最尤法による分類器定義ファイルの作成 (Train Maximum Likelihood Classifier) (Spatial Analyst)

Spatial Analyst のライセンスで利用可能。

Image Analyst ライセンスで利用できます。

概要

最尤法による分類器定義ファイル (MLC) 分類定義を使用して、Esri 分類器定義ファイル (*.ecd) を作成します。

使用法

  • 最尤法分類プロセスを実行するには、[ラスターの分類 (Classify Raster)] ツールで同じ入力ラスターおよび出力 *.ecd ファイルを使用します。

  • 入力として、Esri がサポートし、有効なビット深度を持つ任意のラスターを指定できます。

  • セグメント ラスター データセットを作成するには、[セグメント平均シフト (Segment Mean Shift)] ツールを使用します。

  • トレーニング サンプル ファイルを作成するには、[分類ツール] ドロップダウン メニューから [トレーニング サンプル マネージャー] ウィンドウを使用します。

  • [出力分類器定義ファイル] には、[最尤法分類 (Maximum Likelihood Classification)] に適した属性統計が含まれています。

  • [セグメント属性] パラメーターは、ラスター レイヤー入力のうちのいずれかがセグメント画像である場合にのみ、有効になります。

  • CCDC (Continuous Change Detection and Classification) アルゴリズムを使用して時系列ラスター データを分類するには、2 ステップのプロセスが必要です。最初に [CCDC を使用した変更の解析 (Analyze Changes Using CCDC)] ツールを実行します。このツールは、Image Analyst エクステンション ライセンスにより使用できます。次に、その結果を、このトレーニング ツールの入力として使用します。

    トレーニング サンプル データは、トレーニング サンプル マネージャーを使用して、複数回収集されている必要があります。各サンプルのディメンション値は、トレーニング サンプル フィーチャクラスのフィールドにリストされており、[ディメンション値フィールド] パラメーターで指定されます。

構文

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
パラメーター説明データ タイプ
in_raster

分類対象のラスター データセット。

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

トレーニング サイトを表すトレーニング サンプル ファイルまたはレイヤー。

これらは、トレーニング サンプルを含んでいる、シェープファイルまたはフィーチャクラスです。トレーニング サンプル ファイルには、次のフィールド名が必要です。

  • classname - クラス カテゴリ名を示すテキスト フィールド。
  • classvalue — 各クラス カテゴリの整数値を含む long integer フィールド。

Feature Layer
out_classifier_definition

分類器の属性情報、統計情報、超平面ベクトル、およびその他の情報を含んでいる出力 JSON ファイルです。*.ecd ファイルが作成されます。

File
in_additional_raster
(オプション)

セグメント化された画像や DEM などの補助ラスター データセットを取り込みます。このパラメーターはオプションです。

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(オプション)

出力ラスターに関連付けられた属性テーブルに含める属性を指定します。

  • COLORRGB カラー値は、入力ラスターからセグメント単位で取得されます。
  • MEANセグメント単位でオプションのピクセル画像から得られた平均デジタル ナンバー (DN)。
  • STD標準偏差は、セグメント単位でオプションのピクセル画像から得られます。
  • COUNTセグメント単位で、セグメントで構成されるピクセル数。
  • COMPACTNESSセグメント単位で、セグメントがコンパクトまたは円形である程度。値の範囲は 0 ~ 1。1 は円形です。
  • RECTANGULARITYセグメント単位で、セグメントが矩形である程度。値の範囲は 0 ~ 1。1 は矩形です。

このパラメーターは、入力ラスターで [セグメント化] キー プロパティを true に設定した場合にのみ有効になります。このツールへの入力が、セグメント画像のみである場合、デフォルトの属性は COLORCOUNTCOMPACTNESS、および RECTANGULARITY になります。セグメント画像とともに in_additional_raster が入力として含まれている場合、MEAN および STD 属性も使用できます。

String
dimension_value_field
(オプション)

入力トレーニング サンプル フィーチャクラスのディメンション値が含まれます。

このパラメーターは、Image Analyst ツールボックスの [CCDC を使用した変更の解析 (Analyze Changes Using CCDC)] ツールから得られた変更分析ラスター出力を使用して時系列のラスター データを分類するために必要です。

Field

コードのサンプル

TrainMaximumLikelihoodClassifier (最尤法による分類器定義ファイルの作成) の例 1 (Python ウィンドウ)

次の Python ウィンドウ スクリプトは、TrainMaximumLikelihoodClassifierツールの使用方法を示しています。

import arcpy
from arcpy.sa import *

TrainMaximumLikelihoodClassifier(
    "c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
    "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
    "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainMaximumLikelihoodClassifier (最尤法による分類器定義ファイルの作成) の例 2 (スタンドアロン スクリプト)

次の例は、最尤法による分類器定義ファイルの作成方法を示しています。

# Import system modules
import arcpy
from arcpy.sa import *


# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)
TrainMaximumLikelihoodClassifier (最尤法による分類器定義ファイルの作成) の例 3 (スタンドアロン スクリプト)

次の例は、[CCDC を使用した変更の解析 (Analyze Changes Using CCDC)] ツールの変更解析ラスターを使用した最尤法による分類器定義ファイルの作成方法を示しています。

# Import system modules
import arcpy
from arcpy.sa import *

# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")


# Set local variables
in_changeAnalysisRaster = "c:/test/LandsatCCDC.crf"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/change_detection.ecd"
additional_raster = ''
attributes = None
dimension_field = "DateTime"

# Execute
arcpy.sa.TrainMaximumLikelihoodClassifier(
	in_changeAnalysisRaster, train_features, out_definition,
	additional_raster, attributes, dimension_field)

ライセンス情報

  • Basic: 次のものが必要 Spatial Analyst または Image Analyst
  • Standard: 次のものが必要 Spatial Analyst または Image Analyst
  • Advanced: 次のものが必要 Spatial Analyst または Image Analyst

関連トピック