Détecter des objets à l’aide du Deep Learning (Image Analyst)

Disponible avec une licence Image Analyst.

Synthèse

Exécute un modèle d’apprentissage profond formé sur un raster en entrée pour générer une classe d'entités contenant les objets qu’il trouve. Les entités peuvent correspondre à des emprises ou des polygones autour des objets trouvés ou encore des points situés aux centres des objets.

Cet outil nécessite un fichier de définition de modèle contenant des informations de modèle entraîné. Le modèle peut être entraîné avec l’outil Préparer le modèle d’apprentissage profond ou par un logiciel d’entraînement tiers tel que TensorFlow, PyTorch ou Keras. Le fichier de définition de modèle peut être un fichier JSON de définition de modèle Esri (.emd) ou un paquetage de modèle de Deep Learning et doit contenir le chemin d’accès à la fonction raster Python à appeler pour traiter chaque objet, ainsi que le chemin d’accès au fichier de modèle de Deep Learning binaire entraîné.

Utilisation

  • Vous devez installer l’API Python de structure de Deep Learning appropriée (telle que TensorFlow, PyTorch ou Keras) dans l’environnement Python de ArcGIS Pro. Si vous ne le faites pas, une erreur se produit lorsque vous ajoutez le fichier de définition de modèle Esri à l’outil. Procurez-vous les informations de structure appropriées auprès de l’auteur du fichier de définition de modèle Esri.

    Pour configurer votre machine afin d’utiliser des structures d’apprentissage profond dans ArcGIS Pro, consultez la rubrique Installer les structures d’apprentissage profond pour ArcGIS.

  • Cet outil appelle une API Python de Deep Learning tierce (telle que TensorFlow, PyTorch ou Keras) et utilise la fonction raster Python spécifiée pour traiter chaque objet.

  • Des exemples de cas d’utilisation pour cet outil sont disponibles sur la page de la fonction raster Esri d’Python dans GitHub. Vous pouvez également écrire des modules Python personnalisés en suivant les exemples et les instructions du référentiel GitHub.

  • La valeur du paramètre Model Definition (Définition du modèle) peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou un paquetage de modèle de Deep Learning (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de sorte qu’il est possible de coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement.

  • Consultez l’exemple ci-dessous pour le fichier .emd.

    {
        "Framework" :"TensorFlow",
        "ModelConfiguration": "ObjectDetectionAPI",
        
        "ModelFile": ".\\CoconutTreeDetection.model",
        "ModelType": "ObjectDetection",
        "ImageHeight": 850,
        "ImageWidth": 850,
        "ExtractBands": [0,1,2],
        "ImageSpaceUsed": "MAP_SPACE"
        "Classes": [
        {
            "Value": 0,
            "Name": "CoconutTree",
            "Color": [0, 255, 0]
        }
        ]
    }
  • L’outil peut traiter l’imagerie en entrée existant dans l’espace cartographique ou la résolution. L’imagerie dans l’espace cartographique se trouve dans un système de coordonnées basé sur une carte. L’imagerie dans la résolution se trouve dans un espace d’image brut, sans rotation ni distorsion. Le système de référence peut être spécifié lors de la génération des données d’entraînement dans l’outil Exporter les données d’apprentissage pour l’apprentissage profond à l’aide du paramètre Reference System (Système de référence). Si le modèle est entraîné dans un logiciel d’entraînement tiers, le système de référence doit être spécifié dans le fichier .emd à l’aide du paramètre ImageSpaceUsed , qui peut être défini sur MAP_SPACE ou PIXEL_SPACE.

  • L’augmentation de la taille du lot peut améliorer les performances de l’outil. Cependant, plus la taille augmente, plus la mémoire utilisée est importante. Si une erreur se produit en raison d’une mémoire insuffisante, utillisez une taille de lot plus petite. La valeur batch_size peut être ajustée à l’aide du paramètre Arguments.

  • Les tailles de lot correspondent à des carrés tels que 1, 4, 9, 16, 25, 64, etc. Si la valeur en entrée ne correspond pas à un carré parfait, la valeur au carré la plus élevée possible est utilisée. Par exemple, si la valeur 6 est spécifiée, cela signifie que la taille de lot est définie sur 4.

  • Utilisez le paramètre Suppression non maximale pour identifier et supprimer les entités dupliquées de la détection d'objets. Pour en savoir plus sur ce paramètre, consultez la section Utilisation de l’outil Suppression non maximale.

  • Utilisez l’option Traiter les éléments candidats uniquement du paramètre Mode de traitement pour détecter uniquement les objets sur les images sélectionnées du jeu de données mosaïque. Vous pouvez utiliser l’outil Calculer des mosaïques candidates pour trouver les images candidates dans un jeu de données mosaïque et un service d’imagerie qui représentent le mieux la zone de mosaïquage.

  • Cet outil prend en charge et utilise plusieurs GPU s’ils sont disponibles. Pour utiliser un GPU spécifique, spécifiez l’environnement GPU ID (ID de GPU). Si l’ID de GPU n’est pas défini, l’outil utilise tous les GPU disponibles. Il s’agit de l’option par défaut.

  • Le raster en entrée peut consister en un raster unique, en plusieurs rasters ou en une classe d’entités avec des images rattachées. Pour plus d’informations sur les fichiers joints, reportez-vous à la section Ajouter ou supprimer des fichiers joints.

  • Pour en savoir plus sur les exigences relatives à l’exécution de cet outil ainsi que sur les problèmes que vous pouvez rencontrer, consultez la FAQ sur le Deep Learning.

  • Pour plus d’informations sur le Deep Learning, reportez-vous à la rubrique Apprentissage profond dans ArcGIS Pro.

Paramètres

ÉtiquetteExplicationType de données
Raster en entrée

Image en entrée utilisée pour détecter les objets. L’entrée peut être un raster ou plusieurs rasters d’un jeu de données mosaïque, un service d’imagerie, un dossier d’images ou une classe d’entités avec des images en pièces jointes.

Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer; Folder; Feature Layer; Feature Class
Objets détectés en sortie

Classe d’entités en sortie qui contient les géométries encerclant l’objet ou les objets détectés dans l’image en entrée.

Feature Class
Définition de modèle

Ce paramètre peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou un paquetage de modèle de Deep Learning (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de sorte qu’il est possible de coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement.

Contient le chemin d’accès au fichier binaire de modèle Deep Learning, le chemin d’accès à la fonction raster Python à utiliser et d’autres paramètres, tels que la taille de tuile préférée ou l’ajout de zéros.

File; String
Arguments
(Facultatif)

Les informations du paramètre Model Definition (Définition du modèle) sont utilisées pour renseigner ce paramètre. Ces arguments varient en fonction de l’architecture de modèle. Les arguments de modèle suivants sont pris en charge pour les modèles entraînés dans ArcGIS. Les modèles pré-entraînés ArcGIS et les modèles de Deep Learning personnalisés peuvent comporter des arguments supplémentaires pris en charge par l’outil.

  • padding : nombre de pixels en bordure des tuiles d’image à partir duquel les prévisions sont fusionnées pour les tuiles adjacentes. Pour lisser la sortie tout en réduisant les artefacts, augmentez la valeur. La valeur maximale de la marge intérieure peut représenter la moitié de la valeur de la taille d’une tuile. L’argument est disponible pour toutes les architectures de modèle.
  • threshold : les détections dont le score de confiance est supérieur à ce seuil sont incluses dans les résultats. Les valeurs autorisées varient entre 0 et 1,0. L’argument est disponible pour toutes les architectures de modèle.
  • batch_size : nombre de tuiles d’image traitées à chaque étape de l’inférence du modèle. Ce nombre dépend de la mémoire de la carte graphique. L’argument est disponible pour toutes les architectures de modèle.
  • nms_overlap : ratio de superposition maximale de deux entités se chevauchant, défini comme le rapport entre la zone d’intersection et la zone d’union. La valeur par défaut est 0,1. L’argument est disponible pour toutes les architectures de modèle.
  • exclude_pad_detections : si la valeur est vraie, les détections potentiellement tronquées sur les arêtes qui se trouvent dans la région remplie de fragments d’image sont filtrées. L’argument est disponible pour SSD, RetinaNet, YOLOv3, DETReg, MMDetection et Faster RCNN uniquement.
  • test_time_augmentation : procède à l’augmentation du temps de test lors de la prévision. Si la valeur est vraie, les prévisions des orientations inversées et pivotées de l’image en entrée sont fusionnées dans la sortie finale et la moyenne de leurs valeurs de fiabilité est calculée. Ainsi, il est possible que les valeurs de fiabilité passent en dessous du seuil pour les objets qui ne sont détectés que dans un petit nombre d’orientations de l’image. L’argument est disponible pour toutes les architectures de modèle.
  • tile_size : la largeur et la hauteur des tuiles d’image dans l’imagerie est fractionnée en vue de la prévision. L’argument est disponible uniquement pour MaskRCNN.
  • merge_policy : stratégie utilisée pour fusionner les prévisions augmentées. Les options disponibles sont la moyenne, la valeur maximale ou la valeur minimale. Ce paramètre est seulement applicable si l’augmentation du temps de test est utilisée. L’argument est disponible uniquement pour MaskRCNN.
  • output_classified_raster : chemin vers le raster en sortie. L’argument est disponible uniquement pour MaXDeepLab.

Value Table
Suppression non maximale
(Facultatif)

Spécifie si la suppression non maximale est réalisée, auquel cas les d’objets dupliqués sont identifiés et les entités dupliquées dont la valeur de confiance est la plus faible sont supprimées.

  • Désactivée : la suppression non maximale n’est pas réalisée. Tous les objets détectés seront intégrés dans la classe d’entités en sortie. Il s’agit de l’option par défaut.
  • Activé : la suppression non maximale est réalisée et les objets dupliqués qui sont détectés seront supprimés.

Boolean
Champ de score de confiance
(Facultatif)

Nom du champ dans la classe d’entités qui contient les scores de confiance utilisés en sortie par la méthode de détection des objets.

Ce paramètre est obligatoire lorsque le paramètre Suppression non maximale est activé.

String
Champ de valeur de classe
(Facultatif)

Nom du champ de valeur de classe dans la classe d’entités en entrée.

Si un nom de champ n’est pas spécifié, un champ Classvalue ou Value est utilisé. Si ces champs n’existent pas, tous les enregistrements sont identifiés comme appartenant à une classe.

String
Ratio de superposition maximale
(Facultatif)

Ratio de superposition maximale de deux entités se chevauchant, défini comme le rapport entre la zone d’intersection et la zone d’union. La valeur par défaut est 0.

Double
Mode de traitement
(Facultatif)

Spécifie comment tous les éléments raster figurant dans un jeu de données mosaïque ou un service d’imagerie seront traités. Ce paramètre est appliqué lorsqu’un raster en entrée est un jeu de données mosaïque ou service d’imagerie.

  • Process as mosaicked image (Traiter en tant qu’image mosaïquée)Tous les éléments raster figurant dans le jeu de données mosaïque ou le service d’imagerie seront mosaïqués ensemble, puis traités. Il s’agit de l’option par défaut.
  • Process all raster items separately (Traiter tous les éléments raster séparément)Tous les éléments raster figurant dans le jeu de données mosaïque ou le service d’imagerie seront traités en tant qu’images séparées.
  • Traiter les éléments candidats uniquementSeuls les éléments raster dont la valeur est 1 ou 2 dans le champ Candidate de la table attributaire du jeu de données mosaïque cible seront traités.
String
Utiliser l’espace pixel
(Facultatif)

Indique si l’inférence est exécutée sur les images de l’espace pixel.

  • Désactivé – L’inférence est exécutée dans l’espace cartographique. Il s’agit de l’option par défaut.
  • Activé – L’inférence est exécutée dans l’espace image et la sortie est à nouveau transformée en espace cartographique. Cette option est utile si vous utilisez une imagerie oblique ou l’imagerie Street View, lorsque les entités sont susceptibles d’être déformées dans l’espace cartographique.

Boolean

Sortie obtenue

ÉtiquetteExplicationType de données
Raster classé en sortie

Raster classé en sortie utilisé pour la classification de pixels. Le nom du jeu de données raster sera identique à celui de la valeur du paramètre Objets détectés en sortie.

Ce paramètre n’est applicable que si le type de modèle est défini sur Segmentation panoptique.

Raster Dataset

DetectObjectsUsingDeepLearning(in_raster, out_detected_objects, in_model_definition, {arguments}, {run_nms}, {confidence_score_field}, {class_value_field}, {max_overlap_ratio}, {processing_mode}, {use_pixelspace})
NomExplicationType de données
in_raster

Image en entrée utilisée pour détecter les objets. L’entrée peut être un raster ou plusieurs rasters d’un jeu de données mosaïque, un service d’imagerie, un dossier d’images ou une classe d’entités avec des images en pièces jointes.

Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer; Folder; Feature Layer; Feature Class
out_detected_objects

Classe d’entités en sortie qui contient les géométries encerclant l’objet ou les objets détectés dans l’image en entrée.

Feature Class
in_model_definition

La valeur du paramètre in_model_definition peut être un fichier JSON de définition de modèle Esri (.emd), une chaîne JSON ou un paquetage de modèle de Deep Learning (.dlpk). Une chaîne JSON est utile lorsque cet outil est utilisé sur le serveur de sorte qu’il est possible de coller la chaîne JSON au lieu de télécharger le fichier .emd. Le fichier .dlpk doit être stocké localement.

Contient le chemin d’accès au fichier binaire de modèle Deep Learning, le chemin d’accès à la fonction raster Python à utiliser et d’autres paramètres, tels que la taille de tuile préférée ou l’ajout de zéros.

File; String
arguments
[arguments,...]
(Facultatif)

Les informations du paramètre in_model_definition sont utilisées pour définir les valeurs par défaut de ce paramètre. Ces arguments varient en fonction de l’architecture de modèle. Les arguments de modèle suivants sont pris en charge pour les modèles entraînés dans ArcGIS. Les modèles pré-entraînés ArcGIS et les modèles de Deep Learning personnalisés peuvent comporter des arguments supplémentaires pris en charge par l’outil.

  • padding : nombre de pixels en bordure des tuiles d’image à partir duquel les prévisions sont fusionnées pour les tuiles adjacentes. Pour lisser la sortie tout en réduisant les artefacts, augmentez la valeur. La valeur maximale de la marge intérieure peut représenter la moitié de la valeur de la taille d’une tuile. L’argument est disponible pour toutes les architectures de modèle.
  • threshold : les détections dont le score de confiance est supérieur à ce seuil sont incluses dans les résultats. Les valeurs autorisées varient entre 0 et 1,0. L’argument est disponible pour toutes les architectures de modèle.
  • batch_size : nombre de tuiles d’image traitées à chaque étape de l’inférence du modèle. Ce nombre dépend de la mémoire de la carte graphique. L’argument est disponible pour toutes les architectures de modèle.
  • nms_overlap : ratio de superposition maximale de deux entités se chevauchant, défini comme le rapport entre la zone d’intersection et la zone d’union. La valeur par défaut est 0,1. L’argument est disponible pour toutes les architectures de modèle.
  • exclude_pad_detections : si la valeur est vraie, les détections potentiellement tronquées sur les arêtes qui se trouvent dans la région remplie de fragments d’image sont filtrées. L’argument est disponible pour SSD, RetinaNet, YOLOv3, DETReg, MMDetection et Faster RCNN uniquement.
  • test_time_augmentation : procède à l’augmentation du temps de test lors de la prévision. Si la valeur est vraie, les prévisions des orientations inversées et pivotées de l’image en entrée sont fusionnées dans la sortie finale et la moyenne de leurs valeurs de fiabilité est calculée. Ainsi, il est possible que les valeurs de fiabilité passent en dessous du seuil pour les objets qui ne sont détectés que dans un petit nombre d’orientations de l’image. L’argument est disponible pour toutes les architectures de modèle.
  • tile_size : la largeur et la hauteur des tuiles d’image dans l’imagerie est fractionnée en vue de la prévision. L’argument est disponible uniquement pour MaskRCNN.
  • merge_policy : stratégie utilisée pour fusionner les prévisions augmentées. Les options disponibles sont la moyenne, la valeur maximale ou la valeur minimale. Ce paramètre est seulement applicable si l’augmentation du temps de test est utilisée. L’argument est disponible uniquement pour MaskRCNN.
  • output_classified_raster : chemin vers le raster en sortie. L’argument est disponible uniquement pour MaXDeepLab.

Value Table
run_nms
(Facultatif)

Spécifie si la suppression non maximale est réalisée, auquel cas les d’objets dupliqués sont identifiés et les entités dupliquées dont la valeur de confiance est la plus faible sont supprimées.

  • NO_NMSLa suppression non maximale n’est pas réalisée. Tous les objets détectés seront intégrés dans la classe d’entités en sortie. Il s’agit de l’option par défaut.
  • NMSLa suppression non maximale est réalisée et les objets dupliqués qui sont détectés seront supprimés.
Boolean
confidence_score_field
(Facultatif)

Nom du champ dans la classe d’entités qui contient les scores de confiance utilisés en sortie par la méthode de détection des objets.

Ce paramètre est requis lorsque le paramètre run_nms est défini sur NMS.

String
class_value_field
(Facultatif)

Nom du champ de valeur de classe dans la classe d’entités en entrée.

Si un nom de champ n’est pas spécifié, un champ Classvalue ou Value est utilisé. Si ces champs n’existent pas, tous les enregistrements sont identifiés comme appartenant à une classe.

String
max_overlap_ratio
(Facultatif)

Ratio de superposition maximale de deux entités se chevauchant, défini comme le rapport entre la zone d’intersection et la zone d’union. La valeur par défaut est 0.

Double
processing_mode
(Facultatif)

Spécifie comment tous les éléments raster figurant dans un jeu de données mosaïque ou un service d’imagerie seront traités. Ce paramètre est appliqué lorsqu’un raster en entrée est un jeu de données mosaïque ou service d’imagerie.

  • PROCESS_AS_MOSAICKED_IMAGETous les éléments raster figurant dans le jeu de données mosaïque ou le service d’imagerie seront mosaïqués ensemble, puis traités. Il s’agit de l’option par défaut.
  • PROCESS_ITEMS_SEPARATELYTous les éléments raster figurant dans le jeu de données mosaïque ou le service d’imagerie seront traités en tant qu’images séparées.
  • PROCESS_CANDIDATE_ITEMS_ONLYSeuls les éléments raster dont la valeur est 1 ou 2 dans le champ Candidate de la table attributaire du jeu de données mosaïque cible seront traités.
String
use_pixelspace
(Facultatif)

Indique si l’inférence est exécutée sur les images de l’espace pixel.

  • NO_PIXELSPACEL’inférence est exécutée dans l’espace cartographique. Il s’agit de l’option par défaut.
  • PIXELSPACEL’inférence est exécutée dans l’espace image et la sortie est à nouveau transformée en espace cartographique. Cette option est utile si vous utilisez une imagerie oblique ou l’imagerie Street View, lorsque les entités sont susceptibles d’être déformées dans l’espace cartographique.
Boolean

Sortie obtenue

NomExplicationType de données
out_classified_raster

Raster classé en sortie utilisé pour la classification de pixels. Le nom du jeu de données raster sera identique à celui de la valeur du paramètre out_detected_objects.

Ce paramètre n’est applicable que si le type de modèle est défini sur Segmentation panoptique.

Raster Dataset

Exemple de code

Exemple 1 d’utilisation de l’outil DetectObjectsUsingDeepLearning (fenêtre Python)

Cet exemple crée une classe d’entités en fonction de la détection des objets.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

DetectObjectsUsingDeepLearning("c:/detectobjects/moncton_seg.tif", 
     "c:/detectobjects/moncton_seg.shp", "c:/detectobjects/moncton.emd", 
     "padding 0; threshold 0.5; batch_size 4", "NO_NMS", "Confidence", 
     "Class", 0, "PROCESS_AS_MOSAICKED_IMAGE")
Exemple 2 d’utilisation de l’outil DetectObjectsUsingDeepLearning (script autonome)

Cet exemple crée une classe d’entités en fonction de la détection des objets.

# Import system modules
import arcpy
from arcpy.ia import *

"""
Usage: DetectObjectsUsingDeepLearning( in_raster, out_detected_objects, 
       in_model_definition, {arguments}, {run_nms}, {confidence_score_field}, 
       {class_value_field}, {max_overlap_ratio}, {processing_mode})
"""

# Set local variables
in_raster = "c:/classifydata/moncton_seg.tif"
out_detected_objects = "c:/detectobjects/moncton.shp"
in_model_definition = "c:/detectobjects/moncton_sig.emd"
model_arguments = "padding 0; threshold 0.5; batch_size 4"
run_nms = "NO_NMS"
confidence_score_field = "Confidence"
class_value_field = "Class"
max_overlap_ratio = 0
processing_mode = "PROCESS_AS_MOSAICKED_IMAGE"
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Execute 
DetectObjectsUsingDeepLearning( in_raster, out_detected_objects, 
   in_model_definition, model_arguments, run_nms, confidence_score_field, 
   class_value_field, max_overlap_ratio, processing_mode)

Informations de licence

  • Basic: Nécessite Image Analyst
  • Standard: Nécessite Image Analyst
  • Advanced: Nécessite Image Analyst

Rubriques connexes