Étiquette | Explication | Type de données |
Raster en entrée | Jeu de données raster qui sera transformé en nouvelle projection. | Mosaic Layer; Raster Layer |
Jeu de données raster en sortie | Jeu de données raster qui sera créé avec la nouvelle projection. Pour enregistrer le jeu de données raster dans un format de fichier, spécifiez l’extension de fichier comme suit :
Pour enregistrer un jeu de données raster dans une géodatabase, n’ajoutez pas d’extension de fichier au nom du jeu de données raster. Lorsque vous enregistrez un jeu de données raster dans un fichier JPEG, un fichier JPEG 2000, un fichier TIFF ou une géodatabase, vous pouvez spécifier des valeurs dans Compression Type (Type de compression) et dans Compression Quality (Qualité de compression) dans les environnements de géotraitement. | Raster Dataset |
Système de coordonnées en sortie | Système de coordonnées du nouveau jeu de données raster. | Coordinate System |
Technique de rééchantillonnage (Facultatif) | Spécifie la technique de rééchantillonnage qui sera utilisée. La valeur par défaut est Plus proche voisin. Les options Nearest (Le plus proche) et Majority (Majorité) sont utilisées pour les données catégorielles, telles que la classification d’utilisation du sol. L’option Nearest (Le plus proche) est la valeur par défaut. Elle est la plus rapide et ne modifie pas les valeurs de pixels. N’utilisez aucune de ces options pour des données continues, telles que les surfaces d’élévation. Les options Bilinear (Bilinéaire) et Cubic (Cubique) sont les plus appropriées pour les données continues. Il est recommandé de ne pas utiliser ces options avec des données catégorielles car les valeurs de pixels pourraient être modifiées.
| String |
Taille de cellule en sortie (Facultatif) | Taille de cellule du nouveau raster à l’aide d’un jeu de données raster existant ou en spécifiant sa largeur (x) et sa hauteur (y). | Cell Size XY |
Transformation géographique (Facultatif) | Transformation géographique lors de la projection d’un datum ou système géographique vers un autre. Une transformation est nécessaire lorsque les systèmes de coordonnées en entrée et en sortie possèdent des datums différents. | String |
Point de calage (Facultatif) | Point inférieur gauche permettant d’ancrer les cellules en sortie. Il n’est pas nécessaire que ce point soit une coordonnée d’angle ou qu’il soit compris dans le jeu de données raster. Le paramètre d’environnement Raster de capture a priorité sur le paramètre Point de calage. Lorsque vous définissez le point de calage, assurez-vous que l’environnement Raster de capture n’est pas défini. | Point |
Système de coordonnées en entrée (Facultatif) | Système de coordonnées du jeu de données raster en entrée. Ce paramètre est actif uniquement lorsque le système de coordonnées de l’entrée est inconnu. Dans ce cas, spécifiez un système de coordonnées courant pour la couche raster. | Coordinate System |
Vertical (Facultatif) | Indique si une transformation verticale est appliquée. L’option n’est active que lorsque les systèmes de coordonnées en entrée et en sortie comportent un système de coordonnées verticales et que les coordonnées du raster en entrée comportent des valeurs z. Lorsque ce paramètre est sélectionné, le paramètre Transformation géographique peut inclure des transformations ellipsoïdales ainsi que des transformations entre des datums verticaux. Par exemple, ~NAD_1983_To_NAVD88_CONUS_GEOID12B_Height + NAD_1983_To_WGS_1984_1 transforme les sommets géométriques définis sur le datum NAD 1983 avec des hauteurs NAVD 1988 dans les sommets sur l’ellipsoïde WGS84 (les valeurs z représentant les hauteurs ellipsoïdales). Le symbole tilde (~) indique que la direction de la transformation est inversée.
De nombreuses transformations verticales nécessitent l’installation de fichiers de données supplémentaires via le paquetage d’installation des données de systèmes de coordonnées ArcGIS. | Boolean |
Synthèse
Transforme un jeu de données raster d’un système de coordonnées en un autre.
En savoir plus sur le fonctionnement de l’outil Projeter un raster
Utilisation
Le système de coordonnées définit la façon dont les données raster sont projetées. Vous pouvez utiliser le même système de coordonnées pour les données afin qu’elles soient toutes dans la même projection.
Un jeu de données raster est projeté dans une nouvelle référence spatiale à l’aide d’une méthode d’approximation d’interpolation bilinéaire, qui projette des pixels sur une grille de maillage grossière et utilise une interpolation bilinéaire entre les pixels.
La plage d’erreurs pour cet outil est inférieure à la moitié d’un pixel.
Pour appliquer la transformation sans créer de fichier, utilisez l’outil Déformer.
Vous pouvez utiliser une référence spatiale existante, en importer une depuis un autre jeu de données ou en créer une.
Cet outil peut uniquement générer une taille de pixel carrée.
Vous pouvez enregistrer la sortie au format BIL, BIP, BMP, BSQ, DAT, Esri GRID, GIF, IMG, JPEG, JPEG 2000, PNG, TIFF, MRF ou CRF ou en tant que jeu de données raster de géodatabase.
Lorsque vous enregistrez un jeu de données raster dans un fichier JPEG, un fichier JPEG 2000 ou une géodatabase, vous pouvez spécifier une valeur dans Compression Type (Type de compression) et une valeur dans Compression Quality (Qualité de compression) dans les environnements de géotraitement.
L’option Nearest (Plus proche voisin), qui effectue une affectation du voisin le plus proche, est la plus rapide des quatre méthodes d’interpolation. Elle est essentiellement utilisée pour les données catégorielles, telles qu’une classification d’utilisation du sol, car elle ne modifie pas les valeurs de pixel. Elle ne doit pas être utilisée pour des données continues, telles que les surfaces d’altitude.
L’option Bilinear (Bilinéaire) utilise l’interpolation bilinéaire pour déterminer la nouvelle valeur d’un pixel en fonction d’une distance moyenne pondérée des quatre pixels environnants les plus proches. L’option Cubic (Cubique) utilise la convolution cubique pour déterminer la nouvelle valeur de pixel en ajustant une courbe lisse suivant les points environnants. Ces options sont les plus appropriées pour les données continues, mais elles peuvent provoquer du lissage. La convolution cubique peut entraîner dans le raster en sortie la présence de valeurs en dehors de la plage du raster en entrée. Ces options ne doivent pas être utilisées avec des données catégorielles car différentes valeurs de pixel peuvent être introduites, ce qui peut ne pas être souhaitable.
Les cellules du jeu de données raster seront carrées et de surface égale dans l’espace de coordonnées cartographique, bien que la forme et la surface qu’une cellule représente sur la surface de la Terre ne soient pas constantes dans un raster. Cela est du au fait qu'aucune projection cartographique ne peut conserver simultanément la forme et la surface. La surface représentée par les cellules variera dans le raster. Par conséquent, la taille de cellule et le nombre de lignes et de colonnes dans le raster en sortie peuvent changer.
Indiquez toujours une taille de cellule en sortie, sauf si vous projetez entre coordonnées sphériques (latitude-longitude) et un système de coordonnées planaires et que vous ne connaissez pas la taille de cellule appropriée.
La taille de cellule par défaut du raster en sortie est déterminée par la taille de cellule projetée au centre du raster en sortie. Il s’agit généralement de l’intersection du méridien central et de la latitude de l’échelle vraie et de la surface de moindre distorsion. La limite du raster en entrée est projetée et les étendues minimale et maximale déterminent la taille du raster en sortie. Chaque cellule est reprojetée dans le système de coordonnées en entrée pour déterminer la valeur de la cellule.
La transformation géographique est un paramètre facultatif lorsque les systèmes de coordonnées en entrée et en sortie possèdent le même datum. En revanche, si le datum en entrée et le datum en sortie sont différents, une transformation géographique doit être spécifiée.
Le point de calage vous permet de spécifier le point d'origine pour ancrer les cellules en sortie. Toutes les cellules en sortie correspondront à un intervalle de la taille de cellule à partir de ce point. Il n’est pas nécessaire que ce point soit une coordonnée d’angle ou qu’il soit compris dans le jeu de données raster. Si un raster de capture est défini dans les paramètres d’environnement, le point de calage est ignoré.
CLARKE 1866 est le sphéroïde par défaut s'il n'est pas inhérent à la projection (comme NEWZEALAND_GRID) ou si un autre n'a pas été spécifié avec la sous-commande SPHEROID.
La définition du raster de capture a priorité sur le point de calage si les deux sont définis.
Pour procéder à une transformation verticale, activez le paramètre Vertical facultatif dans la boîte de dialogue. Par défaut, le paramètre Vertical est disponible uniquement lorsque le système de coordonnées en entrée et le système de coordonnées en sortie comportent un système de coordonnées verticales et que les coordonnées de la classe d’entités en entrée comportent des valeurs z. Une configuration supplémentaire des données (données des systèmes de coordonnées) doit également être effectuée sur le système.
Lorsque vous indiquez le système de coordonnées en sortie, vous pouvez spécifier le système de coordonnées géographiques ou projetées et un système de coordonnées verticales. Si les systèmes de coordonnées verticales en entrée et en sortie sont différents, des transformations verticales et géographiques (datum) facultatives sont disponibles. Si une transformation doit être appliquée dans la direction opposée à sa définition, choisissez l'entrée dont le nom est précédé du symbole tilde (~).
Cet outil prend en charge les données raster multidimensionnelles. Pour exécuter cet outil sur chaque tranche du raster multidimensionnel et générer une sortie raster multidimensionnelle, veillez à sauvegarder la sortie au format CRF.
Les types de jeux de données multidimensionnels en entrée sont la couche raster multidimensionnelle, le jeu de données mosaïque, le service d’imagerie et CRF.
Paramètres
arcpy.management.ProjectRaster(in_raster, out_raster, out_coor_system, {resampling_type}, {cell_size}, {geographic_transform}, {Registration_Point}, {in_coor_system}, {vertical})
Nom | Explication | Type de données |
in_raster | Jeu de données raster qui sera transformé en nouvelle projection. | Mosaic Layer; Raster Layer |
out_raster | Jeu de données raster qui sera créé avec la nouvelle projection. Pour enregistrer le jeu de données raster dans un format de fichier, spécifiez l’extension de fichier comme suit :
Pour enregistrer un jeu de données raster dans une géodatabase, n’ajoutez pas d’extension de fichier au nom du jeu de données raster. Lorsque vous enregistrez un jeu de données raster dans un fichier JPEG, un fichier JPEG 2000, un fichier TIFF ou une géodatabase, vous pouvez spécifier des valeurs dans Compression Type (Type de compression) et dans Compression Quality (Qualité de compression) dans les environnements de géotraitement. | Raster Dataset |
out_coor_system | Système de coordonnées du nouveau jeu de données raster. Les valeurs valides pour ce paramètre sont les suivantes :
| Coordinate System |
resampling_type (Facultatif) | Spécifie la technique de rééchantillonnage qui sera utilisée. La valeur par défaut est Plus proche voisin.
Les options Nearest (Le plus proche) et Majority (Majorité) sont utilisées pour les données catégorielles, telles que la classification d’utilisation du sol. L’option Nearest (Le plus proche) est la valeur par défaut. Elle est la plus rapide et ne modifie pas les valeurs de pixels. N’utilisez aucune de ces options pour des données continues, telles que les surfaces d’élévation. Les options Bilinear (Bilinéaire) et Cubic (Cubique) sont les plus appropriées pour les données continues. Il est recommandé de ne pas utiliser ces options avec des données catégorielles car les valeurs de pixels pourraient être modifiées. | String |
cell_size (Facultatif) | Taille de cellule du nouveau raster à l’aide d’un jeu de données raster existant ou en spécifiant sa largeur (x) et sa hauteur (y). | Cell Size XY |
geographic_transform [geographic_transform,...] (Facultatif) | Transformation géographique lors de la projection d’un datum ou système géographique vers un autre. Une transformation est nécessaire lorsque les systèmes de coordonnées en entrée et en sortie possèdent des datums différents. | String |
Registration_Point (Facultatif) | Point inférieur gauche permettant d’ancrer les cellules en sortie. Il n’est pas nécessaire que ce point soit une coordonnée d’angle ou qu’il soit compris dans le jeu de données raster. Le paramètre d’environnement Raster de capture a priorité sur le paramètre Point de calage. Lorsque vous définissez le point de calage, assurez-vous que l’environnement Raster de capture n’est pas défini. | Point |
in_coor_system (Facultatif) | Système de coordonnées du jeu de données raster en entrée. Ce paramètre est activé uniquement lorsque le système de coordonnées de l’entrée est inconnu. Dans ce cas, spécifiez un système de coordonnées courant pour la couche raster. | Coordinate System |
vertical (Facultatif) | Indique si une transformation verticale est appliquée. Ce paramètre est activé lorsque le système de coordonnées en entrée et le système de coordonnées en sortie comportent un système de coordonnées verticales et que les coordonnées de la classe d’entités en entrée comportent des valeurs z. Si vous utilisez le mot-clé VERTICAL, le paramètre geographic_transform peut inclure des transformations ellipsoïdales ainsi que des transformations entre des datums verticaux. Par exemple, “~NAD_1983_To_NAVD88_CONUS_GEOID12B_Height + NAD_1983_To_WGS_1984_1” transforme les sommets géométriques définis sur le datum NAD 1983 avec des hauteurs NAVD 1988 dans les sommets sur l’ellipsoïde WGS84 (les valeurs z représentant les hauteurs ellipsoïdales). Le symbole tilde (~) indique que la direction de la transformation est inversée.
De nombreuses transformations verticales nécessitent l’installation de fichiers de données supplémentaires via le paquetage d’installation des données de systèmes de coordonnées ArcGIS. | Boolean |
Exemple de code
Il s’agit d’un exemple Python d’utilisation de la fonction ProjectRaster.
import arcpy
from arcpy import env
arcpy.ProjectRaster_management("c:/data/image.tif", "c:/output/reproject.tif",\
"World_Mercator.prj", "BILINEAR", "5",\
"NAD_1983_To_WGS_1984_5", "#", "#")
Il s’agit d’un exemple de script Python d’utilisation de la fonction ProjectRaster.
##====================================
##Project Raster
##Usage: ProjectRaster_management in_raster out_raster out_coor_system {NEAREST | BILINEAR
## | CUBIC | MAJORITY} {cell_size} {geographic_transform;
## geographic_transform...} {Registration_Point} {in_coor_system}
import arcpy
arcpy.env.workspace = r"C:/Workspace"
##Reproject a TIFF image with Datumn transfer
arcpy.ProjectRaster_management("image.tif", "reproject.tif", "World_Mercator.prj",\
"BILINEAR", "5", "NAD_1983_To_WGS_1984_5", "#", "#")
##Reproject a TIFF image that does not have a spatial reference
##Set snapping point to the top left of the original image
snapping_pnt = "1942602 304176"
arcpy.ProjectRaster_management("nosr.tif", "project.tif", "World_Mercator.prj", "BILINEAR",\
"5", "NAD_1983_To_WGS_1984_6", snapping_pnt,\
"NAD_1983_StatePlane_Washington_North.prj")
Environnements
Informations de licence
- Basic: Oui
- Standard: Oui
- Advanced: Oui
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?