Начало работы с Data Reviewer

Доступно с лицензией Data Reviewer.

Чтобы производить высококачественные информационные продукты и выполнять точный пространственный анализ, ваши исходные данные должны быть высокого качества и в хорошем состоянии. Data Reviewer позволяет управлять данными для производства и анализа данных, предоставляя систему автоматизации и упрощения контроля качества данных, которая может улучшить целостность данных.

Data Reviewer содержит ряд инструментов контроля качества (QC), которые позволяют выполнять эффективный и последовательный процесс проверки данных. Это инструменты, которые поддерживают автоматический и полуавтоматический анализ данных для обнаружения ошибок в целостности объектов, атрибутов или пространственных отношений с другими объектами. Обнаруженные ошибки сохраняются, и вы можете просмотреть их, чтобы исправить рабочие процессы и составить отчет о качестве данных.

Проверка данных в автоматическом режиме

Автоматическая проверка данных - оценка качества объекта, не требующая вмешательства пользователя. В Data Reviewer есть библиотека настраиваемых проверок, позволяющих вам проверять данные на их соответствие требованиям к качеству. Проверки настраиваются с целью оценки различных аспектов качества объекта и его пригодности для работы.

Более подробно об использовании Data Reviewer для выполнения автоматических рабочих процессов оценки качества данных см. в следующих разделах:

Полуавтоматическая проверка данных

Методы автоматической проверки не гарантируют обнаружение всех имеющихся ошибок в данных. Полуавтоматическая проверка представляет собой процесс оценки качества данных с помощью методов, которые предполагают, как правило, управляемые процессы, в которых требуется человеческое участие и ввод данных. Визуальная проверка является наиболее распространенной формой полуавтоматической проверки и используется для проведения оценки качества такими способами, которые не могут использоваться для проведения автоматической проверки. К таким случаям может быть отнесено обнаружение недостающих или неверно размещенных объектов, а также другие проблемы, которые автоматическая проверка может не выявить.

Более подробно о работе с Data Reviewer для проведения полуавтоматической оценки качества данных см. в следующих статьях:

Управление ошибками

Data Reviewer выполняет управление результатами проверок - от момента обнаружения ошибок до их исправления и подтверждения результатов. Эти функциональные возможности повышают качество данных за счет определения источника, местоположения и причин ошибок. Благодаря информации о том, как была обнаружена ошибка, кем исправлена и было ли исправление признано приемлемым, сокращаются затраты и устраняются дублирующиеся операции.

Обнаруженные при проверке данных ошибки отслеживаются в течение процесса жизненного цикла. В процессе три фазы жизненного цикла: Просмотр, Исправление и Подтверждение.

Фазы жизненного цикла Reviewer

Каждая фаза содержит одно или несколько значений статусов, описывающих действия, предпринятые при переходе ошибки из одной фазы в другую.

Более подробно о рабочих процессах управления ошибками в Data Reviewer см. в следующих статьях: