Export Training Data For Deep Learning (Image Analyst)

Available with Spatial Analyst license.

Available with Image Analyst license.

Summary

Converts labeled vector or raster data into deep learning training datasets using a remote sensing image. The output is a folder of image chips and a folder of metadata files in the specified format.

Usage

  • This tool will create training datasets to support third-party deep learning applications, such as Google TensorFlow, Keras, PyTorch, and Microsoft CNTK.

  • Deep learning class training samples are based on small subimages containing the feature or class of interest, called image chips.

  • Use your existing classification training sample data or GIS feature class data such as a building footprint layer, to generate image chips containing the class sample from the source image. Image chips are often 256 pixel rows by 256 pixel columns, unless the training sample size is larger. Each image chip can contain one or more objects. If the Labeled Tiles metadata format is used, there can be only one object per image chip.

  • By specifying the Reference System parameter, training data can be exported in map space or pixel space (raw image space) to use for deep learning model training.

  • This tool supports exporting training data from a collection of images. You can add an image folder as the Input Raster. If the Input Raster is a mosaic dataset or an image service, you can also specify that the Processing Mode parameter process the mosaic as either one input or each raster item separately.

  • The cell size and extent can be adjusted using the geoprocessing environment settings.

  • For information about requirements for running this tool and issues you may encounter, see Deep Learning Frequently Asked QuestionsDeep Learning FAQ PDF.

Syntax

ExportTrainingDataForDeepLearning(in_raster, out_folder, in_class_data, image_chip_format, {tile_size_x}, {tile_size_y}, {stride_x}, {stride_y}, {output_nofeature_tiles}, {metadata_format}, {start_index}, {class_value_field}, {buffer_radius}, {in_mask_polygons}, {rotation_angle}, {reference_system}, {processing_mode}, {blacken_around_feature}, {crop_mode})
ParameterExplanationData Type
in_raster

The input source imagery, typically multispectral imagery.

Examples of the type of input source imagery include multispectral satellite, drone, aerial, or National Agriculture Imagery Program (NAIP). The input can be a folder of images.

Raster Dataset; Raster Layer; Mosaic Layer; Image Service; MapServer; Map Server Layer; Internet Tiled Layer; Folder
out_folder

The folder where the output image chips and metadata will be stored.

The folder can also be a folder URL that uses a cloud storage connection file (*.acs).

Folder
in_class_data

The training sample data in either vector or raster form.

Vector inputs should follow a training sample format as generated by the Training Sample Manager. Raster inputs should follow a classified raster format as generated by the Classify Raster tool. Following the proper training sample format will produce optimal results with the statistical information; however, the input can also be a point feature class without a class value field, or an integer raster without any class information.

Feature Class; Feature Layer; Raster Dataset; Raster Layer; Mosaic Layer; Image Service
image_chip_format

Specifies the raster format that will be used for the image chip outputs.

PNG and JPEG support up to three bands.

  • TIFFTIFF format will be used.
  • PNGPNG format will be used.
  • JPEGJPEG format will be used.
  • MRFMeta Raster Format (MRF) will be used
String
tile_size_x
(Optional)

The size of the image chips for the x dimension.

Long
tile_size_y
(Optional)

The size of the image chips for the y dimension.

Long
stride_x
(Optional)

The distance to move in the x direction when creating the next image chips.

When stride is equal to tile size, there will be no overlap. When stride is equal to half the tile size, there will be 50 percent overlap.

Long
stride_y
(Optional)

The distance to move in the y direction when creating the next image chips.

When stride is equal to tile size, there will be no overlap. When stride is equal to half the tile size, there will be 50 percent overlap.

Long
output_nofeature_tiles
(Optional)

Specifies whether image chips that do not capture training samples will be exported.

  • ALL_TILESAll image chips, including those that do not capture training samples, will be exported.
  • ONLY_TILES_WITH_FEATURESOnly image chips that capture training samples will be exported. This is the default.
Boolean
metadata_format
(Optional)

Specifies the format of the output metadata labels.

The options for output metadata labels for the training data are KITTI rectangles, PASCAL VOC rectangles, Classified Tiles (a class map), RCNN Masks, Labeled Tiles, Multi-labeled Tiles, and Export Tiles. If the input training sample data is a feature class layer, such as a building layer or standard classification training sample file, use the KITTI or PASCAL VOC rectangles option. The output metadata is a .txt file or an .xml file containing the training sample data contained in the minimum bounding rectangle. The name of the metadata file matches the input source image name. If the input training sample data is a class map, use the Classified Tiles option as the output metadata format.

  • KITTI_rectanglesThe metadata follows the same format as the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) Object Detection Evaluation dataset. The KITTI dataset is a vision benchmark suite. The label files are plain text files. All values, both numerical and strings, are separated by spaces, and each row corresponds to one object.This format is used for object detection.
  • PASCAL_VOC_rectanglesThe metadata follows the same format as the Pattern Analysis, Statistical Modeling and Computational Learning, Visual Object Classes (PASCAL_VOC) dataset. The PASCAL VOC dataset is a standardized image dataset for object class recognition. The label files are in XML format and contain information about image name, class value, and bounding boxes.This format is used for object detection. It is the default.
  • Classified_TilesThe output will be one classified image chip per input image chip. No other metadata for each image chip is used. Only the statistics output has more information on the classes, such as class names, class values, and output statistics.This format is used for pixel classification.
  • RCNN_MasksThe output will be image chips that have a mask on the areas where the sample exists. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone in the deep learning framework model.This format is used for object detection.
  • Labeled_TilesEach output tile will be labeled with a specific class.This format is used for object classification.
  • MultiLabeled_TilesEach output tile will be labeled with one or more classes. For example, a tile may be labeled agriculture and also cloudy.This format is used for object classification.
  • Export_TilesThe output will be image chips with no label.This format is used for image enhancement techniques such as Super Resolution.

For the KITTI metadata format, 15 columns are created, but only 5 of them are used in the tool. The first column is the class value. The next 3 columns are skipped. Columns 5-8 define the minimum bounding rectangle, which is composed of four image coordinate locations: left, top, right, and bottom pixels. The minimum bounding rectangle encompasses the training chip used in the deep learning classifier. The remaining columns are not used.

The following is an example of the PASCAL VOC option:

<?xml version=”1.0”?>
- <layout>
      <image>000000000</image>
      <object>1</object>
    - <part>
         <class>1</class>
       - <bndbox>
            <xmin>31.85</xmin>
            <ymin>101.52</ymin>
            <xmax>256.00</xmax>
            <ymax>256.00</ymax>
         </bndbox>
      </part>
  </layout>

For more information, see PASCAL Visual Object ClassesPASCAL Visual Object Classes.

String
start_index
(Optional)

Legacy:

This parameter has been deprecated. Use a value of 0 or # in Python.

Long
class_value_field
(Optional)

The field that contains the class values. If no field is specified, the system searches for a value or classvalue field. If the feature does not contain a class field, the system determines that all records belong to one class.

Field
buffer_radius
(Optional)

The radius for a buffer around each training sample to delineate a training sample area. This allows you to create circular polygon training samples from points.

The linear unit of the in_class_data spatial reference is used.

Double
in_mask_polygons
(Optional)

A polygon feature class that delineates the area where image chips will be created.

Only image chips that fall completely within the polygons will be created.

Feature Layer
rotation_angle
(Optional)

The rotation angle that will be used to generate additional image chips.

An image chip will be generated with a rotation angle of 0, which means no rotation. It will then be rotated at the specified angle to create an additional image chip. The same training samples will be captured at multiple angles in multiple image chips for data augmentation.

The default rotation angle is 0.

Double
reference_system
(Optional)

Specifies the type of reference system to be used to interpret the input image. The reference system specified must match the reference system used to train the deep learning model.

  • MAP_SPACEA map-based coordinate system will be used. This is the default.
  • PIXEL_SPACEImage space will be used, with no rotation and no distortion.
String
processing_mode
(Optional)

Specifies how all raster items in a mosaic dataset or an image service will be processed. This parameter is applied when the input raster is a mosaic dataset or an image service.

  • PROCESS_AS_MOSAICKED_IMAGEAll raster items in the mosaic dataset or image service will be mosaicked together and processed. This is the default.
  • PROCESS_ITEMS_SEPARATELYAll raster items in the mosaic dataset or image service will be processed as separate images.
String
blacken_around_feature
(Optional)

Specifies whether the pixels around each object or feature in each image tile will be masked out.

This parameter only applies when the metadata format is set to Labeled_Tiles and an input feature class or classified raster has been specified.

  • NO_BLACKENPixels surrounding objects or features will not be masked out. This is the default.
  • BLACKEN_AROUND_FEATUREPixels surrounding objects or features will be masked out.
Boolean
crop_mode
(Optional)

Specifies whether the exported tiles will be cropped so that they are all the same size.

This parameter only applies when the metadata format is set to Labeled_Tiles and an input feature class or classified raster has been specified.

  • FIXED_SIZEExported tiles will be cropped to the same size and will center on the feature. This is the default.
  • BOUNDING_BOXExported tiles will be cropped so that the bounding geometry surrounds only the feature in the tile.
String

Code sample

ExportTrainingDataForDeepLearning example 1 (Python window)

This example creates training samples for deep learning.

# Import system modules
import arcpy
from arcpy.ia import *

# Check out the ArcGIS Image Analyst extension license
arcpy.CheckOutExtension("ImageAnalyst")

ExportTrainingDataForDeepLearning("c:/test/image.tif", "c:/test/outfolder", 
    "c:/test/training.shp", "TIFF", "256", "256", "128", "128", 
	"ONLY_TILES_WITH_FEATURES", "Labeled_Tiles", 0, "Classvalue", 
	0, None, 0, "MAP_SPACE", "PROCESS_AS_MOSAICKED_IMAGE", "NO_BLACKEN", "FIXED_SIZE")
ExportTrainingDataForDeepLearning example 2 (stand-alone script)

This example creates training samples for deep learning.

# Import system modules and check out ArcGIS Image Analyst extension license
import arcpy
arcpy.CheckOutExtension("ImageAnalyst")
from arcpy.ia import *

# Set local variables
inRaster = "c:/test/InputRaster.tif"
out_folder = "c:/test/OutputFolder"
in_training = "c:/test/TrainingData.shp"
image_chip_format = "TIFF"
tile_size_x = "256"
tile_size_y = "256"
stride_x= "128"
stride_y= "128"
output_nofeature_tiles= "ONLY_TILES_WITH_FEATURES"
metadata_format= "Labeled_Tiles"
start_index = 0
classvalue_field = "Classvalue"
buffer_radius = 0
in_mask_polygons = "MaskPolygon"
rotation_angle = 0
reference_system = "PIXEL_SPACE"
processing_mode = "PROCESS_AS_MOSAICKED_IMAGE"
blacken_around_feature = "NO_BLACKEN"
crop_mode = “FIXED_SIZE”

# Execute 
ExportTrainingDataForDeepLearning(inRaster, out_folder, in_training, 
    image_chip_format,tile_size_x, tile_size_y, stride_x, 
    stride_y,output_nofeature_tiles, metadata_format, start_index, 
    classvalue_field, buffer_radius, in_mask_polygons, rotation_angle, 
    reference_system, processing_mode, blacken_around_feature, crop_mode)

Licensing information

  • Basic: Requires Image Analyst or Spatial Analyst
  • Standard: Requires Image Analyst or Spatial Analyst
  • Advanced: Requires Image Analyst or Spatial Analyst

Related topics