ラベル | 説明 | データ タイプ |
入力ラスター | 入力サーフェス ラスター。 | Raster Layer |
入力観測ポイント フィーチャ | 観測点の位置を特定するポイント フィーチャクラス。 最大ポイント数は 16 です。 | Feature Layer |
出力ラスター | 出力ラスター。 出力では、各ラスターのサーフェス位置から見える観測点を正確に特定します。 | Raster Dataset |
Z 係数 (オプション) | サーフェス z 単位あたりの地表 xy 単位の数。 Z 単位の測定基準が入力サーフェスの X、Y 単位と異なる場合、Z 係数を使用して Z 測定単位を調整します。 最終的な出力サーフェスを計算する際、入力サーフェスの Z 値に Z 係数が乗算されます。 X、Y 単位と Z 単位の測定基準が同じ場合、Z 係数は 1 になります。 これがデフォルトです。 X、Y 単位と Z 単位の測定単位が異なる場合は、Z 係数に適切な値を設定する必要があります。Z 係数が適切でないと、正しい結果が得られません。 たとえば、Z 単位がフィートであり、X、Y 単位がメートルの場合、Z 係数 0.3048 を使用して Z 単位をフィートからメートルへ変換します (1 フィート = 0.3048 メートル)。 | Double |
地球の曲率を使用 (オプション) | 地球の曲率の補正を適用するかどうかを指定します。
| Boolean |
屈折係数 (オプション) | 大気中での可視光線の屈折係数。 デフォルト値は 0.13 です。 | Double |
出力 AGL (地上レベル) ラスター (オプション) | 出力 AGL (地上レベル) ラスター。 AGL の出力は、見えないセルが 1 つ以上の観測点から見えるようにするためにセルに追加する必要がある最小の高さで各セルの値が構成されるラスターとなります。 この出力ラスターでは、すでに見通せるセルには値 0 が設定されます。 | Raster Dataset |
Spatial Analyst のライセンスで利用可能。
3D Analyst のライセンスで利用可能。
図
使用法
観測ポイントの決定は、コンピューターに負荷がかかる処理です。 処理にかかる時間は、解像度によって変わります。 事前調査の場合、粗いセル サイズにして入力のセル数を減らすことができます。 最終結果を生成する準備が整ったら、フル解像度のラスターを使用します。
入力ラスターにサンプリング エラーによって発生した望ましくないノイズが含まれており、ArcGIS Spatial Analyst エクステンション を使用している場合、このツールを実行する前に [フォーカル統計 (Focal Statistics)] ツールの平均オプションのようなローパス フィルターを使用することでラスターを滑らかにすることも考えられます。
各セルの中心の可視または不可視は、セルの中心における高度をローカル水平線に対する高度と比較して決定されます。 ローカル水平線は、観測点と各セルの中心との間にある地形を考慮して計算されます。 その点がローカル水平線よりも上にある場合は、可視と見なされます。
このツールには、オプションの出力 AGL (地上レベル) ラスターが用意されています。 AGL 出力ラスターの各セルには、1 つ以上の観測点からセルを見通すために、セルに追加する必要がある高さの最小値が記録されます。
入力観測フィーチャに複数の観測点が含まれているとき、出力値はすべての観測点における AGL 値の最小値になります。
入力ラスターをリサンプリングする必要がある場合は、共一次内挿法を使用します。 入力ラスターをリサンプリングする例としては、出力座標系、範囲、またはセル サイズが入力と異なる場合があります。
パラメーター
arcpy.ddd.ObserverPoints(in_raster, in_observer_point_features, out_raster, {z_factor}, {curvature_correction}, {refractivity_coefficient}, {out_agl_raster})
名前 | 説明 | データ タイプ |
in_raster | 入力サーフェス ラスター。 | Raster Layer |
in_observer_point_features | 観測点の位置を特定するポイント フィーチャクラス。 最大ポイント数は 16 です。 | Feature Layer |
out_raster | 出力ラスター。 出力では、各ラスターのサーフェス位置から見える観測点を正確に特定します。 | Raster Dataset |
z_factor (オプション) | サーフェス z 単位あたりの地表 xy 単位の数。 Z 単位の測定基準が入力サーフェスの X、Y 単位と異なる場合、Z 係数を使用して Z 測定単位を調整します。 最終的な出力サーフェスを計算する際、入力サーフェスの Z 値に Z 係数が乗算されます。 X、Y 単位と Z 単位の測定基準が同じ場合、Z 係数は 1 になります。 これがデフォルトです。 X、Y 単位と Z 単位の測定単位が異なる場合は、Z 係数に適切な値を設定する必要があります。Z 係数が適切でないと、正しい結果が得られません。 たとえば、Z 単位がフィートであり、X、Y 単位がメートルの場合、Z 係数 0.3048 を使用して Z 単位をフィートからメートルへ変換します (1 フィート = 0.3048 メートル)。 | Double |
curvature_correction (オプション) | 地球の曲率の補正を適用するかどうかを指定します。
| Boolean |
refractivity_coefficient (オプション) | 大気中での可視光線の屈折係数。 デフォルト値は 0.13 です。 | Double |
out_agl_raster (オプション) | 出力 AGL (地上レベル) ラスター。 AGL の出力は、見えないセルが 1 つ以上の観測点から見えるようにするためにセルに追加する必要がある最小の高さで各セルの値が構成されるラスターとなります。 この出力ラスターでは、すでに見通せるセルには値 0 が設定されます。 | Raster Dataset |
コードのサンプル
この例では、各ラスターのサーフェス位置から見える観測点を正確に特定します。
import arcpy
from arcpy import env
env.workspace = "C:/data"
arcpy.ObserverPoints_3d("elevation","observers.shp", "C:/output/outobspnt01",
1, "CURVED_EARTH", 0.13)
この例では、各ラスターのサーフェス位置から見える観測点を正確に特定します。
# Name: ObserverPoints_3d_Ex_02.py
# Description: Identifies exactly which observer points are visible
# from each raster surface location.
# Requirements: 3D Analyst Extension
# Import system modules
import arcpy
from arcpy import env
# Set environment settings
env.workspace = "C:/data"
# Set local variables
inRaster = "elevation"
inObsPoints = "observers.shp"
outRaster = "C:/output/outobspnt02"
zFactor = 1
useEarthCurv = "CURVED_EARTH"
refractionVal = 0.13
# Execute ObserverPoints
arcpy.ddd.ObserverPoints(inRaster, inObsPoints, outRaster, zFactor,
useEarthCurv, refractionVal)
環境
ライセンス情報
- Basic: 次のものが必要 3D Analyst または Spatial Analyst
- Standard: 次のものが必要 3D Analyst または Spatial Analyst
- Advanced: 次のものが必要 3D Analyst または Spatial Analyst