Polyline

Zusammenfassung

A Polyline object is a shape defined by one or more paths, in which a path is a series of connected segments.

Auswertung

Bei vielen Workflows der Geoverarbeitung möchten Sie eventuell bestimmte Vorgänge mit Koordinaten- und Geometriedaten ausführen, jedoch nicht unbedingt eine neue (temporäre) Feature-Class erstellen, diese mit Cursorn füllen, die Feature-Class verwenden und dann die vorläufige Feature-Class wieder löschen. Sie können anstelle von Eingabe und Ausgabe auch Geometrieobjekte verwenden und so die Geoverarbeitung vereinfachen. Geometrieobjekte können von Grund auf neu mit Geometry-, Multipoint-, PointGeometry-, Polygon- oder Polyline-Classes erstellt werden.

Syntax

 Polyline  (inputs, {spatial_reference}, {has_z}, {has_m})
ParameterErklärungDatentyp
inputs

The coordinates used to create the object. The data type can be either Point or Array objects.

Object
spatial_reference

The spatial reference of the new geometry.

(Der Standardwert ist None)

SpatialReference
has_z

The Z state: True for geometry if Z is enabled and False if it is not.

(Der Standardwert ist False)

Boolean
has_m

The M state: True for geometry if M is enabled and False if it is not.

(Der Standardwert ist False)

Boolean

Eigenschaften

EigenschaftErklärungDatentyp
JSON
(Nur lesen)

Returns an Esri JSON representation of the geometry as a string.

Tipp:

The returned string can be converted to a dictionary using the Python json.loads function.

String
WKB
(Nur lesen)

Returns the well-known binary (WKB) representation for OGC geometry. It provides a portable representation of a geometry value as a contiguous stream of bytes.

Bytearray
WKT
(Nur lesen)

Returns the well-known text (WKT) representation for OGC geometry. It provides a portable representation of a geometry value as a text string.

Any true curves in the geometry will be densified into approximate curves in the WKT string.

String
area
(Nur lesen)

The area of a polygon feature. It is zero for all other feature types.

Double
centroid
(Nur lesen)

The true centroid if it is within or on the feature; otherwise, the label point is returned.

Point
extent
(Lesen und schreiben)

The extent of the geometry.

Extent
firstPoint
(Nur lesen)

The first coordinate point of the geometry.

Point
hasCurves
(Nur lesen)

Returns True if the geometry has a curve.

Boolean
hullRectangle
(Nur lesen)

A space-delimited string of the coordinate pairs of the convex hull rectangle.

String
isMultipart
(Nur lesen)

Returns True if the number of parts for this geometry is more than one.

Boolean
labelPoint
(Nur lesen)

The point at which the label is located. The labelPoint is always located within or on a feature.

Point
lastPoint
(Nur lesen)

The last coordinate of the feature.

Point
length
(Nur lesen)

The length of the linear feature. It is zero for point and multipoint feature types.

Double
length3D
(Lesen und schreiben)

The 3D length of the linear feature. It is zero for point and multipoint feature types.

Double
partCount
(Nur lesen)

The number of geometry parts for the feature.

Integer
pointCount
(Nur lesen)

The total number of points for the feature.

Integer
spatialReference
(Nur lesen)

The spatial reference of the geometry.

SpatialReference
trueCentroid
(Nur lesen)

The center of gravity for a feature.

Point
type
(Nur lesen)

The geometry type: polygon, polyline, point, multipoint, multipatch, dimension, or annotation.

String

Methodenübersicht

MethodeErklärung
angleAndDistanceTo (other, {method})

Returns a tuple of angle and distance to another point using a measurement type.

boundary ()

Constructs the boundary of the geometry.

Boundary operator
buffer (distance)

Constructs a polygon at a specified distance from the geometry.

Buffer operator
clip (envelope)

Constructs the intersection of the geometry and the specified extent.

Clip operator
contains (second_geometry, {relation})

Indicates if the base geometry contains the comparison geometry.

contains is the opposite of within.

Only True relationships are shown in this illustration.

Possible contains relationships
convexHull ()

Constructs the geometry that is the minimal bounding polygon such that all outer angles are convex.

ConvexHull operator
crosses (second_geometry)

Gibt an, ob die beiden Geometrien sich in einer Geometrie mit einem geringeren Shape-Typ überschneiden.

Zwei Polylinien kreuzen sich, wenn sie nur Punkte gemeinsam haben, von denen mindestens einer kein Endpunkt ist. Eine Polylinie und ein Polygon kreuzen sich, wenn sie im Inneren des Polygons eine Polylinie oder einen Punkt (für eine vertikale Linie) gemeinsam haben, die bzw. der nicht der gesamten Polylinie entspricht.

Only True relationships are shown in this illustration.

Mögliche Beziehungen zwischen Überschneidungen
cut (cutter)

Splits this geometry into a part left of the cutting polyline, and a part right of it.

When a polyline or polygon is cut, it is split where it intersects the cutter polyline. Each piece is classified as left of or right of the cutter. This classification is based on the orientation of the cutter line. Parts of the target polyline that do not intersect the cutting polyline are returned as part of the right of result for that input polyline. If a geometry is not cut, the left geometry will be empty (None).

Cut operator
densify (type, distance, {deviation})

Creates a new geometry with added vertices.

difference (other)

Constructs the geometry that is composed only of the region unique to the base geometry but not part of the other geometry. The following illustration shows the results when the red polygon is the source geometry.

Difference operator
disjoint (second_geometry)

Gibt an, ob die Basis- und die Vergleichsgeometrie keine gemeinsamen Punkte aufweisen.

Zwei Geometrien überschneiden sich, wenn disjoint den Wert False zurückgibt.

Only True relationships are shown in this illustration.

Mögliche Beziehungen zwischen nicht überschneidenden Geometrien
distanceTo (other)

Returns the minimum distance between two geometries. If the geometries intersect, the minimum distance is 0.

Both geometries must have the same projection.

equals (second_geometry)

Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored.

Only True relationships are shown in this illustration.

Possible equals relationships
generalize (max_offset)

Creates a new simplified geometry using a specified maximum offset tolerance.

getLength ({measurement_type}, {units})

Returns the length of the feature using a measurement type.

getPart ({index})

Returns an array of point objects for a particular part of geometry or an array containing a number of arrays, one for each part.

The getPart method is equivalent to indexing an object; that is, obj.getPart(0) is equivalent to obj[0].

intersect (other, dimension)

Constructs a geometry that is the geometric intersection of the two input geometries. Different dimension values can be used to create different shape types.

The intersection of two geometries of the same shape type is a geometry containing only the regions of overlap between the original geometries.

Intersect operator

For faster results, test if the two geometries are disjoint before calling intersect.

measureOnLine (in_point, {use_percentage})

Returns a measure from the start point of this line to the in_point.

overlaps (second_geometry)

Gibt an, üb die Überschneidung der beiden Geometrien denselben Shape-Typ wie eine der Eingabegeometrien aufweist, aber keiner der Eingabegeometrien entspricht.

Only True relationships are shown in this illustration.

Mögliche Beziehungen bei Überlappungen
pointFromAngleAndDistance (angle, distance, {method})

Returns a point at a given angle in degrees and distance in the units of the geometry's spatial reference using the specified measurement type.

positionAlongLine (value, {use_percentage})

Returns a point on a line at a specified distance from the beginning of the line.

projectAs (spatial_reference, {transformation_name})

Projects a geometry and optionally applies a geotransformation.

To project, the geometry needs to have a spatial reference, and not have an UnknownCoordinateSystem. The new spatial reference system passed to the method defines the output coordinate system. If either spatial reference is unknown the coordinates will not be changed. The Z- and measure values are not changed by the ProjectAs method.

queryPointAndDistance (in_point, {as_percentage})

Finds the point on the polyline nearest to the in_point and the distance between those points. Also returns information about the side of the line the in_point is on as well as the distance along the line where the nearest point occurs.

segmentAlongLine (start_measure, end_measure, {use_percentage})

Returns a Polyline between start and end measures. Similar to Polyline.positionAlongLine but will return a polyline segment between two points on the polyline instead of a single point.

snapToLine (in_point)

Returns a new point based on in_point snapped to this geometry.

symmetricDifference (other)

Constructs the geometry that is the union of two geometries minus the instersection of those geometries.

The two input geometries must be the same shape type.

symmetricDifference operator
touches (second_geometry)

Indicates if the boundaries of the geometries intersect.

Two geometries touch when the intersection of the geometries is not empty, but the intersection of their interiors is empty. For example, a point touches a polyline only if the point is coincident with one of the polyline end points.

Only True relationships are shown in this illustration.

Possible touches relationships
union (other)

Constructs the geometry that is the set-theoretic union of the input geometries.

The two geometries being unioned must be the same shape type.

Union operator
within (second_geometry, {relation})

Indicates if the base geometry is within the comparison geometry.

within is the opposite operator of contains.

Only True relationships are shown in this illustration.

Possible within relationships

The base geometry is within the comparison geometry if the base geometry is the intersection of the geometries and the intersection of their interiors is not empty. within is a Clementini operator, except in the case of an empty base geometry.

Methoden

angleAndDistanceTo (other, {method})
ParameterErklärungDatentyp
other

The second geometry.

PointGeometry
method

PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is when you want to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEA loxodrome is not the shortest distance between two points but instead defines the line of constant bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system and the 2D plane of that coordinate system will be used as the basis for the measurements.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid, for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(Der Standardwert ist GEODESIC)

String
Rückgabewert
DatentypErklärung
tuple

Returns a tuple of angle (in degrees) and distance (in meters) to another point.

boundary ()
Rückgabewert
DatentypErklärung
Object

A polygon's boundary is a polyline. A polyline's boundary is a multipoint, corresponding to the endpoints of the line. A point or multipoint's boundary is an empty point or multipoint.

buffer (distance)
ParameterErklärungDatentyp
distance

The buffer distance.

The buffer distance is in the same units as the geometry that is being buffered.

A negative distance can only be specified against a polygon geometry.

Double
Rückgabewert
DatentypErklärung
Polygon

The buffered polygon geometry.

clip (envelope)
ParameterErklärungDatentyp
envelope

An extent object used to define the clip extent.

Extent
Rückgabewert
DatentypErklärung
Object

An output geometry clipped to the specified extent.

contains (second_geometry, {relation})
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
relation

The spatial relationship type.

  • BOUNDARY Relationship has no restrictions for interiors or boundaries.
  • CLEMENTINI Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
  • PROPER Boundaries of geometries must not intersect.

(Der Standardwert ist None)

String
Rückgabewert
DatentypErklärung
Boolean

A return Boolean value of True indicates this geometry contains the second geometry.

convexHull ()
Rückgabewert
DatentypErklärung
Object

The resulting geometry. The convex hull of a single point is the point itself.

crosses (second_geometry)
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
Rückgabewert
DatentypErklärung
Boolean

Der boolesche Rückgabetyp "True" gibt an, dass sich die beiden Geometrien in einer Geometrie mit einem geringeren Shape-Typ schneiden.

cut (cutter)
ParameterErklärungDatentyp
cutter

The cutting polyline geometry.

PolyLine
Rückgabewert
DatentypErklärung
Geometry

A list of two geometries.

densify (type, distance, {deviation})
ParameterErklärungDatentyp
type

The type of densification, DISTANCE, ANGLE, or GEODESIC.

  • DISTANCECreates a new feature that is a piecewise linear approximation of the input.
  • ANGLECreates a new feature that is a piecewise linear approximation of the input. Vertices are introduced at points where the angle between tangents at those points is the provided angle.
  • GEODESICDensifies and reshapes segments between input vertices so that the output segments follow the shortest ground path connecting input vertices.
String
distance

The maximum distance between vertices. The actual distance between vertices will usually be less than the maximum distance as new vertices will be evenly distributed along the original segment.

If using a type of DISTANCE or ANGLE, the distance is measured in the units of the geometry's spatial reference. If using a type of GEODESIC, the distance is measured in meters.

Double
deviation

Densify uses straight lines to approximate curves. You use deviation to control the accuracy of this approximation. The deviation is the maximum distance between the new segment and the original curve. The smaller its value, the more segments will be required to approximate the curve.

If using a type of DISTANCE, the deviation is measured in the units of the geometry's spatial reference. If using a type of ANGLE, the deviation is measured in radians. If using a type of GEODESIC, the deviation is not used.

Double
Rückgabewert
DatentypErklärung
Geometry

The densified geometry.

difference (other)
ParameterErklärungDatentyp
other

A second geometry.

Object
Rückgabewert
DatentypErklärung
Object

The resulting geometry.

disjoint (second_geometry)
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
Rückgabewert
DatentypErklärung
Boolean

Der boolesche Rückgabetyp "True" gibt an, dass die beiden Geometrien keine gemeinsamen Punkte aufweisen.

distanceTo (other)
ParameterErklärungDatentyp
other

A second geometry.

Object
Rückgabewert
DatentypErklärung
Double

The distance between the two geometries.

equals (second_geometry)
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
Rückgabewert
DatentypErklärung
Boolean

A return Boolean value of True indicates that the two geometries are of the same shape type and define the same set of points in the plane.

generalize (max_offset)
ParameterErklärungDatentyp
max_offset

The maximum offset tolerance.

Double
Rückgabewert
DatentypErklärung
Geometry

The generalized geometry.

getLength ({measurement_type}, {units})
ParameterErklärungDatentyp
measurement_type

PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is when you want to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEA loxodrome is not the shortest distance between two points but instead defines the line of constant bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system and the 2D plane of that coordinate system will be used as the basis for the measurements.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid, for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(Der Standardwert ist GEODESIC)

String
units

The units in which the length will be calculated.

  • CENTIMETERSCentimeters
  • DECIMETERSDecimeters
  • FEETFeet
  • INCHESInches
  • KILOMETERSKilometers
  • METERSMeters
  • MILESMiles
  • MILLIMETERSMillimeters
  • NAUTICALMILESNautical Miles
  • YARDSYards
String
Rückgabewert
DatentypErklärung
Double

The length of the feature.

By default, for Projected coordinate systems, length will be returned in the units of the coordinate system, and for Geographic coordinate systems, length will be returned in square meters.

getPart ({index})
ParameterErklärungDatentyp
index

The index position of the geometry.

Integer
Rückgabewert
DatentypErklärung
Array

getPart returns an array of point objects for a particular part of the geometry if an index is specified. If an index is not specified, an array containing an array of point objects for each geometry part is returned.

intersect (other, dimension)
ParameterErklärungDatentyp
other

The second geometry.

Object
dimension

The topological dimension (shape type) of the resulting geometry.

  • 1A zero-dimensional geometry (point or multipoint).
  • 2A one-dimensional geometry (polyline).
  • 4A two-dimensional geometry (polygon).
Integer
Rückgabewert
DatentypErklärung
Object

A new geometry (point, multipoint, polyline, or polygon) that is the geometric intersection of the two input geometries.

measureOnLine (in_point, {use_percentage})
ParameterErklärungDatentyp
in_point

A point (PointGeometry or Point) that is used to measure from the start point of the polyline.

PointGeometry
use_percentage

If False, the measure will be returned as a distance; if True, the measure will be returned as a percentage.

(Der Standardwert ist False)

Boolean
Rückgabewert
DatentypErklärung
Double

A distance or percentage.

overlaps (second_geometry)
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
Rückgabewert
DatentypErklärung
Boolean

Der boolesche Rückgabetyp True gibt an, dass die Überschneidung der beiden Geometrien dieselbe Dimension wie eine der Eingabegeometrien aufweist.

pointFromAngleAndDistance (angle, distance, {method})
ParameterErklärungDatentyp
angle

The angle in degrees to the returned point.

Double
distance

The distance in the units of the geometry's spatial reference to the returned point.

Double
method

PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, or PRESERVE_SHAPE measurement types can be chosen as an alternative if desired.

  • GEODESICThe shortest line between any two points on the earth's surface on a spheroid (ellipsoid). One use for a geodesic line is when you want to determine the shortest distance between two cities for an airplane's flight path. This is also known as a great circle line if based on a sphere rather than an ellipsoid.
  • GREAT_ELLIPTICThe line on a spheroid (ellipsoid) defined by the intersection at the surface by a plane that passes through the center of the spheroid and the start and endpoints of a segment. This is also known as a great circle when a sphere is used.
  • LOXODROMEA loxodrome is not the shortest distance between two points but instead defines the line of constant bearing, or azimuth. Great circle routes are often broken into a series of loxodromes, which simplifies navigation. This is also known as a rhumb line.
  • PLANARPlanar measurements use 2D Cartesian mathematics to calculate lengths and areas. This option is only available when measuring in a projected coordinate system, and the 2D plane of that coordinate system will be used as the basis for the measurements.
  • PRESERVE_SHAPEThis type calculates the area or length of the geometry on the surface of the earth ellipsoid for geometry defined in a projected or geographic coordinate system. This option preserves the shape of the geometry in its coordinate system.

(Der Standardwert ist GEODESIC)

String
Rückgabewert
DatentypErklärung
PointGeometry

Returns a point at a given angle and distance in degrees and meters.

positionAlongLine (value, {use_percentage})
ParameterErklärungDatentyp
value

The distance along the line.

If the distance is less than zero, then the starting point of the line will be returned; if the distance is greater than the length of the line, then the end point of the line will be returned.

Double
use_percentage

The distance may be specified as a fixed unit of measure or a ratio of the length of the line.

If True, value is used as a percentage; if False, value is used as a distance. For percentages, the value should be expressed as a double from 0.0 (0%) to 1.0 (100%).

(Der Standardwert ist False)

Boolean
Rückgabewert
DatentypErklärung
PointGeometry

The point on the line at a specified distance from the beginning of the line.

projectAs (spatial_reference, {transformation_name})
ParameterErklärungDatentyp
spatial_reference

The new spatial reference. This can be a SpatialReference object or the coordinate system name.

SpatialReference
transformation_name

The geotransformation name.

String
Rückgabewert
DatentypErklärung
Object

The projected geometry.

queryPointAndDistance (in_point, {as_percentage})
ParameterErklärungDatentyp
in_point

The input point (PointGeometry or Point).

PointGeometry
as_percentage

If False, the measure will be returned as a distance; if True, the measure will be returned as a percentage.

(Der Standardwert ist False)

Boolean
Rückgabewert
DatentypErklärung
tuple

Returns a tuple that includes the following:

  • A PointGeometry that is the nearest point on the polyline to the in_point.
  • The distance between the start point of the line and the returned point on the line.
  • The minimum distance between the line and the in_point.
  • A Boolean that indicates if the in_point is on the right side of the line. The direction of the line determines the right and left sides.
segmentAlongLine (start_measure, end_measure, {use_percentage})
ParameterErklärungDatentyp
start_measure

The starting distance from the beginning of the line.

Double
end_measure

The ending distance from the beginning of the line.

Double
use_percentage

The start and end measures may be specified as fixed units or as a ratio.

If True, start_measure and end_measure are used as a percentage; if False, start_measure and end_measure are used as a distance. For percentages, the measures should be expressed as a double from 0.0 (0 percent) to 1.0 (100 percent).

(Der Standardwert ist False)

Boolean
Rückgabewert
DatentypErklärung
PolyLine

The segment of the line between two points.

snapToLine (in_point)
ParameterErklärungDatentyp
in_point

A point (PointGeometry or Point) to be snapped to the line.

PointGeometry
Rückgabewert
DatentypErklärung
PointGeometry

The snapped point.

symmetricDifference (other)
ParameterErklärungDatentyp
other

A second geometry.

Object
Rückgabewert
DatentypErklärung
Object

The resulting geometry.

touches (second_geometry)
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
Rückgabewert
DatentypErklärung
Boolean

A return Boolean value of True indicates the boundaries of the geometries intersect.

union (other)
ParameterErklärungDatentyp
other

A second geometry.

Object
Rückgabewert
DatentypErklärung
Object

The resulting geometry.

within (second_geometry, {relation})
ParameterErklärungDatentyp
second_geometry

A second geometry.

Object
relation

The spatial relationship type.

  • BOUNDARY Relationship has no restrictions for interiors or boundaries.
  • CLEMENTINI Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default.
  • PROPER Boundaries of geometries must not intersect.

(Der Standardwert ist None)

String
Rückgabewert
DatentypErklärung
Boolean

A return Boolean value of True indicates this geometry is contained within the second geometry.

Codebeispiel

Polyline example

Create a polyline feature class from scratch.

import arcpy

# A list of features and coordinate pairs
feature_info = [[[1, 2], [2, 4], [3, 7]],
                [[6, 8], [5, 7], [7, 2], [9, 5]]]

# A list that will hold each of the Polyline objects
features = []

for feature in feature_info:
    # Create a Polyline object based on the array of points
    # Append to the list of Polyline objects
    features.append(
        arcpy.Polyline(
            arcpy.Array([arcpy.Point(*coords) for coords in feature])))

# Persist a copy of the Polyline objects using CopyFeatures
arcpy.CopyFeatures_management(features, "c:/geometry/polylines.shp")

Verwandte Themen