Étiquette | Explication | Type de données |
Raster en entrée | Jeu de données raster à classer. Il est recommandé d’utiliser en entrée un jeu de données raster segmenté de 8 bits, à 3 canaux, dans lequel tous les pixels appartenant à un segment possèdent la même couleur. Vous pouvez également faire appel à un raster segmenté monocanal de 8 bits, en nuances de gris. Si aucun raster segmenté n'est disponible, vous pouvez utiliser n'importe quel jeu de données raster pris en charge par Esri. | Raster Layer; Mosaic Layer; Image Service; String |
Fichier d'échantillon d'apprentissage en entrée | Fichier d’échantillons d’apprentissage ou couche délimitant les sites d’entraînement. Il peut s’agir de shapefiles ou de classes d’entités qui contiennent vos échantillons d’apprentissage. Les noms de champs suivants sont obligatoires dans le fichier d’échantillon d’entraînement :
| Feature Layer |
Fichier de définition de classifieur en sortie | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
Raster en entrée supplémentaire (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
Nombre maximal d'échantillons par classe (Facultatif) | Le nombre maximal d’échantillons qui seront utilisés pour définir chaque classe. La valeur par défaut 500 est recommandée si les entrées sont des rasters non segmentés. Lorsque la valeur est inférieure ou égale à 0, le système utilise tous les échantillons des sites d’entraînement pour préparer le classificateur. | Long |
Attributs de segments utilisés (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie. Ce paramètre est activé uniquement si la propriété de clé Segmentée est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont Couleur de convergence, Nombre de pixels, Compacité et Rectangularité. Si une valeur Raster en entrée supplémentaire est incluse comme entrée avec une image segmentée, les attributs Nombre numérique moyen et Écart type sont également disponibles.
| String |
Champ de valeur de dimension (Facultatif) | Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée. Ce paramètre est nécessaire pour classer une série chronologique de données raster à l’aide de la sortie du raster d’analyse des changements produite par l’outil Analyser les modifications avec l’algorithme CCDC de la boîte d’outils Image Analyst. | Field |
Disponible avec une licence Spatial Analyst.
Disponible avec une licence Image Analyst.
Synthèse
Génère un fichier de définition de classificateur Esri (.ecd) à l’aide de la définition de classification des machines à vecteurs de support (SVM).
Utilisation
Le classificateur de machines à vecteurs de support est une méthode de classification assistée. Elle est parfaitement adaptée aux rasters segmentés en entrée, mais peut également gérer des images standard. C'est une méthode de classification souvent utilisée par les chercheurs.
Pour les entrées d’image standard, l’outil accepte les images multicanales de n’importe quelle profondeur de couleurs et réalise la classification de machines à vecteurs de support par pixel, en fonction du fichier d’entités d’apprentissage en entrée.
Pour les rasters segmentés, dont la propriété de clé est définie sur Segmenté, l'outil calcule l'image d'index et les attributs de segments associés à partir du raster segmenté RVB. Les attributs sont calculés pour générer le fichier de définition de classificateur à utiliser dans un outil de classification distinct. Les attributs de chaque segment peuvent être calculés à partir de toute image prise en charge par Esri.
Le classificateur de machines à vecteurs de support présente plusieurs avantages par rapport à la méthode de classification de vraisemblance maximale :
- Le classificateur de machines à vecteurs de support a besoin d’un moins grand nombre d’échantillons, qui n’ont pas besoin d’être normalement distribués.
- Il est moins sensible au bruit, aux canaux corrélés et au nombre ou à la taille non équilibrés de sites d'apprentissage au sein de chaque classe.
Tout raster pris en charge par Esri est accepté en entrée, y compris les produits raster, les rasters segmentés, les mosaïques, les services d'imagerie ou les jeux de données raster génériques. Les rasters segmentés doivent être des rasters 8 bits à 3 canaux.
Pour créer un fichier d’échantillon d’entraînement, accédez à la fenêtre Gestionnaire d’échantillons d’apprentissage à partir du menu déroulant Outils de classification.
Le paramètre Attributs de segment n’est actif que si l’une des entrées de la couche raster est une image segmentée.
Un processus en deux étapes est nécessaire pour classer les séries chronologiques de données raster à l’aide de l’algorithme CCDC (Continuous Change Detection and Classification). Dans un premier temps, exécutez l’outil Analyser les modifications avec l’algorithme CCDC, qui est disponible avec une licence d’extension Image Analyst. Utilisez ensuite ces résultats comme entrée pour cet outil d’entraînement.
Les données fournies à titre d’échantillons d’apprentissage doivent être collectées à plusieurs reprises à l’aide du Gestionnaire d’échantillons d’apprentissage. La valeur de dimension de chaque exemple est répertoriée dans un champ figurant dans la classe d’entités des échantillons d’entraînement comme indiqué dans le paramètre Champ de valeur de dimension.
Paramètres
TrainSupportVectorMachineClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {max_samples_per_class}, {used_attributes}, {dimension_value_field})
Nom | Explication | Type de données |
in_raster | Jeu de données raster à classer. Il est recommandé d’utiliser en entrée un jeu de données raster segmenté de 8 bits, à 3 canaux, dans lequel tous les pixels appartenant à un segment possèdent la même couleur. Vous pouvez également faire appel à un raster segmenté monocanal de 8 bits, en nuances de gris. Si aucun raster segmenté n'est disponible, vous pouvez utiliser n'importe quel jeu de données raster pris en charge par Esri. | Raster Layer; Mosaic Layer; Image Service; String |
in_training_features | Fichier d’échantillons d’apprentissage ou couche délimitant les sites d’entraînement. Il peut s’agir de shapefiles ou de classes d’entités qui contiennent vos échantillons d’apprentissage. Les noms de champs suivants sont obligatoires dans le fichier d’échantillon d’entraînement :
| Feature Layer |
out_classifier_definition | Fichier JSON en sortie qui contient des informations sur les attributs, des statistiques, des vecteurs hyperplans et d’autres informations pour le classificateur. Un fichier .ecd sera créé. | File |
in_additional_raster (Facultatif) | Des jeux de données raster auxiliaires, comme une image multispectrale ou un MNE, seront incorporés pour générer des attributs et d’autres informations requises par la classification. Ce paramètre est facultatif. | Raster Layer; Mosaic Layer; Image Service; String |
max_samples_per_class (Facultatif) | Le nombre maximal d’échantillons qui seront utilisés pour définir chaque classe. La valeur par défaut 500 est recommandée si les entrées sont des rasters non segmentés. Lorsque la valeur est inférieure ou égale à 0, le système utilise tous les échantillons des sites d’entraînement pour préparer le classificateur. | Long |
used_attributes [used_attributes;used_attributes,...] (Facultatif) | Spécifie les attributs à inclure dans la table attributaire associée au raster en sortie.
Ce paramètre est activé uniquement si la propriété de clé Segmentée est vraie (définie sur True) dans le raster en entrée. Si la seule entrée de l’outil est une image segmentée, les attributs par défaut sont COLOR, COUNT, COMPACTNESS et RECTANGULARITY. Si une valeur in_additional_raster est incluse comme entrée avec une image segmentée, les attributs MEAN et STD sont également disponibles. | String |
dimension_value_field (Facultatif) | Contient les valeurs de dimension dans la classe d’entités des échantillons d’apprentissage en entrée. Ce paramètre est nécessaire pour classer une série chronologique de données raster à l’aide de la sortie du raster d’analyse des changements produite par l’outil Analyser les modifications avec l’algorithme CCDC de la boîte d’outils Image Analyst. | Field |
Exemple de code
Cet exemple Python utilise le classificateur de machines à vecteurs de support pour classer un raster segmenté.
import arcpy
from arcpy.sa import *
arcpy.gp.TrainSupportVectorMachineClassifier(
"c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features",
"c:/output/moncton_sig_SVM.ecd", "c:/test/moncton.tif", "10",
"COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Ce script Python utilise le classificateur de machines à vecteurs de support pour classer un raster segmenté.
# Import system modules
import arcpy
from arcpy.sa import *
# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
maxNumSamples = "10"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"
#Execute
arcpy.gp.TrainSupportVectorMachineClassifier(
inSegRaster, train_features, out_definition,
in_additional_raster, maxNumSamples, attributes)
Ce script Python utilise le classificateur de machines à vecteurs de support pour classer un raster multidimensionnel de séries chronologiques à l’aide de la sortie de l’outil Analyser les modifications avec l’algorithme CCDC.
# Import system modules
import arcpy
from arcpy.sa import *
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")
# Set local variables
in_changeAnalysisRaster = "c:/test/LandsatCCDC.crf"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/change_detection.ecd"
additional_raster = ''
attributes = None
dimension_field = "DateTime"
# Execute
arcpy.sa.TrainSupportVectorMachineClassifier(
in_changeAnalysisRaster, train_features, out_definition,
additional_raster, attributes, dimension_field)
Environnements
Informations de licence
- Basic: Nécessite Spatial Analyst ou Image Analyst
- Standard: Nécessite Spatial Analyst ou Image Analyst
- Advanced: Nécessite Spatial Analyst ou Image Analyst