Классификатор по методу максимального правдоподобия с обучением (Image Analyst)

Доступно с лицензией Spatial Analyst.

Доступно с лицензией Image Analyst.

Сводка

Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Метода максимального правдоподобия (MLC).

Использование

  • Для завершения процесса классификации по методу максимального подобия используйте тот же входной растр и выходной файл .ecd инструмента Классифицировать растр .

  • Входным растром может быть любой поддерживаемый Esri растр с любой глубиной пикселов.

  • Для создания сегментированного набора растровых данных используйте инструмент Сегментация методом среднего сдвига.

  • Чтобы создать файл обучающей выборки, используйте панель Менеджер обучающей выборки в раскрывающемся меню Инструменты классификации.

  • Выходной файл определения классификатора содержит статистику атрибутов, которая подходит для инструмента Классификация по методу максимального подобия.

  • Параметр Атрибуты сегмента включен только в том случае, когда одним из входных растровых слоев является сегментированное изображение.

  • Чтобы классифицировать серии растровых данных с помощью алгоритма Выявление непрерывных изменений и классификация (CCDC), сначала запустите инструмент Анализировать изменения с помощью CCDC и используйте выходной растр анализа изменений в качестве входного набора данных для этого инструмента обучения.

    Образец обучающих данных должен быть собран несколько раз с помощью Менеджера обучающей выборки. Значения измерения для каждого образца будут указаны в поле в классе объектов обучающей выборки, которое указано в параметре Поле значения измерения.

Синтаксис

TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, {in_additional_raster}, {used_attributes}, {dimension_value_field})
ParameterОбъяснениеТип данных
in_raster

Набор растровых данных для классификации.

Raster Layer; Mosaic Layer; Image Service; String
in_training_features

Файл обучающей выборки или слой, который определяет районы обучающей выборки.

Это могут быть либо шейп-файлы, либо классы объектов, которые содержат ваши обучающие выборки. В файле обучающей выборки должны быть поля со следующими именами:

  • classname — Текстовое поле, в котором хранится имя категории класса
  • classvalue — Длинное целочисленное поле, в котором хранится целое значение для каждой категории класса

Feature Layer
out_classifier_definition

Выходной файл JSON, который содержит информацию об атрибутах, статистику, гиперплоскостные векторы и другую информацию, необходимую для классификатора. Создан файл .ecd.

File
in_additional_raster
(Дополнительный)

Включает вспомогательные наборы растровых данных, например, сегментированное изображение или ЦМР. Это дополнительный параметр.

Raster Layer; Mosaic Layer; Image Service; String
used_attributes
[used_attributes,...]
(Дополнительный)

Укажите атрибуты, которые будут включены в связанную с выходным растром таблицу атрибутов.

  • COLORЗначения цветов RGB получаются из входного растра по сегментам.
  • MEANСредний цифровой номер (DN), выведенный из дополнительного пиксельного изображения, на основе каждого сегмента.
  • STDСтандартное отклонение, полученное из дополнительного пиксельного изображения, на основе каждого сегмента.
  • COUNTЧисло пикселов, составляющих сегмент, на основе каждого сегмента.
  • COMPACTNESSСоединяет сегменты, которые были разрезаны границами листов в процессе сегментации. Значения находятся в диапазоне от 0 до 1, где 1 соответствует кругу.
  • RECTANGULARITYСтепень, определяющая, насколько сегмент является прямоугольным, на основе каждого сегмента. Значения находятся в диапазоне от 0 до 1, где 1 соответствует прямоугольнику.

Это параметр активен только в тех случаях, когда для входного растра выбран ключевой параметр Сегментированный (Segmented). Если для входных данных инструмента используется только сегментированное изображение, то атрибутами по умолчанию будут COLOR, COUNT, COMPACTNESS и RECTANGULARITY. Если в качестве входных данных вместе с сегментированным изображением также используется in_additional_raster, то тогда также будут доступны атрибуты MEAN и STD.

String
dimension_value_field
(Дополнительный)

Содержит значения измерений во входном классе объектов обучающей выборки.

Этот параметр необходим для классификации временных серий растровых данных с использованием выходного растра анализа изменений, полученного в результате работы инструмента Анализировать изменения с помощью CCDC.

Field

Пример кода

TrainMaximumLikelihoodClassifier, пример 1 (окно Python)

В следующем скрипте окна Python показано, как используется инструмент TrainMaximumLikelihoodClassifier.

import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

TrainMaximumLikelihoodClassifier("c:/test/moncton_seg.tif", "c:/test/train.gdb/train_features", 
                                 "c:/output/moncton_sig.ecd", "c:/test/moncton.tif", 
                                 "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
TrainMaximumLikelihoodClassifier, пример 2 (автономный скрипт)

В данном примере показано, как использовать классификатор по методу максимального правдоподобия с обучением.

# Import system modules
import arcpy
from arcpy.ia import *

"""
Usage: TrainMaximumLikelihoodClassifier(in_raster, in_training_features, out_classifier_definition, 
                                       {in_additional_raster}, {used_attributes})
"""

# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/moncton_sig.ecd"
in_additional_raster = "c:/moncton.tif"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

# Execute 
TrainMaximumLikelihoodClassifier(inSegRaster, train_features, out_definition, 
                                 in_additional_raster, attributes)
TrainMaximumLikelihoodClassifier, пример 3 (автономный скрипт)

В данном примере показано, как обучить классификатор по методу максимального правдоподобия, используя растр анализа изменений из инструмента Анализ изменений с помощью CCDC.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")


# Define input parameters
in_changeAnalysisRaster = "c:/test/LandsatCCDC.crf"
train_features = "c:/test/train.gdb/train_features"
out_definition = "c:/output/change_detection.ecd"
additional_raster = ''
attributes = None
dimension_field = "DateTime"

# Execute 
arcpy.ia.TrainMaximumLikelihoodClassifier(
	in_changeAnalysisRaster, train_features, out_definition, 
	additional_raster, attributes, dimension_field)

Информация о лицензиях

  • Basic: Требуется Image Analyst or Spatial Analyst
  • Standard: Требуется Image Analyst or Spatial Analyst
  • Advanced: Требуется Image Analyst or Spatial Analyst

Связанные разделы