编辑特征文件的工作原理

需要 Spatial Analyst 许可。

编辑特征文件工具旨在修改现有的特征文件。 大多数情况下,此工具用于减少类的数量。 要确定应更改哪些类特征以生成更准确的分类,请使用树状图工具查看树状逻辑示意图。

示例

以下示例显示了如何将包含 14 个类的特征文件编辑为仅包含 7 个类。 这是通过删除不必要的类并合并同类类来完成的。 以下是将用于编辑特征文件的输入特征重映射文件。 它将 8 类和 21 类与 3 类合并、9 类与 1 类合并、14 类与 4 类合并、15 类与 7 类合并,以及 23 类与 6 类合并。 它还将删除 11 类。

 8 : 3
 9 : 1
11 : -9999
14 : 4
15 : 7
21 : 3
23 : 6

输出特征文件

以下列出了编辑特征文件生成的输出特征文件:

# Signatures Produced by ClassSig from Class-Grid zsamp12 and Stack redl123
#    Number of selected grids
/*           3
#    Layer-Number    Grid-name
/*           1       redlands1
/*           2       redlands2
/*           3       redlands3

# Type  Number of Classes  Number of Layers  Number of Parametric Layers
   1             14               3                3
# ===============================================================

#  Class ID     Number of Cells    Class Name
        1             4493         
# Layers         1            2            3
# Means    
             	 57.4801      55.1022      34.5615
# Covariance
1           	755.8841     389.1188     165.2408
2           	389.1188     451.9519     248.4967
3           	165.2408     248.4967     163.7970
# -------------------------------------------------------

#  Class ID     Number of Cells    Class Name
        2             1464         
# Layers        1            2            3
# Means    
            142.5451      48.3053      22.8818
# Covariance
1           301.2310      61.3188     -24.5077
2            61.3188     150.2574     102.7169
3           -24.5077     102.7169     103.9020
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
        3            142         
# Layers        1            2            3
# Means    
            226.2817      94.4225      25.4789
# Covariance
1          1250.7286     448.2489     -11.1146
2           448.2489     302.1464      75.3991
3           -11.1146      75.3991      67.7407
# ------------------------------------------------------
#  Class ID     Number of Cells    Class Name
        4            399         
# Layers        1            2            3
# Means    
            161.6867     174.5113     177.4386
# Covariance
1            29.0699      23.6907      32.0523
2            23.6907      65.3359      38.7300
3            32.0523      38.7300      55.1061
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
        5             1476         
# Layers        1            2            3
# Means    
              0.0589     0.0976     1.2026
# Covariance
1             3.1321     2.4268     3.5081
2             2.4268     2.8922     3.9924
3             3.5081     3.9924     6.7094
# ------------------------------------------------------
#  Class ID     Number of Cells    Class Name
        6               225         
# Layers        1            2            3
# Means    
            138.5378     140.1644     168.5600
# Covariance
1           151.4461     120.3978     142.3225
2           120.3978     142.5309     128.7914
3           142.3225     128.7914     149.9618
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
        7               383         
# Layers        1            2            3
# Means    
            129.2950     146.6136      97.0836
# Covariance
1            72.6745      21.6483      74.7947
2            21.6483      20.2377      38.7392
3            74.7947      38.7392     164.1239
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
        8                948         
# Layers        1            2            3
# Means    
            251.3091      76.7447      22.7795
# Covariance
1            49.3943       2.3736     -16.1440
2             2.3736      89.0773      13.2319
3           -16.1440      13.2319      12.8732
# -----------------------------------------------------
#  Class ID     Number of Cells    Class Name
        9               446         
# Layers        1            2            3
# Means    
            100.0022      61.6861      39.1323
# Covariance
1            50.9685       3.0816      -2.7846
2             3.0816      81.6765      57.7427
3            -2.7846      57.7427      57.0229
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
       11              244         
# Layers        1            2            3
# Means    
            133.8402      85.3934      84.4672
# Covariance
1            78.2336      -1.2908     -20.0320
2            -1.2908      58.4454      29.1652
3           -20.0320      29.1652      77.5586
# -----------------------------------------------------

#  Class ID     Number of Cells    Class Name
       14             186         
# Layers        1            2            3
# Means    
            159.5753     212.3172     163.9677
# Covariance
1           112.8186     197.4165     155.3484
2           197.4165     432.0772     319.2643
3           155.3484     319.2643     265.5773
# ------------------------------------------------------

#  Class ID     Number of Cells    Class Name
       15             149         
# Layers        1            2             3
# Means    
            144.9262     154.2483     113.9262
# Covariance
1           191.0824      27.4239     137.5486
2            27.4239      81.4717      13.0252
3           137.5486      13.0252     114.0283
# -----------------------------------------------------

#  Class ID     Number of Cells    Class Name
       21             253         
# Layers        1            2            3
# Means    
            235.0514      98.1107      32.6324
# Covariance
1           278.8188      81.3633     -12.5802
2            81.3633     132.3131      36.1639
3           -12.5802      36.1639      38.6699
# ----------------------------------------------------
#  Class ID     Number of Cells    Class Name
       23             121         
# Layers        1            2             3
# Means    
            145.3223     143.9669     155.3058
# Covariance
1            21.4536      16.4524      24.5590
2            16.4524      43.2322      14.8685
3            24.5590      14.8685      79.9140

相关主题


在本主题中
  1. 示例