Подпись | Описание | Тип данных |
Растр Из | Входные изображения предыдущего растра. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
Растр В | Входные изображения последнего растра. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
Выходной классифицированный растр | Выходной классифицированный растр с отображением изменений. | Raster Dataset |
Определение модели | Значением параметра Определение модели Esri может быть JSON файл определения модели Esri (.emd), строка JSON или пакет модели глубокого обучения (.dlpk). Строка JSON полезна при использовании инструмента на сервере, чтобы вы могли вставить необходимую строку JSON, вместо загрузки файла .emd. Файл .dlpk должен быть сохранен локально. Он содержит путь к файлу двоичной модели глубокого обучения, путь к используемой растровой функции Python и другие параметры, такие как предпочтительный размер листа или отступы. | File; String |
Аргументы (Дополнительный) | Аргументы функции определяются в классе функции растра Python. Там перечисляются дополнительные параметры глубокого обучения и аргументы для экспериментов и улучшения, например, порог достоверности для настройки чувствительности. Названия аргументов заполняются при чтении модуля Python. | Value Table |
Доступно с лицензией Image Analyst.
Краткая информация
Запускает обученную модель глубокого обучения для обнаружения изменений между двумя растрами.
Для этого инструмента требуется файл определения модели, содержащий обученную информацию о модели. Файл определения модели может быть файлом JSON определения модели Esri (.emd) или пакетом модели глубокого обучения, и он должен содержать путь к растровой функции Python, вызываемой для обработки каждого объекта, и путь к обученному двоичному файлу модели глубокого обучения.
Использование
Входными данными для этого инструмента являются два изображения: изображение предыдущего времени и изображение более позднего времени. Выходные данные представляют собой классифицированный набор растровых данных, который показывает изменение между двумя входными растровыми данными.
Необходимо установить соответствующую среду глубокого обучения Python API (например, TensorFlow или PyTorch) в среду ArcGIS Pro Python; в противном случае при добавлении файла определения модели Esri в инструмент появится сообщение об ошибке. Получите соответствующую информацию о платформе от создателя файла определения модели Esri.
Чтобы настроить компьютер на работу в среде глубокого обучения в ArcGIS Pro, см. раздел Установка сред глубокого обучения для ArcGIS.
Этот инструмент вызывает сторонний API для глубокого обучения Python (такой как TensorFlow, PyTorch или Keras) и использует указанную функцию растра Python для обработки каждого объекта.
Значением параметра Определение модели Esri может быть JSON файл определения модели Esri (.emd), строка JSON или пакет модели глубокого обучения (.dlpk). Строка JSON полезна при использовании инструмента на сервере, чтобы вы могли вставить необходимую строку JSON, вместо загрузки файла .emd. Файл .dlpk должен быть сохранен локально.
Могут потребоваться дополнительные входные параметры, такие как размер mini-batch, размер заполнения и т.д.
Используйте пример ниже для файла JSON определения модели .emd.
Пример файла JSON определения модели.
{ "Framework": "", "ModelConfiguration":" ", "ModelFile":"", "InferenceFunction":"", "ModelType":"", "ImageHeight":256, "ImageWidth":256, "ExtractBands":[0,1,2], "CropSizeFixed": 1, "BlackenAroundFeature": 1, "Classes": [ { "Value": 0, "Name": "Building", "Color": [255, 0, 0] } ] }
Увеличение размера пакета может улучшить производительность инструмента, но при этом увеличение размера пакета приводит к расходованию большего объема памяти. Если возникает ошибка нехватки памяти, используйте меньший размер пакета. Значение batch_size может быть выровнено с использованием параметра Аргумент.
Размерами пакета являются результаты возведения в квадрат, например 1, 4, 9, 16, 25, 64 и т.д. Если входное значение не четкий квадрат, используется максимально возможный квадрат. Например, если указано значение 6, размер пакета будет равен 4.
Информацию о требованиях к запуску этого инструмента и проблемах, с которыми вы можете столкнуться, см. в разделе Часто задаваемые вопросы по глубокому обучению.
Дополнительную информацию о глубоком обучении см. в разделе Глубокое обучение в ArcGIS Pro.
Параметры
DetectChangeUsingDeepLearning(from_raster, to_raster, out_classified_raster, in_model_definition, {arguments})
Имя | Описание | Тип данных |
from_raster | Входные изображения предыдущего растра. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
to_raster | Входные изображения последнего растра. | Raster Dataset; Raster Layer; Mosaic Layer; Image Service; Map Server; Map Server Layer; Internet Tiled Layer |
out_classified_raster | Выходной классифицированный растр с отображением изменений. | Raster Dataset |
in_model_definition | Значением параметра in_model_definition может быть JSON файл определения модели Esri (.emd), строка JSON или пакет модели глубокого обучения (.dlpk). Строка JSON полезна при использовании инструмента на сервере, чтобы вы могли вставить необходимую строку JSON, вместо загрузки файла .emd. Файл .dlpk должен быть сохранен локально. Он содержит путь к файлу двоичной модели глубокого обучения, путь к используемой растровой функции Python и другие параметры, такие как предпочтительный размер листа или отступы. | File; String |
arguments [arguments,...] (Дополнительный) | Аргументы функции определяются в классе функции растра Python. Там перечисляются дополнительные параметры глубокого обучения и аргументы для экспериментов и улучшения, например, порог достоверности для настройки чувствительности. Названия аргументов заполняются при чтении модуля Python. | Value Table |
Пример кода
В этом примере запускается модель глубокого обучения для обнаружения изменений между двумя изображениями.
# Import system modules
import arcpy
from arcpy.ia import *
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
DetectChangeUsingDeepLearning("c://detectchange//input_image1.tif",
"c://detectchange//input_image2.tif", "c://detectchange//output_difference.tif",
"c://detectchange/detectBuilding.emd", "padding 0;score_threshold 0.6;batch_size 4")
В этом примере запускается модель глубокого обучения для обнаружения изменений между двумя изображениями.
# Import system modules
import arcpy
from arcpy.ia import *
"""
Usage: DetectObjectsUsingDeepLearning(from_raster, to_raster, out_classified_raster,
in_model_definition, {model_arguments})
"""
# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")
# Set local variable
from_raster = r"c:/detectchange/input_image1.tif"
to_raster = r"c:/detectchange/input_image2.tif"
out_classified_raster = r"c:/detectchange/output_difference.tif"
in_model_definition = r"c:/ detectchange/detectbuilding.emd"
# arcpy.env.processorType = "GPU"
# arcpy.env.gpuId = 0
# Execute
DetectChangeUsingDeepLearning(from_raster, to_raster, out_classified_raster,
in_model_definition, "padding 0;score_threshold 0.6;batch_size 4")
Параметры среды
Информация о лицензиях
- Basic: Обязательно Image Analyst
- Standard: Обязательно Image Analyst
- Advanced: Обязательно Image Analyst