Подпись | Описание | Тип данных |
Входной растр | Набор растровых данных для классификации. | Raster Layer; Mosaic Layer; Image Service; String |
Максимальное число классов / Кластеров | Максимальное количество требуемых классов для группировки пикселов или сегментов. Оно должно быть больше числа классов в легенде. Возможно, что вы получите меньше классов, чем указано этим параметром. Если необходимо больше классов, увеличьте это значение и агрегируйте классы после завершения процесса обучения. | Long |
Выходной файл определения классификатора | Выходной файл формата JSON будет содержать информацию об атрибутах, статистику, гиперплоскостные векторы и другую информацию, необходимую для классификатора. Будет создан файл .ecd. | File |
Дополнительный входной растр (Дополнительный) | Вспомогательные наборы растровых данных, такие как мультиспектральный снимок или ЦМР, будут добавлены для создания атрибутов и другой необходимой для классификатора информации. Это дополнительный параметр. | Raster Layer; Mosaic Layer; Image Service; String |
Максимальное число итераций (Дополнительный) | Максимальное число итераций, выполняемых процессом кластеризации. Рекомендованный диапазон находится между 10 и 20 итерациями. Увеличение этого значения линейно увеличивает время обработки. | Long |
Минимальное число образцов в кластере (Дополнительный) | Минимальное число пикселов или сегментов в действительном кластере или классе. Значение 20, используемое по умолчанию, эффективно при создании статистически значимых классов. Вы можете увеличить это значение для более объемлющих классов, однако это может ограничить общее количество созданных классов. | Long |
Коэффициент пропуска (Дополнительный) | Максимальное число пропускаемых пикселов для входного пиксельного изображения. Если входным изображением является сегментированное, укажите число пропускаемых сегментов. | Long |
Используемые атрибуты сегментов (Дополнительный) | Укажите атрибуты, которые будут включены в связанную с выходным растром таблицу атрибутов. Это параметр активен только в тех случаях, когда для входного растра выбран ключевой параметр Сегментированный. Если для входных данных инструмента используется только сегментированное изображение, то атрибутами по умолчанию будут Цвет средней хроматичности, Число пикселов, Компактность и Прямоугольность. Если в качестве входных данных вместе с сегментированным изображением также используется значение Дополнительный входной растр, то тогда также будут доступны атрибуты Среднее число и Стандартное отклонение.
| String |
Максимальное число слияний кластеров на итерацию (Дополнительный) | Максимальное число слияний кластеров на итерацию. При увеличении числа слияний число создаваемых классов уменьшится. Меньшее значение приведет к созданию большего числа классов. | Long |
Максимальное расстояние слияния (Дополнительный) | Максимальное расстояние между центрами кластеров в пространстве объектов. Увеличение расстояния сделает возможным слияние большего числа кластеров, что позволит получить меньше классов. Меньшее значение приведет к созданию большего числа классов. Значения от 0 до 5, как правило, дают наилучшие результаты. | Double |
Доступно с лицензией Spatial Analyst.
Доступно с лицензией Image Analyst.
Краткая информация
Создает файл определения классификатора Esri (.ecd) с использованием определения классификации Изокластер.
Этот инструмент выполняет неконтролируемую классификацию.
Использование
Любой поддерживаемый Esri растр принимается в качестве входных данных, включая растровые продукты, сегментированный растр, мозаики, сервисы изображений или наборы растровых данных в общих форматах. Сегментированные растры должны быть 8-битными с 3 каналами.
Параметр Атрибуты сегмента активен только в том случае, когда одним из входных растровых слоёв является сегментированное изображение.
Параметры
TrainIsoClusterClassifier(in_raster, max_classes, out_classifier_definition, {in_additional_raster}, {max_iterations}, {min_samples_per_cluster}, {skip_factor}, {used_attributes}, {max_merge_per_iter}, {max_merge_distance})
Имя | Описание | Тип данных |
in_raster | Набор растровых данных для классификации. | Raster Layer; Mosaic Layer; Image Service; String |
max_classes | Максимальное количество требуемых классов для группировки пикселов или сегментов. Оно должно быть больше числа классов в легенде. Возможно, что вы получите меньше классов, чем указано этим параметром. Если необходимо больше классов, увеличьте это значение и агрегируйте классы после завершения процесса обучения. | Long |
out_classifier_definition | Выходной файл формата JSON будет содержать информацию об атрибутах, статистику, гиперплоскостные векторы и другую информацию, необходимую для классификатора. Будет создан файл .ecd. | File |
in_additional_raster (Дополнительный) | Вспомогательные наборы растровых данных, такие как мультиспектральный снимок или ЦМР, будут добавлены для создания атрибутов и другой необходимой для классификатора информации. Это дополнительный параметр. | Raster Layer; Mosaic Layer; Image Service; String |
max_iterations (Дополнительный) | Максимальное число итераций, выполняемых процессом кластеризации. Рекомендованный диапазон находится между 10 и 20 итерациями. Увеличение этого значения линейно увеличивает время обработки. | Long |
min_samples_per_cluster (Дополнительный) | Минимальное число пикселов или сегментов в действительном кластере или классе. Значение 20, используемое по умолчанию, эффективно при создании статистически значимых классов. Вы можете увеличить это значение для более объемлющих классов, однако это может ограничить общее количество созданных классов. | Long |
skip_factor (Дополнительный) | Максимальное число пропускаемых пикселов для входного пиксельного изображения. Если входным изображением является сегментированное, укажите число пропускаемых сегментов. | Long |
used_attributes [used_attributes;used_attributes,...] (Дополнительный) | Укажите атрибуты, которые будут включены в связанную с выходным растром таблицу атрибутов.
Это параметр активен только в тех случаях, когда для входного растра выбран ключевой параметр Сегментированный (Segmented). Если для входных данных инструмента используется только сегментированное изображение, то атрибутами по умолчанию будутCOLOR, COUNT, COMPACTNESS и RECTANGULARITY. Если в качестве входных данных вместе с сегментированным изображением также используется in_additional_raster, то тогда также будут доступны атрибуты MEAN и STD. | String |
max_merge_per_iter (Дополнительный) | Максимальное число слияний кластеров на итерацию. При увеличении числа слияний число создаваемых классов уменьшится. Меньшее значение приведет к созданию большего числа классов. | Long |
max_merge_distance (Дополнительный) | Максимальное расстояние между центрами кластеров в пространстве объектов. Увеличение расстояния сделает возможным слияние большего числа кластеров, что позволит получить меньше классов. Меньшее значение приведет к созданию большего числа классов. Значения от 0 до 5, как правило, дают наилучшие результаты. | Double |
Пример кода
Следующий скрипт окна Python использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
TrainIsoClusterClassifier("c:/test/moncton_seg.tif", "10",
"c:/output/moncton_sig_iso.ecd","c:/test/moncton.tif",
"5", "10", "2", "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY")
Данный примерный скрипт использует классификатор Изокластер для создания файла определения неконтролируемой классификации Esri с максимум десятью классами.
# Import system modules
import arcpy
from arcpy.ia import *
"""Usage: TrainIsoClusterClassifier(in_raster, max_num_classes,
out_classifier_definition, {in_additional_raster},
{max_num_iterations}, {min_num_samples_per_cluster},
{skip_factor},{used_attributes})
"""
# Set local variables
inSegRaster = "c:/test/moncton_seg.tif"
maxNumClasses = "10"
out_definition = "c:/output/moncton_sig_iso.ecd"
in_additional_raster = "moncton.tif"
maxIteration = "20"
minNumSamples = "10"
skipFactor = "5"
attributes = "COLOR;MEAN;STD;COUNT;COMPACTNESS;RECTANGULARITY"
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Execute
TrainIsoClusterClassifier(inSegRaster, maxNumClasses,
out_definition,in_additional_raster,
maxIteration, minNumSamples, skipFactor, attributes)
Параметры среды
Особые случаи
Информация о лицензиях
- Basic: Обязательно Image Analyst or Spatial Analyst
- Standard: Обязательно Image Analyst or Spatial Analyst
- Advanced: Обязательно Image Analyst or Spatial Analyst