需要 Geostatistical Analyst 许可。
普通克里金法假设模型为
Z(s) = µ + ε(s),
其中,µ 是一个未知常量。对于普通克里金法,我们所关心的主要问题之一就是对常量平均值的假设是否合理。有时有很充分的科学依据来拒绝该假设。不过,作为一种简单的预测方法,它具有显著的灵活性。下图所举的是处于某一空间维度中的示例:
从图上看,数据好像是从山谷或山体的线横断面中采集的高程值。而且,好像数据在左侧变化更显著,而在右侧则变得更平滑。事实上,该数据是在平均值 µ 为常量的情况下基于普通克里金法模型模拟得到的。虚线给出的是平均值,该平均值是是真值但是是未知的。因此,普通克里金法可用于似乎带有某种趋势的数据。单凭数据无法确定已观测到的模式是否是自相关(µ 为常量的情况下,在误差 ε(s) 之间)或趋势(µ(s) 随 s 变化)所造成的。
普通克里金法可以使用半变异函数或协方差(用于表达空间自相关的数学形式),使用变换和移除趋势,还允许测量误差。