Image Analyst ライセンスで利用できます。
The Deep Learning geoprocessing functions allow you to train a deep learning model, detect specific features in an image, classify pixels in a raster dataset.
Deep learning is a type of machine learning artificial intelligence that detects features in imagery using multiple layers in neural networks in which each layer is capable of extracting one or more unique features in the image. The geoprocessing functions in the Deep Learning category take advantage of GPU processing to perform analysis in a timely manner.
These ArcPy geoprocessing functions consume the models that have been trained to detect specific features in third-party deep learning frameworks—such as TensorFlow, CNTK, and PyTorch—and output features or class maps.
Geoprocessing function | Description |
---|---|
入力ラスターとオプションのフィーチャクラスに対してトレーニング済みディープ ラーニング モデルを実行し、各入力オブジェクトまたはフィーチャにクラス ラベルまたはカテゴリ ラベルを割り当てたフィーチャクラスまたはテーブルを作成します。 このツールは、トレーニング済みのモデル情報を含んでいるモデル定義ファイルを必要とします。 モデルは、[ディープ ラーニング モデルのトレーニング (Train Deep Learning Model)] ツールを使用するか、TensorFlow、PyTorch、または Keras などのサードパーティのトレーニング ソフトウェアによって、トレーニングできます。 モデル定義ファイルには、Esri モデル定義 JSON ファイル (.emd) またはディープ ラーニング モデル パッケージを使用できます。モデル定義ファイルは、各オブジェクトを処理するために呼び出される Python ラスター関数のパス、およびトレーニング済みのバイナリ ディープ ラーニング モデル ファイルのパスを含む必要があります。 | |
入力ラスターにトレーニング済みディープ ラーニング モデルを実行して、有効な各ピクセルにクラス ラベルを割り当てた分類済みラスターを作成します。 このツールは、トレーニング済みのモデル情報を含んでいるモデル定義ファイルを必要とします。 モデルは、[ディープ ラーニング モデルのトレーニング (Train Deep Learning Model)] ツールを使用するか、TensorFlow、PyTorch、または Keras などのサードパーティのトレーニング ソフトウェアによって、トレーニングできます。 モデル定義ファイルには、Esri モデル定義 JSON ファイル (.emd) またはディープ ラーニング モデル パッケージを使用できます。モデル定義ファイルは、各オブジェクトを処理するために呼び出される Python ラスター関数のパス、およびトレーニング済みのバイナリ ディープ ラーニング モデル ファイルのパスを含む必要があります。 | |
[ディープ ラーニングを使用したオブジェクトの検出 (Detect Objects Using Deep Learning)] ツールから検出されたオブジェクトをグラウンド トゥルース データと比較することで、ディープ ラーニング モデルの精度を計算します。 | |
入力ラスターにトレーニング済みディープ ラーニング モデルを実行して、検出したオブジェクトを含むフィーチャクラスを作成します。 フィーチャには、検出されたオブジェクトの周囲の境界四角形やポリゴン、またはオブジェクトの中心のポイントを指定できます。 このツールは、トレーニング済みのモデル情報を含んでいるモデル定義ファイルを必要とします。 モデルは、[ディープ ラーニング モデルのトレーニング (Train Deep Learning Model)] ツールを使用するか、TensorFlow、PyTorch、または Keras などのサードパーティのトレーニング ソフトウェアによって、トレーニングできます。 モデル定義ファイルには、Esri モデル定義 JSON ファイル (.emd) またはディープ ラーニング モデル パッケージを使用できます。モデル定義ファイルは、各オブジェクトを処理するために呼び出される Python ラスター関数のパス、およびトレーニング済みのバイナリ ディープ ラーニング モデル ファイルのパスを含む必要があります。 | |
リモート センシング画像を使用して、ラベルが付いたベクターまたはラスター データをディープ ラーニング トレーニング データセットに変換します。 出力は画像チップのフォルダー、および指定した形式のメタデータ ファイルのフォルダーです。 | |
[ディープ ラーニングを使用したオブジェクトの検出 (Detect Objects Using Deep Learning)] ツールの出力から、後処理のステップとして重複フィーチャを識別し、重複フィーチャのない新しい出力を作成します。[ディープ ラーニングを使用したオブジェクトの検出 (Detect Objects Using Deep Learning)] ツールは、特にタイルの副作用として、同じオブジェクトに対して複数の境界四角形またはポリゴンを返す可能性があります。2 つのフィーチャの重なり合う割合が指定された最大比率より大きい場合、信頼値が低いフィーチャが削除されます。 | |
[ディープ ラーニング用のトレーニング データをエクスポート (Export Training Data For Deep Learning)] ツールからの出力を使用してディープ ラーニング モデルをトレーニングします。 |