经验半变异函数和协方差函数

ArcGIS Pro 3.2 | | 帮助归档

需要 Geostatistical Analyst 许可。

由于半变异函数和协方差函数是无法观察到的理论量测,因此可以使用经验半变异函数和经验协方差函数根据数据对它们进行估计。通常,通过查看这两个函数的估算方式可以对量测有所了解。假定采用了彼此之间的距离和方向都相似的所有数据对。

对于彼此之间的距离和方向都相似的的所有位置对 sisj,计算

average[(z(si) - z(sj))2]

其中,z(si) 是位置 si 处的测量值。

如果所有位置对 sisj 彼此接近,则可以推测出 z(si) 和 z(sj) 将具有近似值,因此,当取它们的差值并求平方时,所得平均值应较小。随着 sisj 之间的距离逐渐增大,可以预期它们的值将变得越来越不同,因此,当取它们的差值并求平方时,所得平均值应较大。

在协方差函数中,对于彼此之间的距离和方向都相似的的所有位置对 sisj,软件将计算

平均值 [(Z(si) - 协方差函数的元素)(Z(s j) - 协方差函数的元素)],

其中,z(si) 是位置 si 处的测量值,协方差函数的元素是所有数据的平均值。现在,如果所有位置对 sisj 都彼此接近,则可以推测出 z(si) 和 z(sj) 要么都大于平均值 协方差函数的元素,要么都小于平均值。由于无论哪种情况下,它们的乘积均为正值,因此,对所有乘积求平均值时,将得到一个正值。如果 sisj 之间的距离很远,则可以推测出乘积为正值和负值的比例均为 50%,从而可推断出它们的平均值接近零。

相关主题