ArcGIS Image Analyst 扩展模块提供了 ArcGIS Pro 中的一整套地理处理工具。
地理处理工具
随 Image Analyst 扩展模块提供了大量地理处理工具。这些工具按照下表中的功能相关性和关联工具集进行了分类。
变化检测
变化检测工具集包含在两个栅格数据集之间执行变化检测的工具。
工具 | 说明 |
---|---|
计算两个栅格数据集之间的绝对、相对或分类差异。 |
深度学习
深度学习工具使用人工神经网络中的多个图层来检测影像中的要素,其中每个图层能够提取影像中的一个或多个唯一要素。下表列出了可用的“深度学习”工具,并对每个工具进行了简要描述:
工具 | 说明 |
---|---|
用于运行输入栅格和可选要素类上的训练深度学习模型,以生成要素类或表,其中每个输入对象或要素均具有一个分配的类或类别标注。 | |
用于运行输入栅格上的训练深度学习模型,以生成分类栅格,其中每个有效像素都被分配了一个类标注。 | |
通过对深度学习检测对象使用工具检测到的对象和实际地表数据进行比较来计算深度学习模型的精度。 | |
用于运行输入栅格上的训练深度学习模型,以生成包含其找到对象的要素类。这些要素可以是所找到对象周围的边界框或面,也可以是对象中心的点。 | |
使用遥感影像将标注的矢量或栅格数据转换为深度学习训练数据集。输出为影像片文件夹和指定格式的元数据文件文件夹。 | |
可将“使用深度学习检测对象”工具的输出中的重复要素识别为后处理步骤,并创建没有重复要素的新输出。 | |
使用导出训练数据进行深度学习工具的输出训练深度学习模型。 |
提取
“提取分析”工具集可用于根据像素的属性或其空间位置从栅格中提取像素的子集。
工具 | 说明 |
---|---|
创建一个表或点要素类,其中显示从一个栅格或一组栅格提取的已定义位置的像元值。该位置由栅格像元、点、折线或面进行定义。 |
地图代数
“地图代数”是通过使用代数语言创建表达式以执行栅格分析的一种方法。您可以使用栅格计算器工具创建表达式,从而构建能够输出栅格数据集的表达式。“栅格计算器”使用 Python 语法构建并执行单个地图代数表达式。
有关栅格计算器的详细信息,请参阅地图代数工具集概述
数学分析
数学分析提供了超过 60 种数学工具,以用于对栅格数据集执行数学运算。这些工具按照以下功能区域进行分组:
- 常规
- 条件分析
- 逻辑
- 按位
- 布尔型
- 组合
- 逻辑
- 关系
- 三角函数
数学(常规)
常规“数学”工具可对输入应用数学运算。这些工具可分为几种类别。算术工具可执行基本的数学运算,例如加法和乘法。还有几种工具可以执行各种类型的幂运算,除了基本的幂运算之外,还可以执行指数和对数运算。其余工具可用于转换符号,或者用于在整型数据类型和浮点型数据类型之间进行转换。下表列出了可用的常规“数学”工具,并对每个工具进行了简要描述。
工具 | 说明 |
---|---|
计算栅格中像元值的绝对值。 | |
将两个栅格的值逐个像元相除。 | |
计算栅格中各像元以 e 为底的指数。 | |
计算栅格中各像元以 10 为底的指数。 | |
计算栅格中各像元以 2 为底的指数。 | |
将每个栅格像元的值转换为浮点型表达形式。 | |
通过截断将栅格的每个像元值转换为整型。 | |
计算栅格中各像元的自然对数(以 e 为底)。 | |
计算栅格中各像元以 10 为底的对数。 | |
计算栅格中各像元以 2 为底的对数。 | |
逐个像元地从第一个输入栅格的值中减去第二个输入栅格的值。 | |
逐个像元地求出第一个栅格数据除以第二个栅格数据的余数(模)。 | |
逐个像元地更改输入栅格的像元值符号(乘以 -1)。 | |
逐个像元地将两个栅格的值相加(求和)。 | |
对另一个栅格中的像元值进行乘方运算,将结果作为栅格的值。 | |
返回栅格中每个像元的最近的较小整数值(以浮点表示)。 | |
返回栅格中每个像元的最近的较大整数值(以浮点表示)。 | |
计算栅格中像元值的平方值。 | |
计算栅格中像元值的平方根。 | |
将两个栅格的值逐个像元地相乘。 |
数学分析(条件分析)
“条件数学”工具允许您基于在输入值上应用的条件对输出值进行控制。可应用的条件有两种类型:针对属性的查询或基于列表中条件语句位置的条件。下表列出了可用的“条件分析”工具,并对每个工具进行了简要描述。
数学分析(逻辑运算)
“逻辑数学”工具对输入的值进行评估,并基于布尔逻辑确定输出值。这些工具通过以下五种主要运算方式处理栅格数据集:按位、布尔、组合、逻辑和关系。下表列出了可用的“逻辑数学”工具,并对每个工具进行了简要描述。
工具 | 说明 |
---|---|
对两个输入栅格的二进制值执行“按位与”运算。 | |
对两个输入栅格的二进制值执行“按位左移”运算。 | |
对输入栅格的二进制值执行“按位非”(求反)运算。 | |
对两个输入栅格的二进制值执行“按位或”运算。 | |
对两个输入栅格的二进制值执行“按位右移”运算。 | |
对两个输入栅格的二进制值执行“按位异或”运算。 |
工具 | 说明 |
---|---|
对两个输入栅格的像元值执行“布尔与”运算。 如果两个输入值都为真(非零),则输出值为 1。如果一个或两个输入值为假(零),则输出值为 0。 | |
对此输入栅格的各像元值执行“布尔非”(求反)运算。 如果输入值为真(非零),则输出值为 0。如果输入值为假(零),则输出值为 1。 | |
对两个输入栅格的像元值执行“布尔或”运算。 如果一个或两个输入值为真(非零),则输出值为 1。如果两个输入值都为假(零),则输出值为 0。 | |
对两个输入栅格的像元值执行“布尔异或”运算。 如果一个输入值为真(非零),而另一个输入值为假(零),则输出值为 1。如果两个输入值都为真或都为假,则输出值为 0。 |
工具 | 说明 |
---|---|
对两个输入栅格的像元值执行“组合与”运算。 如果两个输入值都为真(非零),则输入值的每种唯一组合的输出为一个不同的值。如果一个或两个输入都为假(零),则输出值为 0。 | |
对两个输入栅格的像元值执行“组合或”运算。 如果两个输入值中有一个为真(非零),则输入值的每种唯一组合的输出为一个不同的值。如果两个输入值均为假(零),则输出值为 0。 | |
对两个输入栅格的像元值执行“组合异或”运算。 如果一个输入值为真(非零),而另一个输入值为假(零),则输入值的每种唯一组合的输出是一个不同的值。如果两个输入都为真,或两个都为假,则输出值为 0。 |
工具 | 说明 |
---|---|
以逐个像元比较的方式对两个输入执行关系等于运算。 如果第一个栅格数据等于第二个栅格数据则为像元返回 1,否则返回 0。 | |
以逐个像元比较的方式对两个输入执行关系大于运算。 如果第一个栅格数据大于第二个栅格数据则为像元返回 1,否则返回 0。 | |
以逐个像元比较的方式对两个输入执行关系大于或等于运算。 如果第一个栅格数据大于或等于第二个栅格数据则为像元返回 1,否则返回 0。 | |
以逐个像元比较的方式对两个输入执行关系小于运算。 如果像元中第一个栅格数据小于第二个栅格数据,则返回 1,否则返回 0。 | |
以逐个像元比较的方式对两个输入执行关系小于或等于运算。 如果第一个栅格数据小于或等于第二个栅格数据则为栅格返回 1,否则返回 0。 | |
以逐个单元比较的方式对两个输入执行关系不等于运算。 在第一个栅格不等于第二个栅格时为像元返回 1,否则返回 0。 |
工具 | 说明 |
---|---|
以逐个像元比较的方式,确定第一个输入的哪些值与第二个输入的值在逻辑上不同。 如果两个输入的值不同,则使用第一个输入的值作为输出。如果两个输入的值相同,则输出为 0。 | |
逐个像元来确定第一个输入栅格中的哪些值同样包含在该组的其他输入栅格中。 对于每个像元,只要在其他输入栅格之一中找到第一个输入栅格的值,则将该值分配给输出栅格。如果没有找到,则输出像元将为 NoData。 | |
逐个像元来确定输入栅格中哪些值为 NoData。 如果输入值为 NoData,则返回 1,否则返回 0。 | |
当第一个输入中的像元值不是 0 时,输出值将是第一个输入中相应的像元值。如果该像元值为 0,输出值将是第二个输入栅格对应像元的值。 | |
使用逻辑表达式对输入栅格执行布尔评估。 如果该表达式评估结果为真,则输出像元值为 1。如果该表达式评估结果为假,则输出像元值为 0。 |
数学分析(三角函数)
“三角函数数学”工具对输入栅格值执行各种三角函数计算。下表列出了可用的“三角函数数学”工具,并对每个工具进行了简要描述。
动态视频影像
“动态视频影像”工具集包含用于管理、处理和分析动态视频影像(包括全动态视频数据)的工具。下表列出了可用的“动态视频影像”工具,并对每个工具进行了简要描述。
多维分析
“多维分析”工具集中的工具可用于对多个变量和维度的科学数据执行分析。下表列出了可用的“多维分析”工具,并对每个工具进行了简要描述。
工具 | 说明 |
---|---|
通过沿维度组合现有多维栅格变量来生成多维栅格数据集。 | |
使用连续变化检测和分类 (CCDC) 方法评估像素值随时间的变化,并生成包含模型结果的变化分析栅格。 | |
使用基于 Landsat 的干扰和恢复趋势检测 (LandTrendr) 方法评估像素值随时间的变化,并生成包含模型结果的变化分析栅格。 | |
可以利用使用 CCDC 分析变化工具或使用 LandTrendr 分析变化工具的输出变化分析栅格来生成包含像素变化信息的栅格。 | |
为多维或多波段栅格中的每个像素提取达到给定统计量的维度值或波段指数。 | |
计算现有多维栅格中每个剖切片的异常,以生成新的多维栅格。 | |
用于面向多维栅格中一个或多个变量估计每个像素沿维度的趋势。 | |
使用来自生成趋势栅格工具的输出趋势栅格来计算预测多维栅格。 | |
在输入分类栅格的每个剖切中生成包含每个类的像素计数的表。 |
叠加
“叠加”工具集中的工具对多个叠加栅格执行多种运算。下表列出了可用的“叠加”工具,并对每个工具进行了简要描述。
工具 | 说明 |
---|---|
通过将栅格各自乘以指定的权重并合计在一起来叠加多个栅格。 |
影像分割和分类
“影像分割和分类”工具对分割栅格或基于像素的栅格数据集执行经典统计和高级机器学习影像分类算法。同时提供其他工具以执行训练集合和分类精度调整及类地图优化。下表列出了可用的“影像分割和分类”工具,并对每个工具进行了简要描述。
工具 | 说明 |
---|---|
根据 Esri 分类器定义文件 (.ecd) 和栅格数据集输入对栅格数据集进行分类。 .ecd 文件包含执行 Esri 支持的特定类型分类所需的所有信息。对此工具的输入必须与用于生成所需 .ecd 文件的输入相匹配。 | |
使用漏分误差和错分误差计算混淆矩阵,然后派生出分类地图与参考数据之间的一致性 kappa 指数和整体精度。 | |
计算一组与分割影像相关的属性。输入栅格可以是单波段或 3 波段的 8 位分割影像。 | |
创建用于分类后精度评估的随机采样点。 | |
从种子点(如精度评估点或训练样本点)生成训练样本。典型用例是从现有源(如专题栅格或要素类)生成训练样本。 | |
估计个人训练样本的精度。交叉验证精度是使用 .ecd 文件中先前生成的分类训练结果及训练样本进行计算的。输出包括以下内容:包含误分类类值的栅格数据集,包含每个训练样本精度得分的训练样本数据集。 | |
用于执行亚像素分类和计算单个像素的不同土地覆被类型的分数丰度。 | |
校正作为栅格函数执行的分割过程中被切片边界切割的线段或对象。该工具对于在影像切片边界附近会有不一致现象的某些区域过程(例如影像分割)有所帮助。 该加工过程包括在 Mean Shift 影像分割工具中,因此只应在非该工具制作的分割影像上使用。 | |
将相邻并具有相似光谱特征的像素组合到一个分割块中。 | |
使用 Iso 聚类分类定义生成 Esri 分类器定义文件 (.ecd)。 | |
使用最大似然法分类器 (MLC) 分类定义生成 Esri 分类器定义文件 (.ecd)。 | |
使用随机树分类方法生成 Esri 分类器定义文件 (.ecd)。 | |
使用支持向量机 (SVM) 分类定义生成 Esri 分类器定义文件 (.ecd)。 | |
更新属性表中的 Target 字段,将参考点与分类的影像进行比较。 |
统计
使用“统计”工具在本地、邻域或分区基础上执行统计栅格运算。下表列出了执行统计分析的工具,并对每个工具进行了简要描述。