概要
ロケーション アロケーション ネットワーク解析レイヤーを作成し、解析プロパティを設定します。ロケーション アロケーション解析レイヤーは、複数の候補地から指定した数の施設を選択し、需要を施設に最適で効率的な方法で割り当てられるようにします。レイヤーは、ローカル ネットワーク データセットや、オンラインでホストされたサービスまたはポータル内のサービスを使用して作成できます。
使用法
このツールで解析レイヤーを作成した後は、[ロケーションの追加 (Add Locations)] ツールを使用して解析レイヤーにネットワーク解析オブジェクトを追加し、[解析の実行 (Solve)] ツールを使用して解析を実行し、[レイヤー ファイルの保存 (Save To Layer File)] ツールを使用して結果をディスクに保存することができます。
このツールをジオプロセシング モデルに使用するときは、モデルをツールとして動作させる場合、出力ネットワーク解析レイヤーにモデル パラメーターを作成する必要があります。そうしないと、出力レイヤーはマップのコンテンツに追加されません。
ArcGIS Pro では、ネットワーク解析レイヤーのデータは、ディスク上のファイル ジオデータベースのフィーチャクラスに格納されます。プロジェクトでネットワーク解析レイヤーを作成する場合、レイヤーのデータは、現在のワークスペース環境の新しいフィーチャ データセット内に作成されます。Python スクリプトでネットワーク解析レイヤーを作成する場合、まず arcpy.env.workspace = "<path to file gdb>" を使用して、ワークスペース環境をレイヤーのデータを格納するファイル ジオデータベースに明示的に設定する必要があります。レイヤーが作成されるとき、適切なサブレイヤーのフィーチャクラスを含む新しいフィーチャ データセットがこのファイル ジオデータベースに追加されます。
構文
MakeLocationAllocationAnalysisLayer(network_data_source, {layer_name}, {travel_mode}, {travel_direction}, {problem_type}, {cutoff}, {number_of_facilities_to_find}, {decay_function_type}, {decay_function_parameter_value}, {target_market_share}, {capacity}, {time_of_day}, {time_zone}, {line_shape}, {accumulate_attributes})
パラメーター | 説明 | データ タイプ |
network_data_source | ネットワーク解析が実行されるネットワーク データセットまたはサービス。サービスのポータル URL を使用します。 | Network Dataset Layer;String |
layer_name (オプション) | 作成するネットワーク解析レイヤーの名前。 | String |
travel_mode (オプション) | 解析で使用する移動モードの名前。移動モードは、移動規制や U ターン ポリシーなど、歩行者、車、トラック、その他の交通手段がネットワークをどのように移動するかを決定するネットワーク設定のコレクションを表します。移動モードは、ネットワーク データ ソースに対して定義されます。 arcpy.na.TravelMode オブジェクトおよび移動モードの有効な JSON 表現を含む文字列もパラメーターの入力として使用できます。 | String |
travel_direction (オプション) | ネットワーク コストを計算するときに施設と需要地点間で移動する方向を指定します。
このオプションを使用することで、移動する方向に基づいた一方通行規制およびさまざまなインピーダンスを考慮した、ネットワーク上の施設への需要地点の割り当てが行われるようになります。たとえば、需要地点から施設への移動には 15 分かかっても、施設から需要地点への移動時間は 10 分だけの場合があります。 | String |
problem_type (オプション) | 実行する解析タイプ。解析タイプは配置されている施設の種類に応じて選択します。それは施設の種類によって、優先事項と制約が異なるからです。
| String |
cutoff (オプション) | 需要地点を施設に割り当てることができる最大インピーダンス。単位は、選択した [移動モード] で使用されるインピーダンス属性の単位です。最大インピーダンスは、ネットワークに沿った最小コスト パスによって計測されます。需要地点がカットオフの範囲外にある場合、それは割り当てられません。このプロパティは、店舗に訪れるために顧客が移動することをいとわない最大距離や、消防署がコミュニティのすべての人に到達するのにかかっても許容される最長時間などをモデリングするのに使用することもできます。 このカットオフは、Cutoff_[インピーダンス] プロパティの需要地点サブレイヤーのカットオフ値を個別に指定することで、需要地点ごとにオーバーライドできます。たとえば、施設に到達するために移動してもいとわない距離が農村部の住民の場合は最大 10 マイルであるのに対し、都市部の住民の場合は最大 2 マイルであるとします。この振舞いは、解析レイヤーの [カットオフ] の値を 10 に設定し、都市部の需要地点の Cutoff_Miles 値を 2 に設定することでモデリングできます。 デフォルトでは、解析にカットオフは使用されません。 | Double |
number_of_facilities_to_find (オプション) | 解析時に検出する施設の数を指定します。デフォルトでは、このパラメーターは 1 に設定されます。 検出する必要のある施設の数が必須施設よりも多い場合、FacilityType 値が [必須] に設定されている施設は常にソリューションに含められ、残りの検出する必要のある施設は候補施設から選択されます。 解析前に FacilityType 値が [選択済み] に設定されている施設は、解析時には候補施設として処理されます。 MINIMIZE_FACILITIES 解析タイプではカバーエリアが最大になるような最小数の施設の配置を決定するため、パラメーター値は考慮されません。 TARGET_MARKET_SHARE 解析タイプでは指定された市場シェアの確保に必要な最小数の施設を検索するため、パラメーター値はオーバーライドされます。 | Long |
decay_function_type (オプション) | これは、施設と需要地点の間のネットワーク コストを変換するための式を設定します。[インピーダンス パラメーター] とともに使用されるこのプロパティは、施設と需要地点の間のネットワーク インピーダンスが、解析でどの施設が選択されるかに影響する度合いを指定します。
需要地点には ImpedanceTransformation プロパティがあり、これが設定されていると、解析レイヤーの [インピーダンス パラメーター] プロパティが需要地点ごとにオーバーライドされます。都市部の住民と農村部の住民で異なるコスト変換関数を指定しなければならない場合があります。これは、解析レイヤーのインピーダンス変換を農村部の住民に適合するように設定し、都市部にある個々の需要地点のインピーダンス変換を都市部の住民に適合するように設定することでモデリングできます。 | String |
decay_function_parameter_value (オプション) | decay_function_type パラメーターで指定された計算式へのパラメーター値を提供します。このパラメーターの値は、コスト変換関数が LINEAR タイプの場合には無視されます。POWER または EXPONENTIAL のコスト変換関数の場合、値は 0 以外である必要があります。 需要地点には ImpedanceTransformation プロパティがあり、これが設定されていると、解析レイヤーの decay_function_parameter_value プロパティが需要地点ごとにオーバーライドされます。都市部の住民と農村部の住民で異なるコスト変換関数を指定しなければならない場合があります。これは、解析レイヤーのインピーダンス変換を農村部の住民に適合するように設定し、都市部にある個々の需要地点のインピーダンス変換を都市部の住民に適合するように設定することでモデリングできます。 | Double |
target_market_share (オプション) | problem_type パラメーターが TARGET_MARKET_SHARE に設定されているときに、解析に使用する目標市場シェアをパーセントで指定します。これは、解析対象の施設で獲得したい総需要ウェイトに占める割合です。この数値で指定される目標市場シェアを獲得するのに必要な最小数の施設を選択します。 | Double |
capacity (オプション) | [problem_type] パラメーターが [MAXIMIZE_CAPACITATED_COVERAGE] に設定されている場合、施設のデフォルトの容量を指定します。このパラメーターは他の解析タイプでは無視されます。 施設には [容量] プロパティがあり、このプロパティに NULL 以外の値が設定されている場合は、その施設の capacity パラメーターよりも優先されます。 | Double |
time_of_day (オプション) | 出発の日時を示します。出発時間の場所は、[移動方向] が需要地点から施設か、施設から需要地点かに応じて、施設または需要地点にできます。 交通量ベースのインピーダンス属性を選択した場合、ここで指定した時刻での動的な交通状況に対する解決策が生成されます。日時は、2012/05/14 10:30 のように指定できます。 特定の日付を使用する代わりに、次の日付を使用して曜日を指定することができます。
| Date |
time_zone (オプション) | [時刻] パラメーターのタイム ゾーン。
| String |
line_shape (オプション) |
どの出力形状のタイプを選択するかに関係なく、常に最適なルートはユークリッド距離ではなくネットワーク インピーダンスによって決定されます。これは、ルート形状のみが異なり、ネットワークの基となっているトラバースは同じであることを意味します。 | String |
accumulate_attributes [accumulate_attributes,...] (オプション) | 解析中に累積されるコスト属性のリスト。これらの累積属性は、参考情報としてのみ使用されます。解析では、指定されている移動モードで使用されるコスト属性のみが使用されます。 累積されるコスト属性ごとに、ネットワーク解析の出力フィーチャに Total_[Impedance] プロパティが入力されます。 このパラメーターは、ネットワーク データ ソースが ArcGIS Online サービスである場合、あるいはネットワーク データ ソースが累積をサポートしないバージョンの Portal for ArcGIS のサービスである場合には使用できません。 | String |
派生した出力
名前 | 説明 | データ タイプ |
out_network_analysis_layer | 新しく作成されたネットワーク解析レイヤー。 | Network Analyst レイヤー |
コードのサンプル
必須パラメーターのみを使用してツールを実行します。
network = "C:/Data/SanFrancisco.gdb/Transportation/Streets_ND"
arcpy.na.MakeLocationAllocationAnalysisLayer(network, "StoreLocations")
すべてのパラメーターを使用してツールを実行します。
network = "C:/Data/SanFrancisco.gdb/Transportation/Streets_ND"
arcpy.na.MakeLocationAllocationAnalysisLayer(network, "NewStores",
"Driving Time", "TO_FACILITIES",
"MAXIMIZE_ATTENDANCE", 3, 5, "POWER", 2, "",
"", "1/1/1900 9:00 AM", "UTC",
"STRAIGHT_LINES", ["TravelTime", "Meters"])
次のスタンドアロン Python スクリプトは、MakeLocationAllocationAnalysisLayer ツールを使用して小売店チェーンの売り上げを最大化するための店舗の場所を選択する方法を示しています。
# Name: MakeLocationAllocationAnalysisLayer_Workflow.py
# Description: Choose the store locations that would generate the most business
# for a retail chain. For this scenario, we will perform the
# location-Allocation analysis using the maximize attendance
# problem type.
# Requirements: Network Analyst Extension
#Import system modules
import arcpy
from arcpy import env
import os
try:
#Check out Network Analyst license if available. Fail if the Network Analyst license is not available.
if arcpy.CheckExtension("network") == "Available":
arcpy.CheckOutExtension("network")
else:
raise arcpy.ExecuteError("Network Analyst Extension license is not available.")
#Set environment settings
output_dir = "C:/Data"
#The NA layer's data will be saved to the workspace specified here
env.workspace = os.path.join(output_dir, "Output.gdb")
env.overwriteOutput = True
#Set local variables
input_gdb = "C:/Data/SanFrancisco.gdb"
network = os.path.join(input_gdb, "Transportation", "Streets_ND")
layer_name = "NewStoreLocations"
travel_mode = "Driving Time"
facilities = os.path.join(input_gdb, "Analysis", "CandidateStores")
required_facility = os.path.join(input_gdb, "Analysis", "ExistingStore")
demand_points = os.path.join(input_gdb, "Analysis", "TractCentroids")
output_layer_file = os.path.join(output_dir, layer_name + ".lyrx")
#Create a new location-allocation layer. In this case, the demand travels to
#the facility. We wish to find 3 potential store locations out of all the
#candidate store locations using the maximize attendance model.
result_object = arcpy.na.MakeLocationAllocationAnalysisLayer(network,
layer_name, travel_mode, "TO_FACILITIES",
"MAXIMIZE_ATTENDANCE", cutoff=20,
number_of_facilities_to_find=3)
#Get the layer object from the result object. The location-allocation layer
#can now be referenced using the layer object.
layer_object = result_object.getOutput(0)
#Get the names of all the sublayers within the location-allocation layer.
sublayer_names = arcpy.na.GetNAClassNames(layer_object)
#Stores the layer names that we will use later
facilities_layer_name = sublayer_names["Facilities"]
demand_points_layer_name = sublayer_names["DemandPoints"]
#Load the candidate store locations as facilities using default search
#tolerance and field mappings.
arcpy.na.AddLocations(layer_object, facilities_layer_name, facilities, "",
"")
#Load the existing store location as the required facility. Use the field
#mappings to set the facility type to requried. We need to append this
#required facility to existing facilities.
field_mappings = arcpy.na.NAClassFieldMappings(layer_object,
facilities_layer_name)
field_mappings["FacilityType"].defaultValue = 1
arcpy.na.AddLocations(layer_object, facilities_layer_name,
required_facility, field_mappings, "",
append="APPEND")
#Load the tract centroids as demand points using default search tolerance
#Use the field mappings to map the Weight property from POP2000 field.
demand_field_mappings = arcpy.na.NAClassFieldMappings(layer_object,
demand_points_layer_name)
demand_field_mappings["Weight"].mappedFieldName = "POP2000"
arcpy.na.AddLocations(layer_object, demand_points_layer_name, demand_points,
demand_field_mappings, "")
#Solve the location-allocation layer
arcpy.na.Solve(layer_object)
#Save the solved location-allocation layer as a layer file on disk
layer_object.saveACopy(output_layer_file)
print("Script completed successfully")
except Exception as e:
# If an error occurred, print line number and error message
import traceback, sys
tb = sys.exc_info()[2]
print("An error occurred on line %i" % tb.tb_lineno)
print(str(e))
ライセンス情報
- Basic: はい
- Standard: はい
- Advanced: はい