Mit der Image Analyst-Lizenz verfügbar.
Mit der Spatial Analyst-Lizenz verfügbar.
Alle überwachten Deep-Learning-Aufgaben hängen von beschrifteten Datasets ab, d. h. Menschen müssen ihr Wissen anwenden, um das neuronale Netzwerk im Hinblick auf die zu identifizierenden Objekte zu trainieren. Das neuronale Netzwerk trainiert mithilfe der beschrifteten Objekte ein Modell, das zur Dateninferenzierung verwendet werden kann.
Die Annotation bzw. Beschriftung von Bildern ist für Deep-Learning-Aufgaben wie maschinelles Sehen und Lernen von entscheidender Bedeutung. Um ein gutes Deep-Learning-Modell zu trainieren, ist eine große Menge beschrifteter Daten erforderlich. Sofern geeignete Trainingsdaten zur Verfügung stehen, können Deep-Learning-Systeme bei der Feature-Extraktion, der Mustererkennung und der Lösung komplexer Probleme sehr genaue Ergebnisse liefern. Im Bereich Objekte für Deep Learning beschriften können Sie Daten schnell und präzise beschriften.
Die Schaltfläche Objekte für Deep Learning beschriften befindet sich im Dropdown-Menü Klassifizierungswerkzeuge in der Gruppe Bildklassifizierung auf der Registerkarte Bilddaten. Der Bereich besteht aus zwei Teilen. Im oberen Teil werden die Klassen verwaltet, während der untere Teil des Bereichs verwendet wird, um die gesammelten Stichproben zu verwalten und die Trainingsdaten für Deep-Learning-Frameworks zu exportieren.
Erstellen von Klassen und Beschriften von Objekten
Im oberen Teil des Bereichs können Sie Objektklassen verwalten und manuell Objekte für das Training des Deep-Learning-Modells erstellen. Es stehen zahlreiche Werkzeuge zur Verfügung, mit denen Sie beschriftete Objekte erstellen können.
Werkzeug | Funktion |
---|---|
Erstellt ein beschriftetes Objekt durch Zeichnen eines Rechtecks um ein Feature oder Objekt im Raster. | |
Erstellt ein beschriftetes Objekt durch Zeichnen eines Polygons um ein Feature oder Objekt im Raster. | |
Erstellt ein beschriftetes Objekt durch Zeichnen eines Kreises um ein Feature oder Objekt im Raster. | |
Erstellt ein beschriftetes Objekt durch Zeichnen einer Freihandform um ein Feature oder Objekt im Raster. | |
Erstellt ein Feature durch Auswählen eines Segments aus einem segmentierten Layer. Diese Option ist nur verfügbar, wenn der Bereich Inhalt einen segmentierten Layer enthält. Aktivieren Sie die Segmentauswahl, indem Sie den segmentierten Layer im Bereich Inhalt markieren, und wählen Sie den Layer dann in der Dropdown-Liste Segmentauswahl aus. | |
Ermöglicht das Auswählen und Bearbeiten eines beschrifteten Objekts. | |
Erstellt ein Klassifizierungsschema. | |
Wählen Sie eine Option für das Klassifizierungsschema aus.
| |
Speichert die am Schema vorgenommenen Änderungen. | |
Speichert eine neue Kopie des Schemas. | |
Fügt dem Schema eine Klassenkategorie hinzu. Wählen Sie zunächst den Namen des Schemas aus, um eine übergeordnete Klasse auf höchster Ebene zu erstellen. Wählen Sie den Namen einer vorhandenen Klasse aus, um eine Unterklasse zu erstellen. | |
Entfernt die ausgewählte Klassen- oder Unterklassen-Kategorie aus dem Schema. |
- Klicken Sie auf eines der Skizzenwerkzeuge, z. B. Rechteck, Polygon, Kreis oder Freihand, um mit dem Sammeln von Objektstichproben zu beginnen.
- Skizzieren Sie mithilfe eines Skizzenwerkzeugs das Bild-Feature, welches das Objekt auf der Karte darstellt.
- Wenn Sie ein Feature erstellen, für das keine Klasse angegeben wurde, wird das Dialogfeld Klasse definieren angezeigt. Weitere Informationen zu diesem Dialogfeld finden Sie im Abschnitt Klasse definieren.
- Erstellen und beschriften Sie weitere Objekte, wobei Sie die oben beschriebenen Schritte ausführen.
- Sie können die Registerkarte Beschriftete Objekte (im unteren Teil des Bereichs) verwenden, um die beschrifteten Objektstichproben zu löschen und zu organisieren.
- Wenn Sie mit den beschrifteten Objekten zufrieden sind, speichern Sie die Stichproben, indem Sie auf die Schaltfläche Speichern auf der Registerkarte Beschriftete Objekte klicken.
Nachdem Sie eine repräsentative Stichprobe der Objekte manuell beschriftet haben, können Sie diese verwenden, um Ihre Trainingsdaten zu exportieren.
Klasse definieren
Im Dialogfeld Klasse definieren können Sie eine neue Klasse erstellen oder eine vorhandene Klasse definieren. Mit der Option Vorhandene Klasse verwenden können Sie die entsprechende Option Klassenname für das Objekt auswählen. Mit der Option Neue Klasse hinzufügen haben Sie die Möglichkeit, die Informationen zu bearbeiten, bevor Sie auf OK klicken, um die neue Klasse zu erstellen.
Beschriftete Objekte
Die Registerkarte Beschriftete Objekte befindet sich im unteren Teil des Bereichs und verwaltet die Trainingsgebiete, die Sie für die einzelnen Klassen gesammelt haben. Sammeln Sie für jede Klasse im Bild repräsentative Sites oder Trainingsgebiete. Ein Trainingsgebiet verfügt über Positionsinformationen (Polygon) und eine zugehörige Klasse. Der Bildklassifizierungsalgorithmus verwendet die als Feature-Class gespeicherten Trainingsgebiete, um die Landbedeckungsklasse im gesamten Bild zu identifizieren.
Sie können Trainingsgebiete anzeigen und verwalten, indem Sie diese hinzufügen, gruppieren oder entfernen. Wenn Sie ein Trainingsgebiet auswählen, wird es auf der Karte markiert. Doppelklicken Sie auf ein Trainingsgebiet in der Tabelle, um auf der Karte darauf zu zoomen.
Werkzeug | Funktion |
---|---|
Öffnet eine vorhandene Trainingsgebiet-Feature-Class. | |
Speichert die an der aktuellen Feature-Class mit beschrifteten Objekten vorgenommenen Änderungen. | |
Speichert die aktuellen beschrifteten Objekte als eine neue Feature-Class. | |
Löscht die ausgewählten beschrifteten Objekte. |
Trainingsdaten exportieren
Nachdem die Stichproben gesammelt wurden, können sie durch Klicken auf die Registerkarte Trainingsdaten exportieren in die Trainingsdaten exportiert werden. Anschließend können die Trainingsdaten in einem Deep-Learning-Modell verwendet werden. Nachdem die Parameter angegeben wurden, klicken Sie auf Ausführen, um die Trainingsdaten zu erstellen.
Parameter | Beschreibung |
---|---|
Ausgabeordner | Wählen Sie den Ausgabeordner aus, in dem die Trainingsdaten gespeichert werden sollen. |
Polygon-Features maskieren | Eine Polygon-Feature-Class zur Abgrenzung der Fläche, in der Bildschnipsel erstellt werden. Es werden nur Bildschnipsel erstellt, die vollständig in die Polygone fallen. |
Bildformat | Gibt das Raster-Format für die ausgegebenen Bildschnipsel an.
PNG und JPEG unterstützen bis zu 3 Bänder. |
Kachelgröße X | Größe der Bildschnipsel (X-Dimension). |
Kachelgröße Y | Größe der Bildschnipsel (Y-Dimension). |
Schritt X | Verschiebung in X-Richtung bei Erstellung der nächsten Bildschnipsel. Wenn der Schritt der Kachelgröße entspricht, gibt es keine Überlappung. Wenn der Schritt der halben Kachelgröße entspricht, gibt es eine Überlappung von 50 Prozent |
Schritt Y | Verschiebung in Y-Richtung bei Erstellung der nächsten Bildschnipsel. Wenn der Schritt der Kachelgröße entspricht, gibt es keine Überlappung. Wenn der Schritt der halben Kachelgröße entspricht, gibt es eine Überlappung von 50 Prozent |
Drehwinkel | Der Drehwinkel, der für die Generierung weiterer Bildschnipsel verwendet wird. Ein Bildschnipsel wird mit dem Drehwinkel 0 und somit ohne Drehung erstellt. Danach wird er um den angegebenen Winkel gedreht, um einen weiteren Bildschnipsel zu erstellen. Zur Datenerweiterung werden dieselben Trainingsgebiete mit mehreren Winkeln in mehreren Bildschnipseln erfasst. Der Standard-Drehwinkel beträgt 0 Grad. |
NoFeature-Kacheln ausgeben | Gibt an, ob Bildschnipsel, die keine Trainingsgebiete erfassen, exportiert werden.
|
Metadatenformat | Gibt das Ausgabeformat für Metadatenbeschriftungen an. Es gibt fünf Optionen der Ausgabe-Metadaten-Beschriftungen für die Trainingsdaten: KITTI-Rechtecke, PASCAL VOC-Rechtecke, Klassifizierte Kacheln (eine Class-Karte), RCNN-Masken sowie Beschriftete Kacheln. Wenn es sich bei den Eingabedaten für das Trainingsgebiet um einen Feature-Class-Layer handelt, wie zum Beispiel eine Gebäude-Layer- oder Standardklassifizierungs-Trainingsgebiet-Datei, verwenden Sie KITTI- oder PASCAL VOC-Rechtecke. Die Ausgabe-Metadaten sind eine .txt-Datei oder .xml-Datei mit den Daten für das Trainingsgebiet, die im kleinsten umgebenden Rechteck enthalten sind. Der Name der Metadatendatei stimmt mit dem Namen des Eingabequellbildes überein. Wenn es sich bei den Eingabedaten für das Trainingsgebiet um eine Class-Karte handelt, verwenden Sie als Format für die Ausgabe-Metadaten die Option "Klassifizierte Kacheln".
Beim KITTI-Metadatenformat werden 15 Spalten erstellt, jedoch nur 5 davon im Werkzeug verwendet. Die erste Spalte ist der Klassenwert. Die nächsten 3 Spalten werden übersprungen. In den Spalten 5-8 wird das kleinste umgebende Rechteck definiert, das aus 4 Bildkoordinatenpositionen besteht. Diese sind die entsprechenden Pixel links, oben, rechts und unten. Das kleinste umgebende Rechteck umfasst den im Deep-Learning-Klassifikator verwendeten Training-Schnipsel. Die verbleibenden Spalten werden nicht verwendet. |
Feature schwärzen | Gibt an, ob die Pixel um die einzelnen Objekte oder Features in den Bildkacheln geschwärzt werden sollen.
Dieser Parameter findet nur Anwendung, wenn das Format auf Beschriftete Kacheln eingestellt ist und eine Eingabe-Feature-Class oder ein klassifiziertes Raster angegeben wurde. |
Zuschneide-Modus | Gibt an, ob die exportierten Kacheln auf dieselbe Größe zugeschnitten werden sollen.
Dieser Parameter findet nur Anwendung, wenn das Format auf Beschriftete Kacheln eingestellt ist und eine Eingabe-Feature-Class oder ein klassifiziertes Raster angegeben wurde. |
Bezugssystem | Gibt den Typ von Bezugssystem an, mit dem das Eingabebild interpretiert wird. Das angegebene Bezugssystem muss mit dem Bezugssystem übereinstimmen, das für das Training des Deep-Learning-Modells verwendet wurde.
|
Die exportierten Trainingsdaten können jetzt in einem Deep-Learning-Modell verwendet werden.