Available with Spatial Analyst license.
Overview
Calculates distance allocation for each cell to the provided sources based on straight-line distance, cost distance, true surface distance, as well as vertical and horizontal cost factors.
This is a global raster function.
Notes
If you have source features, you can first convert them to a raster dataset using the Rasterize Features function. Use a consistent input for the Raster input to that function. This will ensure that the features are properly converted to a raster dataset using the same cell size, extent, and spatial reference.
The NoData values that exist in the Source Raster are not included as valid values in the function. The value 0 is considered a legitimate value in the source raster. A Source Raster can be created using the extraction tools or the Clip function.
If the input Surface Raster has a vertical coordinate system (VCS), the values of the surface raster are considered to be in the units of the VCS. If the input Surface Raster does not have a VCS and the data is projected, the surface values are considered to be in the linear units of the spatial reference. If the input Surface Raster does not have a VCS and the data is not projected, the surface values are considered to be in meters.
When no Extent environment setting is specified then the processing extent is determined in the following way.
If only the Input raster or feature source data and Input barrier raster or feature data are specified then the union of the inputs, expanded by two cell widths on each side, is used as the processing extent. The reason the output raster is expanded by two rows and columns is so that the outputs are used in Optimal Path As Line and Optimal Path As Raster the generated paths can move around the barriers. To use the extent as an implicit barrier you must explicitly set the Extent in the environment settings.
If any of the following raster datasets are specified, Input surface raster, Input cost raster, Input vertical raster or Input horizontal raster then the processing extent is the intersection of these rasters.
When Cell Size or Snap Raster environment settings are not specified, and there are multiple rasters specified as inputs, then the Cell Size and Snap Raster are set based on an order of precedence: Input cost raster, Input surface raster, Input vertical raster, Input horizontal raster, Input raster or feature source data and Input barrier raster or feature data.
For the output raster, the least-cost distance (or minimum accumulative cost distance) of a cell to a set of source locations is the lower bound of the least-cost distances from the cell to all source locations.
The default values for the Vertical factor modifiers are the following:
Keyword Zero Low High Slope Power Cos Sec factor cut cut power power angle angle ------------------------ ------ ----- ----- ----- ----- ----- ----- Binary 1.0 -30 30 ~ ~ ~ ~ Linear 1.0 -90 90 1/90 ~ ~ ~ Symmetric linear 1.0 -90 90 1/90 ~ ~ ~ Inverse linear 1.0 -45 45 -1/45 ~ ~ ~ Symmetric inverse linear 1.0 -45 45 -1/45 ~ ~ ~ Cos ~ -90 90 ~ 1.0 ~ ~ Sec ~ -90 90 ~ 1.0 ~ ~ Cos_sec ~ -90 90 ~ ~ 1.0 1.0 Sec_cos ~ -90 90 ~ ~ 1.0 1.0
The output of the Aspect function can be used as input for Input horizontal raster.
The default values for the Horizontal factor modifiers are the following:
Keywords Zero factor Cut angle Slope Side value -------------- ----------- ----------- ----- --------- Binary 1.0 45 ~ ~ Forward 0.5 45 (fixed) ~ 1.0 Linear 0.5 181 1/90 ~ Inverse linear 2.0 180 -1/90 ~
Checking the Boolean option Generate source row and column as additional bands in output will result in a multiband raster consisting of three bands. The first band is the distance allocation band, the second band contains a row index, and the third band contains a column index. These indices identify the location of the source cell that is the least accumulated cost distance away. The source row index and source column index can be used together to perform intensity mapping. If you query any location in your study area across band two and three, you will know the row and column of the least cost source for that location.
If any of the source characteristics' parameters are specified using a value, that value is applied to all of the sources. If the parameters are specified through fields associated with the Source Raster, the values in the table will be uniquely applied to the corresponding sources.
- Initial accumulation sets the starting cost before the movement begins.
- Maximum accumulations specifies how much cost a source can accumulate before reaching its limit.
- Multiplier to apply to costs specifies the mode of travel.
- Travel direction identifies whether the mover is starting at a source and moving to nonsource locations or starting at nonsource locations and moving back to a source
This function supports parallel processing. If your computer has multiple processors or processors with multiple cores, better performance may be achieved, particularly on larger datasets. See Parallel processing with Spatial Analyst for more details on this capability and how to configure it.
When using parallel processing, temporary data will be written to manage the data chunks being processed. The default temp folder location will be on your local C drive. You can control the location of this folder by setting up a system environment variable named TempFolders and specifying the path to a folder to use (for example, E:\RasterCache). If you have admin privileges on your machine, you can also use a registry key (for example, [HKEY_CURRENT_USER\SOFTWARE\ESRI\ArcGISPro\Raster]).
By default, this function will use 50 percent of the available cores. If the input data is smaller than 5,000 by 5,000 cells, fewer cores may be used. You can control the number of cores the tool uses with the Parallel processing factor environment.
Parameters
Parameter name | Description |
---|---|
Source Raster (Required) | The input source locations. This is a raster dataset that identifies the cells or locations from which the least accumulated cost distance for every output cell location is calculated. |
Source Field | The field used to assign values to the source locations. It must be an integer type. |
Raster Barriers | The raster that defines the barriers. The dataset must contain NoData where there are no barriers. Barriers are represented by valid values including zero. The barriers can be defined by an integer or a floating-point raster. |
Surface Raster |
A raster defining the elevation values at each cell location. The values are used to calculate the actual surface distance covered when passing between cells. |
Cost Raster |
A raster defining the cost or impedance to move planimetrically through each cell. The value at each cell location represents the cost-per-unit distance for moving through it. Each cell location value is multiplied by the cell resolution, and also compensates for diagonal movement to obtain the total cost of passing through the cell. The values of the Cost Raster can be integer or floating point, but they cannot be negative or zero. |
Vertical Raster | Defines the relationship between the vertical cost factor and the vertical relative moving angle (VRMA). The values are used for calculating the slope used to identify the vertical factor incurred when moving from one cell to another. |
Vertical Factor | Defines the relationship between the vertical cost factor and the vertical relative moving angle (VRMA). There are several factors with modifiers you can select that identify a defined vertical factor graph. Additionally, a table can be used to create a custom graph. The graphs are used to identify the vertical factor used in calculating the total cost for moving into a neighboring cell. In the explanations below, two acronyms are used: VF and VRMA. VF stands for vertical factor, which defines the vertical difficulty encountered in moving from one cell to the next. VRMA stands for vertical relative moving angle, which identifies the slope angle between the FROM, or processing, cell and the TO cell. Vertical factor types include the following:
Modifiers to the vertical keywords include the following:
|
Horizontal Raster | A raster defining the horizontal direction at each cell. The values on the raster must be integers ranging from 0 to 360, with 0 degrees being north, or toward the top of the screen, and increasing clockwise. Flat areas should be given a value of -1. The values at each location will be used in conjunction with the Horizontal factor to determine the horizontal cost incurred when moving from a cell to its neighbors. |
Horizontal Factor | Defines the relationship between the horizontal cost factor and the horizontal relative moving angle (HRMA). There are several factors with modifiers you can select that identify a defined vertical factor graph. Additionally, a table can be used to create a custom graph. The graphs are used to identify the vertical factor used in calculating the total cost for moving into a neighboring cell. In the explanations below, two acronyms are used: HF and HRMA. HF stands for horizontal factor, which defines the horizontal difficulty encountered when moving from one cell to the next. HRMA stands for horizontal relative moving angle, which identifies the angle between the horizontal direction from a cell and the moving direction. Horizontal factor types include the following:
Modifiers to the horizontal factors include the following:
|
Source Row and Column Bands | Determines whether only the allocation raster is created or if a multiband result is created.
|
Initial Accumulation | The initial accumulative cost to begin the cost calculation. This parameter allows for the specification of the fixed cost associated with a source. Instead of starting at a cost of 0, the cost algorithm will begin with the value specified. A numeric (double) value or a field from the Source Raster can be used for this parameter. The value must be zero or greater. The default is 0. |
Maximum Accumulation | Defines the maximum accumulative cost for the traveler for a source. The cost calculations continue for each source until the specified capacity is reached. A numeric (double) value or a field from the Source Raster can be used for this parameter. The value must be greater than zero. The default capacity is to the edge of the output raster. |
Multiplier to Apply to Costs | A multiplier to apply to the cost values. This parameter allows for control of the mode of travel or the magnitude at a source. The greater the multiplier, the greater the cost to move through each cell. The values must be greater than zero. The default is 1. A numeric (double) value or a field from the Source Raster can be used for this parameter. |
Travel Direction | Defines the direction of the traveler when applying vertical factor, horizontal factor and the source resistance rate.
Either specify the From Source or To Source keyword, which will be applied to all sources, or specify a field in the Source Raster that contains the keywords to identify the direction of travel for each source. That field must contain the string FROM_SOURCE or TO_SOURCE. |
Distance Method | Determines whether to calculate the distance using a planar (flat earth) or a geodesic (ellipsoid) method.
|
Environment settings
Geoprocessing environment settings for global functions are controlled at the application level. Setting processing environments in ArcGIS Pro can be done by clicking the Environments button on the Analysis tab. See Analysis environments and Spatial Analyst for additional details on environment settings.
The following environments are supported by this global function: