Создание данных высот с помощью мастера ЦМР орто картографирования

Доступно с лицензией Advanced.

Данные высот можно извлечь из пар стерео-изображений, используя алгоритмы фотограмметрии. Стереопара состоит из двух изображений одной геолокации, снятых с разными перспективами.

Пары стерео-изображений, полученные с различных перспектив

Пары стерео-изображений из коллекции изображений используются для создания облаков точек (3D точек), из которых можно извлечь данные высот. Извлеченные данные высот могут использоваться для ортокартографирования коллекции изображений в рабочей области ортокартографирования.

Примечание:

На спутниковые снимки высокого разрешения в надире (снятые вертикально) не сильно влияют искажения, присущие аэрофотоснимкам, из-за большого расстояния между сенсором и землей, большого фокусного расстояния датчика (обычно 10 метров) и малого поля зрения. Эти факторы, совместно с информацией о точной ориентации в виде рациональных коэффициентов полинома (RPC), приводят к тому, что точность ЦМР и плотность расположения менее важны при создании точного ортоизображения, при условии, что правильно выполнено уравнивание внешнего ориентирования и выбраны корректные опорные точки. Шаг создания ЦМР часто пропускается, и существующие ЦМР USGS NED или SRTM в совокупности с точными наземными опорными точками выдают в результате ортоизображения Класса I или Класса II масштаба 1:5 000 и мельче.

3D точки, сгенерированные из стерео-пар в мастере ЦМР классифицируются по двум категориям:

  • Цифровая модель поверхности (ЦМП) – цифровые высоты Земли, которые не включают высоту каких-либо объектов на ней. Она также называется высотами обнаженной земли. Набор данных высот земли ЦМП используется для создания ортоизображения и мозаики ортоизображений.
  • Цифровая модель местности (ЦММ) – цифровые высоты Земли, включая высоту объектов на ней, таких как деревья и здания. ЦММ является ценным аналитическим набором данных, используемым для классификации объектов на ортоизображениях, например, различий асфальтового покрытия дорог и асфальтового покрытия крыш. Она не должна использоваться для ортотрансформирования изображения, если только исходное изображение не является вертикальным - без наклона зданий и других пространственных объектов, - для создания корректного ортоизображения.

ЦМП и ЦММ с отмывкой

Примечание:

Если местность плотно покрыта лесом или имеет другой густой растительный покров, то будет невозможно получить поверхность земли ЦМП, поскольку земля не видна. Самый подходящий продукт поверхности высот для участка с очень плотным лесом является ЦММ, которая создает поверхность, показывающую верхнюю часть полога леса.

Высоты можно получить, если коллекция изображений имеет большое количество перекрытий, чтобы сформировать стерео-пары. Обычное перекрытие изображений для создания облака точек – это 80-процентное перекрытие вдоль маршрута полета и 60-процентное перекрытие между маршрутами полетов, таким образом каждое местоположение на поверхности будет покрыто множеством изображений. Этот принцип часто используется при обработке изображений, полученных от беспилотных летательных аппаратов, цифровых аэрофотоснимков или определенных спутниковых снимков, полученных специально для стерео-приложений.

Этот мастер предоставляет два предварительно настроенных шага для получения результатов:

  1. Построение стереопар по коллекции изображений для вычисления облака точек.
  2. Интерполяция растра, при заданном пользователем разрешении, из облаков точек.

Вы можете изменить параметры обработки, установленные по умолчанию, но не можете удалить шаг из процесса. Чтобы пропустить какие-либо шаги или выполнить только некоторые, используйте мастер Пользовательский.

Страница Настройки облака точек

Задайте значения параметров на странице Настройки облака точек.

Параметры настроек облака точек

ПараметрОписание

Метод сопоставления

Задает метод сопоставления, который будет использоваться для создания облака точек:

  • Расширенное сопоставление поверхности (ETM) – метод стерео-сопоставления на основе объектов, который использует оператор Харриса для обнаружения характерных точек. Поскольку извлекается меньше характерных точек, этот метод является быстрым и может использоваться для данных с минимальными изменениями в рельефе и детальности. Это значение по умолчанию. 1
  • Полуглобальное сопоставление (SGM) — создает более плотные точки и дает более подробную информацию о рельефе. Он может использоваться для снимков городских территорий. В этом методе используются более интенсивные вычисления, чем в метод ETM.2
  • Сопоставление нескольких видов (MVM) – основывается на методе сопоставления SGM вместе с шагом совмещения данных, в котором сливаются избыточные измерения высоты в одной стерео модели. При этом создаются 3D-точки, и это вычислительно эффективно.3

Максимальный размер объекта (в метрах)

Радиус поиска, используемый для того, чтобы отфильтровать объекты над поверхностью. Объекты меньше порогового значения будут отфильтровываться как земная поверхность, остальные объекты будут рассматриваться как объекты над земной поверхностью, такие как здания, мосты или деревья. По умолчанию размер объекта составляет 10 метров.

Интервал на поверхности для точек

Интервал, с помощью которого создаются 3D-точки, в метрах.

Предполагаемый интервал равен пятикратному размеру исходного изображения в пикселах.

Минимальный угол пересечения (в градусах)

Облако точек создается из стереопары. Это значение в градусах, определяет минимальный допустимый угол стереопары. Значение по умолчанию равно 5 градусам.

Стереопара со слишком маленьким углом пересечения будет выдавать нестабильный результат при триангуляции 3D-точек.

Максимальный угол пересечения (в градусах)

Облако точек создается из стереопары. Это значение в градусах, определяет максимальный допустимый угол стереопары. Значение по умолчанию равно 70 градусам.

Стереопара со слишком большим углом пересечения будет выдавать несколько точек или не находить их совсем.

Минимальная область перекрытия

Доля в процентах перекрывающейся области по отношению ко всему изображению. Значение по умолчанию равно 0,6.

Максимальная разность Omega/Phi (в градусах)

Максимальное пороговое значение для разности Omega/Phi между двумя парами изображений. Выполняется сравнение значений Omega и значений Phi для пар изображений. Если разность между двумя значениями Omega или двумя значениями Phi превысит вышеупомянутое пороговое значение, то такие пары не будут форматироваться как стерео пары.

Максимальная разность разрешений

Пороговое значение для максимального расстояния на земной поверхности между двумя изображениями, составляющими стереопару. Если коэффициент разрешения между двумя изображениями будет выше порогового значения, то такие пары не будут выстраиваться как стерео пары. По умолчанию – 2.

Количество пар изображений

Количество пар, использованных для создания 3D-точек. Для проекта с плотным перекрытием и множеством стереопар, увеличение этого значения приводит к увеличению времени вычисления. Предполагаемое значение равно 4.

Иногда местоположение может быть покрыто множеством пар изображений. В этом случае пары будут упорядочены на основе различных пороговых параметров, указанных в инструменте. Пары с наибольшим количеством очков будут использоваться для создания точек.

Этот параметр не позволяет использовать одну пару слишком часто. Параметры, которые влияют на порядок стереопары, кроме Минимальный угол пересечения, Максимальный угол пересечения, Минимальная область перекрытия, могут также включать Максимальная разность Omega / Phi, Максимальная разность разрешений и Порог качества уравнивания.

Порог качества уравнивания

Допустимое минимальное значение качества уравнивания. Пороговое значение будет сравниваться со значением качества уравнивания, которое хранится в стерео-модели. Пары изображений с качеством уравнивания меньше, чем заданный порог, получат 0 очков по данному критерию и опустятся ниже в упорядоченном списке. Диапазон пороговых значений – от 0 до 1. Предполагаемое значение равно 0,2.

Справочная информация

  1. , Christopher G., and Mike Stephens. "A combined corner and edge detector."Alvey vision conference, vol. 15, no. 50, pp. 10-5244. 1988.
  2. Hirschmuller, Heiko, Maximilian Buder, and Ines Ernst. "Memory Efficient Semi-Global Matching." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, том 1-3, (2012): 371-376.
  3. Hirschmuller, Heiko. "Stereo Processing by Semiglobal Matching and Mutual Information." IEEE Transactions on pattern analysis and machine intelligence, том 30, no. 2 (2007): 328-341.

Страница Настройки интерполяции ЦМР

Задайте значения параметров на странице Настройки интерполяции ЦМР.

Параметры настройки интерполяции ЦМР

Имя параметраОписание

Тип поверхности

Задает тип поверхности для цифровой модели поверхности или цифровой модели местности.

  • ЦМП – Создайте цифровую модель поверхности путем интерполяции поверхности растра, используя только точки поверхности Земли.
  • ЦММ – Создайте цифровую модель местности путем интерполяции растра, используя все точки: как точки на поверхности Земли, так и точки над поверхностью.

Размер ячейки

Размер ячейки выходного набора растровых данных.

Формат

Задает формат выходного набора растровых данных:

  • Облачный формат растра (CRF). Используется по умолчанию.
  • Формат TIFF

Сжатие

Задает метод сжатия выходного набора растровых данных.

  • None — выходной набор растровых данных не будет сжиматься. Используется по умолчанию.
  • LERC —будет использован метод LERC для сжатия выходного набора растровых данных. LERC - метод сжатия, работающий с любым типом данных, например, битовыми, целочисленными, реальными числами и числами двойной точности. Эффективность алгоритма сжатия увеличивается с глубиной пиксела.

Максимальная ошибка

Максимальная ошибка сжатия LERC. Максимальная ошибка – это допуск для одного пиксела (а не средняя ошибка для всего изображения).

Для использования этого параметра установите параметр Сжатие на LERC.

Метод интерполяции

Указывает метод, который будет использован для интерполяции выходного набора растровых данных из облака точек.

  • Линейная интерполяция TIN – Линейная интерполяция, также называемая Нерегулярной триангуляционной сетью (TIN), разработана для нерегулярно распределенных разреженных точек, например, точек решения вычисления блочного уравнивания. Используется по умолчанию.
  • Интерполяция TIN по методу Естественной Окрестности – этот процесс похож на триангуляцию, но создает гладкую поверхность и использует большее количество вычислительных ресурсов.
  • Интерполяция по методу средних обратно-взвешенных расстояний – используется для регулярно распределенных плотных точек, например, файлов LAS облака точек из инструмента Создать облако точек. Радиус поиска ОВР автоматически вычисляется на основе средней плотности точек.

Метод сглаживания

Задает фильтр, который будет использован для сглаживания выходного набора растровых данных.

  • Гауссово 3 на 3 – Гауссов фильтр с окном 3 на 3.
  • Гауссов 5 на 5 – Гауссов фильтр с окном 5 на 5. Используется по умолчанию.
  • Гауссово 7 на 7 – Гауссов фильтр с окном 7 на 7.
  • Гауссово 9 на 9 – Гауссов фильтр с окном 9 на 9.
  • Без сглаживания – никакой фильтр сглаживания не применяется.

Использование заполнения отсутствующих пикселов

Входная ЦМР, которая используется для заполнения областей со значениями NoData.

Области NoData могут существовать там, где недостаточно перекрытия стерео или не было найдено совпадающих точек в процессе создания облака точек.

Связанные разделы