramide de MNT qui sera utilisée. La valeur par défaut est 0 (ou résolution maximale).

Double
create_silhouettes
(Facultatif)

Indique si les entités en sortie représenteront des lignes d'horizon ou des silhouettes.

  • NO_CREATE_SILHOUETTESLes entités polylignes obtenues représentent l'horizon. Il s’agit de l’option par défaut.
  • CREATE_SILHOUETTESLes entités multipatch obtenues représentent des silhouettes.
Boolean

Exemple de code

1er exemple d'utilisation de l'outil Skyline (fenêtre Python)

L'exemple suivant illustre l'utilisation de cet outil dans la fenêtre Python.

arcpy.env.workspace = "C:/data"
arcpy.Skyline_3d("observers.shp", "skyline_output.shp", "sample.gdb/featuredataset/terrain")
2e exemple d'utilisation de l'outil Skyline (script autonome)

L'exemple suivant illustre l'utilisation de cet outil dans un script Python autonome.

'''****************************************************************************
Name: Skyline Example
Description: This script demonstrates how to use the 
             Skyline tool.
****************************************************************************'''
# Import system modules
import arcpy

# Set environment settings
arcpy.env.workspace = 'C:/data'

# Set Local Variables
inPts = "observers.shp"

# Make sure output has a unique name
outFC = arcpy.CreateUniqueName("skyline_output.shp")
inSurface = "sample.gdb/featuredataset/terrain"
obstructionFCs = "buildings.shp; billboards.shp"
surfRad = "1000 meters"
surfElev = "100 meters"
LOD = "FULL_DETAIL"
fromAzim = 0
toAzim = 360
incAzim = 1
maxHorizRad = 0
segSky = "SEGMENT_SKYLINE"
scale = 100
scaleAcc = "ELEVATION"
scaleMethod = "SKYLINE_MAXIMUM"

# Execute Skyline
arcpy.Skyline_3d(inPts, outFC, inSurface, surfRad, surfElev, 
                 obstructionFCs, LOD, fromAzim, toAzim, incAzim, 
                 maxHorizRad, segSky, scale, scaleAcc, scaleMethod)

Informations de licence

  • Basic: Nécessite 3D Analyst
  • Standard: Nécessite 3D Analyst
  • Advanced: Nécessite 3D Analyst

Rubriques connexes