Сводка
Приведенный набор взвешенных объектов, определяет статистическую значимость "горячих" точек и "холодных" точек на основе статистического показателя Getis-Ord Gi*.
Подробнее, как работает Анализ горячих точек (Getis-Ord Gi*)
Иллюстрация
Использование
Этот инструмент идентифицирует статистически значимые пространственные кластеры высоких значений (горячих точек) и низких значений (холодных точек). Он создает Выходной класс объектов с z-оценкой, p-значением и полем бина уровня достоверности (Gi_Bin) для каждого объекта во Входном классе объектов.
Z-оценки и р-значения являются измерениями статистической значимости, которая определяет, можно ли отклонить нулевую гипотезу. В действительности, они измеряют, насколько наблюдаемая пространственная кластеризация является чем-то большим, чем случайное распределение тех же значений. Поля p-значений и z-оценки не отражают никакой тип коррекции FDR (False Discovery Rate).
Поле Gi_Bin определяет статистическую значимость "горячих" и "холодных" точек, вне зависимости от применения коррекции FDR. Объекты с +/-3 bins отражают статистическую значимость с уровнем достоверности 99 процентов; объекты с +/-2 bins отражают статистическую значимость с уровнем достоверности 95 процентов; объекты с +/-1 bins отражают статистическую значимость с уровнем достоверности 90 процентов; а кластеризация для объектов в bin 0 не имеет статистической значимости. Без коррекции FDR статистическая значимость основывается на полях p-значения и z-оценки. При включении дополнительного параметра Применить коррекцию FDR, критические p-значения, определяющие уровни достоверности, уменьшаются в соответствии с множественным тестированием и пространственной зависимостью.
Высокая z-оценка и низкое р-значение для объекта свидетельствует о пространственной кластеризации высоких значений. Низкая негативная z-оценка и низкое р-значение для объекта свидетельствуют о пространственной кластеризации низких значений. Чем выше (или ниже) z-оценка, чем сильнее интенсивность кластеризации. Z-оценка, стремящаяся к нулю, указывает на отсутствие очевидного объединения в кластеры.
-
z-оценка основана на вычислении гипотезы нулевой рандомизации. Дополнительные сведения о z-оценке см. в разделе Что такое z-оценка? Что такое p-значение?
Когда Входной класс объектов не имеет проекции (т.е. когда координаты заданы в градусах, минутах и секундах), или когда в качестве выходной системы координат используется географическая система координат, расстояния в этих случаях будут рассчитываться с помощью хордовых измерений. Измерения хордовых расстояний применяются постольку, поскольку они могут быть быстро вычислены и дают очень хорошие оценки истинных геодезических расстояний, по крайней мере для точек, расстояние между которыми в пределах порядка тридцати градусов. Хордовые расстояния основаны на эллипсоиде вращения. Если взять две любые точки на поверхности Земли, то хордовым расстоянием между ними будет длина прямой линии, проходящей через трехмерное тело Земли и соединяющей эти две точки. Хордовые расстояния выражаются в метрах.
Внимание:
Следует обязательно производить проецирование ваших данных, если область исследования превышает 30 градусов. Хордовые расстояния не обеспечивают точных оценок геодезических расстояний, превышающих 30 градусов.
Когда при анализе используются хордовые расстояния, параметр Диапазон расстояний или пороговое расстояние, если он указывается, должен быть выражен в метрах.
-
Для линейных или полигональных объектов, при расчете расстояний используются центроиды. Для мультиточек, полилиний или полигонов, состоящих их нескольких частей, центроид вычисляется с использованием средневзвешенного центра всех частей объекта. При определении весов точечные объекты имеют равный вес (1). Для линейных объектов это длина сегмента. Для полигональных – площадь.
Входное поле должно содержать разные значения. Для математических расчетов, выполняемых в рамках этих статистических операций, требуется, чтобы исходные переменные были разными. Например, анализ не будет выполняться, если все входящие значения равны 1. Если вы хотите использовать данный инструмент для анализа пространственных закономерностей случайных данных, попробуйте агрегировать данные или используйте инструмент Оптимизированный анализ горячих точек.
Примечание:
Инцидентными данными являются точки, представляющие события (преступление, дорожно-транспортное происшествие) или объекты (деревья, магазины), по отношению к которым ваше внимание концентрируется скорее на их наличии или отсутствии, чем на атрибутах, свойственных каждой такой точке.
Инструмент Оптимизированный анализ "горячих точек" обрабатывает данные и автоматически выбирает настройки параметров для оптимизации "горячих точек". Он агрегирует случайные данные, выбирает соответствующий масштаб анализа и настраивает результаты для множественного тестирования и пространственной зависимости. Выбранные опции параметров записываются в сообщения и могут быть полезны для более точной настройки параметров. Инструмент предлагает полный контроль и гибкую настройку параметров.
Выбор параметра Определение пространственных взаимоотношений должен отражать внутренние отношения между пространственными объектами, которые вы анализируете. Чем более точно вы сможете смоделировать взаимодействие пространственных объектов в пространстве, тем более точные результаты вы получите. Рекомендации см. в разделе Выбор определения пространственных взаимоотношений: рекомендации. Ниже приведены дополнительные советы:
- Полоса фиксированных расстояний
Используется по умолчанию. Диапазон расстояний или пороговое расстояние гарантирует, что каждый объект имеет, по крайней мере, одного соседа. Это важно, но часто значение, заданное по умолчанию, не будет являться самым подходящим расстоянием для вашего анализа. В разделе Выбор фиксированного расстояния приведены стратегии, которые помогут определить значение диапазона расстояний, подходящее для вашего анализа.
- Обратное расстояние или Квадрат обратного расстояния
Когда для параметра Диапазон расстояний или пороговое расстояние указано значение 0, все объекты считаются соседями всех других объектов. Когда этот параметр остается пустым, применяется пороговое значение по умолчанию.
Веса для расстояний менее 1 становятся не стабильны после обращения. Следовательно, при взвешивании для объектов, разделенных менее чем одной единицей расстояния, получают вес 1.
При использовании опций обратного расстояния (Обратное расстояние, Квадрат обратного расстояния и Зона индифферентности), любым двум совпадающим точкам придается значение веса 1 во избежание деления на 0. Это гарантирует, что объекты не будут исключены из анализа.
- Полоса фиксированных расстояний
Для параметра Определение пространственных взаимоотношений при использовании инструмента Построить матрицу пространственных весов. Чтобы эффективно применять дополнительные опции, до выполнения анализа постройте файл с матрицей пространственных весов; выберите Взять пространственные веса из файла для параметра Определение пространственных взаимоотношений, а для параметра Файл матрицы весов задайте путь к файлу с пространственными весами, который вы создали.
-
Дополнительные сведения о пространственно-временном кластерном анализе см. в документе Пространственно-временной анализ.
-
Слои карты можно использовать для определения Входного класса объектов. Если в слое есть выборка, только выбранные объекты будут включены в анализ.
Если добавлен Файл матрицы весов с расширением .swm, этот инструмент предполагает получения файла матрицы весов, созданного либо с помощью инструмента Построить матрицу пространственных весов, либо Построить матрицу пространственных весов для сети; в противном случае инструмент ожидает файл матрицы весов в формате ASCII. В некоторых случаях, поведение различно в зависимости от типа использованной матрицы весов:
- ASCII-файлы с матрицей пространственных весов:
- Веса используются без изменений. Отсутствующие отношения объект к объекту рассматриваются как нули.
- Вес по умолчанию для собственного потенциала равен 0, если не указать значение параметра Собственный потенциал или точно указать веса собственного потенциала.
- Учитываются асимметричные отношения, это позволяет объекту получить соседний объект, который сам не имеет соседства. Это означает, что соседний объект включается в локальные вычисления среднего значения для исходного объекта, но не включается в вычисления глобального среднего.
- Если веса нормализованы, то вероятнее всего, что результаты будут непригодны для анализа выбранного набора. Если вам нужно выполнить анализ выбранного набора данных, конвертируйте ASCII-файл с матрицей весов в файл .swm, считав данные ASCII-файла в таблицу и используя опцию Конвертировать таблицу инструмента Построить матрицу пространственных весов.
- Матрица пространственных весов в формате SWM:
- Если веса уже были нормализованы, то они будут нормализованы вновь для выбранного набора данных. В противном случае они будут использоваться без изменений.
- Вес по умолчанию для собственного потенциала – 1, если не указать значение параметра Собственного потенциала.
- ASCII-файлы с матрицей пространственных весов:
Для выполнения анализа с ASCII-файлом с матрицей пространственных весов требуется большой объем памяти. При анализе более 5000 объектов, ASCII-файл с матрицей пространственных весов следует конвертировать в SWM-файл. Сначала вы вставляете ваш ASCII-файл с весами в форматированную таблицу (например, с помощью Excel). Затем запустите инструмент Построить матрицу пространственных весов, задав значение Конвертировать таблицу для параметра Определение пространственных взаимоотношений. В результате будет создан SWM-файл с матрицей пространственных весов.
Выходной класс объектов инструмента автоматически добавляется к таблице содержания с использованием способа отображения по умолчанию, примененного к полю Gi_Bin. Применяемое отображение со шкалой «от горячего к холодному» определяется файлом слоя в <ArcGIS Pro>\Resources\ArcToolBox\Templates\Layers. Способ отображения по умолчанию, если это необходимо, можно применить заново путем изменения символов слоя шаблона.
Выходные данные этого инструмента включают гистограмму значений Входного поля, которую можно открыть в разделе Выходной класс пространственных объектов на панели Содержание.
-
Дополнительную информацию о параметрах инструмента см. в справочной статье Моделирование пространственных отношений.
При использовании этого инструмента в скрипте Python, объект-результат, возвращенный инструментом, содержит следующие выходные данные:
Положение Описание Тип данных 0
Выходной класс объектов
Класс пространственных объектов
1
Имя поля результатов (GiZScore)
Поле
2
Имя поля вероятности (GiPValue)
Поле
3
Имя поля ID источника (SOURCE_ID)
Поле
Внимание:
При использовании шейп-файлов, помните, что в них нельзя хранить нулевые (null) значения. Инструменты или другие процедуры, создающие шейп-файлы из прочих входных данных, могут хранить значения NULL в виде 0 или оперировать ими как нулем. В некоторых случаях нули в шейп-файлах хранятся как очень маленькие отрицательные числа. Это может привести к неожиданным результатам. Дополнительные сведения см. в разделе Рекомендации по геообработке выходных данных шейп-файла.
Прежние версии:
Стандартизация строк не влияет на этот инструмент. Результаты выполнения инструмента Анализ горячих точек (Getis-Ord Gi*) будут совпадать при запуске со стандартизацией строк и без нее. Этот параметр отключен, он используется только для обеспечения обратной совместимости инструмента.
Синтаксис
HotSpots(Input_Feature_Class, Input_Field, Output_Feature_Class, Conceptualization_of_Spatial_Relationships, Distance_Method, Standardization, {Distance_Band_or_Threshold_Distance}, {Self_Potential_Field}, {Weights_Matrix_File}, {Apply_False_Discovery_Rate__FDR__Correction}, {number_of_neighbors})
Parameter | Объяснение | Тип данных |
Input_Feature_Class | Это класс объектов, по которому будет выполняться анализ горячих точек. | Feature Layer |
Input_Field | Числовое поле (количество жертв, тяжесть преступления и т.д.), которое должно быть оценено. | Field |
Output_Feature_Class | Выходной класс объектов для получения результирующих z-оценки и р-значения. | Feature Class |
Conceptualization_of_Spatial_Relationships | Определяет, как задаются пространственные отношения между объектами.
| String |
Distance_Method | Определяет, как рассчитываются расстояния от одного объекта до соседнего объекта.
| String |
Standardization | Стандартизация строк не влияет на этот инструмент. Результаты выполнения инструмента Анализ горячих точек (Getis-Ord Gi*) будут совпадать при запуске со стандартизацией строк и без нее. Этот параметр отключен, он используется только для обеспечения обратной совместимости инструмента.
| String |
Distance_Band_or_Threshold_Distance (Дополнительный) | Задает пороговое значение расстояния для параметров Обратное расстояние и Фиксированное расстояние. Объекты, расположенные вне указанной области, игнорируются при анализе этого объекта. Однако, для ZONE_OF_INDIFFERENCE влияние объектов, расположенных за пределами данного расстояния, сокращается с расстоянием, в то время как влияние тех объектов, которые располагаются в пределах порогового расстояния, распределяется равномерно. Введенное значение расстояния должно совпадать с расстоянием по выходной системе координат. При использовании концептуализации обратных расстояний для вычисления пространственных отношений значение 0 показывает, что пороговое расстояние не применялось; когда данный параметр остается пустым, при анализе рассчитывается и применяется пороговое значение по умолчанию. Значение по умолчанию – это Евклидово расстояние, которое гарантирует каждому объекту как минимум 1 соседа. Этот параметр не оказывает никакого влияния, если выбрано примыкание полигонов (CONTIGUITY_EDGES_ONLY или CONTIGUITY_EDGES_CORNERS) либо пространственные концептуализации GET_SPATIAL_WEIGHTS_FROM_FILE. | Double |
Self_Potential_Field (Дополнительный) | Поле, представляющее собственный потенциал – это расстояние или вес между одним и тем же объектом. | Field |
Weights_Matrix_File (Дополнительный) | Путь к файлу, который содержит веса, определяющие пространственные и, возможно, временные отношения между объектами. | File |
Apply_False_Discovery_Rate__FDR__Correction (Дополнительный) |
| Boolean |
number_of_neighbors (Дополнительный) | Целое, задающее число соседств, которое будет включено в анализ. | Long |
Производные выходные данные
Name | Объяснение | Тип данных |
Results_Field | Имя поля результатов (GiZScore). | Поле |
Probability_Field | Имя поля вероятности (GiPValue). | Поле |
Source_ID | Имя поля ID источника (SOURCE_ID). | Поле |
Пример кода
В следующем скрипте окна Python показано, как используется инструмент HotSpotAnalysis.
import arcpy
arcpy.env.workspace = "C:/data"
arcpy.HotSpots_stats("911Count.shp", "ICOUNT", "911HotSpots.shp",
"GET_SPATIAL_WEIGHTS_FROM_FILE", "EUCLIDEAN_DISTANCE",
"NONE", "#", "#", "euclidean6Neighs.swm", "NO_FDR")
Следующий автономный Python скрипт демонстрирует, как использовать инструмент HotSpotAnalysis.
# Analyze the spatial distribution of 911 calls in a metropolitan area
# using the Hot Spot Analysis Tool (Local Gi*)
# Import system modules
import arcpy
# Set property to overwrite existing output, by default
arcpy.env.overwriteOutput = True
# Local variables...
workspace = "C:/Data"
try:
# Set the current workspace (to avoid having to specify the full path to the feature classes each time)
arcpy.env.workspace = workspace
# Copy the input feature class and integrate the points to snap
# together at 500 feet
# Process: Copy Features and Integrate
cf = arcpy.CopyFeatures_management("911Calls.shp", "911Copied.shp",
"#", 0, 0, 0)
integrate = arcpy.Integrate_management("911Copied.shp #", "500 Feet")
# Use Collect Events to count the number of calls at each location
# Process: Collect Events
ce = arcpy.CollectEvents_stats("911Copied.shp", "911Count.shp", "Count", "#")
# Add a unique ID field to the count feature class
# Process: Add Field and Calculate Field
af = arcpy.AddField_management("911Count.shp", "MyID", "LONG", "#", "#", "#", "#",
"NON_NULLABLE", "NON_REQUIRED", "#",
"911Count.shp")
cf = arcpy.CalculateField_management("911Count.shp", "MyID", "[FID]", "VB")
# Create Spatial Weights Matrix for Calculations
# Process: Generate Spatial Weights Matrix...
swm = arcpy.GenerateSpatialWeightsMatrix_stats("911Count.shp", "MYID",
"euclidean6Neighs.swm",
"K_NEAREST_NEIGHBORS",
"#", "#", "#", 6,
"NO_STANDARDIZATION")
# Hot Spot Analysis of 911 Calls
# Process: Hot Spot Analysis (Getis-Ord Gi*)
hs = arcpy.HotSpots_stats("911Count.shp", "ICOUNT", "911HotSpots.shp",
"GET_SPATIAL_WEIGHTS_FROM_FILE",
"EUCLIDEAN_DISTANCE", "NONE",
"#", "#", "euclidean6Neighs.swm","NO_FDR")
except arcpy.ExecuteError:
# If an error occurred when running the tool, print out the error message.
print(arcpy.GetMessages())
Environments
- Выходная система координат
До начала анализа геометрия пространственных объектов проецируется в выходную систему координат, поэтому значения параметров Диапазон расстояний или пороговое расстояние должны быть выражены в единицах измерения, заданных в выходной системе координат. Все математическое вычисления основаны на пространственной привязке выходной системы координат. Если выходная система координат выражена в градусах, минутах и секундах, геодезические расстояния рассчитываются с помощью хордовых расстояний в метрах.
Информация о лицензиях
- Basic: Да
- Standard: Да
- Advanced: Да
Связанные разделы
- Моделирование пространственных отношений
- Что такое z-оценка? Что такое p-значение?
- Пространственные веса
- Обзор группы инструментов Картографирование кластеров
- Пространственная автокорреляция (Глобальный индекс Морана I)
- Анализ кластеров и выбросов (Anselin Локальный индекс Морана I)
- Как работает инструмент Анализ горячих точек
- Пошаговая пространственная автокорреляция
- Оптимизированный анализ горячих точек
- Оптимизированный анализ выбросов
- Поиск инструмента геообработки