Étiquette | Explication | Type de données |
Raster en entrée | Raster de surface d’altitude en entrée. | Raster Layer |
Table ou entités points en entrée | Table ou classe d’entités ponctuelles contenant les localisations d’analyse du rayonnement solaire. | Feature Layer; Table View |
Entités de rayonnement global en sortie | Classe d'entités en sortie représentant le rayonnement global ou l'ensoleillement entrant total (direct + diffus) calculé pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
Décalage de hauteur (Facultatif) | Hauteur (en mètres) au-dessus de la surface MNE pour laquelle les calculs sont à effectuer. Le décalage de hauteur est appliqué à tous les emplacements en entrée. | Double |
Latitude (Facultatif) | Latitude de la surface du site. Les unités sont des degrés décimaux, avec des valeurs positives pour l’hémisphère nord et négatives pour l’hémisphère sud. Pour les rasters de surface en entrée contenant une référence spatiale, la latitude moyenne est calculée automatiquement. Dans le cas contraire, la latitude est égale à 45 degrés par défaut. | Double |
Taille du raster de diffusion / Résolution (Facultatif) | Résolution ou taille du raster de diffusion pour les rasters d'un champ de vision, des cartes d'ensoleillement et du ciel. Les unités sont des cellules. Par défaut, le système crée un raster de 200 par 200 cellules. | Long |
Configuration de temps (Facultatif) | Indique la période de temps utilisée pour les calculs.
| Time configuration |
Intervalle (jours) (Facultatif) | Intervalle de temps sur l’année (unités : jours) utilisé pour calculer les secteurs du ciel pour la carte d’ensoleillement. La valeur par défaut est 14 (bihebdomadaire). | Long |
Intervalle (heures) (Facultatif) | Intervalle de temps sur la journée (unités : heures) utilisé pour calculer les secteurs du ciel pour la carte d’ensoleillement. La valeur par défaut est 0,5. | Double |
Créer des sorties pour chaque intervalle (Facultatif) | Spécifie s’il faut calculer une valeur d’insolation totale unique pour toutes les localisations ou plusieurs valeurs pour l’intervalle spécifié, heure et jour.
| Boolean |
Facteur Z (Facultatif) | Nombre d’unités x,y terrestres sur une unité z de surface. Le facteur z ajuste les unités de mesure des unités z lorsqu’elles sont différentes des unités x,y de la surface en entrée. Les valeurs z de la surface en entrée sont multipliées par le facteur z lors du calcul de la surface finale en sortie. Si les unités x,y et les unités z utilisent les mêmes unités de mesure, le facteur z est égal à 1. Il s’agit de l’option par défaut. Si les unités x,y et les unités z sont exprimées dans des unités de mesure différentes, le facteur z doit être défini de façon appropriée, sinon les résultats sont incorrects. Par exemple, si les unités z sont des pieds et les unités x,y sont des mètres, utilisez un facteur z égal à 0,3048 pour convertir les unités z de pieds en mètres (1 pied = 0,3048 mètre). | Double |
Type d'entrée pente et exposition (Facultatif) | Indique comment les informations de pente et d’exposition sont déduites en vue de l’analyse.
| String |
Directions de calcul (Facultatif) | Nombre de directions azimutales utilisées lors du calcul du champ de vision. Pour être valides, les valeurs doivent être des multiples de 8 (8, 16, 24, 32, etc.). La valeur par défaut de 32 directions est appropriée pour une topographie complexe. | Long |
Divisions zénithales (Facultatif) | Nombre de divisions zénithales utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au zénith). Les valeurs doivent être supérieures à zéro et inférieures à la moitié de la valeur de la taille du raster de diffusion. | Long |
Divisions azimutales (Facultatif) | Nombre de divisions azimutales utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au nord). Les valeurs valides doivent être des multiples de 8. Les valeurs doivent être supérieures à zéro et inférieures à 160. | Long |
Type de modèle diffus (Facultatif) | Spécifie le type de modèle de rayonnement diffus utilisé.
| String |
Proportion diffuse (Facultatif) | Proportion du flux du rayonnement normal global qui est diffusé. Les valeurs sont comprises entre 0 et 1. Définissez cette valeur en fonction des conditions atmosphériques. La valeur par défaut est de 0,3 pour des conditions de ciel dégagé. | Double |
Transmittance (Facultatif) | Fraction du rayonnement traversant l'atmosphère (moyennée sur toutes les longueurs d'onde). La plage de valeurs est comprise entre 0 (pas de transmission) et 1 (transmission totale). La valeur par défaut est de 0,5 pour des conditions de ciel dégagé. | Double |
Entités de rayonnement direct en sortie (Facultatif) | Classe d'entités en sortie représentant le rayonnement solaire entrant direct pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
Entités de rayonnement diffus en sortie (Facultatif) | Classe d'entités en sortie représentant le rayonnement solaire entrant diffus pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
Entités de rayonnement diffus en sortie (Facultatif) | Classe d'entités en sortie représentant la durée de rayonnement solaire entrant direct. La sortie est exprimée en heures. | Feature Class |
Disponible avec une licence Spatial Analyst.
Synthèse
Dérive le rayonnement solaire entrant pour des emplacements spécifiques dans une classe d'entités points ou dans une table d'emplacements.
Héritage :
Cet outil est obsolète et sera retiré dans une version ultérieure.
L’outil Rayonnement solaire des entités offre des fonctions ou performances améliorées.
Utilisation
Les emplacements en entrée peuvent être une classe d'entités points ou une table de coordonnées de points. La table peut être une table de géodatabase, un fichier .dbf, une table INFO ou un fichier de table texte. Les valeurs peuvent être de type Entier long, Réel double ou Réel simple.
Lors de l'entrée d'emplacements par le biais d'une table, une liste d'emplacements doit être spécifiée avec des coordonnées x,y. Si vous utilisez un fichier de coordonnées ASCII, chaque ligne doit contenir une paire x,y séparée par une virgule, un espace ou une tabulation. Vous trouverez ci-dessous un exemple de délimitation par un espace :
X Y 325541.218750 4314768.5 325169.250000 4313907.0 325874.031250 4313134.0 325825.093750 4314181.5
Vous pouvez également spécifier une pente (degrés) et une exposition dans la table d'emplacements. Avec les coordonnées x,y, le fichier doit contenir les valeurs de pente et d'exposition pour chaque emplacement, quel que soit l'ordre. Vous trouverez ci-dessous un exemple de délimitation par une virgule :
x, y, slope, aspect 325541.218750, 4314768.5, 15.84516716, 310.2363586 325169.250000, 4313907.0, 39.39801788, 2.03503442 325874.031250, 4313134.0, 16.10847282, 223.8308563 325825.093750, 4314181.5, 8.89850712, 205.2011261
Dans le cas de configurations sur plusieurs jours, la plage maximale de jours est égale à une année (365 jours, ou 366 pour les années bissextiles). Si le numéro associé au jour de début est plus grand que celui associé au jour de fin, les calculs de temps se poursuivent sur l'année suivante.
Par exemple, [jour de début, jour de fin] = [365, 31], signifie du 31 décembre au 31 janvier de l’année suivante. Autre exemple de [1, 2] : le temps couvre le premier jour à partir de 0 heure (le 1er janvier) jusqu’à minuit (le 2 janvier). Le jour de début et le jour de fin ne peuvent pas être identiques.
La valeur de l'année de la configuration de temps permet de déterminer une année bissextile. Elle n’a aucune autre influence sur l’analyse du rayonnement solaire, car les calculs correspondent à une fonction de la période de temps déterminée par les jours juliens.
Pour les configurations à la journée, la plage maximale de temps est égale à une journée, soit 24 heures. Les calculs ne sont pas effectués sur plusieurs jours (par exemple, de midi à midi le jour suivant). L'heure de début doit être inférieure à l'heure de fin.
L’utilisation d’un facteur z est indispensable pour corriger les calculs lorsque les unités z de surface sont exprimées dans des unités différentes de celles des unités terrestres x,y. Pour obtenir des résultats précis, les unités z doivent être identiques aux unités terrestres x,y. Si les unités diffèrent, utilisez un facteur z pour convertir les unités z en unités x,y. Par exemple, si les unités x,y sont exprimées en mètres, et que les unités z sont exprimées en pieds, vous pouvez indiquer un facteur z égal à 0,3048 pour convertir les pieds en mètres.
Il est préférable que les données appartiennent à un système de coordonnées projetées avec les mètres comme unités. Si vous exécutez l’analyse avec un système de coordonnées sphériques, vous devez spécifier un facteur z approprié pour cette latitude. Voici une liste des facteurs z appropriés que vous pouvez utiliser si les unités x,y sont en degrés décimaux et les unités z en mètres :
Latitude Z-factor 0 0.00000898 10 0.00000912 20 0.00000956 30 0.00001036 40 0.00001171 50 0.00001395 60 0.00001792 70 0.00002619 80 0.00005156
Le décalage de hauteur doit être spécifié en mètres.
La latitude de la surface du site (unités : degré décimal, positives pour l'hémisphère nord et négatives pour l'hémisphère sud) est utilisée dans divers calculs, tels que ceux de la déclinaison solaire et de la position solaire. Etant donné que l'analyse solaire est conçue pour les échelles de paysage et les échelles locales, vous pouvez utiliser une valeur de latitude unique pour l'ensemble du modèle MNA. Pour analyser des régions géographiques plus vastes, vous devez diviser la zone d’étude en zones dotées de latitudes différentes.
Pour les rasters de surface en entrée contenant une référence spatiale, la latitude moyenne est calculée automatiquement. Dans le cas contraire, la latitude est égale à 45 degrés par défaut. Lors de l'utilisation d'une couche en entrée, la référence spatiale du bloc de données est utilisée.
La taille du raster de diffusion correspond à la résolution des rasters champ de vision, carte du ciel et carte d'ensoleillement utilisés dans le calcul du rayonnement (unités : nombre de cellules par côté). Il s'agit de représentations raster hémisphériques du ciel qui n'ont pas de système de coordonnées géographiques. Ces rasters sont carrés (même nombre de lignes et de colonnes).
Voici les valeurs de taille du raster de diffusion recommandées lorsqu’une configuration temporelle d’une année entière ou de plusieurs jours est utilisée :
- Pour un intervalle d’un jour, utilisez une taille de raster de diffusion supérieure ou égale à 1000.
- Pour un intervalle de 0,25 jour, utilisez une taille de raster de diffusion supérieure ou égale à 2000.
- Pour un intervalle de 0.1 heure, utilisez une taille de raster de diffusion supérieure ou égale à 4000.
Si l'augmentation de la taille du raster de diffusion augmente la précision de calcul, elle augmente aussi considérablement les temps de calcul.
Si le paramètre Intervalle (exprimé en jours) est petit (par exemple inférieur à 14), utilisez un raster de diffusion de plus grande taille. Pendant l’analyse, la carte d’ensoleillement (déterminée par la taille du raster de diffusion) permet de représenter les positions du soleil (trajectoires) pour des périodes de temps particulières afin de calculer le rayonnement direct. Dans le cas d'intervalles plus petits, si la résolution de la taille du raster de diffusion n'est pas assez grande, les trajectoires peuvent se superposer et ainsi donner des valeurs de rayonnement égales à zéro ou inférieures pour cette trajectoire. L'augmentation de la résolution donne un résultat plus précis.
La valeur de maximale de taille de raster de diffusion est 10 000. La valeur 200 correspond à la valeur par défaut, qui est suffisante pour des modèles MNE entiers avec des intervalles importants (par exemple, supérieurs à 14 jours). Une taille de raster de diffusion de 512 est suffisante pour effectuer des calculs aux emplacements des points pour lesquels le temps de calcul n'est pas un problème. Avec des intervalles plus petits (par exemple inférieurs à 14 jours), il est recommandé d’utiliser des valeurs plus grandes. Par exemple, pour calculer l’insolation d’un emplacement situé sur l’équateur avec un intervalle égal à 1 jour, utilisez un raster de diffusion avec une taille minimale définie sur 2800.
Sachant qu'en général, les trajectoires du soleil se superposent au cours d'une période de trois jours, selon la taille du raster de diffusion et le moment dans l'année, il est recommandé d'utiliser des intervalles supérieurs à 3 jours. Pour des calculs sur toute l’année avec un intervalle mensuel, l’intervalle en jours est désactivé et le programme utilise des intervalles en mois calendaires. La valeur par défaut est 14.
Comme le calcul du champ de vision peut demander beaucoup de travail, les angles d'horizon sont tracés uniquement pour le nombre de directions de calcul indiqué. Pour être valides, les valeurs doivent être des multiples de 8 (8, 16, 24, 32, etc.). En général, on utilise 8 ou 16 pour les surfaces à topographie douce, et 32 pour les topographies plus complexes. La valeur par défaut est 32.
Le nombre de directions de calcul requis dépend de la résolution du modèle MNT en entrée. En général, un MNT naturel avec une résolution de 30 mètres est suffisamment lisse pour ne nécessiter qu'un petit nombre de directions pour la plupart des situations (16 ou 32). Avec des MNE plus fins, et en particulier avec des structures artificielles incorporées dans les MNE, le nombre de directions doit augmenter. Il convient de noter que si l’augmentation du nombre de directions augmente la précision, elle augmente aussi les temps de calcul.
Le paramètre Créer des sorties pour chaque intervalle permet de calculer l’insolation intégrée sur une période spécifiée ou l’insolation pour chaque intervalle dans une chronologie. Par exemple, pour une période fixée à une seule journée avec un intervalle d’une heure, l’activation de ce paramètre permet de créer des valeurs d’insolation toutes les heures. Dans le cas contraire, le système calcule l’insolation intégrée pour toute la journée.
Le paramètre Créer des sorties pour chaque intervalle affecte le nombre d'attributs pour les entités en sortie. En cas d'activation pour une analyse du rayonnement ponctuel, la classe d'entités en sortie inclut des attributs supplémentaires (t0, t1, t2, etc.), qui indiquent des valeurs de rayonnement ou de durée pour chaque intervalle de temps (intervalle d'heures lorsque la configuration du temps est inférieure à un jour, ou intervalle de jours lorsqu'elle est de plusieurs jours). Si, par exemple, l'heure de départ est = 0, alors t0 correspondra au lever du jour et t1 à l'incrément suivant après le lever du jour.
La quantité de rayonnement solaire reçue au niveau du sol ne représente qu'une partie de ce qui est reçu à l'extérieur de l'atmosphère. La transmittance est une propriété de l'atmosphère exprimée en tant que rapport de l'énergie (moyenne de toutes les longueurs d'onde) qui atteint la surface terrestre et de celle reçue à la limite supérieure de l'atmosphère (extra-terrestre). La plage de valeurs est comprise entre 0 (pas de transmission) et 1 (transmission totale). En général, les valeurs observées sont 0,6 ou 0,7 dans des conditions de ciel très clair et 0,5 dans des conditions de ciel normalement clair.
La valeur d'énergie reçue à la surface de la Terre est le plus court chemin dans l'atmosphère (c'est-à-dire le soleil au zénith ou directement au-dessus de la tête) et le niveau de la mer. Pour les régions au-delà du Tropique du Capricorne et du Tropique du Cancer, le soleil ne peut jamais être exactement au zénith, même à midi. Cependant, cette valeur se rapporte toujours au moment où le soleil est au zénith. Etant donné que l'algorithme corrige les effets d'altitude, la transmittance doit toujours être donnée pour le niveau de la mer.
La transmittance a une relation inverse avec le paramètre de proportion de diffusion.
Pour plus d’informations sur les environnements de géotraitement qui s’appliquent à cet outil, reportez-vous à la rubrique Environnements d’analyse et Spatial Analyst.
Paramètres
PointsSolarRadiation(in_surface_raster, in_points_feature_or_table, out_global_radiation_features, {height_offset}, {latitude}, {sky_size}, {time_configuration}, {day_interval}, {hour_interval}, {each_interval}, {z_factor}, {slope_aspect_input_type}, {calculation_directions}, {zenith_divisions}, {azimuth_divisions}, {diffuse_model_type}, {diffuse_proportion}, {transmittivity}, {out_direct_radiation_features}, {out_diffuse_radiation_features}, {out_direct_duration_features})
Nom | Explication | Type de données |
in_surface_raster | Raster de surface d’altitude en entrée. | Raster Layer |
in_points_feature_or_table | Table ou classe d’entités ponctuelles contenant les localisations d’analyse du rayonnement solaire. | Feature Layer; Table View |
out_global_radiation_features | Classe d'entités en sortie représentant le rayonnement global ou l'ensoleillement entrant total (direct + diffus) calculé pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
height_offset (Facultatif) | Hauteur (en mètres) au-dessus de la surface MNE pour laquelle les calculs sont à effectuer. Le décalage de hauteur est appliqué à tous les emplacements en entrée. | Double |
latitude (Facultatif) | Latitude de la surface du site. Les unités sont des degrés décimaux, avec des valeurs positives pour l’hémisphère nord et négatives pour l’hémisphère sud. Pour les rasters de surface en entrée contenant une référence spatiale, la latitude moyenne est calculée automatiquement. Dans le cas contraire, la latitude est égale à 45 degrés par défaut. | Double |
sky_size (Facultatif) | Résolution ou taille du raster de diffusion pour les rasters d'un champ de vision, des cartes d'ensoleillement et du ciel. Les unités sont des cellules. Par défaut, le système crée un raster de 200 par 200 cellules. | Long |
time_configuration (Facultatif) | Spécifie la configuration temporelle (période) utilisée pour calculer le rayonnement solaire. Les objets de la classe Time permettent de spécifier la configuration temporelle. Les différents types de configurations temporelles disponibles sont TimeWithinDay, TimeMultipleDays, TimeSpecialDays et TimeWholeYear. Voici les formules associées :
La configuration temporelle par défaut est TimeMultipleDays si le paramètre startDay est défini sur 5 et le paramètre endDay sur 160, pour l’année julienne en cours. | Time configuration |
day_interval (Facultatif) | Intervalle de temps sur l’année (unités : jours) utilisé pour calculer les secteurs du ciel pour la carte d’ensoleillement. La valeur par défaut est 14 (bihebdomadaire). | Long |
hour_interval (Facultatif) | Intervalle de temps sur la journée (unités : heures) utilisé pour calculer les secteurs du ciel pour la carte d’ensoleillement. La valeur par défaut est 0,5. | Double |
each_interval (Facultatif) | Spécifie s’il faut calculer une valeur d’insolation totale unique pour toutes les localisations ou plusieurs valeurs pour l’intervalle spécifié, heure et jour.
| Boolean |
z_factor (Facultatif) | Nombre d’unités x,y terrestres sur une unité z de surface. Le facteur z ajuste les unités de mesure des unités z lorsqu’elles sont différentes des unités x,y de la surface en entrée. Les valeurs z de la surface en entrée sont multipliées par le facteur z lors du calcul de la surface finale en sortie. Si les unités x,y et les unités z utilisent les mêmes unités de mesure, le facteur z est égal à 1. Il s’agit de l’option par défaut. Si les unités x,y et les unités z sont exprimées dans des unités de mesure différentes, le facteur z doit être défini de façon appropriée, sinon les résultats sont incorrects. Par exemple, si les unités z sont des pieds et les unités x,y sont des mètres, utilisez un facteur z égal à 0,3048 pour convertir les unités z de pieds en mètres (1 pied = 0,3048 mètre). | Double |
slope_aspect_input_type (Facultatif) | Indique comment les informations de pente et d’exposition sont déduites en vue de l’analyse.
| String |
calculation_directions (Facultatif) | Nombre de directions azimutales utilisées lors du calcul du champ de vision. Pour être valides, les valeurs doivent être des multiples de 8 (8, 16, 24, 32, etc.). La valeur par défaut de 32 directions est appropriée pour une topographie complexe. | Long |
zenith_divisions (Facultatif) | Nombre de divisions zénithales utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au zénith). Les valeurs doivent être supérieures à zéro et inférieures à la moitié de la valeur de la taille du raster de diffusion. | Long |
azimuth_divisions (Facultatif) | Nombre de divisions azimutales utilisées pour créer des secteurs du ciel dans la carte du ciel. La valeur par défaut est égale à huit divisions (par rapport au nord). Les valeurs valides doivent être des multiples de 8. Les valeurs doivent être supérieures à zéro et inférieures à 160. | Long |
diffuse_model_type (Facultatif) | Spécifie le type de modèle de rayonnement diffus utilisé.
| String |
diffuse_proportion (Facultatif) | Proportion du flux du rayonnement normal global qui est diffusé. Les valeurs sont comprises entre 0 et 1. Définissez cette valeur en fonction des conditions atmosphériques. La valeur par défaut est de 0,3 pour des conditions de ciel dégagé. | Double |
transmittivity (Facultatif) | Fraction du rayonnement traversant l'atmosphère (moyennée sur toutes les longueurs d'onde). La plage de valeurs est comprise entre 0 (pas de transmission) et 1 (transmission totale). La valeur par défaut est de 0,5 pour des conditions de ciel dégagé. | Double |
out_direct_radiation_features (Facultatif) | Classe d'entités en sortie représentant le rayonnement solaire entrant direct pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
out_diffuse_radiation_features (Facultatif) | Classe d'entités en sortie représentant le rayonnement solaire entrant diffus pour chaque emplacement. La sortie est exprimée en watts heures par mètre carré (WH/m2). | Feature Class |
out_direct_duration_features (Facultatif) | Classe d'entités en sortie représentant la durée de rayonnement solaire entrant direct. La sortie est exprimée en heures. | Feature Class |
Exemple de code
Le script ci-dessous pour la fenêtre Python illustre l'utilisation de cette fonction.
import arcpy
from arcpy import env
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
PointsSolarRadiation("elevation", "observers.shp",
"c:/sapyexamples/output/outglobalrad1.shp", "", 35, 200,
TimeMultipleDays(2009, 91, 212), 14, 0.5,"NOINTERVAL",
1, "FROM_DEM", 32, 8, 8,"STANDARD_OVERCAST_SKY", 0.3, 0.5,
"c:/sapyexamples/output/outdirectrad1.shp",
"c:/sapyexamples/output/outdiffuserad1.shp",
"c:/sapyexamples/output/outduration1.shp")
Calcule la totalité du rayonnement solaire entrant pour des emplacements ponctuels spécifiques.
# PointsSolarRadiation_Example02.py
# Description: For all point locations, calculates total global, direct,
# diffuse and direct duration solar radiation for a whole year.
# Requirements: Spatial Analyst Extension
# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *
# Set environment settings
env.workspace = "C:/sapyexamples/data"
# Set local variables
inRaster = "elevation"
inPntFC = "observers.shp"
outFeatures = "c:/sapyexamples/output/outglobal1.shp"
latitude = 35.75
skySize = 200
timeConfig = TimeMultipleDays(2009, 91, 212)
dayInterval = 14
hourInterval = 0.5
zFactor = 0.3048
calcDirections = 32
zenithDivisions = 8
azimuthDivisions = 8
diffuseProp = 0.3
transmittivity = 0.5
outDirectRad = "C:/sapyexamples/output/outdirectrad1.shp"
outDiffuseRad = "C:/sapyexamples/output/outdiffuserad1.shp"
outDirectDur = "C:/sapyexamples/output/outduration1.shp"
# Execute PointsSolarRadiation...
PointsSolarRadiation(inRaster, inPntFC, outFeatures, "", latitude, skySize,
timeConfig, dayInterval, hourInterval, "INTERVAL",
zFactor, "FROM_DEM", calcDirections, zenithDivisions,
azimuthDivisions,"STANDARD_OVERCAST_SKY", diffuseProp,
transmittivity, outDirectRad, outDiffuseRad, outDirectDur)
Environnements
Informations de licence
- Basic: Nécessite Spatial Analyst
- Standard: Nécessite Spatial Analyst
- Advanced: Nécessite Spatial Analyst
Rubriques connexes
Vous avez un commentaire à formuler concernant cette rubrique ?