Étiquette | Explication | Type de données |
Raster en entrée | Jeu de données raster à classer. | Raster Layer; Mosaic Layer; Image Service; String |
Nombre maximum de classes / d’agrégats | Nombre maximal de classes souhaitées pour regrouper les pixels ou segments. Il doit être supérieur au nombre de classes dans votre légende. Il est possible que vous obteniez moins de classes que le nombre spécifié pour ce paramètre. Si vous souhaitez en obtenir davantage, augmentez cette valeur et agrégez les classes une fois le processus d'apprentissage terminé. | Long |
Fichier de définition de classifieur en sortie | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
Raster en entrée supplémentaire (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
Nombre maximal d'itérations (Facultatif) | Nombre maximal d’itérations devant être exécutées par le processus d’agrégation. La plage recommandée est comprise entre 10 et 20 itérations. En augmentant cette valeur, vous allongez le temps de traitement de façon linéaire. | Long |
Nombre minimal d'échantillons par agrégat (Facultatif) | Nombre minimal de pixels ou segments dans une classe ou un agrégat valide. La valeur 20 par défaut est efficace pour créer des classes statistiquement significatives. Vous pouvez augmenter ce nombre pour les classes plus fiables, mais cela peut limiter le nombre global de classes créées. | Long |
Pas d'échantillonnage (Facultatif) | Nombre de pixels à ignorer pour une image de pixels en entrée. Si l'entrée est une image segmentée, spécifiez le nombre de segments à ignorer. | Long |
Attributs de segments utilisés (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie. Ce paramètre n’est actif que si la propriété clé Segmented (Segmenté) est définie sur true (vrai) dans le raster en entrée. Si la seule sortie de l’outil est une image segmentée, les attributs par défaut sont Average chromaticity color (Couleur de chromaticité moyenne), Count of pixels (Nombre de pixels), Compactness (Compacité) et Rectangularity (Rectangularité). Si une valeur Additional Input Raster (Raster en entrée supplémentaire) est incluse comme entrée avec une image segmentée, les attributs Mean digital number (Nombre numérique moyen) et Standard deviation (Écart type) sont également disponibles.
| String |
Nombre maximum de fusions de grappe par itération (Facultatif) | Nombre maximal de fusions d’agrégat par itération. L'augmentation du nombre de fusions réduit le nombre de classes créées. Une valeur plus faible génère un plus grand nombre de classes. | Long |
Distance de fusion maximum (Facultatif) | Distance maximale entre les centres d’agrégat dans l’espace d’entité. L'augmentation de la distance permet de fusionner davantage de grappes, ce qui se traduit par une diminution du nombre de classes. Une valeur plus faible génère un plus grand nombre de classes. Les valeurs comprises entre 0 et 5 renvoient généralement les meilleurs résultats. | Double |
Disponible avec une licence Spatial Analyst.
Disponible avec une licence Image Analyst.
Synthèse
Génère un fichier de définition de classificateur Esri (.ecd) à l’aide de la définition de classification des agrégats ISO.
Cet outil effectue une classification non assistée.
Utilisation
Tout raster pris en charge par Esri est accepté en entrée, y compris les produits raster, les rasters segmentés, les mosaïques, les services d'imagerie ou les jeux de données raster génériques. Les rasters segmentés doivent être des rasters 8 bits à 3 canaux.
Le paramètre Segment Attributes (Attributs de segment) n’est actif que si l’une des entrées de la couche raster est une image segmentée.
Paramètres
TrainIsoClusterClassifier(in_raster, max_classes, out_classifier_definition, {in_additional_raster}, {max_iterations}, {min_samples_per_cluster}, {skip_factor}, {used_attributes}, {max_merge_per_iter}, {max_merge_distance})
Nom | Explication | Type de données |
in_raster | Jeu de données raster à classer. | Raster Layer; Mosaic Layer; Image Service; String |
max_classes | Nombre maximal de classes souhaitées pour regrouper les pixels ou segments. Il doit être supérieur au nombre de classes dans votre légende. Il est possible que vous obteniez moins de classes que le nombre spécifié pour ce paramètre. Si vous souhaitez en obtenir davantage, augmentez cette valeur et agrégez les classes une fois le processus d'apprentissage terminé. | Long |
out_classifier_definition | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
in_additional_raster (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
max_iterations (Facultatif) | Nombre maximal d’itérations devant être exécutées par le processus d’agrégation. La plage recommandée est comprise entre 10 et 20 itérations. En augmentant cette valeur, vous allongez le temps de traitement de façon linéaire. | Long |
min_samples_per_cluster (Facultatif) | Nombre minimal de pixels ou segments dans une classe ou un agrégat valide. La valeur 20 par défaut est efficace pour créer des classes statistiquement significatives. Vous pouvez augmenter ce nombre pour les classes plus fiables, mais cela peut limiter le nombre global de classes créées. | Long |
skip_factor (Facultatif) | Nombre de pixels à ignorer pour une image de pixels en entrée. Si l'entrée est une image segmentée, spécifiez le nombre de segments à ignorer. | Long |
used_attributes [used_attributes;used_attributes,...] (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.
Ce paramètre est activé uniquement si la propriété de clé Segmented est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont COLOR, COUNT, COMPACTNESS et RECTANGULARITY. Si une valeur in_additional_raster est incluse comme entrée avec une image segmentée, les attributs MEAN et STD sont également disponibles. | String |
max_merge_per_iter (Facultatif) | Nombre maximal de fusions d’agrégat par itération. L'augmentation du nombre de fusions réduit le nombre de classes créées. Une valeur plus faible génère un plus grand nombre de classes. | Long |
max_merge_distance (Facultatif) | Distance maximale entre les centres d’agrégat dans l’espace d’entité. L'augmentation de la distance permet de fusionner davantage de grappes, ce qui se traduit par une diminution du nombre de classes. Une valeur plus faible génère un plus grand nombre de classes. Les valeurs comprises entre 0 et 5 renvoient généralement les meilleurs résultats. | Double |
Exemple de code
Le script de fenêtre Python ci-dessous utilise le classificateur d'agrégats ISO pour créer un fichier de définition de classification Esri non assistée avec dix classes au maximum.
import arcpy
from arcpy.sa import *
TrainIsoClusterClassifier("c:/test/moncton_seg.tif", "10",
"c:/output/moncton_sig_iso.ecd","c:/test/moncton.tif",
"5", "10", "2", "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Cet exemple de script utilise le classificateur d'agrégats ISO pour créer un fichier de définition de classification Esri non assistée avec dix classes au maximum.
# Import system modules
import arcpy
from arcpy.sa import *
# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
maxNumClasses = "10"
out_definition = "c:/output/moncton_sig_iso.ecd"
in_additional_raster = "moncton.tif"
maxIteration = "20"
minNumSamples = "10"
skipFactor = "5"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"
# Execute
TrainIsoClusterClassifier(inSegRaster, maxNumClasses, out_definition,
in_additional_raster, maxIteration,
minNumSamples, skipFactor, attributes)
Environnements
Cas particuliers
Informations de licence
- Basic: Nécessite Spatial Analyst ou Image Analyst
- Standard: Nécessite Spatial Analyst ou Image Analyst
- Advanced: Nécessite Spatial Analyst ou Image Analyst
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?