Préparer le classificateur de vraisemblance maximale (Spatial Analyst)

Disponible avec une licence Spatial Analyst.

Disponible avec une licence Image Analyst.

Synthèse

Génère un fichier de définition de classificateur Esri (.ecd) à l’aide de la définition de classification du classificateur de vraisemblance maximale (MLC).

Utilisation

  • Pour exécuter un processus de classification de vraisemblance maximale, utilisez le même raster en entrée et le fichier .ecd en sortie de cet outil dans l'outil Classer le raster.

  • Le raster en entrée peut être n'importe quel raster pris en charge par Esri, avec n'importe quelle profondeur des couleurs.

  • Pour créer un jeu de données raster segmenté, utilisez l’outil Décalage moyen de segment.

  • Pour créer un fichier d’échantillon d’entraînement, accédez à la fenêtre Gestionnaire d’échantillons d’apprentissage à partir du menu déroulant Outils de classification.

  • Le fichier de définition de classificateur en sortie contient des statistiques d'attributs adaptées à l'outil Classification de vraisemblance maximale.

  • Le paramètre Attributs de segment n’est actif que si l’une des entrées de la couche raster est une image segmentée.

  • Un processus en deux étapes est nécessaire pour classer les séries chronologiques de données raster à l’aide de l’algorithme CCDC (Continuous Change Detection and Classification). Dans un premier temps, exécutez l’outil Analyser les modifications avec l’algorithme CCDC, qui est disponible avec une licence d’extension Image Analyst. Utilisez ensuite ces résultats comme entrée pour cet outil d’entraînement.

    Les données fournies à titre d’échantillons d’apprentissage doivent être collectées à plusieurs reprises à l’aide du Gestionnaire d’échantillons d’apprentissage. La valeur de dimension de chaque exemple est répertoriée dans un champ figurant dans la classe d’entités des échantillons d’entraînement comme indiqué dans le paramètre Champ de valeur de dimension.

Paramètres

ÉtiquetteExplicationType de données
Raster en entrée

Jeu de données raster à classer.

Raster Layer; Mosaic Layer; Image Service; String
Fichier d'échantillon d'apprentissage en entrée

Fichier d’échantillons d’apprentissage ou couche délimitant les sites d’entraînement.

Il peut s’agir de shapefiles ou de classes d’entités qui contiennent vos échantillons d’apprentissage. Les noms de champs suivants sont obligatoires dans le fichier d’échantillon d’entraînement :

  • classname- un champ textuel indiquant le nom de la catégorie de classe
  • classvalue- un champ d’entier long contenant la valeur entière de chaque catégorie de classe

Feature Layer
Fichier de définition de classifieur en sortie

Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé.

File
Raster en entrée supplémentaire
(Facultatif)

Incorpore des jeux de données raster auxiliaires, tels qu'une image segmentée ou un MNT. Ce paramètre est facultatif.

Raster Layer; Mosaic Layer; Image Service; String
Attributs de segments utilisés
(Facultatif)

Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.

Ce paramètre est activé uniquement si la propriété de clé Segmentée est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont Couleur de convergence, Nombre de pixels, Compacité et Rectangularité. Si une valeur Raster en entrée supplémentaire est incluse comme entrée avec une image segmentée, les attributs Nombre numérique moyen et Écart type sont également disponibles.

  • Couleur de convergenceLes valeurs de couleurs RVB sont dérivées du raster en entrée, segment par segment. On parle également de couleur chromatique moyenne.
  • Nombre numérique moyenLe numéro numérique (DN) moyen sera dérivé de l’image de pixels facultative, segment par segment.
  • Écart typeL’écart type sera dérivé de l’image de pixels facultative, segment par segment.
  • Nombre de pixelsLe nombre de pixels qui composent le segment, segment par segment.
  • CompacitéDegré auquel un segment est compact ou circulaire, segment par segment. Les valeurs sont comprises entre 0 et 1, où 1 correspond à un cercle.
  • RectangularitéDegré auquel le segment est rectangulaire, segment par segment. Les valeurs sont comprises entre 0 et 1, où 1 correspond à un rectangle.
String
Champ de valeur de dimension
(Facultatif)

Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée.

Ce paramètre est nécessaire pour classer une série chronologique de données raster à l’aide de la sortie du raster d’analyse des changements produite par l’outil Analyser les modifications avec l’algorithme CCDC de la boîte d’outils Image Analyst.

Field

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
NomExplicationType de données
in_raster

Jeu de données raster à classer.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

Fichier d’échantillons d’apprentissage ou couche délimitant les sites d’entraînement.

Il peut s’agir de shapefiles ou de classes d’entités qui contiennent vos échantillons d’apprentissage. Les noms de champs suivants sont obligatoires dans le fichier d’échantillon d’entraînement :

  • classname- un champ textuel indiquant le nom de la catégorie de classe
  • classvalue- un champ d’entier long contenant la valeur entière de chaque catégorie de classe

Feature Layer
out_classifier_definition

Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé.

File
in_additional_raster
(Facultatif)

Incorpore des jeux de données raster auxiliaires, tels qu'une image segmentée ou un MNT. Ce paramètre est facultatif.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(Facultatif)

Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.

  • COLORLes valeurs de couleurs RVB sont dérivées du raster en entrée, segment par segment. On parle également de couleur chromatique moyenne.
  • MEANLe numéro numérique (DN) moyen sera dérivé de l’image de pixels facultative, segment par segment.
  • STDL’écart type sera dérivé de l’image de pixels facultative, segment par segment.
  • COUNTLe nombre de pixels qui composent le segment, segment par segment.
  • COMPACTNESSDegré auquel un segment est compact ou circulaire, segment par segment. Les valeurs sont comprises entre 0 et 1, où 1 correspond à un cercle.
  • RECTANGULARITYDegré auquel le segment est rectangulaire, segment par segment. Les valeurs sont comprises entre 0 et 1, où 1 correspond à un rectangle.

Ce paramètre est activé uniquement si la propriété de clé Segmentée est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont COLOR, COUNT, COMPACTNESS et RECTANGULARITY. Si une valeur in_additional_raster est incluse comme entrée avec une image segmentée, les attributs MEAN et STD sont également disponibles.

String
dimension_value_field
(Facultatif)

Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée.

Ce paramètre est nécessaire pour classer une série chronologique de données raster à l’aide de la sortie du raster d’analyse des changements produite par l’outil Analyser les modifications avec l’algorithme CCDC de la boîte d’outils Image Analyst.

Field

Exemple de code

Exemple 1 d'utilisation de l'outil TrainMaximumLikelihoodClassifier (fenêtre Python)

Le script de fenêtre Python ci-dessous illustre l'utilisation de l'outil TrainMaximumLikelihoodClassifier.

import arcpy
from arcpy.sa import *

TrainMaximumLikelihoodClassifier(
    "c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
    "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
    "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Exemple 2 d'utilisation de l'outil TrainMaximumLikelihoodClassifier (script autonome)

Cet exemple illustre comment préparer le classificateur de vraisemblance maximale.

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)
Exemple 3 d'utilisation de l'outil TrainMaximumLikelihoodClassifier (script autonome)

Cet exemple illustre comment préparer le classificateur de vraisemblance maximale à l’aide d’un raster d’analyse des changements de l’outil Analyze Changes Using CCDC (Analyser les modifications avec l’algorithme CCDC).

# Import system modules
import arcpy
from arcpy.sa import *

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")


# Set local variables
in_changeAnalysisRaster = "c:/test/LandsatCCDC.crf"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/change_detection.ecd"
additional_raster = ''
attributes = None
dimension_field = "DateTime"

# Execute
arcpy.sa.TrainMaximumLikelihoodClassifier(
	in_changeAnalysisRaster, train_features, out_definition,
	additional_raster, attributes, dimension_field)

Informations de licence

  • Basic: Nécessite Spatial Analyst ou Image Analyst
  • Standard: Nécessite Spatial Analyst ou Image Analyst
  • Advanced: Nécessite Spatial Analyst ou Image Analyst

Rubriques connexes