Классификатор изокластера с обучением (Image Analyst)

Доступно с лицензией Spatial Analyst.

Доступно с лицензией Image Analyst.

Сводка

Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Iso Cluster.

Этот инструмент выполняет неконтролируемую классификацию.

Использование

  • Любой поддерживаемый Esri растр принимается в качестве входных данных, включая растровые продукты, сегментированный растр, мозаики, сервисы изображений или наборы растровых данных в общих форматах. Сегментированные растры должны быть 8-битными с 3 каналами.

  • Параметр Атрибуты сегмента включен только в том случае, когда одним из входных растровых слоев является сегментированное изображение.

Синтаксис

TrainIsoClusterClassifier(in_raster, max_classes, out_classifier_definition, {in_additional_raster}, {max_iterations}, {min_samples_per_cluster}, {skip_factor}, {used_attributes}, {max_merge_per_iter}, {max_merge_distance})
ParameterОбъяснениеТип данных
in_raster

Набор растровых данных для классификации.

Raster Layer; Mosaic Layer; Image Service; String
max_classes

Максимальное количество требуемых классов для группировки пикселов или сегментов. Оно должно быть больше числа классов в легенде.

Возможно, что вы получите меньше классов, чем указано этим параметром. Если необходимо больше классов, увеличьте это значение и агрегируйте классы после завершения процесса обучения.

Long
out_classifier_definition

Выходной файл JSON, который содержит информацию об атрибутах, статистику, гиперплоскостные векторы и другую информацию, необходимую для классификатора. Создан файл .ecd.

File
in_additional_raster
(Дополнительный)

Вспомогательные наборы растровых данных, такие как спектрозональное изображение или ЦМР, включенные для создания атрибутов и другой необходимой для классификатора информации. Это дополнительный параметр.

Raster Layer; Mosaic Layer; Image Service; String
max_iterations
(Дополнительный)

Максимальное число итераций, которые будет выполнять процесс кластеризации.

Рекомендованный диапазон находится между 10 и 20 итерациями. Увеличение этого значения линейно увеличивает время обработки.

Long
min_samples_per_cluster
(Дополнительный)

Минимальное число пикселов или сегментов в действительном кластере или классе.

Значение по умолчанию равно 20 и оно подходит для создания статистически значимых классов. Вы можете увеличить это значение для более объемлющих классов, однако это может ограничить общее количество созданных классов.

Long
skip_factor
(Дополнительный)

Максимальное число пропускаемых пикселов для входного пиксельного изображения. Если входным изображением является сегментированное, укажите число пропускаемых сегментов.

Long
used_attributes
[used_attributes;used_attributes,...]
(Дополнительный)

Укажите атрибуты, которые будут включены в связанную с выходным растром таблицу атрибутов.

  • COLORЗначения цветов RGB получаются из входного растра по сегментам.
  • MEANСредний цифровой номер (DN), выведенный из дополнительного пиксельного изображения, на основе каждого сегмента.
  • STDСтандартное отклонение, полученное из дополнительного пиксельного изображения, на основе каждого сегмента.
  • COUNTЧисло пикселов, составляющих сегмент, на основе каждого сегмента.
  • COMPACTNESSСоединяет сегменты, которые были разрезаны границами листов в процессе сегментации. Значения находятся в диапазоне от 0 до 1, где 1 соответствует кругу.
  • RECTANGULARITYСтепень, определяющая, насколько сегмент является прямоугольным, на основе каждого сегмента. Значения находятся в диапазоне от 0 до 1, где 1 соответствует прямоугольнику.

Это параметр активен только в тех случаях, когда для входного растра выбран ключевой параметр Сегментированный (Segmented). Если для входных данных инструмента используется только сегментированное изображение, то атрибутами по умолчанию будут COLOR, COUNT, COMPACTNESS и RECTANGULARITY. Если в качестве входных данных вместе с сегментированным изображением также используется in_additional_raster, то тогда также будут доступны атрибуты MEAN и STD.

String
max_merge_per_iter
(Дополнительный)

Максимальное число слияний кластеров на итерацию. При увеличении числа слияний число создаваемых классов уменьшится. Меньшее значение приведет к созданию большего числа классов.

Long
max_merge_distance
(Дополнительный)

Максимальное расстояние между центрами кластеров в пространстве объектов. Увеличение расстояния сделает возможным слияние большего числа кластеров, что позволит получить меньше классов. Меньшее значение приведет к созданию большего числа классов. Значения от 0 до 5 как правило дают наилучшие результаты.

Double

Пример кода

TrainIsoClusterClassifier, пример 1 (окно Python)

Следующий скрипт окна Python использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.

import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

TrainIsoClusterClassifier("c:/test/moncton_seg.tif", "10", 
                "c:/output/moncton_sig_iso.ecd","c:/test/moncton.tif", 
                "5", "10", "2", "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainIsoClusterClassifier, пример 2 (автономный скрипт)

Данный примерный скрипт использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.

# Import system modules
import arcpy
from arcpy.ia import *

"""Usage: TrainIsoClusterClassifier(in_raster, max_num_classes, 
                out_classifier_definition, {in_additional_raster}, 
                {max_num_iterations}, {min_num_samples_per_cluster}, 
                {skip_factor},{used_attributes})

"""

# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
maxNumClasses = "10"
out_definition = "c:/output/moncton_sig_iso.ecd"
in_additional_raster = "moncton.tif"
maxIteration = "20"
minNumSamples = "10"
skipFactor = "5"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Execute 
TrainIsoClusterClassifier(inSegRaster, maxNumClasses, 
                out_definition,in_additional_raster, 
                maxIteration, minNumSamples, skipFactor, attributes)

Информация о лицензиях

  • Basic: Требуется Image Analyst or Spatial Analyst
  • Standard: Требуется Image Analyst or Spatial Analyst
  • Advanced: Требуется Image Analyst or Spatial Analyst

Связанные разделы