Object classification

Cette documentation ArcGIS 2.9 a été archivée et n’est plus mise à jour. Certains contenus et liens peuvent être obsolètes. Consultez la dernière version de la documentation.

Disponible avec une licence Image Analyst.

The goal of object classification is to determine the class of each feature, such as a building. For example, you can use it to determine if a building is damaged after a natural disaster. Object classification requires the following inputs:

  • An input raster that contains the spectral bands
  • A feature class that defines the location (for example, an outline or a bounding box) of each feature

You can solve object classification through Convolutional Neural Networks (CNN). There are many CNN-based image classification algorithms. Most algorithms have a backbone that uses CNN architecture, such as Resnet, LeNet-5, AlexNet, or VGG 16, which is then followed by a softmax layer.

Object classification uses the Feature Classifier model type to train a model.

Rubriques connexes