Ausrichtung (Spatial Analyst)

Mit der Spatial Analyst-Lizenz verfügbar.

Mit der 3D Analyst-Lizenz verfügbar.

Zusammenfassung

Leitet die Ausrichtung von jeder Zelle einer Raster-Oberfläche her.

Mit der Ausrichtung wird die Zielrichtung angegeben, in die ein Gefälle von der jeweiligen Position verläuft.

Weitere Informationen zur Funktionsweise des Werkzeugs "Ausrichtung"

Abbildung

Abbildung "Ausrichtung"
OutRas = Aspect(InRas1)

Verwendung

  • Dieses Werkzeug verwendet ein bewegliches 3x3-Zellen-Fenster zur Verarbeitung der Daten. Wenn die zu verarbeitende Zelle "NoData" lautet, dann wird für diese Position "NoData" ausgegeben.

  • Von den acht benachbarten Zellen der zu verarbeitenden Zelle müssen mindestens sieben einen gültigen Wert aufweisen, um vom Werkzeug verarbeitet zu werden. Sind weniger als sieben gültige Zellen vorhanden, erfolgt keine Berechnung, und die Ausgabe dieser zu verarbeitenden Zelle lautet "NoData".

  • Die Zellen der ganz am Rand des Ausgabe-Rasters befindlichen Zeilen und Spalten lauten "NoData". Das liegt daran, dass die Zellen entlang der Grenze des Eingabe-Datasets nicht an ausreichend viele andere Zellen angrenzen.

  • Die Ausrichtung wird als positive Gradangabe von 0 bis 360 ausgedrückt, wobei im Uhrzeigersinn von Norden aus gemessen wird.

  • Zellen im Eingabe-Raster, die flach sind, d. h. ohne Neigung, wird die Ausrichtung -1 zugewiesen.

  • Bei der geodätischen Methode ist die Angabe der Oberflächen-Z-Einheit sehr wichtig, um ein genaues Ergebnis zu erhalten. Der Parameter Z-Einheit wird nur dann aktualisiert, wenn die geodätische Methode ausgewählt ist.

  • Enthält das vertikale Koordinatensystem des Eingabe-Rasters eine Z-Einheit, wird sie automatisch angewendet. Es wird empfohlen, eine Z-Einheit für das Eingabe-Raster zu definieren, wenn keine vorhanden ist. Mithilfe des Werkzeugs Projektion definieren können Sie eine Z-Einheit angeben. Sollte keine vorhanden sein, wird als Standardeinheit Meter verwendet.

  • Der Parameter Geodätische Azimute projizieren (project_geodesic_azimuths in Python) ist nur verfügbar, wenn der Parameter Methode auf Geodätisch festgelegt ist.

    Wenn für die Methode Geodätisch der Parameter Geodätische Azimute projizieren aktiviert ist (bzw. in Python project_geodesic_azimuths auf PROJECT_GEODESIC_AZIMUTHS festgelegt ist), gilt Folgendes:

    • 360 Grad stellt den Norden dar.
    • Die Azimute werden projiziert, um die Verzerrung zu korrigieren, die durch ein nicht konformes Ausgabekoordinatensystem verursacht wird. Diese Winkel können verwendet werden, um Punkte entlang der steilsten Abwärtsneigung genau zu verorten.

    Aktivieren Sie den Parameter Geodätische Azimute projizieren, wenn Sie die Ausgabe des Werkzeugs Ausrichtung als Gegenrichtungseingabe für ein Werkzeug aus dem Toolset "Entfernung" verwenden.

  • Wenn das Eingabe-Raster neu berechnet werden muss, wird die bilineare Technik verwendet. Ein Eingabe-Raster muss beispielsweise dann neu berechnet werden, wenn das Ausgabe-Koordinatensystem, die Ausdehnung oder die Zellengröße sich von dem entsprechenden Wert der Eingabe unterscheidet.

  • Die Berechnung der geodätischen Ausrichtung mit diesem Werkzeug kann mit einem Grafikprozessor (Graphics Processing Unit, GPU) beschleunigt werden. Das heißt, wenn ein GPU-Gerät in Ihrem System verfügbar ist, lässt sich damit die Leistung der geodätischen Methode verbessern.

    Im Hilfethema GPU-Verarbeitung mit Spatial Analyst erhalten Sie nähere Informationen über die Konfiguration und die Arbeit mit GPU-Geräten sowie einige Tipps zur Fehlerbehebung für eventuelle Schwierigkeiten.

  • Weitere Informationen zur Geoverarbeitung von Umgebungen mit diesem Werkzeug finden Sie unter Analyseumgebungen und Spatial Analyst.

Syntax

Aspect(in_raster, {method}, {z_unit}, {project_geodesic_azimuths})
ParameterErklärungDatentyp
in_raster

Das Eingabe-Oberflächen-Raster.

Raster Layer
method
(optional)

Gibt an, ob die Ausrichtung mithilfe einer planaren (flache Erde) oder geodätischen (Ellipsoid) Methode berechnet werden soll.

  • PLANARDie Berechnung erfolgt auf einer projizierten flachen Ebene mithilfe eines kartesischen 2D-Koordinatensystems. Dies ist das Standardverfahren.
  • GEODESICDie Berechnung erfolgt mithilfe eines kartesischen 3D-Koordinatensystems, wobei die Erde die Form eines Ellipsoids annimmt.

Die planare Methode eignet sich zum Berechnen lokaler Flächen in einer Projektion, bei der die korrekte Entfernung und Fläche beibehalten werden. Damit lassen sich Analysen von Flächen wie Städten, Landkreisen oder flächenmäßig kleineren Bundesstaaten durchführen. Die geodätische Methode liefert ein genaueres Ergebnis, allerdings fällt hierfür evtl. eine längere Verarbeitungszeit an.

String
z_unit
(optional)

Lineare Einheit vertikaler Z-Werte.

Sie wird durch ein vertikales Koordinatensystem definiert, sofern vorhanden. Falls kein vertikales Koordinatensystem vorhanden ist, sollte die Z-Einheit mithilfe der Einheitenliste festgelegt werden, um eine korrekte geodätische Berechnung sicherzustellen. Standardmäßig wird Meter verwendet.

  • INCHFür Zoll (US)
  • FOOTFür Fuß
  • YARDFür Yards (US)
  • MILE_USFür Meilen (US)
  • NAUTICAL_MILEFür Seemeilen
  • MILLIMETERFür Millimeter
  • CENTIMETERFür Zentimeter
  • METERFür Meter
  • KILOMETERFür Kilometer
  • DECIMETERFür Dezimeter
String
project_geodesic_azimuths
(optional)

Legt fest, ob geodätische Azimute projiziert werden, um die durch den Ausgabe-Raumbezug verursachte Winkelverzerrung zu korrigieren.

  • GEODESIC_AZIMUTHSGeodätische Azimute werden nicht projiziert. Dies ist die Standardeinstellung.
  • PROJECT_GEODESIC_AZIMUTHSGeodätische Azimute werden projiziert.
Boolean

Rückgabewert

NameErklärungDatentyp
out_raster

Das Ausgabe-Ausrichtungs-Raster.

Es weist den Typ "Gleitkomma" auf.

Raster

Codebeispiel

Aspect – Beispiel 1 (Python-Fenster)

In diesem Beispiel wird ein Ausrichtungs-Raster aus einem Eingabe-Oberflächen-Raster erstellt.

import arcpy
from arcpy import env  
from arcpy.sa import *
env.workspace = "C:/sapyexamples/data"
outAspect = Aspect("elevation")
outAspect.save("C:/sapyexamples/output/outaspect01.img")
Aspect – Beispiel 2 (eigenständiges Skript)

In diesem Beispiel wird ein Ausrichtungs-Raster aus einem Eingabe-Oberflächen-Raster erstellt.

# Name: Aspect_Ex_02.py
# Description: Derives aspect from a raster surface.
# Requirements: Spatial Analyst Extension

# Import system modules
import arcpy
from arcpy import env
from arcpy.sa import *

# Set environment settings
env.workspace = "C:/sapyexamples/data"

# Set local variables
inRaster = "elevation"
method = "GEODESIC"
zUnit = "FOOT"
# Check out the ArcGIS Spatial Analyst extension license
arcpy.CheckOutExtension("Spatial")

# Execute Aspect
outAspect = Aspect(inRaster, method, zUnit)

# Save the output 
outAspect.save("C:/sapyexamples/output/outaspect02")

Lizenzinformationen

  • Basic: Erfordert Spatial Analyst oder 3D Analyst
  • Standard: Erfordert Spatial Analyst oder 3D Analyst
  • Advanced: Erfordert Spatial Analyst oder 3D Analyst

Verwandte Themen