Область солнечного излучения (Spatial Analyst)

Доступно с лицензией Spatial Analyst.

Краткая информация

Выводит поступающее солнечное излучение из поверхности растра.

Прежние версии:

Этот инструмент является Устаревшим и будет удален в будущих версиях.

Инструмент Растр Солнечное излучение поддерживает улучшенную функциональность или производительность.

Более подробно о том, как вычисляется солнечное излучение

Использование

  • Вычисление инсоляции может занимать значительный промежуток времени, для больших цифровых моделей рельефа (DEM) – до нескольких часов, а для очень больших – даже нескольких дней. Вы можете сделать ряд тестовых запусков с использованием меньшего разрешения или вырезав поднабор данных, чтобы убедиться, что вы указали корректные параметры, перед тем как запустить процесс получения данных в максимальном разрешении.

  • Выходные растры радиации всегда будут представлены числами с плавающей точкой и выражены в ваттах на квадратный метр (Вт/м2). Растр продолжительности прямого излучения будет целочисленным, а единицами измерения его значений будут часы.

  • Широта изучаемой области (единицы измерения: десятичные градусы, значения положительные для северного полушария и отрицательные для южного полушария).

    Методика анализа разработана специально для ландшафтов локального уровня, поэтому рекомендуется для всей ЦМР использовать одно значение широты. Для больших наборов данных, например, штатов, стран или континентов, результаты инсоляции будут значительно различаться на разных широтах (отличающихся более, чем на 1 градус). Для анализа более обширных географических регионов, необходимо разделить изучаемую территорию на зоны с различными широтами.

  • Для многодневных моделей, максимальное количество дней может быть равно одному году (365 дней, или 366 для високосного года). Если дата первого дня превышает дату последнего дня, вычисления времени будут продолжены с переходом на следующий год.

    Например, выражение [start day, end day] = [365, 31] подразумевает временной интервал с 31 декабря до 31 января следующего года. Например, когда параметр определен как [1, 2], в вычислениях будет использован период от первого дня с 0:00 часов (1 января) до 0:00 второго дня (2 января). Даты первого и последнего дня не могут совпадать.

  • Значение этого года для времени конфигурации используется для определения високосного года. Другого влияния на анализ солнечного излучения оно не имеет, поскольку анализ солнечного излучения является функцией временного периода, определенного днями Юлианского календаря.

  • Для однодневных моделей, максимальный диапазон времени составляет один день (24 часа). Расчеты не будут производиться по дням (например, с 12:00 до 12:00 следующего дня). Начальное время должно быть меньше времени окончания.

  • Для однодневных конфигураций времени время начала и окончания вычислений отображается как солнечное время (единицы измерения: десятичные часы). Используйте диалог преобразования времени для перевода местного стандартного времени в солнечное время (в формате часы, минуты, секунды – (HMS). При преобразовании локального стандартного времени в солнечное, программа использует уравнение времени.

  • В тех случаях, когда z-значения поверхности выражены в единицах измерения, отличающихся от наземных единиц измерения x,y, для корректировки вычислений используют коэффициента по z. Чтобы получить корректный результат, z-единицы должны совпадать с наземными единицами измерения x,y. Если единицы отличаются, используйте коэффициент z, чтобы преобразовать единицы z в единицы x,y. Например, если x,y-единицами измерения являются метры, а z-единицами – футы, то можно использовать z-коэффициент 0,3048 для преобразования футов в метры.

  • Рекомендуется использовать данные в системе координат проекции с единицами измерения – метрами. Если вы запустите анализ со сферической системой координат, необходимо задать соответствующий z-фактор для широты. Далее следует список подходящих z-факторов для использования, если единицы измерения ваших координат x,y – десятичные градусы, а единицы измерения по z – метры:

        Latitude     Z-factor
           0         0.00000898
          10         0.00000912
          20         0.00000956
          30         0.00001036
          40         0.00001171
          50         0.00001395
          60         0.00001792
          70         0.00002619
          80         0.00005156
  • Широта изучаемой области (единицы измерения: десятичные градусы, значения положительные для северного полушария и отрицательные для южного полушария). Поскольку методика анализа солнечного излучения разработана для ландшафтов локального уровня, допускается использование одного значения широты для всей ЦМР. Для анализа более обширных географических регионов, необходимо разделить изучаемую территорию на зоны с различными широтами.

  • Для входных растров поверхности, имеющих пространственную привязку, автоматически вычисляется средняя широта; в противном случае, значение широты по умолчанию будет равно 45 градусам. Если вы работаете с входным слоем, используется пространственная привязка фрейма данных.

  • Размер неба определяется разрешением растров видимости, карты неба и карты солнечного излучения, которые используются в вычислениях радиации (единицы измерения: ячейки на одну сторону) Это перевернутые полусферические растровые представления неба, которые не привязаны к географической системе координат. Эти растры представляют собой квадраты (имеют равное количество строк и столбцов).

    Ниже представлены рекомендованные размеры неба при настройке времени на весь год или когда используется несколько дней:

    • Для интервала в 1 день используйте размер неба, равный 1000 и выше.
    • Для интервала в 0,25 дня используйте размер неба, равный 2000 и выше.
    • Для интервала в 0,1 часа используйте размер неба, равный 4000 и выше.

    Увеличение размера неба повышает точность вычислений, но также значительно увеличивает время, необходимое на выполнение вычислений.

  • Если параметр дневной интервал маленький (например, < 14 дней), используйте больший размер неба. В ходе анализа для вычисления прямого излучения для представления положения солнца (траекторий движения солнца для конкретных временных периодов) используется карта солнца (определяемая размером неба). При еще меньших интервалах (в днях), если разрешение размера неба недостаточно велико, траектории солнца могут перекрываться, в результате чего для этих траекторий радиация будет равна нулю или ее величины будут незначительны. Увеличение разрешения дает более точный результат.

  • Значение 10 000 является максимальным размером неба. Значение 200 – это значение по умолчанию, и оно достаточно для больших ЦМР с большими временными интервалами (например, > 14 дней). Значение размера 512 достаточно для вычислений в местоположении точки, где время вычисления – менее важная проблема. В меньших дневных интервалах (например, < 14 дней), рекомендуется использовать большие значения. Например, чтобы вычислить инсоляцию для местоположения на экваторе с временным интервалом = 1 день, используйте размер неба, равный 2800 или выше.

  • Рекомендуется использовать временные интервалы длиннее 3 дней, так как траектории движения солнца в пределах трех дней, как правило, пересекаются, в зависимости от размера неба и времени года. Для вычислений инсоляции за весь год с месячным интервалом, временной интервал, выраженный в днях, не используется, и программа применяет интервалы календарного месяца. Значение, предлагаемое по умолчанию, равно 14.

  • Поскольку вычисления видимости могут быть достаточно интенсивными, для целого ряда заданных направлений вычислений отслеживаются только горизонтальные углы. Действительные значения должны быть множителями 8 (8, 16, 24, 32 и так далее). Как правило, для областей с мягким рельефом подходит значение 8 или 16, а значение 32 должно быть использовано для территорий усложненным рельефом. Значение, предлагаемое по умолчанию, равно 32.

  • Число необходимых направлений вычислений связано с разрешением входной ЦМР. Модель земной поверхности с разрешением 30 м обычно представляет собой довольно сглаженную поверхность, следовательно, для большинства ситуаций достаточно использовать меньшее количество направлений (16 или 32). Для ЦМР с более высоким разрешением, и в особенности, для тех случаев, когда в ЦМР отражены искусственные структуры, количество направлений необходимо увеличить. Увеличение количества направлений повысит точность, но при этом возрастет и время, необходимое на выполнение вычислений.

  • Опция Создавать выходные данные для каждого интервала обеспечивает гибкость вычисления совокупной радиации за установленный период времени либо радиации по временным рядам. Например, для временного интервала в один день с часовым интервалом, включение этого параметра приведет к созданию почасовых значений радиации; в противном случае, будет вычислена суммарная радиации для всего дня.

  • Параметр Создать выходные данные для каждого интервала влияет на формат и число выходных файлов радиации. Когда стоит отметка для этого параметра, выходной растр будет состоять из нескольких каналов, которые соответствуют значениям излучения или продолжительности для каждого временного интервала (часового интервала в тех случаях, когда временной интервал составляет меньше одного дня, либо интервала в один день, в тех случаях, когда временной интервал составляет несколько дней).

  • Доля рассеивания – это часть общего нормального потока излучения, которая рассеивается. Значения находятся в диапазоне от 0 до 1. Это значение должно устанавливаться в соответствии с атмосферными условиями. Типичные значения – это 0.2 для очень ясного неба и 0.3 – для, в целом, ясного неба.

  • Объем солнечного излучения, полученного поверхностью, – это только часть излучения, полученного за пределами атмосферы. Удельный коэффициент пропускания является свойством атмосферы и представляет собой соотношение энергии (среднее значение всех длин волн), достигающей поверхности земли, к энергии, полученной на верхней границе атмосферы (внеземной). Типичные значения находятся в диапазоне от 0 (нет пропускания радиации) до 1 (полное пропускание). Типичные значения – 0,6 или 0,7 для очень ясного неба и 0,5 для, в целом, ясного неба.

    Значение энергии, полученное на поверхности земли, измеряется на кратчайшем пути через атмосферу (когда солнце в зените или над головой) и для уровня моря. Для областей за Южным тропиком и Северным тропиком солнце не может быть точно в зените, даже во время полудня; однако, это значение всегда относится к времени, когда солнце в зените. Так как алгоритм корректирует эффекты рельефа, удельный эффект пропускания всегда должен быть дан для уровня моря.

    Пропускная способность обратно пропорциональна параметру доли рассеивания.

  • См. раздел Параметры среды анализа и Spatial Analyst для получения дополнительной информации о среде геообработки данного инструмента.

Параметры

ПодписьОписаниеТип данных
Входной растр

Входной растр поверхности высот.

Raster Layer
Широта
(Дополнительный)

Широта изучаемой области. Единицы – десятичные градусы, где положительные значения – для северного полушария, а отрицательные – для южного.

Для входных растров поверхности, имеющих пространственную привязку, автоматически вычисляется средняя широта; в противном случае, значение широты по умолчанию будет равно 45 градусам.

Double
Размер / Разрешение
(Дополнительный)

Разрешение или размер неба для гридов видимости, карты неба и карты солнца. Единицами являются ячейки.

По умолчанию это растр размером 200 на 200 ячеек.

Long
Конфигурация времени
(Дополнительный)

Определяет период времени, который будет использоваться в вычислениях.

  • Определенные дни – будет вычислена солнечная радиация для дней солнцестояния (летнего и зимнего) и равноденствия (инсоляция для весеннего и осеннего равноденствия одинакова).
  • В течение дня – будут выполнены вычисления для особого периода времени в течение одного дня.

    Выберите день юлианского календаря и введите начальное и конечное время. Когда начальное и конечное время одинаковы, то будет рассчитана мгновенная инсоляция. Когда начальное время наступает раньше времени восхода солнца и конечное время наступает позже захода солнца, то инсоляция будет рассчитана для всего дня.

    • Для ввода правильного дня, вы можете использовать кнопку Календарь для того, чтобы открыть окно Календарь.
  • Множество дней – выполняет расчеты для определенного периода, включающего множество дней в течение года.

    Укажите начало года, начальный день и конечный день. Когда конечный день короче начального, то считается, что конечный день принадлежит следующему году. Время конфигурации по умолчанию начинается на 5-й день и заканчивается на 160-й день действующего Юлианского календаря.

    • Для ввода правильного дня, вы можете использовать кнопку Календарь для того, чтобы открыть окно Календарь.
  • Целый год – будут выполнены расчеты для всего года, используя месячные интервалы для вычислений.

    Если параметр Создавать выходные данные для каждого интервала включен, то выходные файлы будут создаваться для каждого месяца; в противном случае, будет создано одно выходное значение для всего года.

Time configuration
Дневной интервал
(Дополнительный)

Временной интервал в течение года (единицы: дни), который будет использоваться для вычисления секторов неба для карты солнечного освещения.

Значение по умолчанию равно 14 дням (две недели).

Long
Часовой интервал
(Дополнительный)

Временной интервала в течение года (единицы: часы), который будет использоваться для вычисления секторов неба для карты солнечного освещения.

Значение, предлагаемое по умолчанию, равно 0.5.

Double
Создавать выходные данные из каждого интервала
(Дополнительный)

Задает, будет ли вычисляться одно значение полной инсоляции для всех ячеек или несколько значений для заданного часового или дневного интервала.

  • Не отмечено – Одно значение общего излучения будет вычислено для всей временной конфигурации. Это значение по умолчанию
  • Отмечено – Несколько значений излучения будут вычисляться для каждого временного интервала для всей временной конфигурации. Количество выходных данных будет зависеть от часового и дневного интервала. Например, для всего года с интервалами в месяц, результат будет содержать 12 выходных значений радиации для каждого местоположения. Выходной растр будет состоять из нескольких каналов, которые соответствуют значениям излучения или продолжительности для каждого временного интервала.
Boolean
Z коэффициент
(Дополнительный)

Количество единиц x,y в одной единице поверхности z.

Коэффициент z приводит в соответствие единицы измерения z-значений в том случае, если они отличаются от единиц измерения координат x,y входной поверхности. При вычислении результирующей выходной поверхности z-значения входной поверхности умножаются на коэффициент по z.

Если координаты x,y и z-значения приведены в одной и той же системе координат, коэффициент z равен 1. Это значение по умолчанию

Если единицы x,y и z используют разные единицы измерения, то коэффициент z должен быть задан соответствующим образом, иначе результаты будут некорректными.

Например, если единицы измерения для z-значений – футы, а координаты x,y приведены в метрах, для преобразования z-значений из футов в метры вы должны использовать z-коэффициент, равный 0,3048 (1 фут = 0,3048 метра).

Double
Тип входного уклона и экспозиции
(Дополнительный)

Определяет, как можно получить информацию об уклоне и экспозиции для анализа.

  • Из входного растра поверхностиРастры уклонов поверхности и экспозиции склонов вычисляются по входному растру поверхности. Это значение по умолчанию
  • Из плоской поверхностиДля значений уклонов и экспозиции используются постоянные значения.
String
Направления вычислений
(Дополнительный)

Число азимутных направлений, которые будут использоваться при вычислении видимости.

Действительные значения должны быть множителями 8 (8, 16, 24, 32 и так далее). Значение по умолчанию – 32 направления; это значение хорошо подходит для сложной топографии.

Long
Деления зенита
(Дополнительный)

Число делений зенита, которое будет использоваться для создания секторов неба на карте неба.

Значение по умолчанию равно восьми делениям (относительно зенита). Значения должны быть больше нуля и меньше, чем половина значения размера неба.

Long
Деления азимута
(Дополнительный)

Число делений азимута, которое будет использоваться для создания секторов неба на карте неба.

Значение по умолчанию равно восьми делениям (относительно севера). Действительные значения должны быть кратны 8. Значения должны быть больше нуля и меньше 160.

Long
Тип модели диффузности
(Дополнительный)

Задает тип модели рассеивания радиации, который будет использоваться.

  • Стандартная модель небаБудет использоваться унифицированная модель рассеивания. Поступающая рассеянная радиация одинакова для всех направлений на небе. Это значение по умолчанию
  • Стандартная модель пасмурного небаСтандартная модель рассеивания при сплошной облачности, которая будет использоваться. Поступающий поток рассеянной радиации меняется в зависимости от угла зенита.
String
Пропорции диффузности
(Дополнительный)

Доля совокупного потока радиации, которая рассеивается. Значения находятся в диапазоне от 0 до 1.

Задайте это значение в соответствии с атмосферными условиями. Значение по умолчанию равно 0.3 и соответствует, в целом, ясному небу.

Double
Удельный коэффициент пропускания
(Дополнительный)

Доля радиации, проходящей через атмосферу (усредненная для всех длин волн). Значения находятся в диапазоне от 0 (нет пропускания) до 1 (полное пропускание радиации).

Значение по умолчанию равно 0.5 и соответствует, в целом, ясному небу.

Double
Выходной растр направленного излучения
(Дополнительный)

Выходной растр, представляющий поступающее прямое солнечное излучение для каждого местоположения.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster Dataset
Выходной растр диффузного излучения
(Дополнительный)

Выходной растр, представляющий поступающее прямое солнечное излучение для каждого местоположения.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster Dataset
Выходной растр продолжительного излучения
(Дополнительный)

Выходной растр, представляющий продолжительность поступающего прямого солнечного излучения.

Единицы измерения выходных данных – часы.

Raster Dataset

Возвращаемое значение

ПодписьОписаниеТип данных
Выходной растр глобального излучения

Выходной растр, представляющий совокупное излучение или общее количество поступающего солнечного излучения (прямого + рассеянного), вычисляемого для каждого местоположения входной поверхности.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster

AreaSolarRadiation(in_surface_raster, {latitude}, {sky_size}, {time_configuration}, {day_interval}, {hour_interval}, {each_interval}, {z_factor}, {slope_aspect_input_type}, {calculation_directions}, {zenith_divisions}, {azimuth_divisions}, {diffuse_model_type}, {diffuse_proportion}, {transmittivity}, {out_direct_radiation_raster}, {out_diffuse_radiation_raster}, {out_direct_duration_raster})
ИмяОписаниеТип данных
in_surface_raster

Входной растр поверхности высот.

Raster Layer
latitude
(Дополнительный)

Широта изучаемой области. Единицы – десятичные градусы, где положительные значения – для северного полушария, а отрицательные – для южного.

Для входных растров поверхности, имеющих пространственную привязку, автоматически вычисляется средняя широта; в противном случае, значение широты по умолчанию будет равно 45 градусам.

Double
sky_size
(Дополнительный)

Разрешение или размер неба для гридов видимости, карты неба и карты солнца. Единицами являются ячейки.

По умолчанию это растр размером 200 на 200 ячеек.

Long
time_configuration
(Дополнительный)

Задает конфигурацию времени (период), используемую для вычисления солнечного излучения.

Объекты класса Time будут использованы для определения конфигурации времени.

Различными типами конфигурации времени являются: TimeWithinDay, TimeMultipleDays, TimeSpecialDays и TimeWholeYear.

Ниже приведены формы:

  • TimeWithinDay({day},{startTime},{endTime})
  • TimeMultipleDays({year},{startDay},{endDay})
  • TimeSpecialDays()
  • TimeWholeYear({year})

По умолчанию конфигурация времени – TimeMultipleDays, где startDay равен 5 и endDay равен 160 - для текущего года по Юлианскому календарю.

Time configuration
day_interval
(Дополнительный)

Временной интервал в течение года (единицы: дни), который будет использоваться для вычисления секторов неба для карты солнечного освещения.

Значение по умолчанию равно 14 дням (две недели).

Long
hour_interval
(Дополнительный)

Временной интервала в течение года (единицы: часы), который будет использоваться для вычисления секторов неба для карты солнечного освещения.

Значение, предлагаемое по умолчанию, равно 0.5.

Double
each_interval
(Дополнительный)

Задает, будет ли вычисляться одно значение полной инсоляции для всех ячеек или несколько значений для заданного часового или дневного интервала.

  • NOINTERVALОдно значение общего излучения будет вычислено для всей временной конфигурации. Это значение по умолчанию
  • INTERVALНесколько значений излучения будут вычисляться для каждого временного интервала для всей временной конфигурации. Количество выходных данных будет зависеть от часового и дневного интервала. Например, для всего года с интервалами в месяц, результат будет содержать 12 выходных значений радиации для каждого местоположения. Выходной растр будет состоять из нескольких каналов, которые соответствуют значениям излучения или продолжительности для каждого временного интервала.
Boolean
z_factor
(Дополнительный)

Количество единиц x,y в одной единице поверхности z.

Коэффициент z приводит в соответствие единицы измерения z-значений в том случае, если они отличаются от единиц измерения координат x,y входной поверхности. При вычислении результирующей выходной поверхности z-значения входной поверхности умножаются на коэффициент по z.

Если координаты x,y и z-значения приведены в одной и той же системе координат, коэффициент z равен 1. Это значение по умолчанию

Если единицы x,y и z используют разные единицы измерения, то коэффициент z должен быть задан соответствующим образом, иначе результаты будут некорректными.

Например, если единицы измерения для z-значений – футы, а координаты x,y приведены в метрах, для преобразования z-значений из футов в метры вы должны использовать z-коэффициент, равный 0,3048 (1 фут = 0,3048 метра).

Double
slope_aspect_input_type
(Дополнительный)

Определяет, как можно получить информацию об уклоне и экспозиции для анализа.

  • FROM_DEMРастры уклонов поверхности и экспозиции склонов вычисляются по входному растру поверхности. Это значение по умолчанию
  • FLAT_SURFACEДля значений уклонов и экспозиции используются постоянные значения.
String
calculation_directions
(Дополнительный)

Число азимутных направлений, которые будут использоваться при вычислении видимости.

Действительные значения должны быть множителями 8 (8, 16, 24, 32 и так далее). Значение по умолчанию – 32 направления; это значение хорошо подходит для сложной топографии.

Long
zenith_divisions
(Дополнительный)

Число делений зенита, которое будет использоваться для создания секторов неба на карте неба.

Значение по умолчанию равно восьми делениям (относительно зенита). Значения должны быть больше нуля и меньше, чем половина значения размера неба.

Long
azimuth_divisions
(Дополнительный)

Число делений азимута, которое будет использоваться для создания секторов неба на карте неба.

Значение по умолчанию равно восьми делениям (относительно севера). Действительные значения должны быть кратны 8. Значения должны быть больше нуля и меньше 160.

Long
diffuse_model_type
(Дополнительный)

Задает тип модели рассеивания радиации, который будет использоваться.

  • UNIFORM_SKYБудет использоваться унифицированная модель рассеивания. Поступающая рассеянная радиация одинакова для всех направлений на небе. Это значение по умолчанию
  • STANDARD_OVERCAST_SKYСтандартная модель рассеивания при сплошной облачности, которая будет использоваться. Поступающий поток рассеянной радиации меняется в зависимости от угла зенита.
String
diffuse_proportion
(Дополнительный)

Доля совокупного потока радиации, которая рассеивается. Значения находятся в диапазоне от 0 до 1.

Задайте это значение в соответствии с атмосферными условиями. Значение по умолчанию равно 0.3 и соответствует, в целом, ясному небу.

Double
transmittivity
(Дополнительный)

Доля радиации, проходящей через атмосферу (усредненная для всех длин волн). Значения находятся в диапазоне от 0 (нет пропускания) до 1 (полное пропускание радиации).

Значение по умолчанию равно 0.5 и соответствует, в целом, ясному небу.

Double
out_direct_radiation_raster
(Дополнительный)

Выходной растр, представляющий поступающее прямое солнечное излучение для каждого местоположения.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster Dataset
out_diffuse_radiation_raster
(Дополнительный)

Выходной растр, представляющий поступающее прямое солнечное излучение для каждого местоположения.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster Dataset
out_direct_duration_raster
(Дополнительный)

Выходной растр, представляющий продолжительность поступающего прямого солнечного излучения.

Единицы измерения выходных данных – часы.

Raster Dataset

Возвращаемое значение

ИмяОписаниеТип данных
out_global_radiation_raster

Выходной растр, представляющий совокупное излучение или общее количество поступающего солнечного излучения (прямого + рассеянного), вычисляемого для каждого местоположения входной поверхности.

Выходные данные измеряются в ваттах на квадратный метр в час (Вт/м2).

Raster

Пример кода

AreaSolarRadiation, пример 1 (окно Python)

Пример скрипта окна Python для использования функции.

import arcpy
from arcpy.sa import *
from arcpy import env
env.workspace = "C:/sapyexamples/data"
outGlobalRadiation = AreaSolarRadiation("dem30", "", "400", TimeMultipleDays(2008,91,152))
outGlobalRadiation.save("C:/sapyexamples/output/glob_rad")
AreaSolarRadiation, пример 2 (автономный скрипт)

Вычислить общее количество поступающего солнечного излучения в географической области.

# Name: AreaSolarRadiation_example02.py
# Description: Derives incoming solar radiation from a raster surface. 
#              Outputs a global radiation raster and optional direct, diffuse and direct duration rasters
#              for a specified time period. (April to July).
#              
# Requirements: Spatial Analyst Extension

# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *

# Set environment settings
env.workspace = "C:/sapyexamples/output"

# Set local variables
inRaster = "C:/sapyexamples/data/solar_dem"
latitude = 35.75
skySize = 400
timeConfig = TimeMultipleDays(2008, 91, 212)
dayInterval = 14
hourInterval = 0.5
zFactor = 0.3048
calcDirections = 32
zenithDivisions = 16
azimuthDivisions = 16
diffuseProp = 0.7
transmittivity = 0.4
outDirectRad = ""
outDiffuseRad = ""
outDirectDur = Raster("C:/sapyexamples/output/dir_dur")


# Execute AreaSolarRadiation
outGlobalRad = AreaSolarRadiation(inRaster, latitude, skySize, timeConfig,
   dayInterval, hourInterval, "NOINTERVAL", zFactor, "FLAT_SURFACE",
   calcDirections, zenithDivisions, azimuthDivisions, "UNIFORM_SKY",
   diffuseProp, transmittivity, outDirectRad, outDiffuseRad, outDirectDur)

# Save the output 
outGlobalRad.save("C:/sapyexamples/output/glob_rad")

Информация о лицензиях

  • Basic: Обязательно Spatial Analyst
  • Standard: Обязательно Spatial Analyst
  • Advanced: Обязательно Spatial Analyst

Связанные разделы